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Abstract

In categorical semantics, there have traditionally been two approaches to modelling environments, one by use
of finite products in cartesian closed categories, the other by use of the base categories of indexed categories
with structure. Each requires modifications in order to account for environments in call-by-value programming
languages. There have been two more general definitions along both of these lines: the first generalising from
cartesian to symmetric premonoidal categories, the second generalising from indexed categories with specified
structure toκ-categories. In this paper, we investigate environments in call-by-value languages by analysing a fine-
grain variant of Moggi’s computationalλ-calculus, giving two equivalent sound and complete classes of models:
one given by closed Freyd categories, which are based on symmetric premonoidal categories, the other given by
closedκ-categories.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Traditionally in denotational semantics, there have been two categorical ways of modelling environ-
ments. The first is given by finite products in a cartesian closed category, as for instance in modelling
the simply typedλ-calculus. Over the years, that has gradually been extended. For instance, in order to
model partiality, one must generalise from finite product structure to symmetric monoidal structure; and
that has been further generalised to the notion of symmetric premonoidal structure [12].
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A premonoidal category is essentially a monoidal category except that the tensor need only be a func-
tor in two variables separately, and not necessarily a bifunctor: given mapsf : A→ A′ andg : B → B ′,
the evident two maps fromA⊗ B to A′ ⊗ B ′ may differ. Such structures arise naturally in the pres-
ence of computational effects, where the difference between these two maps is a result of sensitivity
to evaluation order. So that is the structure we need in order to model environments in the presence
of continuations or other such strong computational effects. A program phrase in environment� is
modelled by a morphism in the premonoidal category with domain[[�]].

The second approach to modelling environments categorically, also used to model the simply typed
λ-calculus, is based on indexed categories with structure (for an application to type theory, see [4]).
The idea is that contexts are indices for the categories in which the terms definable in that context are
modelled. Here, a program phrase in context� is modelled by an element1 −→ [[A]] in a category that
implicitly depends on�, that is, by an arrow from1 to [[A]] in the fibre of the indexed category over
[[�]]. We consider a weak version of indexed category with structure, called aκ-category, inspired by
some work by Hasegawa [3].

The main result of this paper is to prove the above two models of environments equivalent. More
precisely, we show that every symmetric premonoidal category with a little more of the structure cited
above, gives rise to aκ-category, and that this gives an equivalence between the classes of symmetric
premonoidal categories with such structure andκ-categories. The extra structure we need on a symmetric
premonoidal categoryK is a category with finite productsC, whose objects are the same asK, and an
identity on objects structure-preserving functorJ : C −→ K: we call theseFreyd categories. (They are
calledvalue/producer structuresin [8].)

We then refine the notionκ-category to an equivalent but more useful structure calledstrong κ-
category. Indeed, it could be said that the main advantage of the former is as a stepping-stone to the
latter. The flexibility present in the definition of strongκ-category allows us to present call-by-value
semantics in a way that, on the one hand, is computationally appropriate, but, on the other hand, is
mathematically convenient. We will use the example of continuations to illustrate this.

Having established an equivalence between these various ways of modelling environments, we ex-
tend that equivalence to study the modelling of higher order structure. It is not as simple as asking
for a routine extension of the notion of closedness from that for a cartesian category to a premonoidal
category, as one usually considersλ-terms as values, and we distinguish between values and ordinary
terms (called producers). This leads us to a notion of closedness for a Freyd category [11]. So we extend
our equivalence between Freyd categories andκ-categories to one between closed Freyd categories and
closedκ-categories, and likewise for strongκ-categories.

For concreteness, we shall study the modelling of environments in call-by-value languages with com-
putational effects by studying models of a fine-grain form of Moggi’s computationalλ-calculus [9] (also
known asλc-calculus). Moggi’s calculus was specifically designed as a variant of the simply typed
λ-calculus apposite for the study of computational effects. It is a natural fragment of a call-by-value pro-
gramming language such as ML. Its models were defined to beλc-models, which consist of a cartesian
category (i.e., category with distinguished terminal object and binary products)C, and a strong monad
T onC, andKleisli exponentialsi.e., for eachB,C ∈ Ob C an isomorphism

C(A× B, T C)∼= C(A,B →Kl C) natural inA,

for some specified objectB →Kl C. The class ofλc-models is sound and complete for the calculus, but
it does not provide direct models in that a term of typeτ in context� is not modelled by an arrow inC
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from the semantics of� to the semantics ofτ , but by a derived construction in terms of the monad. We
give equivalent formulations ofλc-models providing a more direct semantics, in terms of closed Freyd
categories, closedκ-categories and closed strongκ-categories.

This paper is an extension of our work in [13], incorporating some results of [14].

1.1. Related work

The relationship between Freyd categories andκ-categories is related to work by Blute et al. [2].
Implicit in their work is the construction that, to a Freyd category, assigns aκ-category. The latter are
closely related to their context categories. Identifying precisely which indexed categories thus arise did
not appear in their work. Although their work was not mainly directed towards the same problems as
ours, it is interesting to note that the type theory suggested there is quite different to that presented here.

A treatment of the categorical semantics for the newcall-by-push-valueparadigm [7] is given in
Levy’s thesis [8]. Like our treatment here, it essentially presents three approaches: strong monads, Freyd
categories, and indexed categories.

1.2. Overview

The paper is organised as follows. In Section 2, we motivate by some examples why one seeks a
more general notion than that of monoidal category for environments in call-by-value programming
languages. We then define fine-grain call-by-value in Section 3. In Section 4, we define Freyd categories
and show how the first-order fragment of our calculus can be interpreted in them. Soundness and com-
pleteness of this semantics is proved in Section 5. In Section 6, we define the notion ofκ-category, and
establish the relationship betweenκ-categories and Freyd categories. We extend our equivalence to one
incorporating higher order structure in Section 7.

2. Some examples

The tuple (similarly, list) notation present in many call-by-value programming languages such as ML
or Scheme may, at first sight, suggest that the appropriate semantic setting ought to be a cartesian or at
least monoidal category.

But in terms of evaluation in a call-by-value language, a tuple(M,N) means that each component
has to be evaluated.

This can be made explicit by naming the intermediate values. If the first component is to be evaluated
first, one would write

let x = M in let y = N in (x, y).

Alternatively, to evaluate the second component first, one writes

let y = N in let x = M in (x, y).

The let-notation, then, has the advantage that the implicit sequencing is made explicit in the textual
representation. Clearly, it would be a disadvantage to make irrelevant sequencing information explicit,
but in examples such as those below, the sequencing information isvital, so must be made explicit.
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For example, in a language with state, there are two possible meanings of a tuple(M,N), depending
on which component is evaluated first. Consider the following examples, where we make the evaluation
order explicit by usinglet.

Example 2.1.

let val s = ref 0 in
let val x = (s := !s + 1; !s) in
let val y = (s := !s + 1; !s) in
#1(x,y)

end
end

end;

let val s = ref 0 in
let val y = (s := !s + 1; !s) in
let val x = (s := !s + 1; !s) in
#1(x,y)

end
end

end;

Example 2.2. Just as for state, in the presence of continuations (first-class or otherwise) there are two
possible meanings of the tuple(throw k 1, throw k 2).

call\-cc(fn k =>
let val x = throw k 1 in
let val y = throw k 2 in
#1(x,y)
end
end);

call\-cc(fn k =>
let val y = throw k 2 in
let val x = throw k 1 in
#1(x,y)
end
end);

If this were to be interpreted in a monoidal category directly with the tupling notation, one could
not distinguish between the two composites. The problem is that, in a monoidal category, given maps
f : A −→ A′ andg : B −→ B ′, the two induced maps fromA⊗ B to A′ ⊗ B ′ are equal. This makes
monoidal categories suitable for those cases where both composites are evaluated in parallelor where
there can be no interference between the two (which would be the case, say, if both had access to
disjoint pieces of state). But with control, as given by continuations, we have both a sequential evaluation
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order and interference between the components, since a jump in one will prevent the other from being
evaluated at all.

Put differently, the presence of computational effects, like state and control, “breaks” the bifunctori-
ality, so one is left with a binoidal category as defined in the appendix.

Adding higher order structure to this analysis, it follows that there is delicacy in modifying the simply
typedλ-calculus in order to provide a variant that is suitable for the study of call-by-value languages
with the possibility of computational effects such as state or continuations. Such a language was provided
by Moggi’s computationalλ-calculus, orλc-calculus [9], a variant of which which we analyse in this
paper. A key point in modelling theλc-calculus is that, as explained above, one needs care in modelling
environments.

3. From coarse-grain to fine-grain call-by-value

3.1. λc Calculus and monadic metalanguage

First we will recall λc-calculus and then explain why we choose to work with a more fine-grain
language.

We will consider the following types only:

A ::= 1 |A× A |A→ A.

This does not mean that there cannot be other type constructors such as + andbool – after all, a language
withoutbool would not be of much use – but rather that 1,× and→ are the only type constructors whose
categorical semantics we address in this paper. Furthermore, we will omit all rules, equations etc. for 1
as they are directly analogous to those for×.

We first give theλ-calculus constructs for these type:

�, x : A,�′ � x : A
� � M : A �, x : A � N : B
� � let x beM. N : B

� � M : A � � M ′ : A′

� � (M,M ′) : A× A′
� � M : A× A′ �, x : A, y : A′ � N : B

� � pmM as (x, y).N : B
�, x : A � M : B

� � λx.M : A→ B

� � M : A→ B � � N : A
� � MN : B

We make some comments about these constructs:
• While the declaration constructlet is technically redundant becauselet x beM. N is equivalent to
(λx.N)M, we prefer to include it as primitive because we feel it is more basic than the→ constructs.

• The elimination rule we have given forA→ B is a pattern-match construct (pm is an abbreviation
for “pattern-match”). We could alternatively have used projection constructs.

• Here and throughout the paper, in order to reduce clutter, we omit type subscripts on bindings of
identifiers, but strictly speaking they should be present.
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The λc calculus is an equational theory for the above constructs providing equations that hold as
observational equivalences when we add computational effects and impose a call-by-value operational
semantics. To formulate it, an auxiliary predicate↓ on terms is required, whereV ↓ means thatV is
effect-free in any environment. We call such a term avalue(although this is not quite consistent with
the operational notion of value), and we call a general term aproducerbecause (in a given environment)
it produces a value. This predicate is inductively given by

V ::= x | (V , V ) | λx.M | let x be V. V | pm V as (x, y).V ,

whereV ranges over values andM ranges over producers. We can then provide axioms for theλc-
calculus such as theβ-value law

(λx.M)V = M[V/x],

whereV ranges over values andM ranges over producers.
This calculus has many models. As a leading example, consider the semantics for global store, where

S is the set of stores. Each typeA, and hence each context�, denotes a set. A producer� � M : A
denotes a function fromS × [[�]] to S × [[A]] – we will call this function[[M]]prod. If M ↓, thenM
additionally denotes a function from[[�]] to [[A]] – we will call this function[[M]]val.
λc-calculus has proved enormously helpful in analyzing semantics of call-by-value. However, it has

some problems.
1. The theory is not purely equational, because the predicate↓ is required.
2. The choices we made, that an applicationMN should be evaluated operator first and that a pair
(M,N) should be evaluated left-to-right, are quite arbitrary.

3. Application and pairing are clearly complex constructs. Here, for example, is the semantics of appli-
cation

[[MN]]ρs = pm [[M]] as (s′, f ).pm [[N]]s′ρ as (s′′, a).f (s′′, a).

It clearly reflects the 3-stage process of evaluatingMN : first evaluateM to λx.M ′, then evaluateN
to V , then evaluateM ′[V/x].

4. An effect-free termM ↓ has two denotations[[M]]prod and[[M]]val, within the same model. They are
related, as we have[[M]]prod(s, ρ) = (s, [[M]]valρ), but nevertheless we would prefer them to be the
denotations of syntactically distinguished terms, so that each term has just one denotation.
Moggi resolved all these problems simultaneously in [10] by providing another language, themonadic

metalanguage, from which they are all absent and into whichλc-calculus can be translated. In the
monadic metalanguage a term� � M : A denotes, in the global store model, a function from[[�]] to
[[A]]. Thus it can be said that whereas in theλc-calculus a general term is a producer, in the monadic
metalanguage a general term is a value. A producer then has to be represented as a term� � M : TA
whereTA would be written 1→ A in the types that we are using.

But there is a disadvantage to the monadic metalanguage, as compared with theλc-calculus: it is
not easy to formulate operational semantics. As an example, considerλc-calculus with global store
constructs: we can easily give an inductive definition of big-step semantics in the forms,M ⇓ s′, V
whereM is a closed producer of any type, andV is a closed value of the same type. But for monadic
metalanguage with global store constructs, it is not clear what form the big-step semantics should take.
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3.2. Fine-grain call-by-value

We explained in the previous section that
• Moggi’s λc-calculus is a language ofproducers, in which a term� � M : A denotes (in the global

store model) a function fromS × [[�]] to S × [[A]]
• Moggi’s monadic metalanguage is a language ofvalues, in which a term� � M : A denotes (in the

global store model) a function from[[�]] to [[A]].
We now presentfine-grain call-by-valuethat has two separate judgements for values and producers:
we write� �v V : A to say thatV is a value and we write� �p M : A to say thatM is a producer.
As a result of having these two judgements, it combines the advantages ofλc-calculus (suitability
for operational semantics) with the advantages of the monadic metalanguage (constructs are canonical
and semantically simple, theory is purely equational, terms have just one denotation within a given
model).

Corresponding to our two-part development of the categorical semantics, we present fine-grain call-
by-value in two parts: the first order fragment presented in Fig. 1 and the higher order constructs pre-
sented in Fig. 2. We repeat that there can be other type constructors besides 1,×,→, such asbool or +,
but it is only the former whose categorical semantics we are studying; also that we omit constructs and
equations for 1 because they are analogous to those for×.

The key producer terms are these:
• produce V is thetrivial producer: the constructproduce explicitly converts the valueV into a pro-

ducer, unlike inλc-calculus where this conversion is invisible.produce is similar toreturn in Pascal
and Java.

• M to x. N is thesequenced producer: it means “executeM, bindx to the value it returns, then execute
N”.

We represent the producers ofλc-calculus in fine-grain CBV as follows:

λc-calculus producer fine-grain CBV producer

x produce x
λx. M produce λx. M
pm M as (x,y). N M to w. pm w as (x,y).N
let x be M . N M to w. let x be w. N
(M,N) M to x. N to y. produce (x, y)
MN M to f. N to x. fx

This transform makes it clear that inλc-calculus, the application construct does more than just appli-
cation, the declaration constructlet does more than just declaration, and so forth. (It is to make this
point clear that we translatelet x beM. N as shown rather than as the shorterM to x. N .) Sequencing
and producing are hidden inside theλc constructs, and fine-grain CBV makes them explicit (just as the
monadic metalanguage does).

Notice how the translation of(M,N)makes the order of evaluation apparent – if we wanted right-to-
left evaluation order we would translate it as

N to y. M to x. produce (x, y)

This is meant to emphasise that, in apremonoidal setting, we need to take a little more care than in a
monoidal one (where the left-to-right and right-to-left translations would be equivalent).
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Fig. 1. First order fragment of fine-grain CBV.

Each equation is presented subject to the convention that if a termM (more accurately, a metasyntactic
identifier ranging over terms) occurs in the scope of anx-binder and also occurs not in the scope of an
x-binder thenx must not be in the context ofM. For example, in theη-law in Fig. 2, this convention
implies thatx must not be in the context ofV .

4. Freyd-categories

In this Section, we define Freyd categories.
For reference, we include precise definitions of premonoidal category [12] and related structures in

Appendix A. To complete the category theory required to formulate the semantics, we say
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Fig. 2. Higher order constructs of fine-grain CBV.

Definition 4.1. A Freyd categoryconsists of a cartesian categoryC, a symmetric premonoidal category
K with the same objects asC, and an identity on objects functorJ : C −→ K, strictly preserving sym-
metric premonoidal structure, whose image lies inside the centre ofK. C is called thevalue category
and its morphisms are calledvalue morphisms. K is called theproducer categoryand its morphisms are
calledproducer morphisms.

We write× rather than⊗ for the binary operation on objects provided by the premonoidal structure,
because it is a product operation inC. The interpretation of the first order fragment in a Freyd category
is organized as follows:
• A type denotes an object in the obvious way.
• The contextx0 : A0, . . . , xn−1 : An−1 denotes the object[[A0]] × · · · × [[An−1]].
• A value� �v V : A denotes a value morphism from[[�]] to [[A]].
• A producer� �p M : A denotes a producer morphism from[[�]] to [[A]].
For example:
• if � �v V : A thenproduce V denotesJ [[V ]]
• if � �p M : A and�, x : A �p N : B thenM to x. N denotes

[[�]] J (id,id)−→ [[�]] × [[�]] [[�]]×[[M]]−→ [[�]] × [[A]] [[N ]]−→[[B]]
Corresponding to the examples of state and control (Examples 2.1 and 2.2), we sketch how each of

these computational effects gives rise to a Freyd category.

Example 4.2. This example provides semantics for global store, and corresponds to Moggi’sS →
(S × −) strong monad. First fix a setS. Then letC beSet, and letK be the category in which an object
is a set and a morphism fromX to Y is a function fromS ×X to S × Y , with the evident identity and
composition.J is defined in the evident way.

Example 4.3. This example provides semantics for control effects that manipulate continuations, and
corresponds to Moggi’s(− → Ans)→ Ans strong monad. First fix a setAns. Then letC be Set and
let K be the category in which an object is a set and a morphism fromX to Y is a function from
X × (Y → Ans) to Ans, with the evident identity and composition.J is defined in the evident way.
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To defineclosedFreyd category, just as for cartesian closed categories, we make use of “represent-
able functors”:

Definition 4.4. LetF be a functor fromCop to Set. A representationfor F consists of an objectV (the
vertex) together with an isomorphism

FX∼= C(X, V ) natural inX.

Here is a well-known example.

Definition 4.5.
1. LetA andB be objects in a cartesian categoryC. An exponentialfromA toB is a representation for

the functorλX.C(X × A,B). Explicitly, this is an objectV (the vertex) together with an isomorphism

C(X × A,B)∼= C(X, V ) natural inX.

2. Let (T , η, µ, t) be a strong monad on a cartesian categoryC. To give Kleisli exponentialsfor this
monad means to give an exponential fromA to T B for each pair of objectsA,B.

Definition 4.6. A closed Freyd categoryconsists of a Freyd category together with, for each pair of
objectsA,B a representation for the functorλX.K(J (X × A),B), whose vertex we callA→ B. Ex-
plicitly, this gives an isomorphism

K(J (X × A),B)∼= C(X,A→ B) natural inX ∈ Cop.

We can shorten this definition by recalling that we can define aright adjoint for a functorF : C −→ K
to consist of, for each objectB of K, a representation for the functorλX.K(FX,B). Consequently, we
can define a closed Freyd category to consist of a Freyd category, together with, for each objectA, a
right adjoint for the functorJ (− × A) : C −→ K. In particular, the functorJ : C −→ K will have a
right adjoint, and so, becauseJ is identity-on-objects,K is the Kleisli category for a monad onC. A
variant of one of the main theorems of [11] is

Theorem 4.7. To give a closed Freyd category is equivalent to giving aλc-model. More precisely, the
2-category of closed Freyd categories and the2-category ofλc-models, as defined in Appendix C, are
2-equivalent.

That is as good a result as one can imagine to relate closed Freyd categories with strong monads. The
theorem shows that closed Freyd categories are equivalent to Moggi’sλc-models, so (as we shall see in
Section 5) form a sound and complete class of models for fine-grain call-by-value.

In the light of this result, the reader may wonder what advantage Freyd categories have over strong
monads with Kleisli exponentials. The answer is that the former provides greater flexibility in the organi-
zation of a model. For example, when organizing a global store model with a strong monad, a producer
� �p M : A must denote a function from[[�]] to S → (S × [[A]]). When organizing the model as a
Freyd category, we can still interpretM in this way if we choose, but we also have the option of using
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the Freyd category in Example 4.2 so thatM denotes a function fromS × [[�]] to S × [[A]]. This is
computationally appropriate: it says thatM, when executed in a given stores ∈ S and environment
ρ ∈ [[�]], terminates in a stores′ ∈ S when it produces a valuea ∈ [[A]].

For another example, when organizing a continuation model with a strong monad, a producer� �p

M : A must denote a function from[[�]] to ([[A]] → Ans)→ Ans. When organizing the model as a
Freyd category, we can still interpretM in this way if we choose, but we also have the option of using
the Freyd category in Example 4.3 so thatM denotes a function from[[�]] × ([[A]] → Ans) to Ans.
This is computationally appropriate: it says thatM, when executed in a given environmentρ ∈ [[�]] and
current continuationK ∈ [[A]] → Ans, gives a final answer inAns.

5. Soundness and completeness

We will formulate soundness and completeness results relating the first order fragment presented in
Fig. 1 to Freyd categories. There are analogous results relating the whole language presented in Figs. 1
and 2 to closed Freyd categories.

To present these results, we will add to the type theory a setτ of base types– so that we have a
bigger set of types – and two setsσval, σprod of function-symbols. The function-symbols inσval represent
effect-free functions (i.e., value morphisms); the function-symbols inσprod represent effectful functions
(i.e., producer morphisms). Each function-symbol is equipped with anarity – which is a finite sequence
of types – and aresult type. These types can involve the base types. The triple(τ, σval, σprod), together
with all the arities and result types, is called asignature.

From now until the end of the proof of Proposition 5.2, fix a signatureS = (τ, σval, σprod). Theterms
generated by Sare defined as in Fig. 1, with the additional rule

� �v V0 : A0 · · · � �v Vm−1 : Am−1

� �v f (V0, . . . , Vm−1) : B
,

for each function-symbolf ∈ σval whose arity is(A0, . . . , Am−1) and whose result type isB, and with
the additional rule

� �v V0 : A0 · · · � �v Vm−1 : Am−1

� �p f (V0, . . . , Vm−1) : B
,

for each function-symbolf ∈ σprod whose arity is(A0, . . . , Am−1) and whose result type isB.
We do not allow a term such asf (M0, . . . ,Mm−1), whereM0, . . . ,Mm−1 are producers, because this

gives no indication of the order of evaluation of these producers. Rather, we write

M0 to x0. . . .Mm−1 to xm−1. f (x0, . . . , xm−1),

to indicate that the producers are evaluated left-to-right, for example.
An interpretationof the signatureS in a Freyd category consists of

• an object[[A]] for each objectA – this gives rise to a semantics of types in the obvious way;

• a value-morphism[[A0]] × · · · × [[Am−1]] [[f ]]−→ [[B]] for each function-symbolf ∈ σval whose arity is
(A0, . . . , Am−1) and whose result type isB;
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• a producer-morphism[[A0]] × · · · × [[Am−1]] [[f ]]−→[[B]] for each function-symbolf ∈ σprod whose
arity is (A0, . . . , Am−1) and whose result type isB.

It is clear that an interpretation ofS in a Freyd category induces a semantics for the terms generated
from S.

Proposition 5.1 (Soundness). For a signatureS, and an interpretation forS in a Freyd category, the
induced semantics for the terms generated fromS validates all the equations of Fig. 1.

Proof. Straightforward, with a substitution lemma.�

A theoryfor the signatureS is a congruence∼ on the terms (more accurately, the terms in context)
generated byS, respecting substitution (so that related values substituted into related terms give related
terms) and respecting weakening (so that, for example, if� �p M ∼ M ′ : B then�, x : A �p M ∼ M ′ :
B), that includes all the laws of Fig. 1. It is a consequence of Proposition 5.1 that an interpretation of
S in a Freyd category induces a theory forS, where two terms are related when they have the same
denotation. The converse is also true:

Proposition 5.2 (Completeness). Given any theory∼ for S, there is a Freyd category, and an inter-
pretation ofS in it, such that two terms have the same denotation iff they are related by∼ .
Proof. We construct a Freyd category where
• the objects are the types (involving the base types inτ );
• the value-morphisms fromA toB are the equivalence classes w.r.t.∼ of valuesx : A �v V : B;
• the producer-morphisms fromA to B are the equivalence classes w.r.t.∼ of producersx : A �p M :
B.

All the structure is easy to define, and well-defined because∼ is a congruence. The interpretation of a
base typeA is the typeA. The interpretation off ∈ σval is the equivalence class of the value

x0 : A0, . . . , xm−1 : Am−1 �v f (x0, . . . , xm−1) : B,

wheref has arity(A0, . . . , Am−1) and result typeB. The interpretation off ∈ σprod is the equivalence
class of the producer

x0 : A0, . . . , xm−1 : Am−1 �p f (x0, . . . , xm−1) : B,

wheref has arity(A0, . . . , Am−1) and result typeB. The required equations are easy, if tedious, to
verify, as a consequence of the equations in Fig. 1.�

To see why we call this a completeness result, introduce the following notation. LetD be a set of
equations andE a single equation using the symbols ofS. We say thatD � E whenE can be deduced
fromD using the equations of Fig. 1 andD |= E when, for every interpretation ofS in a Freyd category
that validates all the equations ofD, the equationE is validated too. Then Proposition 5.1 tells us
thatD � E impliesD |= E, while Proposition 5.2 tells us thatD |= E impliesD � E (take the theory
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containing precisely those equations deducible fromD). In summary, our equational theory provides a
sound and complete way of reasoning about Freyd categories.

But ideally we would like to assert not that first-order fragment is a good way of reasoning about
Freyd categories, but rather that Freyd categories are a good way of modelling the first-order fragment,
which, after all, was our starting point. Proposition 5.2 does not tell us this.

In fact, the relationship between Freyd categories and the first order fragment is closer than we can
learn from Propositions 5.1 and 5.2. For Freyd categories and models of the first-order fragment (defined
in a suitablya priori way) are equivalent. This is the same as the relationship between cartesian closed
categories and simply typedλ-calculus, so we will not discuss it here.

6. κκ-Categories

In previous sections, we defined a fine-grain version of the computationalλ-calculus and showed
how it can be modelled in a closed Freyd category. Its first order fragment can be modelled in a Freyd
category. It is important to distinguish between first order and higher order structure for various purposes,
such as in modelling continuations [17], data refinement, and modularity. In this section, we see that
Freyd categories are equivalent to a new construct, that ofκ-category. It follows that we can model the
first order fragment of theλc-calculus in aκ-category. We shall extend this to modelling the full calculus
in a closedκ-category in the next section. The notion ofκ-category models environments differently
from the way they are modelled in a Freyd category.

We proceed by constructing an indexed category from a Freyd category, then we identify the image
of the construction, yielding the notion ofκ-category.

Definition 6.1. A comonoidin a premonoidal categoryK consists of an objectC of K, and central
mapsδ : C −→ C ⊗ C andν : C −→ I making the usual associativity and unit diagrams commute. A
comonoid mapfrom C to D in a premonoidal categoryK is a central mapf : C −→ D that commutes
with the comultiplications and counits of the comonoids.

Given a premonoidal categoryK, comonoids and comonoid maps inK form a categoryComon(K)
with composition given by that ofK. Moreover, any centrality-preserving strict premonoidal functor
H : K −→ L lifts to a functorComon(H) : Comon(K) −→ Comon(L). Trivially, any comonoidC
yields a comonad− ⊗ C, and any comonoid mapf : C −→ D yields a functor fromKleisli(− ⊗ D),
the Kleisli category of the comonad− ⊗ D, toKleisli(− ⊗ C), that is the identity on objects. So we have
a functors(K) : Comon(K)op −→ Cat. Given a cartesian categoryC, every objectA of C has a unique
comonoid structure, given by the diagonal and the unique map to the terminal object. SoComon(C)
is isomorphic toC. Thus, given a Freyd categoryJ : C −→ K, we have a functorκ(J ) : Cop −→ Cat
given bys(K) composed with the functor induced byJ from C ∼= Comon(C) to Comon(K). κ(J ) is a
locally C-indexed category, in the following sense.

Definition 6.2. Let C be a category.
1. A strict C-indexed categoryH is a functor fromCop to Cat.
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2. A locally C-indexed categoryconsists of a set of objectsObH together with a strictC-indexed cat-
egoryH , where each fibreHX has the same set of objectsObH and each reindexing functorHf is
identity on objects.

(Note that ifC is non-empty then it is not necessary to giveObH explicitly, because it can be re-
covered asObHX for any objectX. In our examples,C is always non-empty because it has a terminal
object.)

Remark 6.3. Our usage of the word “locally” is similar to the usage in “locally small category” or “lo-
cally ordered category”: the homsets are indexed but the objects are not. A more abstract, but equivalent,
definition of locallyC-indexed category is as a[Cop, Set]-enriched category.

An important example arises whenC is a cartesian category. We then define the locallyC-indexed
categoryself C, in which a morphism fromA to B overX is a C-morphism fromX × A to B, and
identities, composition and reindexing are given in the evident way.

We would like to characterize the locally indexed categories that arise from theκ construction. A
solution is as follows, as we shall see below (Theorem 6.10).

Definition 6.4. A κ-categoryconsists of
• a categoryC with finite products;
• a locallyC-indexed categoryH : Cop −→ Cat whose class of objects isOb C;
• for every objectB, an isomorphism

HA×B(1, π∗
A,BC)

∼=HA(B,C) natural inA andC (1)

such that the two functions fromH1(1, C) toH1×1(1, C), one given by reindexing and the other given
by (1), are equal.

We draw attention to the naturality condition in (1). For this to be meaningful, we need to say how
both sides are functorial inA andC, and this is a consequence of thehomset functorwhich we shall
soon define. Moreover, the condition can be interpreted either
• as two separate naturality conditions – natural inA for anyC, and natural inC for anyA, or
• as a single naturality condition – natural in the pairAC which ranges not over a product category but

over the categoryopGroth H , which we define presently.
Fortunately, as for product categories, the two interpretations can easily be shown equivalent.

We will now define theopGrothendieck constructionon locally indexed categories; this is important
primarily because it enables us to define homset functors – which are of great importance in the theory
of functor representations, adjunctions etc. – and secondarily because it allows us to make sense of the
“joint naturality” condition that we just discussed.

Definition 6.5. LetD be a locallyC-indexed category. ThenopGroth D is the ordinary category defined
as follows:
• an object ofopGroth D is a pair�A where� ∈ Ob C andA ∈ ObD
• a morphism from�A to �′B in opGroth D consists of a pairkf wherek : �′ −→ � in C andf :
A −→ B in D�′

with the evident identity and composition.
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ThusD gives us a homset functor fromopGroth (Dop × D) to Set taking�(X, Y ) to D�(X, Y ).

Remark 6.6. We write an object ofopGroth D as�A rather than(�,A) so that the homsetD�(X, Y )
can be read as the homset functorD : opGroth (Dop × D) −→ Set applied to the object�(X, Y ).

Using these concepts, we will give a variant of Definition 6.4 which has the advantage that it requires
no coherence condition. It is motivated by the notion of “strong adjunction” which appeared in [8], as
explained in Appendix B.

Definition 6.7. A strongκ-categoryconsists of
• a categoryC with finite products
• a locallyC-indexed categoryH : Cop −→ Cat whose class of objects isOb C
• a functorL from opGroth H to Set – we call an elementg ∈ LAB anoblique morphismoverA toB

and we write
g−→
A
B

• for each objectB, an isomorphism

HA(B,C)∼=LA×Bπ∗
A,BC natural inA andC (2)

The oblique morphisms correspond to the producer-morphisms fromA to B in the Freyd category
approach; they are the denotations of producers. Specifically, a producer� �p M : B denotes an oblique
morphism over[[�]] to [[B]]. The morphisms ofH , by contrast, are not the denotations of anything, but
they help to organize the semantics. BecauseL is a functor, it provides “reindexing” and “composition”
for oblique morphisms:

• For each oblique morphism
g−→
A
B andC-morphismA′ k−→A, we define thereindexedoblique mor-

phism
k∗g−→
A′ B to be(LkY )g.

• For each oblique morphism
g−→
A
B andD-morphismB

h−→
A
B ′, we define thecompositeoblique mor-

phism
g;h−→
A
B ′ to be(L�h)g.

These operations satisfy identity, associativity and reindexing laws:

g; id=g,
g; (h;h′)=(g;h);h′,

id∗g=g,
(k′; k)∗g=k′∗(k∗g),
k∗(g;h)=(k∗g); (k∗h),

whereg is an oblique morphism. Conversely, these operations and equations give us a functorL from
opGroth H to Set.

The continuation example illustrates well the advantage of strongκ-categories.
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• We define the locallySet-indexed categoryH by saying that a morphism overA from B to C – i.e.,
an element ofHA(B,C) – is a function fromA× (C → Ans) to B → Ans. Identities, composition
and reindexing inH are defined in the evident way, and all the associativity laws etc. are obvious.

• An oblique morphism overA to B is a function fromA× (B → Ans) to Ans. This ensures that a
producer� �p M : B will denote a function from[[�]] × ([[B]] → Ans) to Ans, which is what we
want. Again, composition and reindexing are defined in the evident way, and associativity laws etc.
are obvious.

• We need for (2) an isomorphism of the form

Set(A× (C → Ans), B → Ans)∼= Set((A× B)× (C → Ans),Ans). (3)

It is evident what this isomorphism should be and easy to check the required naturality.
Notice how simple the definition of composition is in the above example and how obvious the asso-
ciativity law is. This contrasts with the Freyd category in Example 4.3 where currying is required to
define composition; in the strongκ-category approach, the currying is all contained in the isomorphism
(3). Of course, we could have set up the Freyd category so that a morphism fromA to B is a function
from B → Ans to A→ Ans, but this would not have given semantics of producers in the form we
wanted. Just as the Freyd category approach provides more flexibility than the strong monad approach
in organizing a model, we see that the strongκ-category approach provides even greater flexibility than
either the Freyd category orκ-category approaches. For it allows us to set up the oblique morphisms in
the most computationally appropriate way, and set up the morphisms ofH so as to make composition
simple.

To a lesser extent we can take advantage of this flexibility in organizing the global store model too.
• We define the locallySet-indexed categoryH by saying that a morphism overA from B to C

– i.e., an element ofHA(B,C) – is a function fromA× (S × B) to S × C. Identities, compo-
sition and reindexing inH are defined in the evident way, and all the associativity laws etc. are
obvious.

• An oblique morphism overA to B is a function fromS × A to S × B. This ensures that a pro-
ducer� �p M : B will denote a function fromS × [[�]] to S × [[B]], which is what we want. Again,
composition and reindexing are defined in the evident way, and associativity laws etc. are
obvious.

• We need for (2) an isomorphism of the form

Set(A× (S × B), S × C)∼= Set(S × (A× B), S × C).
It is evident what this isomorphism should be and easy to check the required naturality.

Proposition 6.8. Given a strongκ-category and an objectB, there is a unique element ofLBB,which we
call prodB, such that the isomorphism(2) takes a morphismh : B −→ C inHA to(π ′∗

A,BprodB); (π∗
A,Bh).

Proof. This is an instance of the locally indexed version of the Yoneda Lemma, and can be proved
directly in the same style as the Yoneda Lemma.prodB is obtained by applying isomorphism (2) to the
identity onB over 1, and then reindexing alongA∼= 1 × A. �

Proposition 6.9. Given aκ-categoryH : Cop −→ Cat, there is an indexed functorinc : s(C) −→ H

as follows: for eachA in C, we have a functor froms(CA) toHA. On objects, it is the identity. To define
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inc1 on arrows, givenf : A −→ B in C, consider the arrowιB : 1 −→ B in HB corresponding toidB
in H1. ApplyingHf to it gives a mapHf (ιB) : 1 −→ B in HA, or equivalently, under the adjunction, a
map fromA toB in H1. Defineinc1(f ) to be that map.

This plus naturality determines the rest of the structure.

Proof. It is immediate thatinc1 preserves identities, and one can prove that it preserves composition:
this follows by proving that for any mapf : A −→ B in C and any mapg : 1 −→ C in HB , the map
Hf (g) corresponds to the composite inH1 of inc1(f ) with the adjoint correspondent tog. Moreover,
this yields a functorincA for everyA, with naturality as required. �

Using Proposition 6.9, we can exhibit the relationship between Freyd categories andκ-categories.
This forms the basis for the first main result of the paper, Theorem 6.10.

Theorem 6.10. Given a cartesian categoryC, the following are equivalent(more precisely, the 2-
categories defined as in Appendix C are2-equivalent) :
1. to give a Freyd categoryJ : C −→ K,
2. to give a strongκ-category(H,L) with baseC,
3. to give aκ-categoryH : Cop −→ Cat.

The equivalence of (2) and (3) is straightforward. For the equivalence of (3) and (1), we observe from
the definition ofκ-category that for each projectionπ : B × A −→ B in C, the functorHπ : HB −→
HB×A has a left adjointL given on objects byA× −. We denote the isomorphism associated with these
adjunctions by

κ : HB×A(C, π∗
B,AC

′)∼=HB(C × A,C′).

First, for the construction of aκ-category from a Freyd category, we have

Proposition 6.11. Given a Freyd categoryJ : C −→ K, the functor given byκ(J ) : Cop −→ Cat is a
κ-category.

Proof. It follows immediately from the construction ofκ(J ) in Section 6 that for each objectA of
C, we haveOb κ(J )A = Ob C, and that for each arrowf : A −→ B in C, the functorκ(J )f is the
identity on objects. Moreover, the existence of the partial adjoints to eachκ(J )π follows directly from
the construction and the fact thatC is symmetric. Naturality and the coherence condition also follows
directly from the construction. �
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Now for the converse:

Proposition 6.12. LetC be a cartesian category.Given aκ-categoryH : Cop −→ Cat, there is a Freyd
categoryJ : C −→ K, unique up to isomorphism, for whichH is isomorphic toκ(J ).

Proof. DefineK to beH1. For each objectA of K, equallyA an object ofC sinceObH1 = Ob C (as
is immediate from the first clause of the definition applied to the caseA = 1), define− × A : K −→ K
by the compositeL ◦H! where! : A −→ 1 is the unique map inC fromA to 1. Note that! is of the form
π , so the left adjoint exists. Moreover, for each mapg : C −→ C′ in K, we haveg × A : C × A −→
C′ × A. The rest of the data and axioms to makeK a symmetric premonoidal category arise by routine
calculation, using the symmetric monoidal structure ofC determined by its finite product structure, and
by the naturality condition.

DefineJ : C −→ K by inc1 as in Proposition 6.9. It follows from naturality that for a mapf : A −→
B in C, and for a mapg : C −→ D inHB , we have thatHf (g) is given by the composite ofJ (idC × f )
with the adjoint correspondent ofg. Naturality further implies that(inc1−)× A agrees withinc1(− ×
A). It follows from functoriality of theHf ’s that every map inC is sent into the centre ofK. Functoriality
plus naturality similarly imply that all the structural maps are preserved. SoJ is an identity on objects
strict symmetric premonoidal functor.

It follows directly from our construction ofJ thatκ(J ) is isomorphic toH . Moreover,J : C −→ K
is fully determined byH sinceC is fixed,K must beH1 up to isomorphism, with premonoidal structure
as given, andJ must agree on maps with the construction as we have given it. Hence,J is unique up to
isomorphism.

The final line of the theorem follows routinely.�

Now we can see how one models environments in aκ-category: a context is modelled by an object of
the base categoryC, with the finite products ofC modelling concatenation of contexts. A term of typeτ
in context� is modelled by an arrow in the fibre over[[�]] from 1 to [[τ ]]. Substitution of a value for a
variable is modelled by the functoriality of aκ-category with respect to maps inC. So the emphasis here
is upon substitution of a value for a variable as a primitive operation.

7. Closed Freyd-categories, closed κκ-categories, and λcλc-models

In previous sections, we have considered two ways of modelling the first order fragment of the
λc-calculus. In this section, we extend that to model higher-order structure, allowing us two ways to
model theλc-calculus [9]. We define and relate closed Freyd categories and closedκ-categories with
λc-models.

Definition 7.1. A closed strongκ-categoryconsists of a strongκ-category(C, H,L, . . .) together with,
for each pair of objectsA,B, a representation for the functorλX.LX×AB.

Definition 7.2. A closedκ-categoryis a κ-categoryH : Cop −→ Cat together with, for each pair of
objectsA,B, a representation for the functorλX.HX(A,B).
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The main result of this section:

Theorem 7.3. Given a cartesian categoryC, the following are equivalent(more precisely, the 2-
categories defined as in Appendix8 are2-equivalent) :
1. to give a closed Freyd categoryJ : C −→ K,
2. to give a closed strongκ-category(H,L) with baseC,
3. to give a closedκ-categoryH : Cop −→ Cat,
4. to give a strong monad onC, with Kleisli exponentials.

The equivalence of (1) and (4) is Theorem 4.7. The equivalence of (1)–(3) follows from Theorem
6.10: the functors whose representation is required (for given objectsA,B) are isomorphic.

Theorem 7.4. Closed Freyd categories, closedκ-categories and closed strongκ-categories form sound
and complete classes of models for the computationalλ-calculus.

We have already seen this for closed Freyd categories in Section 5. The result for closedκ-categories
follows from Theorem 7.3.

8. Conclusions

We have examined various categorical models of call-by-value programming with effects, using
strong monads, Freyd categories, and strongκ-categories. (We also usedκ-categories, but, as we men-
tioned in Section 1, this was just as a stepping-stone towards strongκ-categories.) We have seen that
these various categorical models are equivalent (and also mentioned in Section 5 that they are equivalent
to models of the fine-grain CBV equational theory, defined in a suitably a priori way). But equivalence
does not means that the various models correspond exactly, only that they correspond up to isomor-
phism (identity-on-objects isomorphism preserving all structure on the nose), and there are significant
differences contained within these isomorphisms:
• A λc-model (cartesian category with strong monad and Kleisli exponentials) corresponds to a closed

Freyd category where the isomorphism

K(X × A,B)∼= C(X,A→ B)

is an identity. Thus the structure of a closed Freyd category provides more flexibility than the structure
of aλc-model, as we explained in Section 4 – we can separately decide how to model values and how
to model producers.

• A Freyd category corresponds to a strongκ-category where the isomorphism

HA(B,C)∼=LA×BC
is an identity. Thus the structure of a strongκ-category provides more flexibility than the structure of
a Freyd category, as we explained in Section 6 – we can separately decide how to interpret effects (in
L) and how to organize the environment housekeeping (inH ).

In summary, the strongκ-category approach provides the most flexibility and the strong monad approach
provides the least. But while flexibility is an advantage when constructing particular models for call-
by-value, the rigidity of the strong monad approach is useful for proving results about all models of
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CBV, because strong monads are very easy to reason about. And the Freyd category approach has its
advantages too: because it is so close to the syntax, it gives us a useful way of thinking about the term
model.
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Appendix A

A.1. Premonoidal categories

We recall the definitions of premonoidal category and strict premonoidal functor, and symmetries
for them, as introduced in [12] and further studied in [11]. A premonoidal category is a generalisation
of the concept of monoidal category: it is essentially a monoidal category except that the tensor need
only be a functor of two variables and not necessarily be bifunctorial, i.e., given mapsf : A −→ B and
f ′ : A′ −→ B ′, the evident two maps fromA⊗ A′ toB ⊗ B ′ may differ.

Historically, for instance for the simply typedλ-calculus, environments have been modelled by fi-
nite products. More recently (within the past decade or so), monoidal structure has sometimes been
used, for instance when one wants to incorporate an account of partiality [16]. In the presence of stron-
ger computational effects, an even weaker notion is required. If the computational effects are strong
enough for the order of evaluation off : A −→ B andf ′ : A′ −→ B ′ to be observable, as for instance
in the case of continuations [17], then the monoidal laws cannot be satisfied. The leading examples
for us of such stronger computational effects are those given by continuations. However, for a simple
example of a premonoidal category that may be used for a crude account of state [12], consider the
following.

Example A.1. Given a symmetric monoidal categoryC together with a specified objectS, define the
categoryK to have the same objects asC, withK(A,B) = C(S ⊗ A, S ⊗ B), and with composition inK
determined by that ofC. For any objectA of C, one has functorsA⊗ − : K −→ K and− ⊗ A : K −→
K, but they do not satisfy the bifunctoriality condition above, hence do not yield a monoidal structure
onK. They do yield a premonoidal structure, as we define below.

In order to make precise the notion of a premonoidal category, we need some auxiliary definitions.

Definition A.2. A binoidal categoryis a categoryK together with, for each objectA of K, functors
hA : K −→ K andkA : K −→ K such that for each pair(A,B) of objects ofK, hAB = kBA. The joint
value is denotedA⊗ B.

Definition A.3. An arrowf : A −→ A′ in a binoidal category iscentral if for every arrowg : B −→
B ′, the following diagrams commute:
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Moreover, given a binoidal categoryK, a natural transformationα : g �⇒ h : B −→ K is calledcentral
if every component ofα is central.

Definition A.4. A premonoidal categoryis a binoidal categoryK together with an objectI of K, and
central natural isomorphismsa with components(A⊗ B)⊗ C −→ A⊗ (B ⊗ C), l with components
A −→ A⊗ I , andr with componentsA −→ I ⊗ A, subject to two equations: the pentagon expressing
coherence ofa, and the triangle expressing coherence ofl andr with respect toa (see [5] for an explicit
depiction of the diagrams).

Now we have the definition of a premonoidal category, it is routine to verify that Example A.1 is an
example of one. There is a general construction that yields premonoidal categories too:

Proposition A.5. Given a strong monadT on a symmetric monoidal categoryC, the Kleisli category
Kleisli(T ) for T is always a premonoidal category, with the functorJ : C −→ Kleisli(T ) preserving
premonoidal structure strictly: of course, a monoidal category such asC is trivially a premonoidal
category.

So a good source of examples of premonoidal categories is provided by Eugenio Moggi’s work
on monads as notions of computation [10], and indeed there is a representation result as explained in
[12].

Definition A.6. Given a premonoidal categoryK, define thecentreof K, denotedZ(K), to be the
subcategory ofK consisting of all the objects ofK and the central morphisms.

For an example of the centre of a premonoidal category, consider Example A.1 for the case ofC being
the categorySet of small sets, with symmetric monoidal structure given by finite products. SupposeS

has at least two elements. Then the centre ofK is preciselySet. In general, given a strong monad on
a symmetric monoidal category, the base categoryC need not be the centre ofKleisli(T ). But, modulo
the condition thatJ : C −→ Kleisli(T ) be faithful, or equivalently, the mono requirement [10,12], i.e.,
the condition that the unit of the adjunction be pointwise monomorphic, it must be a subcategory of the
centre.

The functorshA andkA preserve central maps. So we have

Proposition A.7. The centre of a premonoidal category is a monoidal category.

This proposition allows us to prove a coherence result for premonoidal categories, directly generalis-
ing the usual coherence result for monoidal categories. Details appear in [12].

Definition A.8. A symmetryfor a premonoidal category is a central natural isomorphism with com-
ponentsc : A⊗ B −→ B ⊗ A, satisfying the two conditionsc2 = 1 and equality of the evident two
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maps from(A⊗ B)⊗ C toC ⊗ (A⊗ B). A symmetricpremonoidal category is a premonoidal category
together with a symmetry.

All of the examples of premonoidal categories we have discussed so far are symmetric, and in fact,
symmetric premonoidal categories are those of primary interest to us, and seem to be those of primary
interest in denotational semantics in general. For an example of a premonoidal category that is not
symmetric, consider, given any categoryC, the categoryEndu(C) whose objects are functors fromC
to itself, and for which an arrow fromh to k is aC-indexed family of arrowsα(A) : h(A) −→ k(A) in
C, i.e., what would be a natural transformation fromh to k but without assuming commutativity of the
naturality squares. Then, this category, together with the usual composition of functors, has the structure
of a strict premonoidal category, i.e., a premonoidal category in which all the structural isomorphisms
are identities, which is certainly not symmetric.

Appendix B

B.1. Strong adjunctions

To explain where the strongκ-category definition (Definition 6.7) came from, we look at the fol-
lowing definition which appeared (and was carefully motivated with respect to call-by-push-value) in
[8].

Definition B.1. A strong adjunctionfrom a cartesian categoryC to a locallyC-indexed categoryD
consists of
• a functorO from opGroth D to Set
• for eachB ∈ Ob C, an objectFB ∈ ObD together with an isomorphism

DA(FB,C)∼=OA×BCπ∗
A,BC natural inA andC (4)

• for eachB ∈ ObD, an objectUB ∈ Ob C together with an isomorphism

C(A,UB)∼=OAB natural inA (5)

It is shown in [8] that giving a strong adjunction fromC toD is equivalent to giving an adjunction (in
the usual sense) fromself C (defined in Section 6) toD. Thus it gives us a monad onself C i.e., a strong
monad onC. This is the reason for using the word “strong”.

As with ordinary adjunctions, we can say that a strong adjunction fromC toH is Kleisli whenH has
the same objects asC andFB = B for every objectB ∈ Ob C. In this situation it is customary to write
T B rather thanUB, andL rather thanO so that the two isomorphisms look like this:

HA(B,C) LA×Bπ∗
A,BC

∼= natural inA andC (6)

C(A, T B)∼=LAB natural inA (7)

For the sake of modelling the first-order fragment of fine-grain CBV, we do not require (7) and so we
are led to Definition 6.7.
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Appendix C

C.1. Defining the 2-categories

C.1.1. Aim
In the paper we look at the following eight categorical structures:

• cartesian category
• λc-model
• Freyd category
• closed Freyd category
• κ-category
• closedκ-category
• strongκ-category
• closed strongκ-category
For each of these structures, we can define a notion of functor and natural isomorphism and so we obtain
a 2-category (actually aGrpd-enriched category, because the 2-cells are isomorphisms). The aim of
this appendix is to define all these 2 categories. We will give the definition explicitly forλc-models and
strongκ-categories; the other 6 definitions are entirely analogous.

Each of our structures includes a “value category”C, and its groupoid of isomorphismsIsos C plays
a key role in our definitions. It is up to isomorphism inC that functors preserve object-operations, and
everything is functorial or natural inIsos C. However, we do not require this functoriality/naturality from
the outset, but deduce it from other assumptions, so as to make clear that all our definitions are purely
equational.

We have not given a convincing explanation of why isomorphisms inC should be so important – after
all, C is just one part of the structure. Further research is certainly needed on these issues.

C.1.2. Algebraic structure
There is another, well established approach to forming 2-categories, which we cannot use because it

does not work for some of our examples. It proceeds as follows. We first express the objects as algebras
for a monad on an already known 2-category such asCat or [→, Set] − Cat. We then use the definition
given in [1] of morphism and 2-cell between such algebras, inherited from the morphisms and 2-cells
in the base category. Such a monad is usually easy to describe, because, as shown in [6], if it has a rank
then it must be given by analgebraic structure, meaning a pair(S, E) whereS is a kind of “signature”
andE a kind of “set of equations”. A most helpful explanation of this material is given in [15].

Out of our 8 structures, this algebraic structure approach works for cartesian categories (given by
algebraic structure onCat), for Freyd categories (on[→, Set] − Cat [11]) and for closed Freyd catego-
ries (on[→, Set] − Cat enriched overGrpd). However, it does not work forλc-models, because of the
Kleisli exponentials, nor for the variousκ-categories.

C.1.3.λc-models
Lemma C.1. In a λc model(C, T , . . .) all the primitive operations on homsets

1
idA−→ C(A,A)
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C(A,B)× C(B,C) ;ABC−→ C(A,C)

1
()A−→∼= C(A, 1)

C(A,B)× C(A,C) (,)ABC−→∼= C(A,B × C)

C(A,B) TAB−→ C(T A, T B)

1
ηA−→ C(A, T A)

1
µA−→ C(T 2A, T A)

1
tAB−→ C(A× T B, T (A× B))

C(A× B, T C) curry−→∼= C(A,B →Kl C)

are natural asA,B,C range overIsos C, when we regard
• C(−,−) as a functor fromIsos C × Isos C to Set
• 1 as a functor from1 to Isos C
• × as a functor fromIsos C × Isos C to Isos C
• T as a functor fromIsos C to Isos C
• →Kl as a functor fromIsos C × Isos C to Isos C
in the evident way.

Definition C.2. A λc functor from aλc model(C, T , . . .) to another(C′, T ′ . . .) consists of
• a functionObF from Ob C to Ob C′
• functions

C(A,B) F(A,B)−→ C′(FA, FB) for eachA,B ∈ Ob C

• “coherence” morphisms inIsos C′, up to whichF preserves each object operation

1 F1
F 1−→ 1′

× F(A× B) F
×
AB−→FA×′ FB for eachA,B ∈ Ob C

T FTA
FTA−→ T ′FA for eachA ∈ Ob C

→Kl F(A→Kl B)
F→
AB−→FA→′

Kl FB for eachA,B ∈ Ob C

• such thatF preserves, up to the coherence isomorphisms, each of the primitive operations listed in
Lemma C.1. For example:
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preservation of ;

preservation of (, )

preservation of µ

whereFT
2
A is the compositeFT 2A

FT TA−→ T ′FTA T
′FT A−→ T ′2A

preservation of curry

Remark C.3. The requirement thatF preserve identity and composition give an extension ofObF to
a functor fromIsos C to Isos C, and this functor is used in formulating the remaining conditions, such as
the preservation of pairing.

Remark C.4. The structure preservation requirements imply that the homset operationF(A,B) and
the coherence isomorphisms are all natural asA,B range overIsos C. This is important for defining
composition ofλc-functors.

Similar remarks are applicable after Definition C.8.

Definition C.5. LetF,G beλc functors from(C, T , . . .) to (C′, T ′ . . .). A λc natural isomorphismfrom
F toG is
• a family of morphisms inIsos C′

FA
αA−→GA
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• preserving the homset operations i.e.,

• and preserving the coherence isomorphisms i.e.,

Remark C.6. The homset operation preservation condition implies thatαA is natural asA ranges over
Isos C. This is important for defining composition ofλc natural transformations.

A similar remark is applicable after Definition C.9.

C.1.4. Closed strongκ-categories

Lemma C.7. In a closed strongκ-category(C,K, ι, . . .) all the primitive operations on homsets

1
idA−→ C(A,A)

C(A,B)× C(B,C) ;ABC−→ C(A,C)

1
()A−→∼= C(A, 1)

C(A,B)× C(A,C) (,)ABC−→∼= C(A,B × C)

1
idAB−→HA(B,B)

HA(B,C)×HA(C,D) ;ABCD−→ HA(B,D)

C(A,B)×HB(C,D)
∗
ABCD−→ HA(C,D)
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C(A,B)× LBC
∗
BCD−→ LAC

LBC ×HB(C,D) ;BDC−→LBD

LA×BC
strABC−→∼= HA(B,C)

LA×BC
curryABC−→∼= C(A,B → C)

are natural asA,B,C range overIsos C, when we regard
• C(−,−) as a functor fromIsos C × Isos C to Set
• L−− as a functor fromIsos C × Isos C to Set
• H−(−,−) as a functor fromIsos C × Isos C × Isos C to Set
• 1 as a functor from1 to Isos C
• × as a functor fromIsos C × Isos C to Isos C
• → as a functor fromIsos C × Isos C to Isos C
in the evident way; in the case ofO andH this is by means ofinc.

Definition C.8. A closed strongκ-functor from a closed strongκ-category(C, H,L, . . .) to another
(C′, H ′,L′, . . .) consists of
• a functionObF from Ob C to Ob C′
• functions

C(A,B) F
v(A,B)−→ C′(FA, FB) for eachA,B ∈ Ob C

LAB
F p(A,B)−→ L′

FAFB for eachA,B ∈ Ob C

HA(B,C)
F h(A,B)−→ H ′

FA(FB, FC) for eachA,B,C ∈ Ob C

• “coherence” morphisms inIsos C′, up to whichF preserves each object operation

1 F1
F 1−→ 1′

× F(A× B) F
×
AB−→FA×′ FB for eachA,B ∈ Ob C

→ F(A→ B)
F→
AB−→FA→′ FB for eachA,B ∈ Ob C

• such thatF preserves, up to the coherence isomorphisms, each of the primitive operations listed in
Lemma C.7. For example

preservation of ∗
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preservation of str

Definition C.9. Let F,G be closed strongκ-functors from(C, H,L, . . .) to (C′, H ′,L′, . . .). A closed
strongκ natural isomorphismfrom F toG is
• a family of morphisms inIsos C′

FA
αA−→GA

• preserving the homset operations i.e.,

• and preserving the coherence isomorphisms i.e.,
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