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a program transformation adds sufficient region annotations to the
program for region support. In this report we also give the correct-
ness proofs for the analysis, so that the safety of memory accesses
can be guaranteed. The implementation of the runtime support for
region-based memory management in the Mercury compiler will be
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Abstract. Region-based memory management is a technique to do compile-
time memory management based on the idea of dividing the heap mem-
ory into different regions such that, at runtime, memory can be reclaimed
automatically by destroying regions in their entirety. This report contains
a static region analysis for the logic programming language Mercury. We
define region points-to graphs, which represent the locations of terms
and the sharing among them, to model the partitioning of the memory
used by a program into separate regions. The static analysis starts with
a region points-to analysis that determines the different regions in the
program. We then compute the liveness of the regions by a region live-
ness analysis. Finally, a program transformation adds sufficient region
annotations to the program for region support. In this report we also
give the correctness proofs for the analysis, so that the safety of memory
accesses can be guaranteed. The implementation of the runtime support
for region-based memory management in the Mercury compiler will be
described in a second report.

1 Introduction

In region-based memory management (RBMM) the heap memory is organized
into different areas, called regions. The program terms are allocated in these
regions in such a way that the regions can be freed as soon as the terms they
contain are dead. Consider the well-known quicksort program in Figure 1. One
typical use for regions is to store temporary data. In this example split/4

creates two temporary lists that are input for the recursive calls to qsort. The
first argument of qsort is an input list that is no longer needed when its sorted
version is computed. For example, the temporary list L2 created by split can
be put in a separate region that can be freed once qsort(L2,A,S2) has dealt
with it.

To run this program with RBMM the following things need to be done:

1. Figure out how to distribute the program data over regions: our region
points-to analysis (Section 5) computes the regions for the terms in a Mer-
cury program.

⋆ This work is supported by the project GOA/2003/08 and by FWO Vlaanderen.
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main() :- split(_, [], [], []).
qsort([2, 3, 1], [], S), split(X, [Le | Ls], L1, L2) :-
use(S), ... ( if X >= Le then

split(X, Ls, L11, L2),
qsort([], A, A). L1 = [Le | L11]
qsort([Le | Ls], A, S) :- else

split(Le, Ls, L1, L2), split(X, Ls, L1, L21),
qsort(L2, A, S2), L2 = [Le | L21]
qsort(L1, [Le | S2], S). ).

Fig. 1: The quicksort program.

2. Decide when to create and to free regions: we derive the liveness information
of the regions (Section 6).

3. Adapt the Mercury system to support RBMM: based on the region points-to
analysis and the region liveness information the original Mercury program
is transformed into a region annotated program (Section ??) which con-
tains enough additional information to be executed by the Mercury system
enhanced with RBMM runtime support.

The idea is that all the above steps are provided automatically in the RBMM-
enabled Mercury system. In this paper we present the program analyses while
the runtime support will be described in a separate report.

2 Background

2.1 Mercury

Mercury is a pure logic programming language intended for the creation of large,
fast, reliable programs [14]. While the syntax of Mercury is based on the syntax of
Prolog, semantically the two languages are very different due to Mercury’s purity,
its type, mode, determinism and module systems, and its support for evaluable
functions. (Mercury treats functions as predicates with the return value as an
extra argument, so in the rest of the paper we will talk only about predicates.)

Mercury has a strong Hindley-Milner type system very similar to Haskell’s.
Apart from some special types that are builtin (e.g., int), users can introduce
types by type declarations such as in Example 1.

Example 1. The declaration of the type list int.
:- type list int ---> []; [int | list int].
It declares the type for lists of integers, int is a builtin type in Mercury. �

Mercury programs are statically typed; the compiler knows the type of every
argument of every predicate (from declarations or inference) and every local
variable (from inference).

The mode system classifies each argument of each predicate as either input
or output; there are exceptions, but they are not relevant to this paper. If in-
put, the argument passed by the caller must be a ground term. If output, the
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argument passed by the caller must be a distinct free variable, which the pred-
icate will instantiate to a ground term. It is possible for a predicate to have
more than one mode; the usual example is append, which has two principal
modes: append(in,in,out) and append(out,out,in). We call each mode of a
predicate a procedure. The Mercury compiler generates separate code for each
procedure.

Each procedure has a determinism, which puts limits on the number of
its possible solutions. Procedures with determinism det succeed exactly once;
semidet procedures succeed at most once; multi procedures succeed at least
once; while nondet procedures may succeed any number of times.

Example 2. The quicksort program written in Mercury with declarations of
types, modes, and determinisms for two essential predicates, qsort and split, is
shown in Figure 2. Some specific elements in main are included for completeness
but have no importance to the understanding of the paper. These include !IO,
which are state variables representing the states of the world for declarative in-
put/output, and io.write, a predicate from the io library module, that writes
out a term. �

main(!IO) :- :- type split(int, list_int, list_int,
qsort([2, 3, 1], [], S), list_int).
io.write(S, !IO). :- mode split(in, in, in, out) is det.

split(_, [], [], []).
:- type qsort(list_int, list_int, list_int). split(X, [Le | Ls], L1, L2) :-
:- mode qsort(in, in, out) is det. ( if X >= Le then
qsort([], A, A). split(X, Ls, L11, L2),
qsort([Le | Ls], A, S) :- L1 = [Le | L11]

split(Le, Ls, L1, L2), else
qsort(L2, A, S2), split(X, Ls, L1, L21),
qsort(L1, [Le | S2], S). L2 = [Le | L21]

).

Fig. 2: The quicksort program in Mercury.

The subset of Mercury [11] we deal with in this paper does not support higher
order programming (including typeclasses), or predicates and functions defined
by foreign language code. A complete description of the Mercury language can
be found in [11].

2.2 Mercury Code inside the Compiler

The compiler converts all predicate definitions into an internal form. For our
subset of Mercury, this internal form is given by the following abstract syntax:

predicate P : p(x1, . . . , xn) ← G

goal G : x = y | x = f(y1, . . . , yn) | p(x1, . . . , xn)
(G1, · · · , Gn) | (G1; . . . ;Gn) | not G |
(if Gc then Gt else Ge) | some [x1, . . . , xn] G
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The first three kinds of goals including unifications and calls are called literals
or atoms. The rest are called compound goals, in which a sequence of goals
separated by commas is a conjunction, while a sequence of goals separated by
semicolons is a disjunction.

As this shows, the Mercury compiler internally converts any predicate defi-
nition with two or more clauses into a single clause with an explicit disjunction.
The clauses themselves are transformed into superhomogeneous form, in which
each atom (including clause heads) must be of one of the forms p(X1,...,Xn),
Y = X, or Y = f(X1,...,Xn), where all of the Xi are distinct.

Inside the compiler, every goal (compound goals as well as literals) is an-
notated with mode and determinism information. For unifications, we show the
mode information by writing <= for construction unifications, => for deconstruc-
tion unifications, == for equality tests, and := for assignments. The compiler
reorders conjunctions as needed to ensure that goals that consume the value of
a variable always follow the goal that produces its value. We show the quicksort
program in this abstract syntax in Figure 3. For readability, we have chosen

main(!IO) :- split(X, L, L1, L2) :-
(1) L <= [2, 1, 3], (
(2) A <= [], (1) L => [],
(3) qsort(L, A, S), (2) L1 <= [],
(4) io.write(S, !IO), (3) L2 <= []

;
qsort(L, A, S) :- (4) L => [Le | Ls],
( (5) ( if X >= Le then
(1) L => [], (6) split(X, Ls, L11, L2),
(2) S := A (7) L1 <= [Le | L11]
; else
(3) L => [Le | Ls], (8) split(X, Ls, L1, L21),
(4) split(Le, Ls, L1, L2), (9) L2 <= [Le | L21]
(5) qsort(L2, A, S2), )
(6) A1 <= [Le | S2], ).
(7) qsort(L1, A1, S)
).

Fig. 3: quicksort program in superhomogeneous form.

meaningful names for some additional variables that are added automatically by
the Mercury compiler. Moreover, we also hide the fact that the Mercury com-
piler converts syntactic sugar, such as the list construction at (1) in main in
Figure 3, into suitable unifications in the above-mentioned syntax. That con-
struction would be extended as follows, which is lengthy and is of no interest in
this paper.

V_0 <= [], V_1 <= 3, V_2 <= [V_1 | V_0],

V_3 <= 1, V_4 <= [V_3 | V_2],

V_5 <= 2, L <= [V_5 | V_4]

In the rest of the paper, we will ignore negation, since not G can be imple-
mented as if G then fail else true in which fail and true are two builtin
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goals, fail always fails while true always succeeds. Note that in Mercury (un-
like in Prolog), the condition of an if-then-else may succeed several times. This
will be clear from the determinism annotation on the goal representing the con-
dition, and many parts of the compiler, including the implementation of RBMM,
handle conditions of different determinisms differently.

Another situation in which determinism information is important is exis-
tential quantification. (Mercury also supports universal quantification, but the
compiler internally converts all [x1, . . . , xn] G to not some [x1, . . . , xn] not G,
so we do not have to deal with it.) If some [. . .] G quantifies away all the output
variables of G, then different solutions of G would be indistinguishable, so even
if G can have more than one solution, some [. . .] G will not. We call such a
quantification a commit, and we handle commits differently from other quantifi-
cations.

3 Region-Based Memory Management for Mercury

We divide the task of realizing RBMM for Mercury between static analyses and
transformation and dynamic runtime support. The goal of the static analyses
and transformation is to annotate a normal Mercury program with information
about regions. An annotated program contains information about the regions in
which terms are constructed and when regions are created and freed. To obtain
this information, we first use a region points-to analysis to detect the regions
used by a program. After that we compute the lifetime of these regions by
using a region liveness analysis. The program transformation uses these pieces
of information to convert the program into a region-annotated program.

In logic programming languages, the presence of backtracking requires the
notion of liveness to be divided into two parts. A variable, memory location,
region and so on is forward live at a program point if it can be accessed during
forward execution from that program point, and it is backward live at a program
point if it can be accessed in backward execution (e.g., after backtracking to a
choice point established before that program point). The two notions of liveness
are independent: all four combinations of forward and backward liveness and
deadness are possible. In our region liveness analysis, we take into account only
forward liveness and we handle backward liveness by runtime support.

The runtime support for RBMM has two main purposes. Firstly, we need to
enhance the runtime system of Mercury to work with the heap memory orga-
nized in terms of regions. Secondly, we provide support for backtracking in the
context of RBMM, including the support for backward liveness and for instant
reclaiming. The discussion of the necessity of this support in detail can be found
in [13].

In region-annotated programs, which are the result of the static part, we
use region variables to refer to regions, just as we use program variables to
refer to values. To allocate a new region, we use the instruction create(R),
which creates a region and binds the region variable R to it. To free a region we
use the instruction remove(R), which frees the memory of the region to which
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R is currently bound. Our regions can (and actually do) live across procedure
boundaries and thus we pass region variables as extra arguments to procedure
calls. Figure 4 shows the region-annotated quicksort program after our region
transformation.

main(!IO) :- split(X, L@R1, L1@R3, L2@R4) :-
create(R20), create(R21), (

(1) L <= [2, 1, 3] in R20, (1) L => [],
create(R22), remove(R1),

(2) A <= [] in R22, create(R3),
(3) qsort(L@R20, A@R22, S@R22), (2) L1 <= [] in R3,
(4) io.write(S, !IO), create(R4),

remove(R21), remove(R22). (3) L2 <= [] in R4
;

qsort(L@R6, A@R8, S@R8) :- (4) L => [Le | Ls],
( (5) ( if X >= Le then
(1) L => [], (6) split(X, Ls@R1, L11@R3, L2@R4),

remove(R6), (7) L1 <= [Le | L11] in R3
(2) S := A else
; (8) split(X, Ls@R1, L1@R3, L21@R4),
(3) L => [Le | Ls], (9) L2 <= [Le | L21] in R4
(4) split(Le, Ls@R6, L1@R9, L2@R10), )
(5) qsort(L2@R10, A@R8, S2@R8), ).
(6) A1 <= [Le | S2] in R8,
(7) qsort(L1@R9, A1@R8, S@R8)
).

Fig. 4: Region-annotated quicksort program.

In the region-annotated code, we use the postfix @Ri to annotate both actual
and formal arguments with their region variables. We also annotate each unifica-
tion that constructs a new memory cell with the region in which the cell will be
allocated. For example, in main, the skeleton of the list L is in the region (bound
to by) R20, that of the accumulator A is in R22. We assume that the elements of
the lists are in R21. In the call to qsort, R20 and R22 are passed as actual region
arguments, corresponding to the formal arguments R6 and R8 in the definition
of qsort. We do not need to pass the region of the elements because qsort and
split just read from it. The region R20 is passed to qsort from main and is
removed in the base case branch of split in the call to split at (4) in qsort.
The two new lists L1 and L2 are allocated in two separate regions referred to by
R9 and R10. These regions are created by the base case branch of split, and
removed (indirectly) by the recursive calls to qsort at (5) and (7). If L1 and
L2 are empty lists the removals will happen in the base case branch of qsort;
otherwise, they will happen in the base case branch of split. The region R22 of
the resulting list is the region of the accumulator, which is created in main.
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4 Region Modelling

4.1 Storing Terms in Regions Based on Their Types

As we want to distribute terms over different regions, we first discuss the repre-
sentation of terms when the heap memory is divided into regions.

We assume that a term that can be represented by a single memory word
does not require heap storage. A term that does not fit into a word is represented
by a pointer to memory locations on the heap.

Our assumptions are compatible with the implementation of Mercury in the
Melbourne Mercury Compiler (MMC). In the MMC, types, which are known
at compile-time, give us information about the storage size of terms. Terms of
primitive types such as int, char and of enumeration types of which all functors
have arity zero are stored in one word. The principal functor of a term that needs
heap space is stored by a possibly-tagged pointer to a block of memory words on
the heap. The compiler knows all the functors in the type of the term. Therefore
the principal functor does not need to be explicitly recorded in the block (as in
a common implementation of Prolog) but can be tagged in the lowest bits of the
pointer. When a type has only one functor the tag is even not needed. So the
memory block on the heap is mostly for storing the arguments of the functor.
When there are more functors than can be encoded by the available lower bits,
the first word of the memory block is also used as a secondary tag to distinguish
them.

Example 3. Consider the following types.
:- type elem ---> f; g(int); h(list int, int).
:- type list elem ---> []; [elem | list elem].
Figure 5 shows the representation of a term bound to by the variable L of the
type list elem in the MMC. The box with a slim border is a location on the
stack or in a register, one with a bold border is a location on the heap. Note
the storage of a functor such as h/2 of the last element of the list. We need a
two-word block for its arguments, the functor itself is stored implicitly in the
tagged pointer. �

[|]

21
[]

L [|]

[|] []

1

[|]

[|]

g h

2

f

Fig. 5: Term representation of L=[f, g(1), h([1, 2],2)].
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We now consider the storage of terms when the heap is split into regions.
The idea is to use different regions to store different parts of a term so that
we can reclaim the memory of a part by destroying its region as soon as the
part becomes dead. In list-based programs, such as quicksort, we often see that
a program creates several temporary lists but the elements of the input list are
needed through out. Therefore it will serve our purpose if we store the elements
and the skeletons in different regions. Generalizing from this we divide a term
into regions based on its type. We will develop this idea in the next subsection.

In Figure 5 the regions used to store that term are visualized by the dashed
lines. We put the two-word memory blocks making up the skeleton of the list
L into one region because they have the type list elem. We also put all the
elements, which have the type elem, into another region. Finally, the second
subterm of the third element, which is a list of integers, is also stored in a
separate region.

The representation of the list of integers here seems inconsistent with what
we said in Section 3, where we have an extra, separate region for the integers.
The reason for this is because in this section we want to give a region model
as close as possible to the implementation of Mercury in the MMC. Strictly
speaking, whether a type needs heap storage or not depends on implementation.
For convenience, we take the liberty to switch between the two options. When
talking about theoretical topics such as static analyses and transformation for
convenience we generally assume that all types (also int) require heap storage.
Otherwise, for example when we talk about regions for a type, we assume that
its terms actually need to be stored on the heap. We will be more specific only
if the context is not clear.

4.2 Modelling Regions of a Type

We want to have a storage scheme that specifies how the terms of a type are
stored. Consider a type t declared as follows.

:- type t ---> ...; f(t1,..., ti,..., tn); ...

We associate a region variable Rt to the type. The block of memory words
corresponding to a principal functor, such as f, of a term of the type t is stored
in the region bound to by Rt. In the rest of the paper we abbreviate this by
simply saying that a principal functor is stored in Rt. The principal functor of
an argument of f that has type ti is stored in the region bound to by Rti, which
is associated to ti. If a type t is recursive or mutually recursive we still use only
one region variable Rt. This implies that any term of a recursive type is stored
in a finite number of regions.

We model the storage scheme using a type-based region graph, TG(N,E)
with N a set of nodes and E a set of directed edges. A node stands for a
region variable. A directed edge from one node to another represents the fact
that the region bound to by the region variable represented by the former node
contains references into (points-to) the region bound to by the region variable
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represented by the latter one. The reference relation represented by the edges is
actually defined by the type.

Consider the type-based region graph of the type t, TGt, with the region
variables Rt, Rti’s, and so on. If Rt is represented by the node n, then for each
node m representing Rti, we have exactly one edge (n, (f, i),m) with the label
(f, i). We refer to n as the principal node of TGt.

Example 4. The type-based region graph for the type list elem in Example 3
is shown in Figure 6. The [|] principal functor is stored in Rlist elem . It has
two arguments, the first having the type elem and the second having the same
type list elem. Thus we have two edges from Rlist elem , one pointing to Relem

where the principal functors of elem (g/1 and h/2) are stored and the other is
a self-edge. The edge labelled (h,1) is due to the first argument of the functor
h/2. The reader may want to compare this type-based region graph with the
memory representation of a given term of this type in Figure 5. �

R
list_elem elem

([|],2)

([|],1) (h,1)

([|],2)

R
list_int

R

Fig. 6: The type-based region graph of the type list elem.

Example 5. Consider the following types t1 and t2, which are mutually recur-
sive.

:- type t1 ---> f(int, t2).

:- type t2 ---> g(t1, int).

The type-based region graph for them is as in Figure 7.

R
(g,1)

(f,2)

t1
R

t2

Fig. 7: Type-based region graph of mutually recursive types.

4.3 Region Points-To Graph

Now that we have the region model for types, our next goal is to model the
memory used by a Mercury program in terms of regions. A program consists
of a set of procedures, each having its own set of program variables that, at
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runtime, are instantiated with relevant terms. Therefore we define the notion
of a region points-to graph that models the memory used by a set of variables.
The memory used by a procedure is then modelled by a region points-to graph
for its variables. Finally, the memory model for the whole program is expressed
through the region points-to graphs of its procedures.

In Mercury, the instantiation of variables is caused by unifications. A con-
struction unification X <= f(..., Y, ...) allocates new memory for storing
the functor f (actually the block of memory words corresponding to f) and cre-
ates sharing between X and Y. In a deconstruction unification X => f(..., Y,

...) or an assignment unification Y := X, Y is instantiated and shares a subterm
or the whole term with X, respectively. Hence the region points-to graph should
capture the memory locations of the variables and the sharing among them.

A region points-to graph for a set of variables V , G(N,E), consists of
a set of nodes, N , representing region variables and a set of directed edges, E,
representing references between the regions bound to by these region variables.
The edges here serve exactly the same purpose as those in a TG graph. However,
each node n in the region points-to graph has an associated set of program
variables, vars(n), whose principal functors are stored in the region that is bound
to by the region variable that is represented by n. Note that this set can be
empty. We have V =

⋃

n∈N
vars(n). The node nX denotes the node such that

X ∈ vars(nX) and we refer to nX as the location of X where the principal functor
of the term that X is bound to is stored. The function node(nX , (f, i)) returns
the node m if (nX , (f, i),m) ∈ E otherwise it is undefined. Sharing is represented
in a region points-to graph in two ways. Firstly, directed edges represent sharing
of subterms and secondly, that a vars set of a node may contain more than one
variable represents the fact that these variables may be bound to the same term.
An example of the latter is given by the variables of an assignment unification:
they are bound to the same term and therefore they should be in the vars set
of the same node. A region points-to graph represents sharing at the level of the
regions.

Definition 1 (Region-sharing in a region points-to graph). Two variables
X and Y region-share in a region points-to graph if there exists a node that
can be reached from nX and nY .

For convenience, we also say a node represents a region, by that we mean the
region to which the region variable represented by the node is bound at runtime.
Then we can say a functor is stored in a node meaning that the functor (i.e.,
the memory block corresponding to it) is stored in the region represented by the
node.

For a procedure p, we often denote its region points-to graph by Gp(Np, Ep)
and Gp should represent the locations and sharing among all the variables in p.
It is possible to form a region points-to graph for a procedure exactly from the
type-based region graphs of all of its variables (whose types are known to the
compiler). Although this region points-to graph adequately models the locations
of the procedure’s relevant terms it does not represent the sharing among them.
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Actually as we will see in Section 5 we use that region points-to graph as the
starting point in our region points-to analysis of a procedure with the ultimate
aim of producing a region points-to graph that also represents all the possible
sharing among the procedure’s variables.

Example 6. Consider the following sequence of code to construct the term that
L in Example 3 is bound to. The type of K is of no importance.

...,

X <= [1, 2],

Y := X,

Z <= h(Y, 2),

L <= [f, g(1), Z],

K <= k(Z),

...

The region points-to graph that represents the memory manipulated by this
sequence is shown in Figure 8. X and Y are in the vars set of the same node
because the assignment makes Y point to the term to which X is bound. The
direct sharing between Z and Y , and between L and Z is represented by the
edges between their corresponding nodes. The indirect sharing between L and Y

is modelled by the fact that nY is reachable from nL through the directed edges.
The sharing between L and K is represented by the fact that nZ is reachable
from both nL and nK . �

([|],2)X, Y

K

L Z
([|],1) (h,1)

(k,1)

([|],2)

Fig. 8: Modelling of sharing information.

5 Region Points-To Analysis

The region points-to analysis aims at computing for each procedure in a Mercury
program a region points-to graph that represents the locations of its variables
and the sharing among them.

The region points-to analysis is unification-based and flow-insensitive, i.e.,
the execution order of the literals in a procedure does not matter, and consists of
an intraprocedural analysis and an interprocedural analysis. Both analyses make
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use of a unify operation, which is defined in Algorithm 1, to capture sharing by
unifying nodes in a region points-to graph. To ensure that there is only one out-
edge with a specific label from one node to another the operation is recursive,
i.e., unifying two nodes may cause more nodes to be unified.

Algorithm 1 unify(n,m)
Require: G(N, E), n, m ∈ N .
Ensure: G(N, E) with n representing the unified node.

N = N \ {m}
vars(n) = vars(n) ∪ vars(m)
for all (m, (f, i), k) ∈ E do

if (n, (f, i), k) ∈ E then

E = E \ {(m, (f, i), k)}
else

E = E \ {(m, (f, i), k)} ∪ {(n, (f, i), k)}
end if

end for

for all (k, (f, i), m) ∈ E do

if (k, (f, i), n) ∈ E then

E = E \ {(k, (f, i), m)}
else

E = E \ {(k, (f, i), m)} ∪ {(k, (f, i), n)}
end if

end for

for all l, l′ ∈ N do

if (n, (g, j), l) ∈ E ∧ (n, (g, j), l′) ∈ E ∧ l 6= l′ then

unify(l, l′)
end if

end for

We will describe the analyses in turn with the assumption that we are
analysing a procedure p.

Recall that, when describing the static region analysis and transformation,
for convenience, we make the assumption that all terms are stored on the heap
and therefore we need regions for them. In a concrete implementation, such as
in [13], if certain terms do not need heap storage, their corresponding regions
can just be ignored.

5.1 Intraprocedural Analysis of a Procedure

The intraprocedural analysis initializes Gp and then captures the sharing created
by the explicit unifications. Its definition is in Algorithm 2.

As we know the type of each variable in p, we initialize Gp by using the TG
graphs of the variables. In Algorithm 2, we use the function init rptg(X) that
generates a region points-to graph for X from the type-based region graph of the
type of X, TG type(X), by maintaining all the nodes and edges, but initializing
the vars set of the node corresponding to the principal node in TG type(X) with
{X} and those of the other nodes with an empty set, and generating a fresh
region variable for each node in the region points-to graph.

The intraprocedural analysis adds all the sharing created by the unifications
in the procedure to Gp. For assignment, construction and deconstruction unifi-
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Algorithm 2 intraproc(p): intraprocedural analysis of a procedure p

Require: p is in superhomogeneous form.
Ensure: Sharing created by explicit unifications is represented in Gp.

Gp = (∅, ∅)
for all X ∈ p do

Gp = Gp ⊎ init rptg(X)
end for

for all unif ∈ p do

if unif ≡ (X := Y ) then

unify(nX , nY )
else if unif ≡ (X => f(Y1, . . . , Yn)orX <= f(Y1, . . . , Yn)) then

for i = 1 to n do

unify(node(nX , (f, i)), nYi
)

end for

end if

end for

cations we unify the nodes corresponding with the sharing created by them. We
ignore test unifications because they do not create any sharing.

5.2 Interprocedural Analysis

The interprocedural analysis, Algorithm 3, updates Gp by integrating the rele-
vant region-sharing information from the region points-to graphs of the called
procedures into Gp.

Algorithm 3 interproc(p): interprocedural analysis of a procedure p

Require: p is in superhomogeneous form.
Ensure: The sharing created by procedure calls is represented in Gp(Np, Ep).

repeat

for all call site in p do

Assume that the call is q(Y1, . . . , Yn), with X1, . . . , Xn as corresponding formal argu-
ments, and that Gq is available.

% Build an α relation.
for k = 1 to n do

α(nXk
) = nYk

end for

% Ensure α is a function.
for all Xi, Xj do

if α(nXi
) = nYi

∧ α(nXj
) = nYj

∧ nXi
= nXj

∧ nYi
6= nYj

then

unify(nYi
, nYj

)

end if

end for

% Integrate sharing in Gq into Gp.
In the graph Gq , start from each nXi

, follow each edge once and apply the rules P1
and P2 in Figure 9 when applicable.

end for

until There is neither change in Gp nor in any of the α functions.

For a call q(Y1, . . . , Yn), the head of the defining procedure is assumed to be
q(X1, . . . ,Xn). The region-sharing among Xi’s in Gq may not have been present
in Gp as region-sharing among Yi’s. The interprocedural analysis makes sure that
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this will be the case. Firstly, it builds the function α : Nq → Np that maps the
nodes of the formal arguments (Xi’s) to the nodes of the corresponding actual
arguments (Yi’s). Then these nodes are the starting points for the integration of
the remaining region-sharing. This is done by following the relevant edges in Gq

to extend the α function to all the relevant nodes in Gq (rule P2) and to unify
the relevant nodes in Gp (rule P1).

(nq, (f, i), mq) ∈ Eq

α(nq) = np

(np, (f, i), m
′

p) ∈ Ep

α(mq) = mp 6= m
′

p

unify(mp, m
′

p)
(P1)

(nq, (f, i), mq) ∈ Eq

α(nq) = np

(np, (f, i), mp) ∈ Ep

α(mq) undefined

α(mq) = mp

(P2)

Fig. 9: Interprocedural analysis rules.

For a whole program, we can first do the intraprocedural analysis for every
procedure. Then given the fact that in the interprocedural analysis the analysis
information is only propagated from graphs of callees to those of callers, we can
do the interprocedural analysis for a program efficiently by decomposing the call-
dependency graph into a tree of strongly connected components, and analysing
the components in bottom-up order. Algorithm 4 illustrates this approach.

Algorithm 4 Region points-to analysis of a program
Require: A Mercury program P with its procedures in superhomogeneous form.
Ensure: Region points-to graphs for all procedures.

for all procedure p in P do

intraproc(p)
end for

Decompose P ’s call-dependency graph into a tree of strongly connected components (SCCs).
for all SCC (bottom-up order) do

repeat

for all p in SCC do

interproc(p)
end for

until reach a fixpoint
end for

The points-to graphs of the split and qsort procedures in the quicksort
program in Example 2 are shown in Figure 10. For split, the region points-to
analysis can detect that the two sublists L1 and L2 can be in separate regions
that are different from the region of the input list L. For qsort, the input list,
the two temporary lists, and the resulting list are all in different regions. That
the resulting list is in the same region as the accumulator and the temporary
lists S2 and A1 is reasonable because the resulting list is gradually built up from
them.
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([|],1)
([|],2)

([|],2)

([|],1)

([|],1)

([|],2)

(R1) L,Ls

L2
L21

L1
L11

(R3) (R4)

Le X

(R2)

(R5)

(a) split

S,A

([|],2)

([|],2)

([|],1)

([|],1)

([|],2)

([|],1)

([|],2)

([|],1)

L,Ls Le S2,A1

L2L1

(R6) (R8)

(R9) (R10)

(R7)

(b) qsort

Fig. 10: The region points-to graphs of split and qsort.

5.3 Correctness of the Region Points-To Graphs

We will prove that the region points-to analysis of a program terminates and
that the resulting region points-to graphs for the procedures in the program are
correct, i.e., they represent all the locations of the terms and the sharing among
the terms.

Theorem 1. The region points-to analysis of a program terminates.

Proof (Termination). An α function at a call site is a mapping from a subset of
the nodes in the callee’s region points-to graph to a subset of the nodes in the
caller’s region points-to graph. Therefore if we can show that the sets of nodes
are finite then so is the α function. This then implies that the termination of the
region points-to analysis solely depends on the finiteness of the region points-to
graphs.

For any procedure, the Algorithm 2 starts with a region points-to graph
having a finite number of nodes and edges. The analysis uses only the unify
operation (Algorithm 1) to change the graphs. It always decreases the number
of nodes and does not increase the number of edges. Therefore the analysis must,
at some point, terminate. In the most extreme cases, the final region points-to
graph of a procedure contains only one node and self-edges, if any. �

Theorem 2. The resulting region points-to graphs of the region points-to anal-
ysis of a program represent all the locations of the terms that are possibly con-
structed during the execution of the program and the possible sharing among the
terms.

The theorem has two parts, one about locations and the other about sharing.
We prove each part separately.

Proof (Locations). During the execution of a program a variable can get bound
to a compound term. However that compound term must be built step-by-step
using construction unifications. In such a step, a construction unification allo-
cates memory to store only the principal functor that the variable on its left-hand
side is bound to. Therefore to show that terms have their locations it should be
enough to show that all variables have their locations. We will prove that the
region points-to analysis ensures that every variable is assigned a location.
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Consider a procedure. The region points-to analysis of the procedure starts
with the intraprocedural analysis (Algorithm 2) that assigns a set of nodes to
each variable based on the type-based region graph of the type of the variable.
These nodes represent the regions where a term to which the variable is possibly
bound is stored. Moreover, the variable is assigned a location by the fact that
it is added to the vars set of the node where the principal functor of the term
it is bound to is stored. During the analysis this node may be removed from
the graph when it is unified with another node. However, regardless of where
this happens, in the intraprocedural or in the interprocedural analysis, the unify
operation ensures that the remaining node now represents the location of the
variable. �

Now, for the second part of Theorem 2, we will show that all sharing between
the terms is represented in the region points-to graphs. For a procedure, the
sharing among its variables is created either by the explicit unifications in the
procedure or by the ones hidden in procedure calls. The lemma below deals with
explicit unifications.

Lemma 1 (Sharing created by explicit unifications). If a unification ex-
plicitly appears in a procedure, the sharing created by the unification is repre-
sented in the region points-to graph of the procedure.

Proof. The explicit unifications are dealt with by Algorithm 2, the intraproce-
dural analysis. Test unifications do not create sharing, so we can ignore them.
Consider an assignment unification, Algorithm 2 unifies the nodes of its left and
right variables and keeps these two variables in the vars set of the unified node.
This represents their sharing.

The other case is with a unification of this form X = f(. . . ,Xi, . . .). If
we assume node(nX , (f, i)) = m, Algorithm 2 does unify(m,nXi

) when han-
dling the unification. This adds Xi to vars(m). After the unification, the edge
(nX , (f, i),m), which was already in the region points-to graph, has become
(nX , (f, i), nXi

). This represents the sharing between X and Xi. �

For procedure calls, we consider a procedure p that invokes q, Xi’s are the
formal arguments and Yi’s are the actual ones. We call Gsub

p (Nsub
p , Esub

p ) the
subgraph of the region points-to graph of p rooted at the nodes of Yi’s and
Gsub

q (Nsub
q , Esub

q ) the subgraph of the region points-to graph of q rooted at the
nodes of Xi’s.

In order to prove that all the region-sharing in Gsub
q is also in Gsub

p , we first
observe two arbitrary formal arguments Xi and Xj that share. By Definition 1,
this means that there exists a node in Gsub

q that can be reached from nXi
and

nXj
. There are two cases, either nXi

= nXj
, i.e., the sharing between Xi and

Xj is represented in Gsub
q by the fact that they are in the vars set of the same

node, or nXi
6= nXj

, i.e., the sharing among them is represented by intermediate
edges to the common node.

The following lemma shows that the region-sharing in the first case is brought
to Gsub

p .
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Lemma 2. The region-sharing between the formal arguments that are in the
vars set of a node nq ∈ Nsub

q is also in Gsub
p .

Proof. The interprocedural analysis (Algorithm 3) first builds an α relation that
represents the connection between Gsub

q and Gsub
p . This initial α relation connects

the nodes of the formal arguments with the nodes of the corresponding actual
arguments. In this α relation, it is possible that a node in Gsub

q whose vars set
contains more than one formal argument is connected to more than one node
of the actual arguments in Gsub

p . The region-sharing of such formal arguments

(represented by the fact that they are in the same vars set) is brought into Gsub
p

when Algorithm 3 turns the α relation into a function. So the actual arguments
corresponding to the formal arguments that are in the vars set of a node nq in
Gsub

q are in the vars set of a node np in Gsub
p and α(nq) = np. �

For the second case, we first introduce the following lemma.

Lemma 3. If n and m are in N sub
q such that (n, (f, i),m) ∈ Esub

q and α(n) ∈

N sub
p then α(m) ∈ N sub

p and also (α(n), (f, i), α(m)) ∈ Esub
p .

Proof. In a well-typed Mercury program, an actual argument has the same type
as its corresponding formal one. Therefore if (n, (f, i),m) is in Esub

q there must

exist a node k ∈ N sub
p such that (α(n), (f, i), k) is in Esub

p . If α(m) = k, our proof
is done. If α(m) = m′ 6= k, the algorithm applies rule P1 to unify k and m′. After
that we have the desirable effect α(m) = k. If α(m) is undefined, the algorithm
applies rule P2 to produce α(m) = k, which is also the desirable result. �

Lemma 3 essentially shows that the α function is extended for all the nodes in
Nsub

q and all the intermediate edges connecting these nodes in Esub
q have their

counterparts in Gsub
p .

Theorem 3 (Sharing created by procedure calls). All the region-sharing
in Gsub

q is also in Gsub
p .

Proof (Sharing created by procedure calls). The proof of Theorem 3 follows from
Lemma 2 and Lemma 3. �

Now we can continue with the proof of the sharing-among-terms part of
Theorem 2.

Proof (Sharing among terms). The proof of the second part of Theorem 2 follows
from Lemma 1 and Theorem 3, which show that the sharing created by explicit
unifications as well as by procedure calls in a procedure is all represented in the
region points-to graph of the procedure.

When a procedure is recursive or mutually recursive, it is possible that the
region points-to graph of a called procedure (recursive or mutually recursive)
has not fully represented the sharing among its formal arguments. However, if a
program ever creates sharing, ultimately this creation must involve a unification.
And we already showed by Lemma 1 that this sharing is represented in the region
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points-to graph of the procedure containing the unification. By Theorem 3, we
showed that that sharing will also be represented in the region points-to graphs
of any procedures that invoke the procedure. Therefore even the procedure is
recursive, the sharing created by the recursive calls will finally be represented in
its region points-to graph. �

In the next sections when we mention region points-to graphs we mean the
ones obtained by the region points-to analysis.

5.4 Regions That Are Allocated Into in A Procedure

During the region points-to analysis of a procedure we can track the regions that
are possibly allocated into in the procedure. A construction unification is the only
construct in Mercury that allocates memory. When processing a construction
unification X <= f(. . .) we mark the node nX as allocated. When two nodes are
unified, if one node is marked as allocated then the unified node is also marked as
allocated. At a call site, if an actual node is mapped to by an allocated node, it is
marked as allocated. For a procedure p, we call this set of nodes allocation(p). In
the quicksort example of Figure 3 and Figure 10, allocation(split) = {R3 ,R4},
allocation(qsort) = {R8 ,R9 ,R10},

6 Region Liveness Analysis

After the region points-to analysis we know the region variables of each procedure
and how the program variables are distributed over the regions to which these
region variables are bound. As regions may need to exist through a sequence of
procedure calls, e.g., a call may allocate memory into an existing region, we pass
region variables as arguments of procedures. The set of region arguments is a
subset of the set of region variables derived by the region points-to analysis.

A region variable being live means that it should be bound to a region and
is possibly used in future (forward) execution. The goal of the region liveness
analysis is to decide which region variables are live at each program point and
which region arguments become live or stop to be live in each procedure.

Consider a procedure p. We associate a program point with every literal in
the body of p. An execution path in p is a sequence of program points, such
that at runtime the literals associated with these program points are performed
in sequence. We denote an execution path by 〈l1, . . . , ln〉, in which the li’s are
the literals involved, the indexes i’s reflect the order among the literals in this
execution path (not their associated program points). The function pp(l) returns
the program point associated to l. We use the notions before and after a program
point. Before a program point means right before the associated literal is going
to be executed; while after a program point means its literal has just been
completed. The set of live region variables at a program point is computed via
the set of live variables at the program point. We also use the in args(atom) and
out args(atom) functions that respectively return the sets of input and output
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in args out args

X <= f(X1, . . . , Xn) {X1, . . . , Xn} {X}
X => f(X1, . . . , Xn) {X} {X1, . . . , Xn}
X == Y {X, Y } ∅
X := Y {Y } {X}

Table 1: Input and output arguments of unifications.

arguments to atom. For specialized unifications they are defined in Table 1.
If atom is a procedure’s head, they return formal arguments, whereas if atom
is a call they return actual ones. Those sets can be computed from the mode
information of Mercury procedures.

6.1 Live Region Variables at a Program Point

In this subsection we specify the analysis that computes the sets of region vari-
ables that are live before and after every program point in a procedure. The
liveness of a region variable at a program point is determined by the liveness of
the variables that are stored in the corresponding region.

Live variables. A variable is live before a program point if it has been instan-
tiated before the point and may be used in the future. A variable is live after
a program point if it has been instantiated before or at the point and may be
used in the future.

The live variable analysis for a procedure p is defined in Algorithm 5. It is a

Algorithm 5 lva(p): live variable analysis of a procedure p.
Require: p in superhomogeneous form.
Ensure: The sets of live variables before (LV before) and after (LV after ) all program points in p.

for all program point i in p do

LV before(i) = LV after (i) = ∅
end for

for all ep ≡ 〈l1, . . . , ln〉 in p do

for j = n downto 1 do

i = pp(lj)
if j = n then

LV after (i) = out args(p)
else

LV after (i) = LV after (i) ∪ LV before(pp(lj+1))
end if

if j = 1 then

LV before(i) = in args(p)
else

LV before(i) = (LV after (i) \ out args(lj)) ∪ in args(lj)
end if

end for

end for

backward computation of live variables, in which we follow each execution path
(ep) backwards from its last program point. At each program point we apply the
suitable formula to update the LV after and LV before sets of the program point.
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The LV before of the first program point(s) is defined to be in args(p) while the
LV after of the last program point(s) is defined to be out args(p).
Live region variables. A region variable is live before (after) a program point
if its node is reachable from a variable that is live before (after) the program
point.

The set of nodes that are reachable from a variable is defined as follows.

Reach(X) = {nX} ∪ {m | ∃(nX , m) ∈ E∗(X)},

in which E∗(X) is defined:

E∗(X) = {(nX , ni) | ∃(nX , label0, n1), . . . , (ni−1, label i−1, ni) ∈ E}.

Then the live region variable analysis of a procedure is specified in Algorithm 6.

Algorithm 6 lra(p): live region variable analysis of a procedure p

Require: LV before and LV after of all program points in p.
Ensure: The sets of live region variables before (LRbefore) and after (LRafter ) all program points in

p.
for all program point i in p do

LRbefore(i) = LRafter (i) = ∅
for all X ∈ LV before(i) do

LRbefore(i) = LRbefore(i) ∪ Reach(X)
end for

for all X ∈ LV after (i) do

LRafter (i) = LRafter (i) ∪ Reach(X)
end for

end for

6.2 Lifetime of Regions across Procedure Boundary

As said before we use region arguments to pass regions among procedure calls.
For a procedure, the region variables reachable from its arguments are candidates
for region arguments. But as we will see later not all of them may need to be. This
subsection introduces an analysis that decides which region variables become live
or cease to be live inside a procedure. With this information we can give shorter
lifetime for regions, achieving better memory reuse.

Consider a procedure q that is called by some procedure p, we define:

– bornR(q) is the set of region variables of q that are mapped (by the α function
at the call site) to region variables of p that definitely become live inside q,
i.e., in q or in one of the procedures it calls.

– deadR(q) is the set of region variables of q that are mapped to region variables
of p that definitely cease to be live (or become dead) inside q.

– outlivedR(q) is the set of region variables of q that are mapped to region
variables of p that outlive the call to q. They are live before the call and still
live after the call.
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The motivation is that, in the transformed program, the region variables of p

that are mapped to by those in bornR(q) will get bound to a region during q and
are still bound after q, the ones mapped to by those in deadR(q) are bound before
the call to q and are safely removed during q, and the ones mapped to by those in
outlivedR(q) are bound before the call and maintain their bindings throughout
the call. An alternative approach would be that p create those mapped to by
ones in bornR(q) just before and remove those mapped to by ones in deadR(q)
right after the call to q. In this approach, the corresponding regions have longer
lifetime.

For a procedure p, initially, bornR(p) = outputR(p) \ inputR(p); deadR(p) =
inputR(p) \ outputR(p), where inputR(p) and outputR(p) are the sets of region
variables reachable from the variables in in args(p) and out args(p), respectively.
This is an overestimate in which all the region variables that contain input terms
but are not involved with output terms are assumed to become dead in p, while all
the region variables where output terms are stored but are not yet bound at the
entry of p are assumed to become live in p. We call the set of the region variables
that are local to p (not reachable from input or output variables), localR(p),
which is computed by Np \ (inputR(p) ∪ outputR(p)). Initially, outlivedR(p) =
inputR(p)∩ outputR(p). It is clear that the Np is composed of four disjoint sets,
localR(p), bornR(p), deadR(p), and outlivedR(p).

The calling contexts of a procedure influence what it can do to its non-local
region variables. Therefore when analysing a procedure p, the analysis applies
the rules in Figure 11 to any call q in p to correct the deadR and bornR sets of
q according to the calling context. A region variable is moved from deadR(q) to
outlivedR(q) if it needs to be live after the call to q in p (i.e., the region it is
bound to before the call must not be reclaimed during the call) (rule L1); or to
avoid wrong removals due to the so-called “region alias”, which generally means
that a region is referred to by more than one region variable (rule L2). A typical
case is when a procedure, e.g., q(X1,X2), with RX1

6= RX2
is called as q(Y1, Y2),

with RY1
≡ RY2

.

A region variable is moved from bornR(q) to outlivedR(q) if it is already live
before the call to q (rule L3); or to avoid wrong creations, again due to region
alias (rule L4). When there is a change to those sets of q, q needs to be analysed
to propagate the change to its called procedures. Therefore, this analysis requires
a fixpoint computation. After a fixpoint is reached, each procedure has exactly
one bornR set and one deadR set that are suited for the most restrictive context.
If the procedure is called in a less restrictive context, it will be the case that
creation and removal will happen outside the call.

In the quicksort program in Example 2, split has three execution paths:
〈(1), (2), (3)〉, 〈(4), (5), (6), (7)〉, and 〈(4), (8), (9)〉; qsort has two paths: 〈(1), (2)〉
and 〈(3), (4), (5), (6), (7)〉. 1 The LV and LR sets of split are in Table 2(a),
of qsort in Table 2(b) (see also Figure 3 and Figure 10). Note that, in this
example, it happens to be that the set after one program point is always equal
to the one before the next point in the same execution path. In general, this is

1 For convenience, we use program points to describe execution paths.
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r ∈ LRbefore(pp(l))
r ∈ LRafter (pp(l))

r = α(r
′

) r
′ ∈ deadR(q)

deadR(q) = deadR(q) \ {r
′}

outlivedR(q) = outlivedR(q) ∪ {r
′}

(L1)

α(r
′

) = r α(r
′′

) = r

r
′ 6= r

′′

r
′ ∈ deadR(q)

deadR(q) = deadR(q) \ {r
′}

outlivedR(q) = outlivedR(q) ∪ {r
′}

(L2)

r ∈ LRbefore(pp(l))
r = α(r

′

) r
′ ∈ bornR(q)

bornR(q) = bornR(q) \ {r
′}

outlivedR(q) = outlivedR(q) ∪ {r
′}

(L3)

α(r
′

) = r α(r
′′

) = r

r
′ 6= r

′′

r
′ ∈ bornR(q)

bornR(q) = bornR(q) \ {r
′}

outlivedR(q) = outlivedR(q) ∪ {r
′}

(L4)

l is the literal at a program point, which is a call to q(. . . ).

Fig. 11: Region liveness analysis rules.

pp LV LR

(1b) {X, L} {R5 , R1 , R2}
(1a, 2b) {} {}
(2a, 3b) {L1} {R3 , R2}

(3a) {L1 , L2} {R3 , R2 , R4}
(4b) {X, L} {R5 , R1 , R2}

(4a, 5b) {X, Le, Ls} {R5 , R2 , R1}
(5a, 6b) {X, Le, Ls} {R5 , R2 , R1}
(6a, 7b) {L2 , Le, L11} {R4 , R2 , R3}

(7a) {L1 , L2} {R3 , R2 , R4}
(5a, 8b) {X, Le, Ls} {R5 , R2 , R1}
(8a, 9b) {L1 , Le, L21} {R3 , R2 , R4}

(9a) {L1 , L2} {R3 , R2 , R4}

(a) split

pp LV LR

(1b) {L, A} {R6 , R7 , R8}
(1a, 2b) {A} {R8 , R7}

(2a) {S} {R8 , R7}
(3b) {L, A} {R6 , R7 , R8}

(3a, 4b) {A, Le, Ls} {R8 , R7 , R6}
(4a, 5b) {A, Le, L1 , L2} {R8 , R7 , R9 , R10}
(5a, 6b) {Le, L1 , S2} {R9 , R7 , R8}
(6a, 7b) {L1 , A1} {R9 , R7 , R8}

(7a) {S} {R8 , R7}

(b) qsort

Table 2: Live variable and live region variable sets in quicksort program.

not necessarily the case, for example consider a split point before a disjunction
or before an if-then-else, the set of live region variables after it is the union of
all the sets before its next points. When computing deadR and bornR sets, R5
is eliminated from deadR(split) due to the application of the rule L1 to the call
to split inside qsort. The final result is as in Table 3.

localR bornR deadR outlivedR

split ∅ {R3 ,R4} {R1} {R2 ,R5}
qsort {R9 ,R10} ∅ {R6} {R7 ,R8}

Table 3: Division of the set of region variables.

6.3 Correctness

Algorithm 6 that detects live region variables locally at each program point is
an extension of live variable analysis, which is a standard, well-known program
analysis [10]. Theorem 2 guarantees the locations of variables and their possible
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sharing, which are represented in terms of region points-to graphs. Therefore
Algorithm 6 computes all the live region variables by starting from the live
variables and collecting all the reachable region variables using the region points-
to graphs.

The analysis in Section 6.2 aims to compute a shortest possible lifetime for
a region. Its termination can intuitively be understood from the fact that each
procedure uses a finite set of region variables, hence, initially bornR and deadR
sets are finite, and the analysis just reduces their size. The rules in Figure 11
enforce all the cases where a caller of a procedure needs to restrict what the
callee can do to its region variables. The eager application of the rules therefore
ensures that, for a procedure, the bornR and deadR sets obtained after a fixpoint
is reached contain exactly the region variables it will safely create and remove,
respectively.

7 Program Transformation

The purpose of the program transformation is to annotate all the procedures
in a program with sufficient information about regions. For a procedure the
transformation needs to accomplish the following tasks.

– Extend the procedure definition with the formal region arguments.
– Annotate its construction unifications with the region variables of their left-

hand side variables.
– Annotate its procedure calls with actual region arguments.
– Insert create and remove instructions at suitable points.

The second task is straightforward because the information about which program
variables are in which regions is available after the region points-to analysis. The
aim is that the memory needed by a construction unification will be allocated in
the region that is bound to by the region variable of its left-hand size variable.

We elaborate the other tasks in the next two subsections.

7.1 Region Arguments

We need to make the region variables in bornR and deadR arguments because
they are going to be created and removed inside the procedure. Other than
these region variables, we also need to pass as arguments the region variables
that are reachable from the input and output variables and are allocated into
in the procedure, called allocR. This set of region variables can be computed by
allocR = (inputR ∪ outputR) ∩ allocation (Section 5.4). Note that allocR is not
necessarily disjoint with bornR, deadR and outlivedR.

So all in all, the set of formal region arguments of a procedure is deadR ∪
bornR ∪ allocR. In the quicksort program, allocR(split) = {R1 ,R2 ,R3 ,R4} ∩
{R3 ,R4} = {R3 ,R4}, allocR(qsort) = {R6 ,R8} ∩ {R8} = {R8}, and the
region arguments are {R1}∪{R3 ,R4}∪{R3 ,R4} = {R1 ,R3 ,R4} and {R6}∪
∅ ∪ {R8} = {R6 ,R8}, respectively.

The actual region arguments to a procedure call are derived from the formal
region arguments of the called procedure and the α function at the call site.
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7.2 Insertion of create and remove instructions

When manipulating regions our intention is that a region is created and removed
only by the create and remove instructions, respectively. When a region is cre-
ated, the region variable in the create instruction is bound to it. To remove a
region, we call remove on the region variable that is bound to the region. We
can consider create and remove special Mercury procedures. Other than that,
regions can be indirectly created and removed in procedure calls, which invoke
the two instructions. Unifications neither create nor remove regions.

The insertion of the instructions is specified by Algorithm 7 in which the
transformation rules in Figure 12 are applied to the literal at each program
point. We use the function literal(i) to refer to the literal at the program point
i.

Algorithm 7 Insertion of region instructions in a procedure p.
Require: p in superhomogeneous form;the analysis information is ready.

for all program point i in p do

l = literal(i)
apply rule T6 to l
if l ≡ unif then

apply rule T4 to l
if l ≡ X <= f(. . . ) then

apply rule T2 to l
end if

else

apply rules T1 and T3 to l
end if

end for

for all ep ≡ 〈l1, . . . , ln〉 in p do

for j = 1 to n − 1 do

apply rule T5 to lj , l′ ≡ lj+1

end for

end for

l ≡ q(. . .)
r ∈ LRafter (pp(l)) \ LRbefore(pp(l))

r ∈ localR(p) ∪ bornR(p) ∪ deadR(p)
r = α(r

′

) → r
′ 6∈ bornR(q)

add “create(r)” before l
(T1)

l ≡ X <= f(. . .)
r ∈ LRafter (pp(l)) \ LRbefore(pp(l))

r ∈ localR(p) ∪ bornR(p) ∪ deadR(p)

add “create(r)” before l
(T2)

l ≡ q(. . .)
r ∈ LRbefore(pp(l)) \ LRafter (pp(l))

r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)
r = α(r

′

) → r
′ 6∈ deadR(q)

add “remove(r)” after l
(T3)

l ≡ unif
r ∈ LRbefore(pp(l)) \ LRafter (pp(l))

r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)

add “remove(r)” after l
(T4)

l
′

is next to l in an execution path

r ∈ LRafter (pp(l)) \ LRbefore(pp(l
′

))
r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)

add “remove(r)” before l
′

(T5)

r ∈ VR(pp(l)) \ LRafter (pp(l))
r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)

add “remove(r)” after l
(T6)

Fig. 12: Transformation rules.
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Each program point is associated with three sets of region instructions: a set
of remove instructions added before the program point, a set of create instruc-
tions added before it, and a set of remove instructions added after it. We assume
that the region instructions in the first set are executed before the ones in the
second set. The reason for this will become clear in Section 7.3

Consider a literal l at a program point i in a procedure p. When a region
variable first becomes live, namely when it is not live before i but is live after i,
a region must be created and the region variable is bound to the region. If the
region is created inside l, then no annotation is added at i. Otherwise the region
is created either by a caller of p or by p itself. The former means that the region
should not be created again in p, hence no annotation is added at i. Only for
the latter case we need to add a create instruction before l and this occurs when
the region variable belongs to either bornR(p), localR(p) or deadR(p). This is
reflected by the transformation rules T1 and T2. While the reason for creating a
region to which a region variable that belongs to bornR(p) or localR(p) is bound
is straightforward, the creation of a region that is bound to by a region variable
R in deadR(p) is needed because it is acceptable for p to remove the region bound
to by R at some point before l, if that is safe, and re-create R right before l. The
new region will be removed later due to the fact that R is in deadR(p).

When a region variable ceases to be live, the region it is currently bound
to is removed. The first case is when the region variable is live before i but
not live after i. If p does not remove the region, it is removed by a caller of p

and no annotation is introduced at i. Otherwise, the region is removed inside p.
This means the region variable is in one of the deadR, localR, or bornR sets of p.
There are two subcases: if l removes the region, then no remove instruction needs
to be inserted at i; otherwise if p removes the region itself, we insert a remove
instruction after l. The transformation rules T3 and T4 ensure this effect. Similar
to the case with creation, the removal of a region that is bound to by a region
variable in bornR(p) is necessary because it is acceptable for p to safely remove
the region after i and re-create it later on. The fact that the region variable is in
bornR(p) ensures this. The second case is when the region variable is live after
i, but not live before the literal l′ that is next to l in a certain execution path.
This can happen when i is a shared point among different execution paths and
the region variable is live after i due to an execution path to which l′ does not
belong. A remove instruction is added before l′ to remove the region as expressed
by the transformation rule T5.

We illustrate the effects of the re-creation of regions by two procedures in
Figure 13 and their region-annotated counterparts in Figure 14. We include the
definition of the function length, which returns the number of elements of the
input list, for completeness. It is of no importance to what we are illustrating.
We also assume that there is no region for integers. Therefore the focus is only
on the variables B and C in the procedure p and V and X in q, which are of the
type list int (see Example 1). Each pair of them is assigned to the same region
variables, R1 in p and R2 in q due to the respective assignments at the program
points (3). p and q are unrelated and used to demonstrate different situations.



26

% p(in, out). % q(in, out).
p(A, B) :- q(X, Y) :- length(L) = N :-
(1) C <= [1], (1) Z := length(X), ( L == [], N := 0

( if ( if ; L => [_ | T],
(2) A == 1 (2) Z == 1 N := length(T) + 1

then then ).
(3) B := C (3) V := X

else else
(4) B <= [2] (4) V <= [1]

). ),
(5) Y := Z + length(V).

Fig. 13: Effect of re-creation of regions.

p(A, B@R1) :- q(X@R2, Y) :-
create(R1), (1) Z := length(X),

(1) C <= [1] in R1, ( if
( if (2) Z == 1

(2) A == 1 then
then (3) V := X

(3) B := C else
else remove(R2),

remove(R1), create(R2),
create(R1), (4) V <= [1] in R2

(4) B <= [2] in R1 ),
). (5) Y := Z + length(V),

remove(R2).

Fig. 14: Effect of re-creation of regions: region-annotated version.

Assume that p can create R1, i.e., no calling context forces it otherwise. So
R1 is in bornR(p). In Figure 14, the create instructions added for it before (1)
and (4) are due to the rule T2. The remove instruction added before (4) is due
to the rule T5. So if the else branch is reached, R1 that was live after (1) is no
longer live before (4) and we can reclaim the memory occupied by the list [1]

by removing R1 before re-creating R1 and allocating the list [2].

For q, assume that R2 is in deadR(q). Before the program point (4) R2 is
not live, the remove instruction is added due to the rule T5. As R2 is live after
(4) the create instruction is added before (4) due to the rule T2, The remove

instruction after (5) is added due to the rule T4. So if the else branch is reached,
we can reclaim the memory of the input list X by removing R2 before recreating
it to construct V.

Handling of instantly-dead variables. In a program, we may have vari-
ables that are instantiated at some point but never used after that. We call
them instantly-dead variables. In logic programming in general and in Mercury
in particular, they can be void or singleton variables. A void variable’s name
generally starts with the underscore ( , e.g., see Figure 2) to explicitly tell the
compiler that we do not care about its value. A singleton variable is often a
mistake of the programmer. Mercury compiler issues a warning when it detects
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a singleton variable and to avoid the warning the correct action is to turn it into
a void variable. Because it is useless to do a construction to an instantly-dead
variable, i.e., when the left-hand side variable of a construction unification is
instantly-dead, we assume that construction unifications whose left-hand side
variables are instantly-dead have been eliminated before our region analysis and
transformation. (In fact, the Mercury compiler does apply this kind of optimiza-
tion.)

For the purpose of this work, we care only about the fact that they get
instantiated and not used in the future. Being instantiated means that we need
regions to store their terms, and we do want to remove the regions. That such
variables are not used in the future makes them not live and we may not rely
on the their liveness to remove related regions. That is why we have the rule T6
to deal with this case. We assume that at each program point i we have the set
of such instantly-dead variables, VV (i). (i is the point they get instantiated.)
We then compute VR(i), the set of region variables that are reachable from the

variables, by
⋃

V ∈VV (i)
Reach(V ). The basic idea of T6 is to remove a region

variable reachable from an instantly-dead variable right after the point where
the variable gets instantiated if the region variable is not reachable from any of
the live variables after the point.

The result of the program transformation of the quicksort program in Ex-
ample 2 has been shown in Figure 4. The addition of the remove instructions
after the first program points in both qsort and split procedures results from
the application of T4. Two create instructions inserted in the split procedure
are effects of T2.

7.3 Correctness of Region-Annotated Programs

In region-annotated programs, the computational behaviour of the original pro-
grams is not changed. Only the memory locations of terms are different. We
therefore restrict the correctness of region-annotated programs to the correct-
ness of memory access, i.e., the safety of read and write accesses to terms. Before
arguing about this safety we prove a theorem about the bindings of live region
variables.

Theorem 4. Consider a procedure p in a program P . We call P ′ the region-
annotated program that is produced by applying the analyses and transformation
in Sections 5, 6, and 7 to P , in which p′ is the region-annotated version of p.
If a region variable is live before (after) a program point i in p′, then in p′ it is
bound to a region before (after) i.

To prove Theorem 4, we formulate several propositions.

Proposition 1. If program point i is right before program point j in some exe-
cution path of a procedure then LV before(j) ⊆ LV after (i) (*) and LRbefore(j) ⊆
LRafter (i) (**).
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Proof. (*) follows immediately from Algorithm 5. (**) follows from (*) and Al-
gorithm 6. �

Proposition 2. When the literal at program point i is a unification, we have
the following two properties. If it is a construction unification then LRbefore(i) ⊆
LRafter (i). If LRbefore(i) ⊂ LRafter (i) (strict subset) then the literal is a con-
struction unification.

Proof. Consider a construction unification of the form X <= f(X1, . . . ,Xn).
By definition (Algorithm 5) LV before(i) = LV after (i) \ {X} ∪ {X1, . . . ,Xn}. So
we can compute LRbefore(i) = (

⋃
Reach(V ) ∀ V ∈ LV after (i) ∧ V 6= X) ∪

(
⋃

Reach(Xi) i = 1..n). We can also write LRafter (i) = (
⋃

Reach(V ) ∀ V ∈
LV after (i)∧V 6= X)∪Reach(X). Algorithm 2 ensures that the edges from nX to
nXi

are in the region points-to graph, therefore Reach(X) ⊇ (
⋃

Reach(Xi) i =
1..n). So LRbefore(i) ⊆ LRafter (i).

To prove the second property we will show that if the unification is not a
construction unification then LRbefore(i) ⊇ LRafter (i).

Consider an assignment unification of the form X := Y . From Algorithm 2 we
have that X and Y are in the same node in the region points-to graph, therefore
Reach(X) = Reach(Y ). By definition LV before(i) = (LV after (i) \ {X}) ∪ {Y },
then LRbefore(i) = (

⋃
Reach(V ) ∀ V ∈ LV after (i) ∧ V 6= X) ∪ Reach(Y ). We

can write LRafter (i) = (
⋃

Reach(V ) ∀ V ∈ LV after (i)∧V 6= X)∪Reach(X) and
therefore LRbefore(i) = LRafter (i).

Consider a test unification of the form X == Y . In this case LV before(i) =
LV after (i) ∪ {X,Y } then it is trivial that LRbefore(i) ⊇ LRafter (i).

Consider a deconstruction unification of the form X => f(X1, . . . ,Xn). Here
LV before(i) = (LV after (i) \ {X1, . . . ,Xn}) ∪ {X}, and we have LRbefore(i) =
(
⋃

Reach(V ) ∀ V ∈ LV after (i)\{X1, . . . ,Xn})∪Reach(X). We can write LRafter (i) =
(
⋃

Reach(V ) ∀ V ∈ LV after (i) \ {X1, . . . ,Xn}) ∪ (
⋃

Reach(Xi) i = 1..n). We
have shown that Reach(X) ⊇ (

⋃
Reach(Xi) i = 1..n). Therefore LRbefore(i) ⊇

LRafter (i). �

Proposition 3. If the literal at program point i is a unification and there ex-
ists a region variable R such that R 6∈ LRbefore(i) and R ∈ LRafter (i), then
LRbefore(i) ⊂ LRafter (i) (strict subset).

Proof. The existence of a region variable R such that R 6∈ LRbefore(i) and R ∈
LRafter (i) means that the literal can neither be an assignment, a test, or a
deconstruction unification because if it would LRbefore(i) would have been a
superset of or equal to LRafter (i) (shown in the proof of Proposition 2).

If the unification is a construction then LRbefore(i) ⊆ LRafter (i) (Proposi-
tion 2). Then that there exists an R such that R 6∈ LRbefore(i) and R ∈ LRafter (i)
means that LRbefore(i) ⊂ LRafter (i). �

Now we can give the proof for Theorem 4.

Proof. Hypothesis: Assume that Theorem 4 is true globally at all the points
that are reached before the (local) program point i in p in an execution of the
program.
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Consider a region variable R.
If R belongs to outlivedR(p), according to the Hypothesis it is bound to a

region at the entry to p. Because no create(R) or remove(R) is added in p and
none of the procedures called by p creates or removes R, it is bound to the same
region at all points in p, certainly including the points where it is live.

Consider the other case in which R belongs to either of localR, bornR, or
deadR.

1. Consider a region variable R that is live before i, i.e., R ∈ LRbefore(i).

– When i is the first program point, R must be reachable from a variable
in in args(p) (Algorithms 5 and 6). In the context of a caller of p, the
region variable of the caller that R is mapped to is live before the call. By
the Hypothesis we have that it is bound to a region before the call and
therefore R is bound to the region at the entry to p. The transformation
rule T5, which adds a remove instruction before a program point, is not
applicable to the first program point. Therefore no remove instruction is
added before i, meaning that R is bound to a region before i.

– If i is not the first program point then R is in LRafter (h) where h is
the program point right before i in an execution path (Proposition 1).
According to our hypothesis, R is bound to a region after h. Again, the
rule T5 is not applicable because R is in both LRafter (h) and LRbefore(i),
therefore R is bound before i.

2. Consider a region variable R that is live after i, i.e., R ∈ LRafter (i). Assume
that l is the literal at i.

(a) Consider the case in which R is not in LRbefore(i).
– If l is a unification, from Proposition 3 we have that LRbefore(i) ⊂

LRafter (i) and then from Proposition 2 it must be a construction
unification.
A create(R) instruction is added before l according to rule T1. This
means that R is bound to a region before l. Recall that we assume
that the set of create instructions are executed right before l after
the execution of the set of remove instructions, if any. Therefore R

is bound before l. In addition to that, l is a construction unification
so it does not remove any regions, meaning that R is still bound to
the region after l.

– Consider the case in which l is a procedure call to q. If R is mapped
to by a region variable in bornR(q), the region variable is live after
any last program point of q. By the Hypothesis we can say that the
region variable is bound to a region at the exit of q. So R is bound
to that region after the call.
Otherwise, create(R) is added before l by rule T1, which means that
R is bound to a region before l (again no remove instruction is exe-
cuted in between create(R) and l).
Because R is not live before the call, it is not reachable from any
actual input arguments to the call to q. Therefore it is not mapped
to by a region variable of q that belongs to deadR(q). So we have
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that R is not mapped to by any region variables of q that are either
in bornR(q), in deadR(q), or in localR(q), which contains only region
variables local to q. This means that R is not removed in q.

In both subcases above, the rules T3, T4 and T6 will not be applicable
because R is in LRafter (i). Therefore no remove(R) is added after l. So
we can conclude that R is bound to a region after l.

(b) Consider the case in which R is in LRbefore(i). We showed in 1. that R

is bound to a region before i.
If l is a unification it does not remove R. If l is a call to q, because R is
in both LRafter (i) and LRbefore(i), R is neither mapped to by a region
variable in deadR(q) nor in bornR(q) (Rules L1 and L3). So l does not
remove it.
Again, no remove(R) is added after l because R is in LRafter (i).
Therefore we conclude that R is bound to the same region after l. �

Theorem 5. In region-annotated programs, an allocation of memory, i.e., a
memory write access, is safe.

Proof. An allocation of memory involves a construction unification. From The-
orem 2 we know the region variable containing the left-hand side variable of
the construction unification, i.e., where the being-constructed functor is stored.
We say that the construction is safe if that region variable is bound before the
construction unification.

Consider the program point associated to the construction unification. With
the assumption that the left-hand side variable is not instantly dead, it must
be live after this point where it is instantiated. And therefore its region variable
is also live after this point (Algorithm 6). By Theorem 4 the region variable is
bound to a region after the program point. Because the construction unification
does not create regions, the region must have been created before and is available
at the construction. �

Theorem 6. When a variable appears as an input argument to a literal at a
program point, we say that the variable is read at that point. In region-annotated
programs, when a variable is read at a program point the term it is bound to is
available.

Proof. When a variable is read at a program point, the Mercury compiler ensures
that it has been instantiated before that. From Theorem 2 we know the region
variables where the terms that the variable is possibly bound to is stored. They
are the region variables reachable from the variable.

Because the variable is read at that point we consider it a live variable before
that point, and therefore the region variables reachable from it are also live
before the point (Algorithms 5 and 6).

Consider a variable X that is read at a program point i in a procedure p. The
fact that X is bound in p is either because it is an input argument of p or because
it is the output argument of some literal in p. Consider some execution path of
p. In the first case, X is live before the first program point of the path. Because
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it is an input argument the Mercury compiler ensures that it never appears as
the output argument of any literal in p. So according to Algorithm 5, we have
that X is live in the scope from before the first program point up to before i.
Similarly in the second case, we have that X is live in the scope from after the
literal up to before i. This means that all the region variables reachable from X

are live during the same scope. Therefore none of them get removed during the
scope because the rules T3, T4, T5, and T6 are not applicable and no procedure
calls in the scope remove any of them due to the rule L1.

So the term that X is bound to is available at i and the read at i is safe. �

8 Conclusion

In this paper we have presented a fully automated static region analysis and
transformation for Mercury programs. We also argued for the correctness of the
region-annotated programs with respect to forward execution by showing that
memory access in the context of regions are safe. We intend to support backtrack-
ing at runtime. However integrating backward liveness into the region analysis
is an alternative approach. The runtime support for regions and backtracking
that allows us to execute the region-annotated programs will be discussed in a
separate paper. A first attempt for such a system has been reported in [13].
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