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Abstract— In this paper, we propose to use coordinates-based proach is to attempt to predict the network distance (icind-
mechanisms in a peer-to-peer architecture to predict Intenet net-  trip propagation and transmission delay, a relativelylstabar-
work distance (i.e. round-trip propagation and transmisson de-  5cteristic) between hosts, and use this as a first-orderimisc
lay). We study two mechanisms. The firstis a previously propsed . © . .
scheme, called the triangulated heuristic, which is basednorela- inating metric to greatly reduce or eliminate the negt_j for on
tive coordinates that are simply the distances from a host tsome demand network measurements. Therefore, the critical-prob

special network nodes. We propose the second mechanism,ledl lem is to devise techniques that can predict network digtanc
Global Network Positioning (GNP), which is based on absol@ accurately, scalably, and in a timely fashion.

coordinates computed from modeling the Internet as a geomet ) ) ]

ric space. Since end hosts maintain their own coordinateshese  In the pioneering work of Francis et al [5], the authors ex-
approaches allow end hosts to compute their inter-host disnces  amined the network distance prediction problem in detaifrfr

as soon as they discover each other. Moreover coordinatesear g topological point of view and proposed the first complete so

very efficient in summarizing inter-host distances, makingthese |, sion called IDMaps. IDMaps is an infrastructural servioe
approaches very scalable. By performing experiments usingea- ’

sured Internet distance data, we show that both coordinatesased Which special HOPS servers maintain a virtual topology map
schemes are more accurate than the existing state of the agstem  Of the Internet consisting of end hosts and special hostsctal
IDMaps, and the GNP approach achieves the highest accuracyid  Tracers. The distance between hadtsind B is estimated as
robustness among them. the distance betweed and its nearest Tracéh, plus the dis-
tance betweef$ and its nearest Trac&g, plus the shortest path
distance froni/; to 7, over the Tracer virtual topology. As the
number of Tracers grow, the prediction accuracy of IDMaps
As innovative ways are being developed to harvest thends to improve. Designed as a client-server architesiite
enormous potential of the Internet infrastructure, a neas<! tion, end hosts can query HOPS servers to obtain network dis-
of large-scale globally-distributed network services @t tance predictions. An experimental IDMaps system has been
plications such as distributed content hosting servicesr-o deployed.
lay network multicast [1][2], content addressable ovemay-
works [3][4], and peer-to-peer file sharing such as Napster

and Gnutella have emerged. Because these systems ha\%of';ll( distance prediction that is based on peer-to-peer. -Com

lot of flexibility in choosing their communication paths,eth paréd with client-server based solutions, peer-to-pestesys

' . . . have potential advantages in scaling. Since there is ho need
can greatly benefit from intelligent path selection basedern for shared servers, potential performance bottleneckslare
work performance. For example, in a peer-to-peer file sigarin '

T o . inated, especially when the system size scales up. Penfamena
application, a client ideally wants to know the availablada S0 | h ’ d d he |
width between itself and all the peers that have the wanted fi ay aiso Improve as there Is no need to en ure the _atency
: f communicating with remote servers. In addition, this ar-
Unfortunately, although dynamic network performance ebar _, . . - . . .
L ; . chitecture is consistent with emerging peer-to-peer appbns
teristics such as available bandwidth and latency are th& mg I .
L such as media files sharing, content addressable overlay net
relevant to applications and can be accurately measured 0n- ; .
. : works [3][4], and overlay network multicast [1][2] which ©a
demand, the huge number of wide-area-spanning end-to-er}gaﬂ benefit from network distance information
paths that need to be considered in these distributed syst&n y B _ '
makes performing on-demand network measurements impracSpeCIfICf’:l”y, we propose cpordmates-based approgches for
tical because it is too costly and time-consuming. network distance prediction in the peer-to-peer architect
To bridge the gap between the contradicting goals of perfofhe main idea is to ask end hosts to maintzaordinatei.e.
mance optimization and scalability, we believe a promisipg a set of numbers) that characterize their locations in tierin
H o 4 bv DARPA und ot % net such that network distances can be predicted by evafuati
IS research was sponsore Yy under contract nunggsd2-99- H : ’ H H _
1-0518, and by NSF under grant numbers Career Award NCREBRANI- adistance furycuormve_r hosts’ coordinates. Coqrdmates based
9730105, ITR Award ANI-0085920, and ANI-9814929. Additwrsupport approaches fit well with the peer-to-peer architecture bsea
was provided by Intel. Views and conclusions contained is document are \when an end host discovers the identities of other end hosts i
those of the authors and should not be interpreted as repiegehe official t licati thei ted di
policies, either expressed or implied, of DARPA, NSF, Intelthe U.S. gov- a pe_er- O-peer application, e|r_ pre-compute COOIj Haan
ernment. be piggybacked, thus network distances can essentiallgrne ¢

I. INTRODUCTION

In this paper, we explore an alternative architecture far ne



(X2:Y2:25) heuristic, GNP and IDMaps. Finally, we summarize in Sec-

T O tion VII.
(X1.Y1,21)
E Il. TRIANGULATED HEURISTIC
==~ . The triangulated heuristic is a very interesting way to bun
'/‘.\ X network distance assuming shortest path routing is enflorce
) ] The key idea is to sele¢t nodes in a network to bgase nodes
Z [ ] B;. Then, a nodé is assigned coordinates which are sim-
(X3,Y2Z3) (X4Ya:Z4) ply given by theN-tuple of distances betweeH and theN
base nodes, i.édyg, ,dys,, .., dusy ). HOtZ's coordinates are
Fig. 1. Geometric space model of the Internet thereforerelativeto the set of base nodes. Given two noéias

andH., assuming the triangular inequality holds, the triangu-
) lated heuristic states that the distance betwHgrand #- is
puted instantaneously by the end hbst. _ bounded below by, = max;c 1 o, vy (|d#, B, — dy,5,]) and
Another bengflt of C(_)o_rdmgtes-baseq gpproaches is that ggunded above by = mineqr o Ny (day B, + dagys,)- Vari-
ordinates are highly efficient in summarizing a large amaint ;5 weighted averages bfandU can then be used as distance
distance information. For example, in a multi-party apglien,  fnctions to estimate the distance betwégnand.,.
the distances of all paths betweénhosts can be efficiently  Hotz's simulation study focused on tuning this heuristic to
communicated by sets of coordinates ob numbers each explore the trade-off between path optimality and compaerat
(i.e. O(K - D) of data), as opposed #§ (KX — 1)/2 individual  gverhead ind* heuristic shortest path search problems and did
distances (i.e.Q(K?) of data). Thus, this approach is able tgot consider the prediction accuracy of the heuristisvas sug-
trade local computations for significantly reduced commani gested as the preferred metric to usefihbecause it igdmis-
tion overhead, achieving higher scalability. sibleand therefore optimality and completeness are guaranteed.
We study two types of coordinates for distance predictiofs a |ater study, Guyton and Schwartz [7] appligd+ U)/2
The first is a kind ofrelative coordinates, originally proposedas the distance estimate in their simulation study of theesta
by Hotz [6] to construct thériangulated heuristicHotz’s goal  server selection problem with only limited success. In fids
was to apply this heuristic in thé* heuristic search algorithm per, we apply this heuristic to the Internet distance prtémtic
to reduce the computation overhead of shortest-path seaich problem and conduct a detailed study using measured Interne
interdomain graphs. The potential of this heuristic fowmk  distance data to evaluate its effectiveness. We discoagtlile
distance prediction has not been previously studied. The s@pper bound heuristit/ actually achieves very good accuracy
ond is a kind ofabsolutecoordinates obtained using a new apand performs far better than the lower bound heuritiar the
proach we propose called Global Network Positioning (GNP)7, 4 17) /2 metric in the Internet.
As illustrated in Figure 1, the key idea of GNP is to model the To use the triangulated heuristic for network distance pre-
Internet as a geometric space (e.g. a 3-dimensional Eaclidgliction in the Internet, we propose the following simple pee
space) and characterize the position of any host in therlaterto-peer architecture. First, a small number of distributede
by a point in this space. The network distance between anydes are deployed over the Internet. The only requirenfent o
two hosts is then predicted by the modelled geometric digtarthese base nodes is that they must reply to in-coming ICMP
between them. ping messages. Each end host that wants to participate mea-
As we will show in Section VI, the two coordinates-based agures the round-trip times between itself and the base nodes
proaches are both more accurate than the virtual topology masing ICMP ping messages and takes the minimum of several
model used in IDMaps. Furthermore, GNP is the most accmeasurements as the distances. These distances are used as t
rate and robust of all three approaches. Because GNP is vend host’s coordinates. When end hosts discover each other,
general, it leads to many research issues. In this study,ilve they piggyback their coordinates and subsequently hekbsh
focus on characterizing its performance and provide irtsigh  distances can be predicted by the triangulated heuristiowt
what geometric space should be used to model the Interreét, @erforming any on-demand measurement.
how to fine tune it to achieve the highest prediction accuracy
The rest of this paper is organized as follows. In the next I1l. GLOBAL NETWORK POSITIONING
section, we explain the triangulated heuristic and disétsss  To enable the scalable computation of geometric host ceordi
use in a peer-to-peer architecture for Internet distanedipr nates in the Internet, we propose a two-part architectuarthe
tion. In Section IIl, we describe the GNP approach and its-peirst part, a small distributed set of hosts called Landméirks
to-peer realization in the Internet. In Section IV, we com@pa compute their own coordinates in a chosen geometric space.
the properties of GNP, the triangulated heuristic, and IPMa The Landmarks’ coordinates serve as a frame of reference and
In Section V, we describe the methodology we use to evaluaire disseminated to any host who wants to participate. In the
the accuracy of network distance prediction mechanisms$randsecond part, equipped with the Landmarks’ coordinates, any
Section VI, we present experimental results based on leterend host can compute its own coordinates relative to those of
measurements to compare the performance of the triangulatiee Landmarks. In the following sections, we describe this-t
INote that while we focus on the peer-to-peer architecturecéordinates- part archltecture in detail. The properties of this arattites I-S
based approaches in this paper, nothing prevents coceditiased approaches Summanz_ed_and compared to those of IDMaps and the triangu-
to be used in a client-server architecture when it is deeme mppropriate.  lated heuristic in Section IV.
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Fig. 2. Part 1: Landmark operations
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A. Part 1: Landmark Operations

Suppose we want to model the Internet as a particular g
metric spaceS. Let us denote the coordinates of a hisin S
ascy,, the distance function that operates on these coordina

Sy, i
asf"(-), and the computed distance between h&tand#,, tant, hence any solution will suffice. When a re-computation

H S(.S S 7S
"e_'l_{: (fc_% ’ c%)’fanHl%H_ . I distrit of Landmarks’ coordinates is needed over time, we can ensure
e first part of our architecture Is to use a small distributgy, e 4ordinates are not drastically changed if we simplyinp

set Of.hOStS known as Landmarks to provide a set of referengR 414 coordinates instead of random numbers as the siet st
coordinates necessary to orient other hosts§.inHow to op- of the minimization problem

timally choose the locations and the number of Landmarks re-5,ca the Landmarks’ coordinatess ¢S | are com-
177 VLN

mains an open question, although we will provide some insighy teq  they are disseminated, along with the identifier ffer t
in Se(_:t|on _VI. However, note that for a geometric space of dijaometric space used and (perhaps implicitly) the corre-
mensionalityD, we must use at leadl + 1 Landmarks becausesponding distance functiofiS(-), to any ordinary host that

otherwise, as it will become clear in the next section, itWs i \yants to participate in GNP. In this discussion, we leave the

possible to uniquely compute host coordinates. dissemination mechanism (e.g. unicast vs. multicast, pash
Suppose there ar& Landmarks,£; to £Ln. The Land- pull, etc) and protocol unspecified.
u

marks simply measure the inter-Landmark round-trip times
ing ICMP ping messages and take the minimum of sevefgl py o- Ordinary Host Operations

measurements for each path to produce the bottom half of thﬁn the second part of our architecture, ordinary hosts are

N x N distance matrix (the matrix is assumed to be symmet- """ dt tivel tticioate. Using th dinateshaf
ric along the diagonal). We denote the measured distance Eeequwe 0 aclively participate. 1sing the coordinate

tween hostH, andHs asdy, +,. Using the measured dis- andmarks in the geometric spase each ordinary host now
1 2" H H H H
tancesdy,c,,i > j, a host, perhaps one of thé Landmarks, derives its own coordinates. To do so, an ordinary ibshea-

computes the coordinates of the LandmarksinThe goal is suresits roun((jj-:c[nﬁtmlﬁs to tHé Landrfnarks usllng ICMP plngt f
to find a set of coordinates? ,..,¢2_, for the N Landmarks messages and takes the minimum of several measurements for

such that the overall error between the measured distamckes gach path as the distance. In this phase, the Landmarks are

the computed distances & is minimized. Formally, we seek completely pagsive and simply reply to incoming lC.MP ping
to minimize the following objective functio,y,i (-): messages. Using th€ measured host-to-Landmark distances,

s B o d.c,, hostH can compute its own coordinate§ that mini-
fobjr (€25 o) = > E(deic;.dz,c;)  mize the overall error between the measured and the computed
Li,Li€{Lr,...Ln} | i>] host-to-Landmark distances. Formally, we seek to minirtfiee

(1) following objective functionf,sja (-):
where€ (+) is an error measurement function, which can be the S g
simple squared error Foviz () = Z Eldreir dye;) (3)
5s 5s ) L;e{Ly,...LN}

Eldry 1 Aoy e,) = (dryn, = Ay, ) 2) where€ (-) is again an error measurement function as discussed
or some other more sophisticated error measures. To be gxthe previous section. Like deriving the Landmarks’ coor-
pected, the way error is measured in the objective functiainates, this computation can also be cast as a generic-multi
will critically affect the eventual distance predictioncacacy. dimensional global minimization problem. Figure 3 illuadtrs
In Section VI, we will compare the performance of severahese operations for an ordinary host in the 2-dimensional E
straight-forward error measurement functions. With this f clidean space with 3 Landmarks.
mulation, the computation of the coordinates can be cast adt should now become clear why the number of Landmarks
a generic multi-dimensional global minimization problemat N must be greater than the dimensionalityof the geometric
can be approximately solved by many available methods sugpaceS. If NV is not greater tha®, the Landmarks’ coordinates
as the Simplex Downhill method [8], which we use in this paare guaranteed to lie on a hyperplane of at niost 1 dimen-
per. Figure 2 illustrates these Landmark operations foridd:a sions. Consequently, a point in ti&-dimensional space and
marks in the 2-dimensional Euclidean space. Note that thétereflection across the Landmarks’ hyperplane cannot e di
are infinitely many solutions for the Landmarks’ coordirgatetinguished by the objective function, leading to ambiguicost

because any rotation and/or additive translation of a sebef
98tion coordinates will preserve the inter-Landmark distas.

ut since the Landmarks’ coordinates are only used as a frame
¥ teference in GNP, only their relative locations are impor
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O(N)
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coordinates, perform
measurements, compute
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and compute di:

Infrastructure

Tracers measure all
paths, send results to
HOPS servers; HOPS

servers implement
query/reply protocol,

Base nodes
reply to pings

Landmarks measure
inter-Landmark paths,
compute own
coordinates and send
them to end hosts; reply

time. In our experiments, on a 866 MHz Pentium Ill, com-
puting all 15 Landmarks’ coordinates takes on the order of a
second, and computing an ordinary host’s coordinates takes
the order of ten milliseconds.

Since the measurement overhead and the off-line costs of all
three schemes are acceptable, what differentiate thenhaire t
on-line scalability, their prediction accuracy (which weai
discuss in Section VI) and other qualitative differenceie T
main difference between the distance prediction techisiggie
scaling. The coordinates-based approaches have higHer sca
bility because the communication cost of exchanging ceordi
nates to convey distance information among a grouf§ tfosts

compute distances to pings

No Yes Yes

Firewall
compatibility

grows linearly withK' as opposed to quadratically. In addition,
the peer-to-peer architecture also helps to achieve higfadr
ability because on-line computations of network distarares
not performed by shared servers. Since end hosts coordinate
coordinates. Note that in general there is no guarantedtibat can be p|ggy_back_ed when end hosts d|§cover each c_)ther, dis-
; . ) . . ; tance predictions in the peer-to-peer architecture arengisdly
host coordinates will be unique. Using fewer dimensionsitha , : o
the number of Landmarks is simply to avoid obvious promem's”.Sta‘.”ta.”eO“S and will r.'Ot be subjected to the additiorss co
mMunication latency required to contact a server or delagstdu
server overload. Finally, the peer-to-peer architectsressier
to deploy because the i-nodes are passive and thereforetdo no
require detailed knowledge of the Internetin order to cled®s
addresses to probe. An added benefit is that end hosts behind
In this section, we discuss the differences between IDMagigewalls can still participate in the peer-to-peer aratiitee.
the triangulated heuristic, and GNP and illustrate the fisne The peer-to-peer architecture however does have several di
of each approach and the trade-offs. First, let us briefly dgdvantages. First, there is nothing to prevent an end hast fr
scribe IDMaps’ architecture. IDMaps is an infrastructisel- |ying about its coordinates in order to avoid being seledted
vice in which hosts called Tracers are deployed to measere $ther end hosts. Thus, this architecture may not be suitable
distances between themselves, possibly not the full mest toan uncooperative environment. In contrast, in the cliemtar
duce cost, and each Tracer is responsible for measuringghe drchitecture, an i-node can verify an end host's ping respon
tances between itself and the set of IP addresses or IP addtgge against the response time of its neighbors. Anothesrpot
prefixes in the world that are closest to it. These raw digtangal issue is that because the i-nodes in the peer-to-pekitac-
measurements are broadcasted over IP multicast to hosts g do not control the arrival of round-trip time measureise
HOPS servers which use the raw distances to build a virttfgdm end hosts, they can potentially be overloaded if thivairr
topology consisting of Tracers and end hosts to model the Igattern is bursty.
ternet. HOPS servers perform distance prediction comjput®t A common concern that affects all three approaches is that if
and interact with client hosts via a query/reply protocol. the fundamental assumption about the stability of netwdisk d
Common to all three approaches is the need for some tance (i.e. round-trip propagation delay) does not hold tdue
frastructure nodes (i-nodes), i.e. the Tracers of IDMaps, tfrequent network topology changes, all three distanceipred
base nodes of the triangulated heuristic, or the Landmadrkstion approaches would suffer badly in prediction accurddye
GNP. Thus, a key parameter of these architectures is the nuavel of impact such problem has on each distance prediction
ber of these i-nodesy. In addition toV Tracers, the IDMaps technique is out of the scope of this paper. However, we do
architecture is further characterized by the number of HOR$glieve that Internet paths are fairly stable as Zhang stla¥
serversS, and the number of address prefixds?, for Tracers ternet path study in 2000 reported that roughly 80% of Irgern
to probe. For GNP and the triangulated heuristic, in additicoutes studied were stable for longer than a day [9]. In aaluit
to N base nodes or Landmarks, they are characterized by #h&ause propagation delay is somewhat related to geogrmaphy
number of end hostd/, that need distance predictions. GNP igoute change need not directly imply a large change in propa-
further characterized by the dimensionaliBy, of the geometric gation delay excepting for pathological cases.
space used in computing host coordinates. Figure 4 sumesariz
the differences between the three schemes in terms of measur L
ment cost, communication cost, computation cost, and geplg™: Other Applications of GNP
ment. To clarify, the off-line computation cost of IDMaps is We want to point out that using GNP for network distance
O(AP - N -log N) + O(N?3) because thel P address prefixes predictions is only one particular application. The fundam
need to be associated with their nearest Tracers and tipaiall- tal difference between GNP and other approaches is that GNP
shortest path distances between Mdracers need to be com-computesabsolutegeometric coordinates to characterize posi-
puted. For GNP, in computing Landmarks’ coordinates, eatibbns of end hosts. In other words, GNP is able to generate a
evaluation off,;1 () takesO(N? - D) time. In computing end simple mathematical structure that maps extremely welb ont
host coordinates, each evaluation f3f;»(-) takesO(N - D) the Internet in terms of distances. This structure can breat

Fig. 4. Properties of distance prediction schemes

IV. IDM APS, TRIANGULATED HEURISTIC AND GNP
COMPARISON



benefit a variety of applications. For example, many scelabGlobal data set allows us to evaluate the global applicability of
overlay routing schemes such as CAN [3] and Delaunay tthe different distance prediction mechanisms.

angulation based overlay [2] achieve scalability by orgiy Our second data set, collected over an 8-hour period in the
end hosts into a simple abstract structure. The problemais tliirst week of June 2001, is based on a set of 164 targets that are
it is not easy to build such an abstract structure that semekt web servers of institutions connected to the Abilene bankbo
ously reflects the underlying network topology so as to iasee network. After post-processing, we are left with 127 tasget
performance [10]. GNP coordinates can tiesctly used in that are reachable from all probes. The vast majority ofehes
these overlay structures and can potentially improve their targets are located in universities in the United Statede Nt
formance significantly. Another interesting applicatidr@NP 10 of our 19 probes are also connected to Abilene. Abitene

is to build a proxy location service. For example, the GNPreoadata set allows us to examine the performance of the differen
dinates of a large number of network proxies can be organizegchanisms in a more homogeneous environment.

as a kd-tree data structure. Then, to locate a proxy thatas ne

est to an end host at a particular set of coordinates, only gn experiment Methodology

efficient lookup operation in this data structure is reqdirilo

. X . . All three distance prediction mechanisms considered i thi
expensive sorting of distances is needed.

paper require the use of some special infrastructure nddes (
nodes). To perform an experiment using a data set, we first
V. EVALUATION METHODOLOGY select a subset of the 19 probes to use as i-nodes, and use the

In this section, we describe the methodology we use to evahemaining probes and the targets as ordinary hosts. This way
ate the accuracy of GNP, the triangulated heuristic, anddps/ we can evaluate the performance of a mechanism by directly
using measured Internet distance data. comparing the predicted distances and the measured distanc
from the remaining probes to the targets. Because the phatic
choice of i-nodes can potentially affect the resulting jotdn
accuracy, in Section V-C, we propose 3 strawman selectien cr
teria to consider in this study.

A. Data Collection
We have login access to 19 hosts we gatibesin research

institutions distributed around the world. Twelve of these There is however an important and subtle issue that we must

probes are in North America, 5 are in Asia Pacific, and 2 aey ress. Suppose we want to compare GNP to IDMaps. We can
in Europe. In addition to probes, we have compiled sevetal SEi
e

f dd h d i a selection criterion to seleéf i-nodes and conduct one
of IP addresses that respond to ICMP ping messages. We riment using GNP and one using IDMaps. Unfortunately,
these IP addressé&mgets

when we compare the results, it is difficult to conclude wketh

To collect a data set, we measure the distances betweenyie jigerence is due to the inherent difference in thesehaec
19 probes and the distances from each probe to a set of targ KSms, or simply due to the fact that the particular set aides

To measure _the distance between two hosts, we send 220 Tappens to work better with one mechanism. To increase the
pyte ICMP bing packets atone second apart and take.the Bnfidence in our results, we use a technique that is sintilar t
imum round-trip time estimate from all replies as the dis&n ;. ¢)\4 \alidation in machine learning. Instead of choosikig
This raw data is then post-processed to retain only the R des based on a criterion. we chodée- 1 i-nodes. Then by
that are reachable from all probes. Correspondingly, teee eliminating one of theV + 1 i-'nodes at a time, we can generate

bias against having targets that are not always-on (€.9emody; , 4 gitferent sets ofV i-nodes that are fairly close to satisfy-
hosts) or do not have global connectivity in our final targ®ts . e criterion forV. We then compare different mechanisms

) in
t\V/://e r;ave co!le(;:t_edﬂ:wol datlta selt<s. fTIt]/Ie f'rgggit’ _coglect(-;d O\fﬁyusing the overall result from alV + 1 sets ofN i-nodes.
a two-aay period in the last week ot May IS based on vy gojye the multi-dimensional global minimization prob-

set of targets that contains 2000 “ping-able” IP addresbes 9ems in computing GNP coordinates, we use the Simplex

tained at an earlier time. These IP addresses were chosen nhill method [8]. In our experience, this method is highl
uniform probing over the P address space such that any v ﬁ?u/st and quite efficient. To ensure a high quality solytion

P addrgss has an ??‘ual_ cr:]hSaGnge of beinr? selected. hAﬂer]PQ\%'repeat the minimization procedure for 300 iterations whe
processing, we are ?tw't , target5t _at are reachabie computing Landmarks’ coordinates, and for 30 iterationgmh
all probes. The relatively low yield is partially due to thase computing an ordinary host's coordinates. In practice 8t

where some targets are not on the Internet during our measy[Ens is enough to obtain a fairly robust estimate
ments, and partially due to the possibility that some targed '

not globally reachable due to partial failures of the InegriJs- .
ing the NetGeo [11] tool from CAIDA, we have found that thé™: Infra_\structure Node .Selecno_n o
869 targets span 44 different countries. 467 targets arkein t Intuitively, we would like the i-nodes to be well distribute
United States, and each of the remaining countries conesbuso that the useful information they provide is maximizedséa
fewer than 40 targets. In summary, 506 targets are in Nom@ this intuition, we propose three strawman criteria toage
America, 30 targets are in South America, 138 targets are M i-nodes from the 19 probes. The first criterion, called max-
Europe, 94 targets are in Asia, 24 targets are in Oceaniard2 imum separation, is to choose theprobes that maximize the
gets are in Africa, and 65 targets have unknown locationgs THotal inter-chosen-probe distances. The second critecalfed
) _ _ N _ N-medians, is to choose th¥ probes that minimize the to-
We would like to thank our colleagues in these institutioosdranting us tal dist £ h t-ch be to it t oh
host access. We especially thank ETH, HKUST, KAIST, NUS, Ralitecnico (&1 diStance from each not-chosen probe 1o Its nearest ohose
di Torino for their generous support for this study. probe. The third criterion, calley -cluster-medians, is to form
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ters, untll_ \_Ne are left withV clusters. Lo . Fig. 6. Rank accuracy comparison (Global)
In addition, to observe how each prediction mechanism re-
acts to a wide range of unintelligent i-node choices, we will

also use random combinations of i-nodes in this study. validation) for each mechanism, we present results to coenpa
. the accuracy of GNP, the triangulated heuristic, and IDMaps
D. Performance metrics Then we compare the effectiveness of the three i-node gatect

To measure how well a predicted distance matches the coregteria under each mechanism. After that, we present aseri
sponding measured distance, we use a metric cditedtional  of results that are aimed to highlight several interestisiegts

relative error that is defined as: of GNP.
predicted distance — measured distance )
min(measured distance, predicted distance) A. Comparisons Using the Global Data Set

Thus, a value of zero implies a perfect prediction, a value of We have conducted a set of experiments using the Global
one implies the predicted distance is larger by a factor @f, twdata set to compare the three mechanisms. Figure 5 compares
and a value of negative one implies the predicted distancetti® three mechanisms using the relative error metric whemwi6 a
smaller by a factor of two. Compared to simple percentage a5 i-nodes are used. For GNP, the best results are achietted wi
ror, this metric can guard against the “always predict z@@* the Euclidean space model of 5 and 7 dimensions respegctively
icy. When considering the general prediction accuracy, We wfor the triangulated heuristic, the upper bound heurigfigger-
also use theelative error metric, which is simply the absolute forms by far the best. Note thaf is simply the shortest dis-
value of the directional relative error. tance between two end hosts via one i-node. Both coordinates
To measure the effectiveness of using predicted distanceshased mechanisms perform significantly better than IDMaps,
server-selection type of applications, we use a metricedallwith GNP achieving the highest overall accuracy in all cases
rank accuracy. The idea is that, after each experiment, wgvith 15 Landmarks, GNP can predict 90% of all paths with rel-
have the predicted distances and measured distances forztige error of 0.5 or less. We will defer the explanation fioe t
paths between the non-i-node probes and the targets. We thgferences in accuracy of the three schemes until SectleB.V
sort these paths based on the predicted distances to geaerat We have also conducted experiments when 9 and 12 i-nodes
predicted ranked list, and also generate a measured raiskeddre used. To summarize all the results, we report the 90 per-
based on the measured distances. The rank accuracy is thercéftile relative error value for all three mechanisms at,8,2
fined as the percentage of paths correctly selected wheneve gad 15 i-nodes in Table |. Clearly as the number of i-nodes in-
the predicted ranked list to select some number of the s$torterease, all three mechanisms benefit, with GNP being the most
paths. If the predicted ranking is perfect, then the rankuaccaccurate in all cases. However, the accuracy of IDMaps &nd tr
racy is 100% regardless of the number of shortest paths we argjulated heuristic will eventually become higher thart tifa
selecting. Note that a prediction mechanism can potenti#@l GNP as the number of i-nodes increases. Without larger data
extremely inaccurate with respect to the directional reder-  sets, it will be difficult to understand the asymptotic bebav
ror metric but still have high rank accuracy because theireink of each scheme. Nevertheless, it is safe to conclude thatawit

of the paths may still be preserved. small number of Landmarks, these differences will be obegrv
Figure 6 compares the three mechanisms in terms of the rank
VI. EXPERIMENTAL RESULTS accuracy metric when 15 i-nodes are used. The ability to rank

In this section, we present our experimental results. Hinst the shortest paths correctly is desirable because it is itapb
using the same set of i-nodes (unless otherwise noted, wetalserver-selection problems. Overall, GNP is most aceurat
ways use theV-cluster-medians selection criterion withfold  at ranking the paths. In particular, GNP is significantly mor
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100

accurate at ranking the shortest 5% of the paths than the tri-
angulated heuristic even though their difference by thatired
error measure is small. In fact, even though IDMaps has poor
performance in terms of relative error, it is better at ravgkihe
shortest paths than the triangulated heuristic.

The explanation to this seemingly contradictory result can
be found in Figure 7. In this figure, we classify the evalu-
ated paths into groups of 50ms each (i.e. (Oms, 50ms], (50ms,

80 [

60 -

Rank Accuracy (%)

a0

100ms],...,(1000mss]), and plot the summary statistics that R

describe the distribution of the directional relative embeach T,,angﬁgg’é@;ggd%:;mdiz —
mechanism in each group. Each set of statistics is plottesl on 0l - = ]
vertical line. The mean directional relative error of eackam Fraction of Shortest Paths to Predict (Log Scale)

anism is indicated by the squares (GNP), circles (triartgdla Fig. 9. Rank accuracy comparison (Abilene)
heuristic) and triangles (IDMaps). The 5th percentile abth9
percentile are indicated by the outer whiskers of the lihe, t
25th percentile and 75th percentile are indicated by therinrthe 10 Abilene-attached probes at a time, providing 10 diffe
whiskers. Note that in some cases these whiskers are off #1& combinations of 9 i-nodes. For GNP, the best performance
chart. Finally, the asterisk (*) on the line indicates thediae. s achieved with the Euclidean space model of 5 and 8 dimen-
We can see that GNP is more accurate in predicting sheibns respectively, and for the triangulated heuristi@imadhe
distances than the other mechanisms. Although the triangipper bound’ heuristic achieves better accuracy than the lower
lated heuristic is more accurate than IDMaps in predictiisg d bound or the average of the two. Notice that in the homoge-
tances of less than 50ms, IDMaps is veonsistenin its over- neous environment of Abilene, the accuracy of all three raech
predictions for distances of up-to 350ms. This consisteat-0 nisms barely improves from 6 to 9 i-nodes. We believe that the
prediction behavior causes IDMaps to rank the shortestspatidditional i-nodes simply do not add much more information i
better than the triangulated heuristic. Beyond 800ms, vee ssuch a homogeneous environment.
large under-predictions by all mechanisms. However, b&&au Comparing to previous results based on the Global data set
these paths account for less than 0.7% of all evaluated patfygh 9 i-nodes, the 90 percentile relative error for GNP, tifie
the result here is far from being representative. In thedestip, angulated heuristic and IDMaps are 0.69, 0.8 and 1.16 respec
there are several outliers of distances of over 6000msyibott  tively. Using the Abilene data set with 9 i-nodes, those figur
ing to the large under-predictions (the means are off thetchare 0.56, 0.88 and 1.72 respectively. In other words, onlPGN
between -5 and -6). Finally, notice that paths between 350@scuracy improves in the more homogeneous environment of
and 550ms appear to be much harder to predict than their igbilene. We believe this is because the paths in Abilene are
mediate neighbors. We will conduct further investigatioms all very short, 90% of the paths are shorter than 70ms. As a
try to understand this behavior. result, the advantage GNP has in prediction short distaisces
amplified.
Figure 9 compares how well each mechanism rank paths in
Abilene when 9 i-nodes are used. The advantage that GNP has
Now we turn our attention to experiments we have corir predicting the shortest paths is clear. This is confirngaia
ducted with the Abilene data set usingly the subset of 10 in the directional relative error comparison shown in Feya.
Abilene-attached probes. Figure 8 compares the three mechgain, IDMaps’ consistent over-predictions for paths oftop
nisms when 6 and 9 i-nodes are used. The 6 i-nodes are sele8@uhs allow it to be better at ranking the shortest paths than t
using theN-cluster-medians criterion wittk-fold validation, triangulated heuristic even though it is not accurate imteof
but the 9 i-nodes are obtained simply from eliminating one oélative error.

B. Comparisons Using the Abilene Data Set



3 : : : N=6 N-cluster-medians| N-medians [ Max sep.
Thanguiedy, Sege Nodes —o— NP il or 078 104
25l aps, 9 Tracers —&— | riangulates . . .
Triangulated/L 1.85 1.53 1.93
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5 IDMaps 1.39 1.43 5.57
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Fig. 10. Directional relative error comparison (Abilene) predictive power in general compared to the upper bolnd
‘ heuristic (the average @f and L always leads to accuracy in
Max | Min Mean Std Dev b h b d | itivel . thex fil .
NP 594 1 065 57375 006905 etween the two boun s). ntuitively, since x filter is
Triangulate/U | 1.37 | 0.66 | 0.8685 | 0.1686 used in thel. metric, it is more sensitive to large outliers in the
IDMaps 184 | 1.0 | 1.287 | 0.2308 P
data. The fact that’ works well implies that shortest path rout-
TABLE Il ing is still a reasonably close approximation for the mayooif
STATISTICAL SUMMARY OF 90 PERCENTILE RELATIVE ERROR UNDER cases. There is however an exception. When 6 i-nodes cho-
RANDOM I-NODE PLACEMENT sen by the maximum separation criterion is used,itraetric
performs much better than tti& metric. Looking at the set of
C. Sensitivity to Infrastructure Node Placement i-nodes, we discover that except for one i-node in Canada, al

otheri-nodes are located in Asia and Europe. This is intiergs

bustness because its accuracy is highly dependent on the n firause since the majority of our t.argets are in North Araeric
they are in between most of the i-nodes. Thus, we have the

ber and the locations of the base nodes in the network. . . L
xact configuration where thle metric is most accurate!

To study how sensitive are GNP, the triangulated heuristﬁ,W h Iso looked at th K fthe tri lated
and IDMaps to unintelligent placement of i-nodes, we conduc ¢ have also looked at the rank accuracy otihe tnanguiate

a set of experiments with 20 random combinations of 6 i-nodggur'StICS n these e_xperlments. For 6 i-nodes, there iuno s
using the Global data set. For each mechanism and each oftH&®: the d|ﬁerenpe n ran.accuracy_ of ﬂﬁeL and(L+U)/2

20 random combinations, we compute the 90 percentilevelatmem.cs agrees with their dn‘fergnce |n.relat|ve error. Hivar
error value. Table Il shows the key statistics of the 90 patitee for 9 i-nodes, under all three dn‘fergnt I-node selectiatecia,
relative error for each mechanism. Of the three mechanisrj&e ~ and(L +U)/2 metrics have higher rank accuoracy by 510
GNP’s accuracy is the highest by all measures and also has Qereents than the metric forpnly the s_hortest 1% of paths. .
smallest spread. Because GNP does not use the virtual tppol eyond the shortest 1%, the difference in rank accuracynagai

model, it is highly robustin producing accurate predictienen agrees with the difference in rglatlve error. Further stsdieed
under random i-nodes placement. to be conducted to analyze this anomaly.

Although the triangulated heuristic is very simple, it lack-

D. Infrastructure Node Selection E. Sources of Inaccuracy

In the previous experiments we have been using she  So far we have only shown the differences in accuracy of
cluster-medians i-node selection method whenever apiatepr the three distance prediction schemes, but where the ireogu
In this section, we go back to examine the differences in theaBd differences originate is not clear. In this section, igeuss
proposed i-node selection criteria. Using the Global data sseveral sources for the inaccuracy.
we conduct experiments using the 3 criteria under 6 and 9 i-1) Inefficient Routing: Since all three distance prediction
nodes (withk-fold validation) and compute the 90 percentileschemes rely in some degree on shortest (by propagatioy)dela
relative error for each set of experiments. We also take tire gath routing in the Internet, we believe the largest souscef
portunity here to compare the different triangulated h&tigs. accuracy is the inefficient routing behavior in the Intestemn-
Table Il summarizes the results. ming from BGP policy routing and hop count based routing. To
The N-cluster-medians and/-medians perform very simi- assess the level of inefficient routing in our global data wet
larly. On the other hand, the Max separation criterion worksonducted the same triangular inequality test as in [5].t T$ha
very poorly because this criterion tends to select probég oror all the triangular closed loop pattts, b), (b, ¢), and(a, ¢)
in Europe and Asia, and therefore they are not necessamyy véhat we measured, we computed all {aec)/((a, b) + (b, ¢))
well distributed. A comparison with the results reporteda ratios. We found that 7% of the ratios are greater than one,
ble Il reveals that théV-cluster-medians criterion is not opti-which is consistent with the previous findings. To measure
mal because there exists some combinations of 6 infraseictthe impact of this on prediction accuracy, we performed the
nodes that can lead to relative error as low as 0.65, 0.66 &nd fbllowing experiment. For each targetin the global data
for GNP, the triangulated heuristic, and IDMaps respebtive set, we remove from consideration ift is in {a,b,c} and
Note that the triangulated lower bound heurisfichas poor (a,c)/((a,b) + (b,c)) > 1.5. After applying this filter, we are



# Landmarks 6 15
Normalized error 0.74 | 05
Logarithmic transform| 0.75 | 0.51
‘ ‘ Squared error 1.03 | 0.74
TABLE IV
Internet SUMMARY OF 90 PERCENTILE RELATIVE ERROR FOR DIFFERENT ERROR
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Fig. 11. Predicting short distances
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left with 392 targets. We performed the 15 i-nodes experisen 08 |
again, and found that all three distance prediction schgpees arl
formance improves. For GNP, the 90 percentile relativererro
is improved from 0.5 to 0.33; for the triangulated heuridtic
the relative error improved from 0.59 to 0.42; and finally for
IDMaps, the relative error improved from 0.97 to 0.89.

2) Predicting Short DistancesA major difference between
the performance of the three schemes lie in their abilityres p
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dict short distances. As we have shown, GNP is the most accu- 01 gtgzém:;gz; gg o

H H . andmarks, o
rate in this category and IDMaps is the least accurate ardl ten th o5 : s )
to heavily over-predict short distances. The differencadtu- Relative Error

ally easy to explain. Consider the example in Figure L. Fig. 12. Convergence of GNP performance

andY are i-nodes, and andB are two end hosts that are very

nearby. Clearly, IDMaps gives the most pessimistic préafict

of (4,X) + (B,Y) + (X,Y). The triangulated heuristit’  (with k-fold validation) and compare the three error measures.
metric is slightly less pessimistic, since it predicts tligtahce Table IV reports the 90 percentile relative error for each ex
to be(A,Y) + (B,Y). In contrast, with a one-dimensionalperiment. The results confirm our intuition. The normalized
model, GNP will be able to perfectly predict the distance beneasure and the logarithmic measure are very similar becaus
tweenA and B. Although the triangulated heuristic metric they are both a form of relative error measure. It is cleat tha
would have given a perfect prediction in this example, ircprathe squared error measure is not very suitable. Thus, tioug
tice it is too easily influenced by a single large distancerto gut this paper, to compute GNP coordinates, we have always
i-node, thus, as we have shown, it works very poorly in praased the normalized error measure.

tice. GNP is more robust against outliers in measurememtesi  2) Choosing the Geometric Spaceilthough in the previ-

it takes all measurements into account when computing ¢oorgys experiments we have always reported results with the Eu-
nates. In summary, GNP performs better because it expl@ts tlidean space model of various dimensions, we have alsa-expe
relationships between the positions of Landmarks and estshqmented with the spherical surface and the cylindricalatefas
rather than depending on the exact topological locatiorts®f potential models. The spherical surface makes sense lEecaus

i-nodes, thus it is highly accurate and robust. the Earth is roughly a sphere, and since almost certainlyao m
jor communication paths pass through the two Poles, tha-cyli
F. Exploring the GNP Framework drical surface may also be a good approximation. The GNP

1) Error Measurement Function: Recall that when com- framework is flexible enough to accommodate these models,

puting GNP coordinates, an error measurement funcfiph the only change is that the distance functions are diffefith

is used in the objective functions. Appropriately chardzte the Global data setand 6 Landmarks chosen with\theluster-

ing the goodness of a set of coordinates is key to the eventl¥@dians criterion, we conduct experiments to examine the fit
predictive power of those coordinates. In Section I1l, wenme ness of the spherical and cylindrical surface of varioussiz
tioned the squared error measure (Eq. 2). However, ingljtiy For the spherical surface, we specify the radius; for theneyl
this error measure might not be very desirable because dhe @ical surface, we specify the circumference and the heght
of error in a very short distance accounts for just as much tken to be half the circumference. It turns out that both of
one unit of error in a very long distance. This leads us to efiese models’ performance increases as the size of their sur

periment with two other relative error measures. The first oface increases, and in the limit approaches the performaice
is the normalized error measure: the 2-dimensional Euclidean space model. We believe tlas is

consequence of the fact that we have no probes in central Asia

d —d5, . \ :
e Tt g2 (5) or Africa, and there are also very few targets in those regjion

E(dH1H27d:}g-[1H2) = (

Ay 1, hence a curved surface does not help.
and the second one is the logarithmic transformed error mea+ocusing on the Euclidean space models, we turn our atten-
sure: tion to the question of how many dimensions we should use in

& (d, 27&5 — (log(ds,71,) — 1o as 2 6) GNP. To answer this question, we conduct experiments with th
(2102, Byiaes) = (logldnins) B(d7,1,)) ©) Global data set using 6, 9, 12, and 15 Landmarks chosen with
We perform experiments using the Global data set with 6 atiie N-cluster-medians criterion (with-fold validation) under
15 Landmarks selected using thé-cluster-medians criterion various number of dimensions. Figure 12 shows the result for



A 5 c phisticated techniques than NetGeo have been proposed [12]

ISP 1>< the NetGeo tool is publicly available and so we use it as a

first approximation. We compute the linear correlation eoef

B D
Ae @P 2-dimensional model ficient between geographical distances and measured déstan
5 D A 5 c and also between GNP computed distances and measured dis-
Alo 1 5 5 1 tances. Excluding the outliers of measured distances great
H B D than 2500ms, the overall correlation between geograptiisal
b 510 3-dimensional model tances and measured distances is 0.638, while the overadlco

lation between GNP distances and measured distances & 0.91
Knowing that the NetGeo tool is not 100% accurate, we note
with caution that the performance gap between GNP distances
the case of 15 Landmarks. Generally, as the number of dimemd the geographical distances led us to believe that GNP is
sions is increased, GNP’s accuracy improves, but the imgaroindeed discovering network specific relationships beyosal g
ment diminishes with each successive dimension. To cteracgraphical relationships.
ize this effect, consider the cumulative probability dkattion
functions of the relative error under two different dimeors VII. SUMMARY
D andD + 1. Between the 70 and 90 percentile, if the perfor- In this paper, we have studied a new class of solutions to
mance ofD + 1 dimensions is not strictly greater than that ofhe Internet distance prediction problem that is based @h en
D dimensions, or if the average improvement is less that 0.1%gsts-maintained coordinates, namely the previously gseg
then we say the results have convergedadimensions. Us- triangulated heuristic and our new approach called Glolei N
ing this criterion, for 6, 9, 12, and 15 Landmarks, the resultvork Positioning (GNP). We propose to apply these solutions
converge at 5, 5, 7, and 7 dimensions respectively. in the context of a peer-to-peer architecture. These swigtal-
Intuitively, adding more dimensions increases the modelsw end hosts to perform distance predictions in a timelyfas
flexibility and allows more accurate coordinates to be conien and are highly scalable. Using measured Internet distan
puted. To illustrate, consider the situation shown in Figli8 data, we have conducted a realistic Internet study of the dis
where there are four hostd, B, C, andD, with A in the same tance prediction accuracy of the triangulated heuristiblPG
network as3, andC in the same network &8. The hypotheti- and IDMaps. We have shown that both the triangulated heuris-
cal measured distances between them are shown in the matitxand GNP out-perform IDMaps significantly. In particylar
Clearly, in a 2-dimensional space, the distances cannoebe GNP is most accurate and robust.
fectly modeled. One possible approximation is the reciangl We have also explored a number of key issues related to the
of width 5 and height 1, preserving most of the distances, e&NP approach to maximize performance. The main finding is
cept the diagonal distances are over-estimated. Howaevar, ithat a relative error measurement function combined withia E
3-dimensional space, we can perfectly model all the distanclidean space model of an appropriate number of dimensions
with a tetrahedron. Of course, any Euclidean space modekighieves good performance. We will continue to develop-solu
still constrained by the triangular inequality, which isngeally tions around the GNP framework in the future.
not satisfied by Internet distances. As a result, adding more
dimensions beyond a certain point does not help. 3 o
3) Reducing Measurement Overheado far we have as- [1] \F{;r&glgd%gS%?’A%”ﬁ ;gﬁl"’t‘gg@ng gggg'for end system muiticain
sumed that an end host must measure its distances to all Langl- J. Liebeherr, M. Nahas, and W. Si, “Application-layer Itizast with
mark hosts in order to compute its coordinates. Howevey, on| _ delaunay triangulations,” Tech. Rep., University of Virigi, Nov. 2001.
. . 3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. i&ren“A
D+1host-to-Landmark distances are rea"y reqwred for the co- scalable content-addressable network,” Froceedings of ACM SIG-
ordinates computation in@-dimensional space. To expose the ~ COMM'01, San Diego, CA, Aug. 2001.
trade-offs, we conducted an experiment with 15 Landmarkls af4! |- Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Baistinan,
. . . Chord: A scalable peer-to-peer lookup service for Intéapgplications,
a 7-dimensional Euclidean space model, where we randomly in proceedings of ACM SIGCOMM'0San Diego, CA, Aug. 2001.
chose 8 out of 15 Landmarks for each end host for the coofs] P. Francis, S. Jamin, V. Paxson, L. Zhang, D.F. Gryniewand Y. Jin,
dinates computation. We found that the 90 percentile redati Fﬁgfégg;f;;”éflg’ég?ﬁgg'égﬂ?g&iﬁt\gimf &i’r"’"fggeg" ice.m
error of GNP increases from 0.5 to 0.65. However, when wes] s.M. Hotz, “Routing information organization to suppacalable in-
chose the 8 Landmarks that are nearest to each end host for the terdomain routing with heterogeneous path requiremen94, Ph.D.
computations, the predi.ction aclcura(.:y is Virtual!y unm [7] }%E?S(lasu()(jt?r? )e’in%n;\\//ﬁl?Its}lc?}]:/\/se’acr)tl;t,h(‘e‘llr_rl)ggliIrigr?llgérby copiéseplicated
While further study of this technique is needed, it seemsifea Internet servers,” ifProceedings of ACM SIGCOMM'9&wug. 1995.

ble to greatly reduce the measurement overhead withouit sacl8] J-A. Nelder and R. Mead, "A simplex method for functionmimnization,”

fici Computer Journalvol. 7, pp. 308-313, 1965.

ICIng accuracy. _ _ _ [9] Y. Zhang, V. Paxson, and S. Shenker, “The stationaritjntérnet path
4) Why Not Geographical Coordinates?Finally, we ask properties: Routing, loss, and throughput,” Tech. RepRidMay 2000.

whether GNP is simply discovering the geographical retatio[10] S: Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Togpcally-

. . . aware overlay construction and server selection Plioceedings of IEEE
ships between hosts. If so, then a straight forward altemat INFOCOM'02 New York, NY, June 2002.

is to use the geographical coordinates (longitude anditijt [11] CAIDA, “NetGeo - The Intemet geographic databasetpiitwww.caida.

; ; ; _ org/tools/utilities/netgeo/.
of end hosts to perform distance estimates. We obtain the VN. Padmanabhan and L. Subramanian, “An investigatibgeographic

proximate geographical coordinates for our probes ancetarg mapping techniques for internet hosts,” Mroceedings of ACM SIG-
in the Global data set from NetGeo [11]. Although more so- COMMO01, San Diego, CA, Aug. 2001.

Fig. 13. Benefit of extra dimensions
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