Available at

www.ComputerScienceWeb.com Information
POWERED BY SCIENCE DIRECT® and .
ACADEMIC Computation
PRESS Information and Computation 185 (2003) 182—-210

www.elsevier.com/locate/ic

Modelling environments in call-by-value programming languéges

Paul Blain Levy?* John Powef, and Hayo Thieleck&

aSchool of Computer Science, University of Birmingham, Room 216, Aston Webb Computer Science Building,
Birmingham B15 2TT, UK
bUniversity of Edinburgh, Edinburgh EH9 3JZ UK

Received 6 April 2001; revised 9 April 2002

Abstract

In categorical semantics, there have traditionally been two approaches to modelling environments, one by use
of finite products in cartesian closed categories, the other by use of the base categories of indexed categories
with structure. Each requires modifications in order to account for environments in call-by-value programming
languages. There have been two more general definitions along both of these lines: the first generalising from
cartesian to symmetric premonoidal categories, the second generalising from indexed categories with specified
structure toc-categories. In this paper, we investigate environments in call-by-value languages by analysing a fine-
grain variant of Moggi's computationalcalculus, giving two equivalent sound and complete classes of models:
one given by closed Freyd categories, which are based on symmetric premonoidal categories, the other given by
closedk-categories.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Traditionally in denotational semantics, there have been two categorical ways of modelling environ-
ments. The first is given by finite products in a cartesian closed category, as for instance in modelling
the simply typedt-calculus. Over the years, that has gradually been extended. For instance, in order to
model partiality, one must generalise from finite product structure to symmetric monoidal structure; and
that has been further generalised to the notion of symmetric premonoidal structure [12].

*This work is supported by EPSRC Grant GR/J84205. Frameworks for programming language semantics and logic.

* Corresponding author. Fax: +44-121-414-4281.

E-mail addresse9.b.levy@cs.bham.ac.uk (P.B. Levy), ajp@dcs.ed.ac.uk (J. Power), H.Thielecke@cs.bham.ac.uk (H. Thi-
elecke).

0890-5401/$ - see front matter © 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0890-5401(03)00088-9

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 183

A premonoidal category is essentially a monoidal category except that the tensor need only be a func-
tor in two variables separately, and not necessarily a bifunctor: given fhapgs— A’ andg : B — B/,
the evident two maps fromd ® B to A’ ® B’ may differ. Such structures arise naturally in the pres-
ence of computational effects, where the difference between these two maps is a result of sensitivity
to evaluation order. So that is the structure we need in order to model environments in the presence
of continuations or other such strong computational effects. A program phrase in environngent
modelled by a morphism in the premonoidal category with dorfi&if.

The second approach to modelling environments categorically, also used to model the simply typed
A-calculus, is based on indexed categories with structure (for an application to type theory, see [4]).
The idea is that contexts are indices for the categories in which the terms definable in that context are
modelled. Here, a program phrase in conféxs modelled by an elemetdt—> [[A]] in a category that
implicitly depends o, that is, by an arrow frond to [[A]] in the fibre of the indexed category over
[[T'T. We consider a weak version of indexed category with structure, calledadegory, inspired by
some work by Hasegawa [3].

The main result of this paper is to prove the above two models of environments equivalent. More
precisely, we show that every symmetric premonoidal category with a little more of the structure cited
above, gives rise to a-category, and that this gives an equivalence between the classes of symmetric
premonoidal categories with such structure armhtegories. The extra structure we need on a symmetric
premonoidal categoriC is a category with finite products, whose objects are the same/gsand an
identity on objects structure-preserving functor C — K: we call thesd-reyd categories(They are
calledvaludproducer structures [8].)

We then refine the notior-category to an equivalent but more useful structure cadteahg «-
category Indeed, it could be said that the main advantage of the former is as a stepping-stone to the
latter. The flexibility present in the definition of stromgcategory allows us to present call-by-value
semantics in a way that, on the one hand, is computationally appropriate, but, on the other hand, is
mathematically convenient. We will use the example of continuations to illustrate this.

Having established an equivalence between these various ways of modelling environments, we ex-
tend that equivalence to study the modelling of higher order structure. It is not as simple as asking
for a routine extension of the notion of closedness from that for a cartesian category to a premonoidal
category, as one usually considerserms as values, and we distinguish between values and ordinary
terms (called producers). This leads us to a notion of closedness for a Freyd category [11]. So we extend
our equivalence between Freyd categoriesaitdtegories to one between closed Freyd categories and
closedx-categories, and likewise for strorgcategories.

For concreteness, we shall study the modelling of environments in call-by-value languages with com-
putational effects by studying models of a fine-grain form of Moggi’s computatioalculus [9] (also
known asA.-calculus). Moggi's calculus was specifically designed as a variant of the simply typed
A-calculus apposite for the study of computational effects. Itis a natural fragment of a call-by-value pro-
gramming language such as ML. Its models were defined tqimodels, which consist of a cartesian
category (i.e., category with distinguished terminal object and binary prodiicés)d a strong monad
7 onC, andKleisli exponentials.e., for eachB, C € ObC an isomorphism

C(Ax B, TC)=C(A, B — C) natural inA,

for some specified obje® — C. The class ok.-models is sound and complete for the calculus, but
it does not provide direct models in that a term of typi@ contextl” is not modelled by an arrow ifi

184 P.B. Levy et al. / Information and Computation 185 (2003) 182-210

from the semantics df to the semantics of, but by a derived construction in terms of the monad. We
give equivalent formulations df.-models providing a more direct semantics, in terms of closed Freyd
categories, closed-categories and closed strongcategories.

This paper is an extension of our work in [13], incorporating some results of [14].

1.1. Related work

The relationship between Freyd categories archtegories is related to work by Blute et al. [2].
Implicit in their work is the construction that, to a Freyd category, assigngsategory. The latter are
closely related to their context categories. Identifying precisely which indexed categories thus arise did
not appear in their work. Although their work was not mainly directed towards the same problems as
ours, itis interesting to note that the type theory suggested there is quite different to that presented here.

A treatment of the categorical semantics for the real-by-push-valueparadigm [7] is given in
Levy’s thesis [8]. Like our treatment here, it essentially presents three approaches: strong monads, Freyd
categories, and indexed categories.

1.2. Overview

The paper is organised as follows. In Section 2, we motivate by some examples why one seeks a
more general notion than that of monoidal category for environments in call-by-value programming
languages. We then define fine-grain call-by-value in Section 3. In Section 4, we define Freyd categories
and show how the first-order fragment of our calculus can be interpreted in them. Soundness and com-
pleteness of this semantics is proved in Section 5. In Section 6, we define the noti@ataigory, and
establish the relationship betweesrcategories and Freyd categories. We extend our equivalence to one
incorporating higher order structure in Section 7.

2. Some examples

The tuple (similarly, list) notation present in many call-by-value programming languages such as ML
or Scheme may, at first sight, suggest that the appropriate semantic setting ought to be a cartesian or at
least monoidal category.

But in terms of evaluation in a call-by-value language, a typfe N) means that each component
has to be evaluated.

This can be made explicit by naming the intermediate values. If the first component is to be evaluated
first, one would write

letx=M inlety =N in (x,v).
Alternatively, to evaluate the second component first, one writes
lety=Ninletx=M in (x,y).

The let-notation, then, has the advantage that the implicit sequencing is made explicit in the textual
representation. Clearly, it would be a disadvantage to make irrelevant sequencing information explicit,
but in examples such as those below, the sequencing informatiftalisso must be made explicit.

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 185

For example, in a language with state, there are two possible meanings of aMup¥e, depending
on which component is evaluated first. Consider the following examples, where we make the evaluation
order explicit by using et.

Example 2.1.

let val s = ref 0 in
let val x = (s := !s + 1; !s) in
let val v = (s := !s + 1; !s) in
#1(x,v)
end
end
end;

let val s = ref 0 in

let val vy = (s := !s + 1; !s) in
let val x = (s := !s + 1; !s) in
#1(x,vy)
end
end
end;

Example2.2. Just as for state, in the presence of continuations (first-class or otherwise) there are two
possible meanings of the tupléhrow k 1, throw k 2).

call\-cc(fn k =>
let val x = throw k 1 in
let val y = throw k 2 in
#1(x,vy)
end
end) ;

call\-cc(fn k =>
let val y = throw k 2 in
let val x = throw k 1 in
#1(x,y)
end
end) ;

If this were to be interpreted in a monoidal category directly with the tupling notation, one could
not distinguish between the two composites. The problem is that, in a monoidal category, given maps
f:A— A’andg : B — B’, the two induced maps from ® B to A’ ® B’ are equal. This makes
monoidal categories suitable for those cases where both composites are evaluated inopavhbed
there can be no interference between the two (which would be the case, say, if both had access to
disjoint pieces of state). But with control, as given by continuations, we have both a sequential evaluation

186 P.B. Levy et al. / Information and Computation 185 (2003) 182-210

order and interference between the components, since a jump in one will prevent the other from being
evaluated at all.

Put differently, the presence of computational effects, like state and control, “breaks” the bifunctori-
ality, so one is left with a binoidal category as defined in the appendix.

Adding higher order structure to this analysis, it follows that there is delicacy in modifying the simply
typedA-calculus in order to provide a variant that is suitable for the study of call-by-value languages
with the possibility of computational effects such as state or continuations. Such a language was provided
by Moggi's computationak-calculus, ori.-calculus [9], a variant of which which we analyse in this
paper. A key point in modelling the,-calculus is that, as explained above, one needs care in modelling
environments.

3. From coarse-grain to fine-grain call-by-value
3.1. A. Calculus and monadic metalanguage

First we will recall A.-calculus and then explain why we choose to work with a more fine-grain
language.
We will consider the following types only:

Ai=1]|AxA|A— A.

This does not mean that there cannot be other type constructors such asob ardfter all, a language
withoutbool would not be of much use — but rather thakland— are the only type constructors whose
categorical semantics we address in this paper. Furthermore, we will omit all rules, equations etc. for 1
as they are directly analogous to those for

We first give the\-calculus constructs for these type:

r-M:A I''x:AFN:B

Mx: A T/Fx: A F'Fletxbe M.N: B
'kM:A THM:A ''FM:AxA T,x:A,y:A+-N:B
M, M):AxA 'pmM as (x,y).N : B

'x:A+-M:B '-EM:A—- B T'HFN:A
'Ax.M:A— B I'MN:B

We make some comments about these constructs:

e While the declaration construttt is technically redundant because: x be M. N is equivalent to
(Ax.N)M, we prefer to include it as primitive because we feel it is more basic than-thenstructs.

e The elimination rule we have given fot — B is a pattern-match construgir(is an abbreviation
for “pattern-match”). We could alternatively have used projection constructs.

e Here and throughout the paper, in order to reduce clutter, we omit type subscripts on bindings of
identifiers, but strictly speaking they should be present.

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 187

The A calculus is an equational theory for the above constructs providing equations that hold as
observational equivalences when we add computational effects and impose a call-by-value operational
semantics. To formulate it, an auxiliary predicgt®n terms is required, wheré | means thaV is
effect-free in any environment. We call such a terwatue (although this is not quite consistent with
the operational notion of value), and we call a general tepmoducerbecause (in a given environment)
it produces a value. This predicate is inductively given by

Vi=x|(V,V)|Ax.M|let xbe V.V |pn V as (x,v).V,

where V ranges over values and ranges over producers. We can then provide axioms fonthe
calculus such as thé-value law

Ax.M)V = M[V /x],

whereV ranges over values arl ranges over producers.
This calculus has many models. As a leading example, consider the semantics for global store, where
S is the set of stores. Each type and hence each contek{ denotes a set. A producér- M : A
denotes a function fron§ x [[T']] to S x [A] — we will call this function[M]P™%. If M |, thenM
additionally denotes a function froffi’]] to [[A]] — we will call this function[[M.
Ac-calculus has proved enormously helpful in analyzing semantics of call-by-value. However, it has
some problems.
1. The theory is not purely equational, because the prediceteequired.
2. The choices we made, that an applicatiiv should be evaluated operator first and that a pair
(M, N) should be evaluated left-to-right, are quite arbitrary.
3. Application and pairing are clearly complex constructs. Here, for example, is the semantics of appli-
cation

[MNTps =pm[M] as (s', f).pm[Ns'p as (s”,a). f(s”, a).

It clearly reflects the 3-stage process of evaluafihy': first evaluateM to Ax.M’, then evaluatev

to V, then evaluatd/'[V /x].

4. An effect-free termM | has two denotationgM [|P°? and[[M]'¥, within the same model. They are
related, as we havgM [P (s, p) = (s, [M1'¥p), but nevertheless we would prefer them to be the
denotations of syntactically distinguished terms, so that each term has just one denotation.
Moggi resolved all these problems simultaneously in [10] by providing another languagsgiaglic

metalanguagefrom which they are all absent and into whigh-calculus can be translated. In the

monadic metalanguage a teiim— M : A denotes, in the global store model, a function fripif]] to

[[A]l. Thus it can be said that whereas in thecalculus a general term is a producer, in the monadic

metalanguage a general term is a value. A producer then has to be represented &b & tdrm7 A

whereT A would be written 1— A in the types that we are using.

But there is a disadvantage to the monadic metalanguage, as compared withctileulus: it is
not easy to formulate operational semantics. As an example, consig@&iculus with global store
constructs: we can easily give an inductive definition of big-step semantics in thesfadm) s’, V
whereM is a closed producer of any type, akdis a closed value of the same type. But for monadic
metalanguage with global store constructs, it is not clear what form the big-step semantics should take.

188 P.B. Levy et al. / Information and Computation 185 (2003) 182-210

3.2. Fine-grain call-by-value

We explained in the previous section that
e Moggi's A.-calculus is a language @roducers in which a termI”’ = M : A denotes (in the global

store model) a function from§ x [I']]to S x [A]]

e Moggi's monadic metalanguage is a languageaities in which aterml" = M : A denotes (in the

global store model) a function froffi"]] to [AT].

We now presenfine-grain call-by-valughat has two separate judgements for values and producers:
we writeI' HY V : A to say thatV is a value and we writ& FP M : A to say thatM is a producer.

As a result of having these two judgements, it combines the advantagescafculus (suitability

for operational semantics) with the advantages of the monadic metalanguage (constructs are canonical
and semantically simple, theory is purely equational, terms have just one denotation within a given
model).

Corresponding to our two-part development of the categorical semantics, we present fine-grain call-
by-value in two parts: the first order fragment presented in Fig. 1 and the higher order constructs pre-
sented in Fig. 2. We repeat that there can be other type constructors besides 1such a$ool or +,
but it is only the former whose categorical semantics we are studying; also that we omit constructs and
equations for 1 because they are analogous to those.for

The key producer terms are these:

e produce V is thetrivial producer. the construcbroduce explicitly converts the valu& into a pro-
ducer, unlike ink.-calculus where this conversion is invisibteoduce is similar toreturn in Pascal
and Java.

e M tox. N isthesequenced producdt means “executd/, bindx to the value it returns, then execute
N".

We represent the producersiqfcalculus in fine-grain CBV as follows:

Ac-calculus producer fine-grain CBV producer

X produce x

Ax. M produce Ax. M

pm M as (x,v).N M to w. pm was (x,v).N

let xbe M. N M to w. let xbe w. N

(M,N) M to x. N to y. produce (x,V)
MN M to £f. N to x. fx

This transform makes it clear that i-calculus, the application construct does more than just appli-
cation, the declaration construcét does more than just declaration, and so forth. (It is to make this
point clear that we translatet x be M. N as shown rather than as the shokero x. N.) Sequencing
and producing are hidden inside thgconstructs, and fine-grain CBV makes them explicit (just as the
monadic metalanguage does).

Notice how the translation @iV, N) makes the order of evaluation apparent — if we wanted right-to-
left evaluation order we would translate it as

N toy. M to x. produce (%, y)

This is meant to emphasise that, ipr@monoidal setting, we need to take a little more care than in a
monoidal one (where the left-to-right and right-to-left translations would be equivalent).

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 189

Types
A= 1| AxA
Judgements
r=v:A V is a value of type A
P M:A M is a producer of type A
Terms
rYv:A Ix:AHYW:B
Mx:AT'F'x: A ' letxbe V.W:B
rYv:A Th'x: AP M:B
I'FPletxbe V.M : B
T'FV:A THV A FrHV:AxA T,x:Ay: A W:B
T (V,V):Ax A ' pmV as (x,y).W:B
T V:AxA T,x:Ay:AF M:B
I'PpmV as (x,y).M : B
r=Yv:A 'PM:A T')x:AFPN:B
I'FP produce V: A 'PMtox. N:B

Equations, using convention at end of Sect. 3.2

) let x be V. W = W(V/x]

) let xbe V. M = MV /x]

B pm(V.V)as (x,y)W = WiV/x,V'/y]

®) e (V,V)as (ny) M = MIV/xV'f3]

(B) produce V tox. M = M[V/x]

(1) Wiv/z] — eV as (x,9).W((xy)/2]

(n) M[V/z] = pmVas (x,y)M[(x,y)/2]

(n) M = M to x. produce x
(M tox. N)toy. P = M to x. (N toy. P)

Fig. 1. First order fragment of fine-grain CBV.

Each equation is presented subject to the convention that if aegmore accurately, a metasyntactic
identifier ranging over terms) occurs in the scope okdnnder and also occurs not in the scope of an
x-binder thenx must not be in the context dff. For example, in the-law in Fig. 2, this convention
implies thatx must not be in the context of.

4. Freyd-categories

In this Section, we define Freyd categories.
For reference, we include precise definitions of premonoidal category [12] and related structures in
Appendix A. To complete the category theory required to formulate the semantics, we say

190 P.B. Levy et al. / Information and Computation 185 (2003) 182-210

Higher Order Types

A= . | A A
Higher Order Terms
Mx:AFP M : B 'v:A—-B I'F"W:A
" XxxM:A— B =" VW:B

Higher Order Equations, using convention at end of Sect. 3.2

B) OxMV = M[V/x]
(n) v = Ix.(Va)

Fig. 2. Higher order constructs of fine-grain CBV.

Definition 4.1. A Freyd categoryonsists of a cartesian categdrya symmetric premonoidal category
K with the same objects &5 and an identity on objects functdr: C — I, strictly preserving sym-
metric premonoidal structure, whose image lies inside the centké Gfis called thevalue category
and its morphisms are calle@lue morphismsc is called theproducer categorand its morphisms are
calledproducer morphisms

We write x rather thar® for the binary operation on objects provided by the premonoidal structure,
because it is a product operationdnThe interpretation of the first order fragment in a Freyd category
is organized as follows:

e Atype denotes an object in the obvious way.

e Thecontexikg : Ag, ..., x,_1: A,_1 denotes the objedtAg]] x --- x [A,—_1]l.
e Avaluel’ MY V : A denotes a value morphism frofi']] to [[AT].

e Aproducerl P M : A denotes a producer morphism frgfi] to [[A]].

For example:

o If 'YV : Athenproduce V denotes/[[V]]

o fITFP M:Aandl',x: AP N : BthenM tox. N denotes

orn " e < en " ey« pan 2 sy
Corresponding to the examples of state and control (Examples 2.1 and 2.2), we sketch how each of
these computational effects gives rise to a Freyd category.

Example4.2. This example provides semantics for global store, and corresponds to M&ggi's
(§ x —) strong monad. First fix a sét Then letC be Set, and letC be the category in which an object
is a set and a morphism froi to Y is a function fromS x X to S x Y, with the evident identity and
composition.J is defined in the evident way.

Example 4.3. This example provides semantics for control effects that manipulate continuations, and
corresponds to Moggi's— — Ans) — Ans strong monad. First fix a sétns. Then letC be Set and

let X be the category in which an object is a set and a morphism o Y is a function from

X x (Y — Ans) to Ans, with the evident identity and compositiosi.is defined in the evident way.

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 191

To defineclosedFreyd category, just as for cartesian closed categories, we make use of “represent-
able functors™

Definition 4.4. Let F be a functor fronC°P to Set. A representatiorfor F consists of an objedt (the
vertey together with an isomorphism

FX=C(X,V) natural inX.

Here is a well-known example.

Definition 4.5.
1. Let A and B be objects in a cartesian categ@ryAn exponentiafrom A to B is a representation for
the functora X.C(X x A, B). Explicitly, this is an objecV (the vertex) together with an isomorphism

C(XxA,B)=C(X,V) natural inX.

2. Let(T, n, u,t) be a strong monad on a cartesian categaryfo give Kleisli exponentialdor this
monad means to give an exponential franto 7' B for each pair of objectd, B.

Definition 4.6. A closed Freyd categorgonsists of a Freyd category together with, for each pair of
objectsA, B a representation for the functaX . xC(J (X x A), B), whose vertex we call — B. Ex-
plicitly, this gives an isomorphism

K(J(X x A), BY=C(X, A — B) natural inX e C°P.

We can shorten this definition by recalling that we can defingta adjointfor a functorF : C — K
to consist of, for each obje@ of I, a representation for the functoX./C(F X, B). Consequently, we
can define a closed Freyd category to consist of a Freyd category, together with, for eactiphbject
right adjoint for the functor/(— x A) : C — K. In particular, the functov : C — K will have a
right adjoint, and so, becauskis identity-on-objectsk is the Kleisli category for a monad ah A
variant of one of the main theorems of [11] is

Theorem 4.7. To give a closed Freyd category is equivalent to giving.anodel More precisely the
2-category of closed Freyd categories and fheategory ofi.-models as defined in Appendix,Gre
2-equivalent

That is as good a result as one can imagine to relate closed Freyd categories with strong monads. The
theorem shows that closed Freyd categories are equivalent to Maggii®dels, so (as we shall see in
Section 5) form a sound and complete class of models for fine-grain call-by-value.

In the light of this result, the reader may wonder what advantage Freyd categories have over strong
monads with Kleisli exponentials. The answer is that the former provides greater flexibility in the organi-
zation of a model. For example, when organizing a global store model with a strong monad, a producer
' B M : A must denote a function frofil’']] to S — (S x [A]]). When organizing the model as a
Freyd category, we can still interpr#f in this way if we choose, but we also have the option of using

192 P.B. Levy et al. / Information and Computation 185 (2003) 182-210

the Freyd category in Example 4.2 so thidtdenotes a function from§ x [[T'] to S x [[A]l. This is
computationally appropriate: it says that, when executed in a given stores S and environment
p € [[I'], terminates in a stor€ € S when it produces a value e [[A]].

For another example, when organizing a continuation model with a strong monad, a prbddter
M : A must denote a function frofi']] to ([A]] — Ans) — Ans. When organizing the model as a
Freyd category, we can still interpr&f in this way if we choose, but we also have the option of using
the Freyd category in Example 4.3 so tlddtdenotes a function fromiI"]] x ([A]] — Ans) to Ans.
This is computationally appropriate: it says tiat when executed in a given environmeng [[I']] and
current continuatiork € [[A]] — Ans, gives a final answer iAns.

5. Soundness and completeness

We will formulate soundness and completeness results relating the first order fragment presented in
Fig. 1 to Freyd categories. There are analogous results relating the whole language presented in Figs. 1
and 2 to closed Freyd categories.

To present these results, we will add to the type theory a sdtbase types- so that we have a
bigger set of types — and two setgy, oproq Of function-symbolsThe function-symbols iay represent
effect-free functions (i.e., value morphisms); the function-symbols, iy represent effectful functions
(i.e., producer morphisms). Each function-symbol is equipped withrigyn— which is a finite sequence
of types — and a@esult type These types can involve the base types. The t(iqléya, oproq), together
with all the arities and result types, is calledignature

From now until the end of the proof of Proposition 5.2, fix a signatliee (t, ovai, oprod). Theterms
generated by 8re defined as in Fig. 1, with the additional rule

FFYVo:Ag - TH Vyo1: A1
r=Y fVo,..., Vm_1) : B

for each function-symbof € o4 Whose arity iS(Ag, ..., A;;,—1) and whose result type 8, and with
the additional rule

' Vo:Ag - TH Vy_1: A1
TP f(Vo,...,Vm_): B

for each function-symbof € opr0q Whose arity iS(Ao, . .., A,,—1) and whose result type iB.
We do not allow a term such &My, ..., M,,_1), whereMy, ..., M,,_1 are producers, because this
gives no indication of the order of evaluation of these producers. Rather, we write

Mptoxg. ...My—1tox,—1. f(X0, ..., Xm-1),

to indicate that the producers are evaluated left-to-right, for example.
An interpretationof the signatures in a Freyd category consists of

e an object[A]] for each objectd — this gives rise to a semantics of types in the obvious way;

e avalue-morphisnfAg]]l x - -+ x [An—11l [[—f]]> [B]] for each function-symbof € o4 Whose arity is

(Ao, ..., A;—1) and whose result type iB;

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 193

e a producer-morphisnfAog]l x - -+ x [An—1]l H—ﬂ]> [[B]] for each function-symbolf € oproq Whose

arity is (Ao, ..., A;;—1) and whose result type B.
It is clear that an interpretation ¢f in a Freyd category induces a semantics for the terms generated
from S.

Proposition 5.1 (Soundness)or a signatureS, and an interpretation foiS in a Freyd categorythe
induced semantics for the terms generated ffowalidates all the equations of Fig.

Proof. Straightforward, with a substitution lemmalJ

A theoryfor the signatures is a congruence- on the terms (more accurately, the terms in context)
generated bys, respecting substitution (so that related values substituted into related terms give related
terms) and respecting weakening (so that, for exampleH? M ~ M’ : Bthenl',x: AFP M ~ M’ :

B), that includes all the laws of Fig. 1. It is a consequence of Proposition 5.1 that an interpretation of
S in a Freyd category induces a theory feyrwhere two terms are related when they have the same
denotation. The converse is also true:

Proposition 5.2 (Completenegs Given any theory~ for S, there is a Freyd categoryand an inter-
pretation ofS in it, such that two terms have the same denotation iff they are related.by

Proof. We construct a Freyd category where
e the objects are the types (involving the base typag;n
e the value-morphisms from to B are the equivalence classes wxtof valuesx: A -V V : B;
e the producer-morphisms frorh to B are the equivalence classes w:tof producersc: A HP M :
B.
All the structure is easy to define, and well-defined becaugga congruence. The interpretation of a
base typé is the typeA. The interpretation of € o4 is the equivalence class of the value

x0: A0y .. Xm_1: A1 F f(xo0,...,%m_1) : B,

where f has arity(Ao, ..., A,—1) and result typeB. The interpretation of € opoq IS the equivalence
class of the producer

X0: A0 .. Xm_1: Apm_1FP f(x0,...,%Xm_1) : B,

where f has arity(Ag, ..., A,,—1) and result typeB. The required equations are easy, if tedious, to
verify, as a consequence of the equations in Fig. [

To see why we call this a completeness result, introduce the following notatiorD bet a set of
equations and a single equation using the symbols$fWe say thatD - E whenE can be deduced
from D using the equations of Fig. 1 aiidl = E when, for every interpretation ¢fin a Freyd category
that validates all the equations &f, the equation£ is validated too. Then Proposition 5.1 tells us
thatD + E implies D = E, while Proposition 5.2 tells us th& = E implies D + E (take the theory

194 P.B. Levy et al. / Information and Computation 185 (2003) 182-210

containing precisely those equations deducible fidjnln summary, our equational theory provides a
sound and complete way of reasoning about Freyd categories.

But ideally we would like to assert not that first-order fragment is a good way of reasoning about
Freyd categories, but rather that Freyd categories are a good way of modelling the first-order fragment,
which, after all, was our starting point. Proposition 5.2 does not tell us this.

In fact, the relationship between Freyd categories and the first order fragment is closer than we can
learn from Propositions 5.1 and 5.2. For Freyd categories and models of the first-order fragment (defined
in a suitablya priori way) are equivalent. This is the same as the relationship between cartesian closed
categories and simply typedcalculus, so we will not discuss it here.

6. k-Categories

In previous sections, we defined a fine-grain version of the computatieoalculus and showed
how it can be modelled in a closed Freyd category. Its first order fragment can be modelled in a Freyd
category. Itis important to distinguish between first order and higher order structure for various purposes,
such as in modelling continuations [17], data refinement, and modularity. In this section, we see that
Freyd categories are equivalent to a new construct, thataaitegory. It follows that we can model the
first order fragment of th&.-calculus in ac-category. We shall extend this to modelling the full calculus
in a closedc-category in the next section. The notionxetategory models environments differently
from the way they are modelled in a Freyd category.

We proceed by constructing an indexed category from a Freyd category, then we identify the image
of the construction, yielding the notion efcategory.

Definition 6.1. A comonoidin a premonoidal categori consists of an objedC of K, and central
mapss : C — C ® C andv : C — I making the usual associativity and unit diagrams commute. A
comonoid magrom C to D in a premonoidal categori is a central mag’ : C — D that commutes
with the comultiplications and counits of the comonoids.

Given a premonoidal categoiy, comonoids and comonoid mapsihform a categoryComon(K)
with composition given by that ok. Moreover, any centrality-preserving strict premonoidal functor
H : K — L lifts to a functorComon(H) : Comon(K) — Comon(£). Trivially, any comonoidC
yields a comonad- ® C, and any comonoid map : C — D vyields a functor fronKleidi(— ® D),
the Kleisli category of the comonad ® D, toKleidi(— ® C), that is the identity on objects. So we have
a functors(K) : Comon(K)°P — Cat. Given a cartesian categofy every objectA of C has a unique
comonoid structure, given by the diagonal and the unique map to the terminal objecon8m(C)
is isomorphic taC. Thus, given a Freyd category: C — K, we have a functok (J) : C°P — Cat
given bys(K) composed with the functor induced bByfrom C = Comon(C) to Comon(K). «(J) is a
locally C-indexed category, in the following sense.

Definition 6.2. LetC be a category.
1. A strict C-indexed category is a functor fromC°P to Cat.

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 195

2. Alocally C-indexed categorgonsists of a set of objec@b H together with a stricC-indexed cat-
egory H, where each fibrélx has the same set of objec H and each reindexing functadf s is
identity on objects.

(Note that ifC is non-empty then it is not necessary to ge H explicitly, because it can be re-
covered a®©b Hy for any objectX. In our examples(is always non-empty because it has a terminal
object.)

Remark 6.3. Our usage of the word “locally” is similar to the usage in “locally small category” or “lo-
cally ordered category”: the homsets are indexed but the objects are not. A more abstract, but equivalent,
definition of locallyC-indexed category is as[&°P, Set]-enriched category.

An important example arises whéhis a cartesian category. We then define the locélindexed
categoryself C, in which a morphism fromA to B over X is aC-morphism fromX x A to B, and
identities, composition and reindexing are given in the evident way.

We would like to characterize the locally indexed categories that arise from tmmstruction. A
solution is as follows, as we shall see below (Theorem 6.10).

Definition 6.4. A «-categoryconsists of

e a category with finite products;

e alocallyC-indexed categoryl : C°P — Cat whose class of objects @b C;
o for every objectB, an isomorphism

Haxp(1,) gC)=Ha(B,C) natural inA andC Q)
such that the two functions frofi1 (1, C) to H1x1(1, C), one given by reindexing and the other given
by (1), are equal.

We draw attention to the naturality condition in (1). For this to be meaningful, we need to say how
both sides are functorial id and C, and this is a consequence of themset functowhich we shall
soon define. Moreover, the condition can be interpreted either
e as two separate naturality conditions — naturadifor any C, and natural irC for any A, or
e as a single naturality condition — natural in the pait which ranges not over a product category but

over the categorgpGroth H, which we define presently.

Fortunately, as for product categories, the two interpretations can easily be shown equivalent.

We will now define theopGrothendieck constructiamn locally indexed categories; this is important
primarily because it enables us to define homset functors — which are of great importance in the theory
of functor representations, adjunctions etc. — and secondarily because it allows us to make sense of the
“joint naturality” condition that we just discussed.

Definition 6.5. LetD be alocallyC-indexed category. ThespGroth D is the ordinary category defined
as follows:
e an object obpGroth D is a pairr A wherel’ e ObC andA € Ob D
e a morphism fromrA to B in opGroth D consists of a paig f wherek : " — I'in C and f :
A —> Bin Dr
with the evident identity and composition.

196 P.B. Levy et al. / Information and Computation 185 (2003) 182-210

ThusD gives us a homset functor froapGroth (D°P x D) to Set takingr (X, Y) to Dr(X, Y).

Remark 6.6. We write an object obpGroth D asr A rather thanT", A) so that the homséPr (X, Y)
can be read as the homset funcr opGroth (D°P x D) — Set applied to the objegt (X, Y).

Using these concepts, we will give a variant of Definition 6.4 which has the advantage that it requires
no coherence condition. It is motivated by the notion of “strong adjunction” which appeared in [8], as
explained in Appendix B.

Definition 6.7. A strongk-categoryconsists of

e a category with finite products

¢ alocallyC-indexed categoryf : C°P — Cat whose class of objects @b C

e afunctorL from opGroth H to Set — we call an elemeng € £4 B anoblique morphisnover A to B

and we Write% B
o for each objecB, an isomorphism

Ha(B,C)=Laxpmy gC natural inA andC (2)

The obligue morphisms correspond to the producer-morphisms framnB in the Freyd category
approach; they are the denotations of producers. Specifically, a prddti¢eM : B denotes an oblique
morphism ovef[I'] to [B]]. The morphisms of{, by contrast, are not the denotations of anything, but
they help to organize the semantics. Becafisea functor, it provides “reindexing” and “composition”
for oblique morphisms:

e For each oblique morphismi—> B andC-morphismA’ LN A, we define theeindexedblique mor-
phism% Btobe(LiY)g.
e Foreach oblique morphismj—> B andD-morphismB —Z> B’, we define theompositeoblique mor-

. h
phlsm% B’ tobe(Lrh)g.
These operations satisfy identity, associativity and reindexing laws:

g;id=g,
g (b hy=(g; h); I,
id*g =g,
(K k)*g=k"(k*g),
k*(g; hy=(k*g); (k*h),
whereg is an oblique morphism. Conversely, these operations and equations give us a fufrcior

opGroth H to Set.
The continuation example illustrates well the advantage of sttecategories.

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 197

e We define the locallyBet-indexed category by saying that a morphism overfrom B to C —i.e.,
an element off4 (B, C) — is a function fromA x (C — Ans) to B — Ans. ldentities, composition
and reindexing irH are defined in the evident way, and all the associativity laws etc. are obvious.

e An oblique morphism oveA to B is a function fromA x (B — Ans) to Ans. This ensures that a
producerl” =P M : B will denote a function from[I']] x ([B]] — Ans) to Ans, which is what we
want. Again, composition and reindexing are defined in the evident way, and associativity laws etc.
are obvious.

e We need for (2) an isomorphism of the form

Set(A x (C — Ans), B — Ans) = Set((A x B) x (C — Ans), Ans). 3)

It is evident what this isomorphism should be and easy to check the required naturality.

Notice how simple the definition of composition is in the above example and how obvious the asso-

ciativity law is. This contrasts with the Freyd category in Example 4.3 where currying is required to

define composition; in the strongcategory approach, the currying is all contained in the isomorphism

(3). Of course, we could have set up the Freyd category so that a morphismiftorB is a function

from B — Ans to A — Ans, but this would not have given semantics of producers in the form we

wanted. Just as the Freyd category approach provides more flexibility than the strong monad approach

in organizing a model, we see that the strangategory approach provides even greater flexibility than
either the Freyd category ercategory approaches. For it allows us to set up the oblique morphisms in
the most computationally appropriate way, and set up the morphisiHssaf as to make composition
simple.

To a lesser extent we can take advantage of this flexibility in organizing the global store model too.

e We define the locallySet-indexed categoryd by saying that a morphism ovet from B to C
— i.e., an element ofi4 (B, C) — is a function fromA x (S x B) to S x C. Identities, compo-
sition and reindexing inH are defined in the evident way, and all the associativity laws etc. are
obvious.

e An obligue morphism oved to B is a function fromS x A to S x B. This ensures that a pro-
ducerl’ P M : B will denote a function fron§ x [[[']] to S x [[B]], which is what we want. Again,
composition and reindexing are defined in the evident way, and associativity laws etc. are
obvious.

e We need for (2) an isomorphism of the form

Set(Ax (SxB),SxC)=ESet(S x (A x B),S xC).

It is evident what this isomorphism should be and easy to check the required naturality.

Proposition 6.8. Given a strong -category and an obje@, there is a unique element 6§ B, which we
call prodz, such thatthe isomorphis(8) takes a morphisth : B —> Cin Hy to (nf’BprodB); (”ZBh)-

Proof. This is an instance of the locally indexed version of the Yoneda Lemma, and can be proved
directly in the same style as the Yoneda Lemprad is obtained by applying isomorphism (2) to the
identity onB over 1, and then reindexing alodg=1 x A. [

Proposition 6.9. Given ax-categoryH : C°° — Cat, there is an indexed functamc : s(C) — H
as follows for eachA in C, we have a functor frora(C4) to H4. On objectsit is the identity To define

198 P.B. Levy et al. / Information and Computation 185 (2003) 182-210

inc1 on arrows givenf : A — B in C, consider the arrowp : 1 — B in Hp corresponding tadg
in Hy. ApplyingH to it gives a mapH s (13) : 1 — B in Hy, or equivalently, under the adjunctioa
map fromA to B in H;. Defineincy1(f) to be that map

f

1 A B 1
A 1 1 B
Hy
mml e | s Ji
B B B B

This plus naturality determines the rest of the structure

Proof. It is immediate thainci preserves identities, and one can prove that it preserves composition:
this follows by proving that for any map : A — B in C and any mag : 1 —> C in Hg, the map
Hy(g) corresponds to the composite #y of inc1(f) with the adjoint correspondent g Moreover,

this yields a functoinc 4 for every A, with naturality as required. [

Using Proposition 6.9, we can exhibit the relationship between Freyd categoriasaatdgories.
This forms the basis for the first main result of the paper, Theorem 6.10.

Theorem 6.10. Given a cartesian categorg, the following are equivalenfmore precisely the 2-
categories defined as in Appendix C @requivaleny :

1. to give a Freyd category : C — K,

2. to give a stronge-category(H, £) with baseC,

3. to give ax-categoryH : C°P — Cat.

The equivalence of (2) and (3) is straightforward. For the equivalence of (3) and (1), we observe from
the definition ofx-category that for each projection: B x A — B in C, the functorH, : Hp —
Hp« 4 has a left adjoinL given on objects byl x —. We denote the isomorphism associated with these
adjunctions by

k: Hpxa(C, JT;AC/) = Hp(C x A, C)).
First, for the construction of a-category from a Freyd category, we have

Proposition 6.11. Given a Freyd category : C — K, the functor given by (J) : C°° — Catis a
K-category

Proof. It follows immediately from the construction af(J) in Section 6 that for each objedt of

C, we haveOb«(J)4 = ObC, and that for each arrowf : A — B in C, the functorx(J) s is the
identity on objects. Moreover, the existence of the partial adjoints to e@kh, follows directly from

the construction and the fact thatis symmetric. Naturality and the coherence condition also follows
directly from the construction. [

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 199

Now for the converse:

Proposition 6.12. LetC be a cartesian categoriven ax-categoryH : C°P — Cat, there is a Freyd
categoryJ : C —> K, unique up to isomorphispfior which H is isomorphic tac(J).

Proof. Define to be H;. For each objeca of K, equallyA an object ofC sinceOb H1 = ObC (as

is immediate from the first clause of the definition applied to the dasel), define— x A : K — K

by the compositd. o H, where! : A — 1 is the unique map i from A to 1. Note that is of the form

7, so the left adjoint exists. Moreover, for each mapC — C’ in K, we haveg x A : C x A —>

C’ x A. The rest of the data and axioms to ma&ke& symmetric premonoidal category arise by routine
calculation, using the symmetric monoidal structur€ afetermined by its finite product structure, and
by the naturality condition.

DefineJ : C — K byinc; as in Proposition 6.9. It follows from naturality that fora map A —
BinC,andforamag : C — D in Hg, we have that ;(g) is given by the composite of(idc x f)
with the adjoint correspondent gf Naturality further implies thatinci—) x A agrees withncy(— x
A). It follows from functoriality of theH ;’s that every map i@ is sent into the centre &f. Functoriality
plus naturality similarly imply that all the structural maps are preserved. Baan identity on objects
strict symmetric premonoidal functor.

It follows directly from our construction of that«(J) is isomorphic toH. Moreover,J : C — K
is fully determined byH sinceC is fixed, C must beH; up to isomorphism, with premonoidal structure
as given, and’ must agree on maps with the construction as we have given it. H&nseinique up to
isomorphism.

The final line of the theorem follows routinely.(]

Now we can see how one models environmentsikacategory: a context is modelled by an object of
the base categoxy, with the finite products of modelling concatenation of contexts. A term of type
in contextI” is modelled by an arrow in the fibre ovgr']] from 1 to [[t]]. Substitution of a value for a
variable is modelled by the functoriality ofkacategory with respect to maps@n So the emphasis here
is upon substitution of a value for a variable as a primitive operation.

7. Closed Freyd-categories, closed k-categories, and A.-models

In previous sections, we have considered two ways of modelling the first order fragment of the
Ac-calculus. In this section, we extend that to model higher-order structure, allowing us two ways to
model thexr.-calculus [9]. We define and relate closed Freyd categories and ctesatégories with
Ae-models.

Definition 7.1. A closed strong -categoryconsists of a strong-category(C, H, L, .. .) together with,
for each pair of objectd, B, a representation for the functoX.Lx« 4 B.

Definition 7.2. A closed«-categoryis ax-categoryH : C°P — Cat together with, for each pair of
objectsA, B, a representation for the functoX.Hyx (A, B).

200 P.B. Levy et al. / Information and Computation 185 (2003) 182-210
The main result of this section:

Theorem 7.3. Given a cartesian categorg, the following are equivalen{more precisely the 2-
categories defined as in Appendiare 2-equivalent :

1. to give a closed Freyd categoty: C — K,

2. to give a closed strong-category(H, £) with baseC,

3. to give a closed-categoryH : C°° — Cat,

4. to give a strong monad af, with Kleisli exponentials

The equivalence of (1) and (4) is Theorem 4.7. The equivalence of (1)—(3) follows from Theorem
6.10: the functors whose representation is required (for given objeBfsare isomorphic.

Theorem 7.4. Closed Freyd categorieslosedk-categories and closed strorgcategories form sound
and complete classes of models for the computatidreiculus

We have already seen this for closed Freyd categories in Section 5. The result foxclsedories
follows from Theorem 7.3.

8. Conclusions

We have examined various categorical models of call-by-value programming with effects, using
strong monads, Freyd categories, and strofmgitegories. (We also usedcategories, but, as we men-
tioned in Section 1, this was just as a stepping-stone towards straagegories.) We have seen that
these various categorical models are equivalent (and also mentioned in Section 5 that they are equivalent
to models of the fine-grain CBV equational theory, defined in a suitably a priori way). But equivalence
does not means that the various models correspond exactly, only that they correspond up to isomor-
phism (identity-on-objects isomorphism preserving all structure on the nose), and there are significant
differences contained within these isomorphisms:

e A A.-model (cartesian category with strong monad and Kleisli exponentials) corresponds to a closed

Freyd category where the isomorphism

KX x A, BY=C(X, A — B)

is an identity. Thus the structure of a closed Freyd category provides more flexibility than the structure

of ai.-model, as we explained in Section 4 — we caresafely decide how to model values and how

to model producers.

e A Freyd category corresponds to a strarrgategory where the isomorphism

Hy(B,C)=LaxpC

is an identity. Thus the structure of a strongategory provides more flexibility than the structure of

a Freyd category, as we explained in Section 6 —we can separately decide how to interpret effects (in

L) and how to organize the environment housekeepingi(in
In summary, the strong-category approach provides the most flexibility and the strong monad approach
provides the least. But while flexibility is an advantage when constructing particular models for call-
by-value, the rigidity of the strong monad approach is useful for proving results about all models of

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 201

CBYV, because strong monads are very easy to reason about. And the Freyd category approach has its
advantages too: because it is so close to the syntax, it gives us a useful way of thinking about the term
model.

Acknowledgments

Thanks to Carsten Fihrmann, Peter O'Hearn and anonymous referees for helpful discussions and
comments.

Appendix A
A.l. Premonoidal categories

We recall the definitions of premonoidal category and strict premonoidal functor, and symmetries
for them, as introduced in [12] and further studied in [11]. A premonoidal category is a generalisation
of the concept of monoidal category: it is essentially a monoidal category except that the tensor need
only be a functor of two variables and not necessarily be bifunctorial, i.e., given fnags— B and
f'+ A — B’, the evident two maps from ® A’ to B ® B’ may differ.

Historically, for instance for the simply typedcalculus, environments have been modelled by fi-
nite products. More recently (within the past decade or so), monoidal structure has sometimes been
used, for instance when one wants to incorporate an account of partiality [16]. In the presence of stron-
ger computational effects, an even weaker notion is required. If the computational effects are strong
enough for the order of evaluation ¢f: A — B andf’ : A — B’ to be observable, as for instance
in the case of continuations [17], then the monoidal laws cannot be satisfied. The leading examples
for us of such stronger computational effects are those given by continuations. However, for a simple
example of a premonoidal category that may be used for a crude account of state [12], consider the
following.

Example A.1. Given a symmetric monoidal categofytogether with a specified objest define the
categoryk to have the same objects@swith IC(A, B) = C(S ® A, S ® B), and with composition iiC
determined by that af. For any objectA of C, one hasfunctord ® —: X — Kand—® A : K —

KC, but they do not satisfy the bifunctoriality condition above, hence do not yield a monoidal structure
on KC. They do yield a premonoidal structure, as we define below.

In order to make precise the notion of a premonoidal category, we need some auxiliary definitions.

Definition A.2. A binoidal categoryis a categoryC together with, for each object of i, functors
ha: K — Kandky : K — K such that for each pai, B) of objects offC, h4 B = kg A. The joint
value is denotedi ® B.

Definition A.3. An arrow f : A —> A’ in a binoidal category isentralif for every arrowg : B —
B’, the following diagrams commute:

202 P.B. Levy et al. / Information and Computation 185 (2003) 182-210

A A
Ao B-2%% Agp BeA-24 pga
f®Bl lf@B' B®fl lB’@f
Al®g g®A/
A@B——A' @B BA ——B' @ A’

Moreover, given a binoidal categoky, a natural transformatiom: ¢ = h : B —> K is calledcentral
if every component o# is central.

Definition A.4. A premonoidal categoris a binoidal categoryC together with an object of X, and
central natural isomorphismswith component§A ® B) C — A ® (B ® C), [with components

A — A ® I, andr with componentsA\ — I ® A, subject to two equations: the pentagon expressing
coherence of, and the triangle expressing coherencéafdr with respect ta: (see [5] for an explicit
depiction of the diagrams).

Now we have the definition of a premonoidal category, it is routine to verify that Example A.1 is an
example of one. There is a general construction that yields premonoidal categories too:

Proposition A.5. Given a strong monad on a symmetric monoidal categofy the Kleisli category
Kleidi(T) for T is always a premonoidal categqrwith the functorJ : C — Kleidi(T) preserving
premonoidal structure strictlyof course a monoidal category such &3 is trivially a premonoidal
category

So a good source of examples of premonoidal categories is provided by Eugenio Moggi’'s work
on monads as notions of computation [10], and indeed there is a representation result as explained in
[12].

Definition A.6. Given a premonoidal categoj, define thecentreof K, denotedz(K), to be the
subcategory ok consisting of all the objects &f and the central morphisms.

For an example of the centre of a premonoidal category, consider Example A.1 for the Cdmeraf
the categonBet of small sets, with symmetric monoidal structure given by finite products. Suppose
has at least two elements. Then the centré&a$ preciselySet. In general, given a strong monad on
a symmetric monoidal category, the base categomged not be the centre Kfleidi(7"). But, modulo
the condition that/ : C — Kleidi(T) be faithful, or equivalently, the mono requirement [10,12], i.e.,
the condition that the unit of the adjunction be pointwise monomorphic, it must be a subcategory of the
centre.

The functorsi 4, andk4 preserve central maps. So we have

Proposition A.7. The centre of a premonoidal category is a monoidal category

This proposition allows us to prove a coherence result for premonoidal categories, directly generalis-
ing the usual coherence result for monoidal categories. Details appear in [12].

Definition A.8. A symmetryfor a premonoidal category is a central natural isomorphism with com-
ponentsc : A® B —> B ® A, satisfying the two conditions? = 1 and equality of the evident two

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 203

maps fromA ® B) CtoC ® (A ® B). A symmetrigpremonoidal category is a premonoidal category
together with a symmetry.

All of the examples of premonoidal categories we have discussed so far are symmetric, and in fact,
symmetric premonoidal categories are those of primary interest to us, and seem to be those of primary
interest in denotational semantics in general. For an example of a premonoidal category that is not
symmetric, consider, given any categarythe categoryEnd, (C) whose objects are functors froth
to itself, and for which an arrow frorh to k is aC-indexed family of arrowst(A) : h(A) —> k(A) in
C, i.e., what would be a natural transformation frénto £ but without assuming commutativity of the
naturality squares. Then, this category, together with the usual composition of functors, has the structure
of a strict premonoidal category, i.e., a premonoidal category in which all the structural isomorphisms
are identities, which is certainly not symmetric.

Appendix B
B.1. Strong adjunctions

To explain where the strong-category definition (Definition 6.7) came from, we look at the fol-
lowing definition which appeared (and was carefully motivated with respect to call-by-push-value) in

[8].

Definition B.1. A strong adjunctiorfrom a cartesian categoxy to a locally C-indexed categoryD
consists of

¢ a functor® from opGroth D to Set

e for eachB € Ob(, an objectF B € Ob D together with an isomorphism

DA(FB,C)=0axpCrmy 3C naturalinA andC 4)
e for eachB € Ob D, an object/ B € Ob C together with an isomorphism
C(A,UB)=04B naturalinA (5)

It is shown in [8] that giving a strong adjunction frafrto D is equivalent to giving an adjunction (in
the usual sense) froself C (defined in Section 6) t®. Thus it gives us a monad aelf C i.e., a strong
monad orC. This is the reason for using the word “strong”.

As with ordinary adjunctions, we can say that a strong adjunction fféonH is Kleisli whenH has
the same objects @sand F B = B for every objectB € Ob (. In this situation it is customary to write
T B rather tharl/ B, and£ rather than?D so that the two isomorphisms look like this:

Hy(B,C) Laxpmy pC= naturalinA andC (6)
C(A,TB)=L4B naturalinA)

For the sake of modelling the first-order fragment of fine-grain CBV, we do not require (7) and so we
are led to Definition 6.7.

204 P.B. Levy et al. / Information and Computation 185 (2003) 182-210
Appendix C
C.1. Defining the 2-categories

C.1.1. Aim
In the paper we look at the following eight categorical structures:
cartesian category
Ae-model
Freyd category
closed Freyd category
k-category
closedk-category
strongk -category
closed strong -category
For each of these structures, we can define a notion of functor and natural isomorphism and so we obtain
a 2-category (actually &rpd-enriched category, because the 2-cells are isomorphisms). The aim of
this appendix is to define all these 2 categories. We will give the definition explicitly.fonodels and
strongx -categories; the other 6 definitions are entirely analogous.

Each of our structures includes a “value categatyand its groupoid of isomorphisnisos C plays
a key role in our definitions. It is up to isomorphismdrthat functors preserve object-operations, and
everything is functorial or natural irsosC. However, we do not require this functoriality/naturality from
the outset, but deduce it from other assumptions, so as to make clear that all our definitions are purely
equational.

We have not given a convincing explanation of why isomorphisndsshould be so important — after
all, C is just one part of the structure. Further research is certainly needed on these issues.

C.1.2. Algebraic structure

There is another, well established approach to forming 2-categories, which we cannot use because it
does not work for some of our examples. It proceeds as follows. We first express the objects as algebras
for a monad on an already known 2-category sucBatsor [—, Set] — Cat. We then use the definition
given in [1] of morphism and 2-cell between such algebras, inherited from the morphisms and 2-cells
in the base category. Such a monad is usually easy to describe, because, as shown in [6], if it has a rank
then it must be given by aalgebraic structuremeaning a paitS, E£) wheresS is a kind of “signature”
andE a kind of “set of equations”. A most helpful explanation of this material is given in [15].

Out of our 8 structures, this algebraic structure approach works for cartesian categories (given by
algebraic structure o@at), for Freyd categories (0, Set] — Cat [11]) and for closed Freyd catego-
ries (on[—, Set] — Cat enriched ovefGrpd). However, it does not work for.-models, because of the
Kleisli exponentials, nor for the variouscategories.

C.1.3...-models
LemmaC.1l. Inax. model(C, T, ...) all the primitive operations on homsets

1% ¢, A)

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 205

C(A, B) x C(B, C) 255 c(a, ©)

1% ¢4, 1)
C(A, B) x C(A, C) 25°C(A, B x C)

C(A. B) 8 C(TA,TB)
14 C(A, TA)
154 ¢(T2A, T A)

1 C(A x TB,T(A x B))

curry

C(A X B, TC) T)C(A, B —k C)

are natural asA, B, C range oveld sosC, when we regard
C(—, —) as a functor fromsosC x IsosC to Set

1 as a functor froml to 1sos C

x as a functor fronsosC x 1sosC to 1sosC

T as a functor fron sosC to IsosC

— as a functor from sosC x IsosC to lsosC

in the evident way

Definition C.2. A A, functor from ax, model(C, T, ...) to anotherC’, T’ ...) consists of
e afunctionOb F fromOb(C toOb(’
e functions

cA, B) 2P ¢/ (FA, FB) foreachA, B € ObC

e ‘“coherence” morphisms irsos C’, up to whichF preserves each object operation

1
1 F1-5 1
FX
X F(Ax B)-28 FA x' FB for eachA, B € ObC
FT
T FTA-5T'FA for eachA € ObC

F—)
—w F(A—>y B) 22 FA -/, FB foreachA, B e ObC

e such thatF preserves, up to the coherence isomorphisms, each of the primitive operations listed in
Lemma C.1. For example:

206 P.B. Levy et al. / Information and Computation 185 (2003) 182-210

preservation of ;
F(A,B)xF(B,C)

C(A, B) x C(B, C) C'(FA,FB) x C'(FB, FC)
;Ancl l;EFA)(FR)(FC)

C(A,0) C'(FA,FC)

F(A,C)

preservation of (,)
F(A,B)XF(A,C)

C(A,B) XC(A,C) C(FA,FB)XC(FA,FC’)
mABClE El(’)/(FA)(FB)(FC)

C(A,Bx () C'(FA,F(Bx(C)) ———C'(FA,FB x FC)
F(A,BxC) C'(FAFE)

preservation of
1 1

”Al j”‘/FA

C(T2A,TA) C'(FT?A,FTA) ——— C'(T"*FA, T'F A)
F(T?A,TA) C(FT2 A,FT A) ’

T ' T
whereFT° A is the composite 724 — 5 7' Fr A 752 7724
preservation of curry

F(AxB,TC) CI(F}y,FE)
—_—

C(A x B,TC) C'(F(A x B), FTC) —22-% C'(FAx' FB,T'FC)

curry 4 ,_;Cl lcu"yEFA)(FB)(FC)

C(A,B —KI C) C/(FA,F(B —KI C)) CI(FA,FB —>£<| FC)

—_— —_—
F(A,B—«C) C'(FA,Fgy)

Remark C.3. The requirement that' preserve identity and composition give an extensio®bfF to
a functor fromlsos C to I sosC, and this functor is used in formulating the remaining conditions, such as
the preservation of pairing.

Remark C.4. The structure preservation requirements imply that the homset operatibnB) and
the coherence isomorphisms are all naturaha®8 range ovel sos C. This is important for defining
composition ofi.-functors.

Similar remarks are applicable after Definition C.8.

Definition C.5. Let F, G bea. functors from(C, T, ...)to (C’, T'...). A A natural isomorphisnfrom
FtoGis
e a family of morphisms insosC’

FAA GA

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 207

e preserving the homset operations i.e.,
C(A, B)

F(A,B)l WA

C'(FA, FB) ——=C'(GA,GB)

e and preserving the coherence isomorphisms i.e.,

F? Fio
F1———1' F(Bx(C)———FB x' FC
all lid a(BXC)l laBXaC
a1 —& 7 G(B x) ——=GB x' GC
BC
Fj Fpe
FTA——T'FA F(B—>K|C)—>FB—>£<|FC
aTAl j”aAL a@%amc)l laB—ehaC
GTA——=T'GA G(B —k C) —= GB —, GC
e\ GBe

Remark C.6. The homset operation preservation condition impliesdiats natural asA ranges over
IsosC. This is important for defining composition #f natural transformations.

A similar remark is applicable after Definition C.9.

C.1.4. Closed strong-categories

LemmaC.7. In a closed strong-category(C, K, ¢, ...) all the primitive operations on homsets
19 ¢(a, 4)
C(A, B) x C(B,C) 25 c(A, C)

1% A, 1)

C(A, B) x C(A, C) 25 ¢ca, B x ©)

idap

1% H4(B, B)

ABCD

Hjy(B,C) x Hy(C, D) — Hu(B, D)

*ABCD

C(A, B) x Hg(C, D) — " HA(C, D)

208 P.B. Levy et al. / Information and Computation 185 (2003) 182-210

*BCD

C(A, B) x LyC 2L C

sBDC

ﬁBC X HB(C, D) — [rBD

Strapc

LaxpC — Ha(B,C)

cunyspc

LaxC — C(A,B— C)

are natural asA, B, C range over sosC, when we regard

C(—, —) as a functor fromsosC x IsosC to Set

L_— as afunctor fromsosC x 1s0sC to Set

H_(—, —) as a functor fromsosC x IsosC x 1sosC to Set

1 as a functor froml to 1sos C

x as a functor fronlsosC x 1sosC to 1sos C

— as a functor fromsosC x lsosC tolsosC

in the evident wayin the case o© and H this is by means dfic.

Definition C.8. A closed stronge-functor from a closed strong-category(C, H, L, ...) to another
(C',H', L, ...) consists of
e afunctionOb F from ObC to Ob ('

e functions
F'(A,B) ,,
C(A,B) —> 'C'(FA, FB) foreachA, B € Ob(C
LAB FL48) "4 FB foreachA, B € ObC

Ha(B,C) &P Bl (FB, FC) foreachA, B, C € ObC

e ‘“coherence” morphisms itsosC’, up to whichF preserves each object operation
1
1 F15 1
F><
x F(AxB)-23 FAx'FB foreachA, B € ObC

F
—~ F(A— B)-22FA—'FB foreachA, B < Ob(C

e such thatF preserves, up to the coherence isomorphisms, each of the primitive operations listed in
Lemma C.7. For example
preservation of *

FY(A,B)xF%(C,D)

C(A, B) x Hy(C, D) C(FA,FB) x Hyy(FC, FD)
* ABGD l*Em)(FBchxFD)
Ha(C, D) Hp o (FC,FD)

F}(C,D)

P.B. Levy et al. / Information and Computation 185 (2003) 182-210 209

preservation of str

a0 £y FO

x AB

LaxsC Loaxp)FC ———— L4 ppFC

StrAH(,‘l lStrEh’A)(F'H)(H‘C)
Hus(B,C) P 5.0) H%A(FB,FC)

Definition C.9. Let F, G be closed strong-functors from(C, H, L, ...)to (C’, H', L', ...). A closed
strongx natural isomorphisnfrom F to G is
e a family of morphisms insosC’

FASA GA
e preserving the homset operations i.e.,

C(A, B) LB
F"(A,B)l m FP(A,B)i F4.5)
/ !/ I /
C(FA’FB)mC(GA’GB) EFAFBmﬁcAGB
HA(B7C)

G" (B,C
F]),(B,C)l w;

HY, ,(FB,FC) — H.,,(GB,GC)
¢’1A (OLB,O{C)

e and preserving the coherence isomorphisms i.e.,

1 Fge
F1 1 F(B x C)—2% FB x' FC
alt lid a(BXC’)l lanaC
1
G1—% oy G(B x C) —= GB x' GC

BC

210 P.B. Levy et al. / Information and Computation 185 (2003) 182-210
References

[1] R. Blackwell, G.M. Kelly, A.J. Power, Two-dimensional monad theory, Journal of Pure and Applied Algebra 59 (1989)
1-41.

[2] R. Blute, J.R.B. Cockett, R.A.G. Seely, Categories for computation in context and unified logic, Journal of Pure and
Applied Algebra 116 (1997) 49-98.

[3] M. Hasegawa, Decomposing typed lambda calculus into a couple of categorical programming languages, in: D. Pitt, D.E.
Rydeheard, P.T. Johnstone (Eds.), Proceedings of the 6th International Conference on Category Theory and Computer
Science (CTCS'95), LNCS, vol. 953, Springer, Berlin, 1995, pp. 200-219.

[4] B. Jacobs, Categorical Type Theory. PhD thesis, University of Nijmegen, 1991.

[5] G.M. Kelly, The Basic Concepts of Enriched Categories, Cambridge University Press, Cambridge, 1982.

[6] G.M. Kelly, A.J. Power, Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads,
Journal of Pure and Applied Algebra 89 (1993) 163-179.

[7] P.B. Levy, Call-by-push-value: a subsuming paradigm (extended abstract), in: J.-Y Girard (Ed.), Typed Lambda-Calculi
and Applications, LNCS, vol. 1581, Springer, L'Aquila, 1999, pp. 228-242.

[8] P.B. Levy, Call-by-push-value, PhD thesis, Queen Mary, University of London, 2001.

[9] E. Moggi, Computational Lambda Calculus and Monads, Proc. LICS, 89, IEEE Press, 1989, pp. 14-23.

[10] E. Moggi, Notions of computation and monads, Information and Computation 93 (1991) 55-92.

[11] A.J. Power, Premonoidal categories as categories with algebraic structure, Theoretical Computer Science 278 (1-2) (2002)
303-321.

[12] A.J. Power, E.P. Robinson, Premonoidal categories and notions of computation, Mathematical Structures in Computer
Science 7 (5) (1997) 453-468.

[13] A.J. Power, H. Thielecke, Environments, continuation semantics and indexed categories, Proceedings TACS'97, LNCS,
vol. 1281, Springer, Berlin, 1997, pp. 391-414.

[14] A.J. Power, H. Thielecke, Closed Freyd- and kappa-categories, Proceedings ICALP '99, LNCS, vol. 1644, Springer,
Berlin, 1999, pp. 625-634.

[15] E.P. Robinson, Variations on algebra: monadicity and generalisations of equational theories, Formal Aspects of Computing
13 (3-5) (2002) 308—326.

[16] E.P. Robinson, G. Rosolini, Categories of partial maps, Information and Computation 79 (1988) 95-130.

[17] H. Thielecke, Categorical Structure of Continuation Passing Style. PhD thesis, University of Edinburgh, 1997. Also avail-
able as technical report ECS-LFCS-97-376.

