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Abstract. In this paper we systematically review the control volume finite
element (CVFE) methods for numerical solutions of second-order partial dif-
ferential equations. Their relationships to the finite difference and standard
(Galerkin) finite element methods are considered. Through their relationship
to the finite differences, upstream weighted CVFE methods and the conditions
on positive transmissibilities (positive flux linkages) are studied. Through their
relationship to the standard finite elements, error estimates for the CVFE are
obtained. These estimates are comparable to those for the standard finite
element methods using piecewise linear elements. Finally, an application to
multiphase flows in porous media is presented.

1. Introduction. Finite difference, finite element, and finite volume methods are
three numerical methods widely used in solving partial differential equations. Among
them, the finite volume methods are the most intuitive because they are based on
the local mass or energy conservation over volumes (control volumes or co-volumes).
These methods lie somewhere between the finite element and finite difference meth-
ods. They possess grid flexibility analogous to that of the finite element methods,
and they can be implemented in a way comparable to the finite difference methods.

The finite volume methods are also referred to as the control volume finite element
methods [13, 25, 29], finite volume element methods [6, 35], and mixed covolume
methods [16, 19]. They can be also seen as the finite element version of the cell-
centered finite difference and box methods [5, 28, 39]. Regardless of their physical
interpretations, the finite volume methods can be mathematically treated as Petrov-
Galerkin methods with trial function spaces associated with certain finite element
spaces and test spaces related to finite volumes.

Much research has been devoted to the error analysis of the finite volume methods
for second-order elliptic and parabolic problems [6, 15, 18, 33]. Their error estimates
of optimal order in the H1-norm are the same as those for the linear finite element
method [23, 32, 34]. Their error estimates of optimal order in the L2-norm can be
also derived [15, 23]. The finite volume methods for generalized Stokes problems
were studied by many people [14, 16, 17, 19, 38, 41].
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In this paper we systematically review the finite volume methods, here termed
the control volume finite element (CVFE) methods. For simplicity of the presen-
tation, we focus on triangular elements. For rectangular elements, the reader may
consult with [1]. We first write these methods in a finite difference formulation.
It is known that transmissibility coefficients in this formulation must be positive.
Positive transmissibilities or positive flux linkages always yield a direction of numer-
ical fluxes in the physical direction. Negative transmissibilities are not physically
meaningful, and generate unsatisfactory solutions. Here we discuss the condition
on finite element grids that lead to positive transmissibilities.

We then consider upstream weighted CVFE methods. It is known that upstream
weighting techniques are not easily incorporated into the standard finite element
formulation. On the other hand, the CVFE formulation makes these techniques
easy to incorporate. The CVFE methods without upstream weighting produce nu-
merical fluxes continuous across the interfaces between control volumes. If upstream
weighting is not properly introduced, the resulting CVFE methods may not pre-
serve this physically important property. Here we discuss two types of upstream
weighting strategies: potential- and flux-based, and we show that the former gen-
erates discontinuous fluxes across interfaces, while the latter produces continuous
ones.

We next derive error estimates for the CVFE methods. To that end, we first
establish their relationship to the standard finite element methods. Then, through
this relationship error estimates for the CVFE are obtained. In particular, for
piecewise linear elements, these two methods are of comparable accuracy.

Finally, we numerically test the CVFE methods. Numerical results support the
theoretical analysis carried out in this paper. An application of the CVFE methods
to multiphase flow in porous media is also presented.

The rest of the paper is organized as follows. In section 2, we state the par-
tial differential problem and review the standard finite element methods. Then,
in section 3 we define the basic CVFE methods. In section 4, we consider the
condition required for positive transmissibilities. In section 5, upstream weighted
CVFE methods are developed. An error analysis is given in section 6. In section 7,
numerical experiments are performed. Finally, in section 8 concluding remarks are
given.

2. Preliminaries. We consider the model problem

−∇ · (a∇p) = f in Ω,

p = 0 on Γ,
(2.1)

where Ω is a bounded polygonal domain in the plane with boundary Γ. This equa-
tion can be thought of as a pressure equation in fluid flow in porous media [4, 22].
The coefficient tensor a is assumed to be symmetric and positive definite:

0 < a∗ ≤ |η|2
2∑

i,j=1

aij(x)ηiηj ≤ a∗ < ∞, x ∈ Ω, η 6= 0 ∈ <2. (2.2)

The right-hand side function f is in L2(Ω). The usual Sobolev spaces W l,q(Ω) with
the norm ‖·‖W l,q(Ω) and the seminorm |·|W l,q(Ω) [2] are used, where l is a nonnegative
integer and 0 ≤ q ≤ ∞. When q = 2, we simply write H l(Ω) = W l,2(Ω). When
l = 0, we have L2(Ω) = H0(Ω). Below (·, ·)Q denotes the L2(Q) inner product (Q
is omitted if Q = Ω).
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Define
V = H1

0 (Ω) = {v ∈ H1(Ω) : v = 0 on Γ}.
A weak formulation of (2.1) is: Find p ∈ V such that

a(p, v) = (f, v) ∀v ∈ V, (2.3)

where
a(p, v) = (a∇p,∇v).

Because of assumption (2.2), problem (2.3) has a unique solution.
For 0 < h < 1, let Kh be a shape-regular triangulation of Ω into triangles {K}

[20]. Associated with Kh, set

Vh = {v ∈ H1
0 (Ω) : v|K ∈ P1(K) ∀K ∈ Kh},

where Pr(K) (r ≥ 0) represents the space of polynomials of degree at most r on set
K. The standard finite element method for (2.1) is: Find ps

h ∈ Vh such that

a(ps
h, v) = (f, v) ∀v ∈ Vh. (2.4)

If the domain Ω is convex, it is known [20] that

‖p− ps
h‖L2(Ω) + h|p− ps

h|H1(Ω) ≤ Ch2|p|H2(Ω), (2.5)

where C is a positive constant independent of h.

3. The Basic CVFE Methods. Control volumes can be constructed around grid
nodes by joining the midpoints of the edges of a triangle with a point inside the
triangle (cf. Fig. 1). Different locations of the point give rise to different forms
of the flow term between grid nodes. When it is the barycenter of the triangle,
the resulting grid is of CVFE type, and the resulting finite element methods are
the CVFE methods. These methods were first introduced by Lemonnier (1979) for
porous media flow simulation [29]. The CVFE grids are different from the PEBI
(perpendicular bisection) grids (also called Voronoi grids [26]) in that the latter are
locally orthogonal. The CVFE grids are more flexible. Hence, as an example, we
study the CVFE methods.

vi
Fig. 1. A control volume.

Let Vi be a control volume. Replacing p by ph ∈ Vh in equation (2.1) and
integrating over Vi, we see that

−
∫

Vi

∇ · (a∇ph) dx =
∫

Vi

f dx.

The divergence theorem implies

−
∫

∂Vi

a∇ph · ν d` =
∫

Vi

f dx, (3.1)
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where ν is the outward unit normal to ∂Vi. Note that ∇ph · ν is continuous across
each segment of ∂Vi (that lies inside a triangle). Thus, if a is continuous across that
segment, so is the flux a∇ph · ν. Therefore, the flux is continuous across the edges
of the control volume Vi. Furthermore, equation (3.1) indicates that the CVFE
method is locally (i.e., on each control volume) conservative.

m m m

m

m

m
m

i j

k

a

bd

c

Fig. 2. A base triangle.

Given a triangle K with vertices mi, mj , and mk, edge midpoints ma, mb, and
md, and center mc (cf. Fig. 2), it follows that the approximation ph to p on K is
given by

ph = piλi + pjλj + pkλk, (3.2)
where the local basis functions λi are defined by

λi(mj) =

{
1 if i = j,

0 if i 6= j,

with
λi + λj + λk = 1. (3.3)

They are the barycentric coordinates of the triangle K. Define

ai = mj,2 −mk,2, bi = −(mj,1 −mk,1), ci = mj,1mk,2 −mj,2mk,1,

where mi = (mi,1,mi,2) and {i, j, k} is cyclically permuted. Then the local basis
functions λi, λj , and λk are given by


λi

λj

λk


 =

1
2|K|




ci ai bi

cj aj bj

ck ak bk







1
x1

x2


 ,

where |K| is the area of the triangle K. Consequently,
∂λl

∂x1
=

al

2|K| ,
∂λl

∂x2
=

bl

2|K| , l = i, j, k. (3.4)

We consider the computation of the left-hand side of equation (3.1) on mamcmd

(cf. Fig. 2):

fi ≡ −
∫

mamc+mcmd

a∇ph · ν d`. (3.5)

On mamc,

ν =
(mc,2 −ma,2,ma,1 −mc,1)

|mamc| ,

and, on mcmd,

ν =
(md,2 −mc,2,mc,1 −md,1)

|mcmd| ,
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where |mamc| denotes the length of edge mamc. Consequently, if a is a constant
tensor on the triangle K, it follows from (3.2), (3.4), (3.5), the definition of ai and
bi, and simple algebraic calculations that

fi = |K|
k∑

l=i

a∇λl · ∇λi pl, (3.6)

which shows that the CVFE and standard finite element methods using piecewise
linear functions produce the same stiffness matrix (see section 6).

Using (3.3), equation (3.6) can be recast in the finite difference form

fi = −Tij(pj − pi)− Tik(pk − pi), (3.7)

where the transmissibility coefficients Tij and Tik are

Tij = −|K|a∇λj · ∇λi, Tik = −|K|a∇λk · ∇λi.

m m

m
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θ
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Fig. 3. Two adjacent triangles.

We now consider the assembly of the global transmissibility matrix. Each con-
nection between any two adjacent nodes mi and mj includes the contributions from
two triangles K1 and K2 that share the common edge with endpoints mi and mj

(cf. Fig. 3). The transmissibility between mi and mj , where at least one of them
is not on the external boundary, is

Tij = −
2∑

l=1

(|Kl|a∇λj · ∇λi)
∣∣∣∣
Kl

. (3.8)

Applying equations (3.1) and (3.7), we obtain the linear system on the control
volume Vi in terms of pressure values at the vertices of triangles

−
∑

j∈Ωi

Tij (pj − pi) = Fi, (3.9)

where Ωi is the set of all neighboring nodes of mi and Fi =
∫

Vi

f dx.

The above result is summarized in the next theorem.

Theorem 3.1. With a being piecewise constant on Kh and the transmissibility
coefficient Tij between nodes mi and mj being defined in (3.8), system (3.1) can be
written in terms of the finite difference formulation (3.9).

If ∂Vi contains a part of the Dirichlet boundary in (2.1), then the pressure on
the corresponding part is given. If a Neumann boundary condition is imposed in
(2.1), then the flux on the part of the Neumann boundary ∂Vi is known. The third
(mixed type) boundary condition can be also easily incorporated.
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4. Positive Transmissibilities. The transmissibility coefficient Tij defined in
(3.8) must be positive. Positive transmissibilities or positive flux linkages always
yield a direction of numerical fluxes in the physical direction. Negative transmissi-
bilities are not physically meaningful, and generate unsatisfactory solutions.

For simplicity, we consider a homogeneous anisotropic medium: a = diag (a11, a22)
(i.e., a11 and a22 are positive constants). In this case, using (3.4) and (3.6), Tij re-
stricted to each triangle K (cf. Fig. 3) is

Tij = −a11ajai + a22bjbi

4|K| .

Introduce a coordinate transform:

x′1 =
x1√
a11

, x′2 =
x2√
a22

. (4.1)

Under this transform, the area of the transformed triangle K ′ is

|K ′| = |K|√
a11a22

.

Consequently, Tij becomes

Tij =
√

a11a22
|mk′mj′ | |mk′mi′ | cos θk′

4|K ′| =
√

a11a22
cot θk′

2
,

where θk′ is the angle of the triangle at node mk′ in the transformed plane. Because
each global transmissibility consists of the contributions from two adjacent triangles,
the global Tij between nodes mi and mj (cf. Fig. 3) is

Tij =
√

a11a22

(
cot θk′1 + cot θk′2

2

)
, (4.2)

where θk′1 and θk′2 are the opposite angles of the two triangles. Thus the requirement
Tij > 0 is equivalent to

θk′1 + θk′2 < π. (4.3)
For an edge on the external boundary, the requirement is

θk′ < π/2. (4.4)

Note that all these angles are measured in the (x′1, x
′
2)-coordinate plane.

Theorem 4.1. Assume that a = diag (a11, a22) with positive constants a11 and a22.
Then the requirement Tij > 0 is equivalent to condition (4.3). For an edge on the
external boundary, condition (4.4) is required.

It is interesting to note that condition (4.3) is related to a Delaunay triangulation.
A Delaunay triangulation satisfies the empty circle criterion: The circumcircle of
each triangle must not contain any other nodes in its interior. Given a shape-
regular triangulation Kh of a convex domain, Kh can be converted to a Delaunay
triangulation in a sequence of local edge swaps as follows [21, 27]: Each internal
edge in Kh is examined. If it is a part of a convex quadrilateral (cf. Fig. 3), then the
circumcircles of the two triangles are checked. If one of the circumcircles contains
the fourth vertex of the quadrilateral, then the diagonal of this quadrilateral is
swapped (cf. Fig. 4). The resulting local triangulation then satisfies the empty
circle criterion, i.e., the local optimality condition [21, 27]. A sequence of local
edge swaps eventually converges, so that every internal edge is locally optimal. All
internal edges of a triangulation are locally optimal if and only if it is a Delaunay
triangulation [27].
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Fig. 4. An edge swap.

On the other hand, the local optimal condition is equivalent to condition (4.3)
[21]. Hence the edge swapping procedure can be given geometrically: Given a
shape-regular triangulation Kh, if the sum of the two angles opposite edge mimj

(cf. Fig. 3) is larger than π, then this edge is replaced by edge mk1mk2 . This edge
swap can be only carried out if the quadrilateral is convex. If it is not, then condition
(4.3) must necessarily be true. For a convex domain, no addition or movement of
nodes is required to convert Kh to a Delaunay triangulation.

For problem (2.1), the edge swapping procedure can be generalized [24]: Each
edge mimj is examined, and the transmissibility Tij is computed using equation
(3.8). If Tij is negative, then this edge is replaced by mk1mk2 . If the solution
domain is convex and a is constant, this procedure is equivalent to establishing a
Delaunay triangulation in the (x′1, x

′
2) plane where a′ is the identity tensor. The

equivalence of positive transmissibilities with a Delaunay triangulation is true only
for internal edges in the transformed plane when a is constant. In general, a De-
launay triangulation of the physical plane cannot ensure positive transmissibilities,
even for internal edges. However, because most domains that arise in practical ap-
plications can be treated as a union of convex regions with a constant permeability
tensor a, the local edge swap procedure should tend to minimize the number of
internal edges having negative transmissibilities.

In general, edges on the external boundary of a domain can have negative trans-
missibilities. This problem can be overcome by adding a boundary node as in Fig. 5.
Suppose that Tij < 0 on edge mimj ; i.e., in the (x′1, x

′
2) plane, the angle opposite

this edge is larger than π/2. A new node is added at the intersection of mimj with
the orthogonal line segment to mimj drawn from mk. Note that there is no edge
swap for a boundary edge.

m

m

m

i

j

k

New node

Fig. 5. An addition of a new boundary node.

5. Upstream Weighted CVFE Methods. The basic idea of upstream weighting
is to choose the value of a property coefficient according to the upstream direction
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of a flux. This idea has been used in upwind finite difference methods [4]. In this
section, we consider two upstream weighting strategies for equation (3.9): potential-
and flux-based.

5.1. The potential-based upstream weighting scheme. Suppose that equa-
tion (2.1) is of the form

−∇ · (λa∇p) = f(x1, x2) in Ω, (5.1)

where a and λ are a permeability tensor and a mobility coefficient, respectively, in
porous media flow, for example. For this problem, a CVFE analogue to (3.9) can
be derived. If a is a scalar a and is different on the two sides of an edge of Vi, across
that edge it should be approximated by the harmonic average

a(x) =
2a+(x)a−(x)

a+(x) + a−(x)
,

where a+ and a− indicate the respective values from the two sides. The reason for
using a harmonic average is that for an inactive node (i.e., the node where a = 0),
this average gives the correct value (i.e., a = 0), in contrast with the arithmetic
average. If a is a tensor, this harmonic average is used for each component of a and
the result is denoted by ahar. For the mobility coefficient λ, in practice, upstream
weighting must be used to maintain stability for the CVFE methods. As a result
of these two observations, the transmissibility between nodes mi and mj restricted
to each triangle K becomes

Tij = −|K| λup
ij ahar∇λj · ∇λi, (5.2)

where the potential-based upstream weighting scheme is defined by

λup
ij =

{
λ(mi) if pi > pj ,

λ(mj) if pi < pj .
(5.3)

In fact, it is a pressure-based approach in the current context. The name “potential-
based” is due to the fact that potentials are usually used in place of p in porous
media flow simulation.

This potential-based upstream weighting scheme is easy to implement. However,
it violates the important flux continuity property across the interfaces between
control volumes. To see this, consider the case a = diag (a11, a22), where a is a
constant diagonal tensor on the triangle K (cf. Fig. 2). Applying (3.4) and (5.2),
the flux on edge mamc is

fi,mamc= −λup
ij

(
a11(mc,2 −ma,2)

∂λj

∂x1
+ a22(ma,1 −mc,1)

∂λj

∂x2

)
(pj − pi)

−λup
ik

(
a11(mc,2 −ma,2)

∂λk

∂x1
+ a22(ma,1 −mc,1)

∂λk

∂x2

)
(pk − pi),

and on edge mcmd,

fi,mcmd
= −λup

ij

(
a11(md,2 −mc,2)

∂λj

∂x1
+ a22(mc,1 −md,1)

∂λj

∂x2

)
(pj − pi)

−λup
ik

(
a11(md,2 −mc,2)

∂λk

∂x1
+ a22(mc,1 −md,1)

∂λk

∂x2

)
(pk − pi).



ON THE CONTROL VOLUME FINITE ELEMENT METHODS 697

Similarly, the fluxes on edges mbmc and mcma at node mj are, respectively,

fj,mbmc= −λup
jk

(
a11(mc,2 −mb,2)

∂λk

∂x1
+ a22(mb,1 −mc,1)

∂λk

∂x2

)
(pk − pj)

−λup
ji

(
a11(mc,2 −mb,2)

∂λi

∂x1
+ a22(mb,1 −mc,1)

∂λi

∂x2

)
(pi − pj),

and

fj,mcma= −λup
jk

(
a11(ma,2 −mc,2)

∂λk

∂x1
+ a22(mc,1 −ma,1)

∂λk

∂x2

)
(pk − pj)

−λup
ji

(
a11(ma,2 −mc,2)

∂λi

∂x1
+ a22(mc,1 −ma,1)

∂λi

∂x2

)
(pi − pj),

and the fluxes on edges mdmc and mcmb at node mk are, respectively,

fk,mdmc
= −λup

ki

(
a11(mc,2 −md,2)

∂λi

∂x1
+ a22(md,1 −mc,1)

∂λi

∂x2

)
(pi − pk)

−λup
kj

(
a11(mc,2 −md,2)

∂λj

∂x1
+ a22(md,1 −mc,1)

∂λj

∂x2

)
(pj − pk),

and

fk,mcmb
= −λup

ki

(
a11(mb,2 −mc,2)

∂λi

∂x1
+ a22(mc,1 −mb,1)

∂λi

∂x2

)
(pi − pk)

−λup
kj

(
a11(mb,2 −mc,2)

∂λj

∂x1
+ a22(mc,1 −mb,1)

∂λj

∂x2

)
(pj − pk).

For the flux to be continuous across edge mamc, it is required that
fi,mamc + fj,mcma = 0; i.e.,

−λup
ij

(
a11(mc,2 −ma,2)

∂λj

∂x1
+ a22(ma,1 −mc,1)

∂λj

∂x2

)
(pj − pi)

−λup
ik

(
a11(mc,2 −ma,2)

∂λk

∂x1
+ a22(ma,1 −mc,1)

∂λk

∂x2

)
(pk − pi)

−λup
jk

(
a11(ma,2 −mc,2)

∂λk

∂x1
+ a22(mc,1 −ma,1)

∂λk

∂x2

)
(pk − pj)

−λup
ji

(
a11(ma,2 −mc,2)

∂λi

∂x1
+ a22(mc,1 −ma,1)

∂λi

∂x2

)
(pi − pj) = 0.

Because it must be satisfied for all choices of a, this equation reduces to

a11(ma,2 −mc,2)
[
λup

ij

∂λj

∂x1
(pj − pi) + λup

ji

∂λi

∂x1
(pj − pi)

+λup
ik

∂λk

∂x1
(pk − pi) + λup

jk

∂λk

∂x1
(pj − pk)

]
= 0,

and

a22(mc,1 −ma,1)
[
λup

ij

∂λj

∂x2
(pj − pi) + λup

ji

∂λi

∂x2
(pj − pi)

+λup
ik

∂λk

∂x2
(pk − pi) + λup

jk

∂λk

∂x2
(pj − pk)

]
= 0.

For these two equations to hold simultaneously for any type of triangle, the only
possibility is

pk ≥ pi = pj .
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In the same manner, we can prove

pi ≥ pj = pk and pj ≥ pi = pk.

Hence, for the flux to be continuous across the edges of control volumes, pi = pj =
pk. That is, the flux is continuous across the edges of all control volumes if and
only if the approximate solution ph has the same value at all vertices, which is
generally not true. Therefore, in general, the potential-based upstream weighted
CVFE methods generate a discontinuous flux across the edges of control volumes.

Theorem 5.1. The potential-based upstream weighting scheme (5.3) generates a
discontinuous flux across the edges of control volumes unless the approximate solu-
tion ph has the same value at all vertices.

On the other hand, the above argument leads to another upstream weighting
strategy: flux-based.

5.2. The flux-based upstream weighting scheme. For the flux-based approach,
the upstream direction is determined by the sign of a flux. It follows from (3.5) and
(5.2) that the flux on edge mamc at node mi (cf. Fig. 2) is

fi,mamc = −
k∑

l=i

λupahar∇λl · (mc,2 −ma,2,ma,1 −mc,1) pl,

and, at node mj ,

fj,mcma = −
k∑

l=i

λupahar∇λl · (ma,2 −mc,2,mc,1 −ma,1) pl,

where the upstream weighting is now defined by

λup =

{
λ(mi) if fi,mamc > 0,

λ(mj) if fi,mamc < 0.
(5.4)

From this definition it follows that

fi,mamc + fj,mcma = 0. (5.5)

The fluxes on other edges can be defined in the same fashion. It is evident from
(5.5) that the flux-based upstream weighted CVFE methods have a continuous flux
across the edges of control volumes.

Theorem 5.2. The flux-based upstream weighting scheme (5.4) generates a contin-
uous flux across the edges of control volumes.

6. Error Analysis for the CVFE Methods. To derive an error estimate for
the CVFE methods, we write equation (3.1) in a more slightly general form. For
simplicity, let a be the identity tensor. For a variable coefficient a, the result in
this section remains valid if a is projected into the space of piecewise constants
associated with Kh as in the treatment of the standard finite element methods [8]
(also refer to equation (3.6)).

Let Kh be the set of all control volumes {Vi}, and Wh be the space of piecewise
constants with respect to Kh whose elements vanish on Γ. Let {ϕi} denote the
usual nodal basis for Vh that satisfies

ϕi(xj) = δij ,
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where xj is a vertex in the triangulation Kh. Also, let {ψi} indicate the basis for
Wh that consists of the characteristic functions:

ψi(x) =

{
1 if x ∈ Vi,

0 otherwise.

Note that the dimensions of Vh and Wh are the same. Furthermore, there exists an
invertible mapping G from Vh onto Wh: For

v(x) =
∑

i

viϕi(x), x ∈ Ω,

we define G(v) = v̂ ∈ Wh by

G(v) = v̂ =
∑

i

viψi(x), x ∈ Ω.

Note that v and v̂ have the same values at the vertices in Kh. With this mapping,
we see that ψi = ϕ̂i = G(ϕi).

Introduce the bilinear form

â(ph, w) = −
∑

Vi∈Kh

∫

∂Vi

∇ph · ν w d`, w ∈ Wh.

Now, method (3.1) is equivalently defined: Find ph ∈ Vh such that

â(ph, w) = (f, w) ∀w ∈ Wh. (6.1)

To see a relationship between method (2.4) and method (6.1), we prove the next
lemma.

Lemma 6.1. With a = I (the identity tensor),

â(ph, v̂) = a(ph, v) ∀v ∈ Vh. (6.2)

Proof. It suffices to show (6.2) with v = ϕi (thus v̂ = ϕ̂i = ψi). Set

ph =
∑

l

plϕl.

Then we see that
a(ph, ϕi) =

∑

l

a(ϕl, ϕi)pl.

From the definition of the basis functions ϕl, a(ϕl, ϕi) equals zero unless xl and
xi are the vertices of the same triangle. Thus the restriction of a(ph, ϕi) to each
triangle K ∈ Kh (cf. Fig. 2) has the form

a(ph, ϕi)|K = |K|
∑

l=i,j,k

∇ϕl · ∇ϕi pl,

which is exactly the right-hand side of (3.6) since ϕl = λl on K.

It follows from Lemma 6.1 that method (6.1) can be written: Find ph ∈ Vh such
that

a(ph, v) = (f, v̂) ∀v ∈ Vh. (6.3)

Therefore, the sole difference between the standard finite element method (2.4) and
the CVFE method (6.1) lies in the right-hand sides of these two equations.
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Theorem 6.2. Let Kh be a shape-regular triangulation of Ω, and let p and ph be
the respective solution of (2.3) and (6.3). Then

|p− ph|H1(Ω) ≤ Ch‖f‖L2(Ω). (6.4)

Proof. Subtracting equation (6.3) from equation (2.4) gives

a(ps
h − ph, v) = (f, v − v̂) ∀v ∈ Vh. (6.5)

By the definition of v̂, we see that

(f, v − v̂) =
∑

Vi

∫

Vi

f(v − vi) dx =
∑

Vi

∑

K∩Vi 6=∅,K∈Kh

∫

K

f(v − vi) dx.

Consequently, since v is linear on each K ∈ Kh,

(f, v − v̂) ≤ Ch‖f‖L2(Ω)|v|H1(Ω).

Now, taking v = ps
h − ph in (6.5) yields

|ps
h − ph|H1(Ω) ≤ Ch‖f‖L2(Ω),

which, together with (2.5), implies inequality (6.4).

7. Numerical Experiments. In this section we report a couple of examples for
the CVFE methods. In the first example we check their accuracy, and in the second
one they are applied to a two-phase flow problem in a porous medium. For more
numerical experiments on the CVFE, please refer to [30, 31].

Table 1. Numerical results for p and u.
1/h ‖p− ph‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
2 0.18584850 - 1.2560773 -
4 5.8970002E-02 1.6561 0.68846096 0.8675
8 1.5744807E-02 1.9051 0.35305205 0.9635
16 4.0029721E-03 1.9757 0.17767979 0.9906
32 1.0049860E-03 1.9939 8.8985854E-02 0.9976
64 2.5151431E-04 1.9985 4.4511228E-02 0.9994

Example 1. Let Ω = (0, 1) × (0, 1) be the unit square, a be the identity tensor,
and

f(x) = 2π2 cos(πx1) cos(πx2).
To be more general, the boundary conditions also include a Neumann portion:

∇p · ν = 0, x1 = 0 and x1 = 1, x2 ∈ (0, 1),
p = cos(πx1), x1 ∈ (0, 1), x2 = 0,

p = − cos(πx1), x1 ∈ (0, 1), x2 = 1.

Then the exact solution to (2.1) with these boundary conditions is

p = cos(πx1) cos(πx2).

Numerical errors and the corresponding convergence rates for p and its gradient
u = ∇p in the L2(Ω)-norm are given in Table 1. From these computational results,
we see that the convergence rates for p and u are asymptotically of order O(h2) and
O(h), respectively, which is consistent with our theory established in the previous
section.
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Example 2. We now apply the CVFE to two-phase flow in a porous medium.
The model presented is a general multi-dimensional model.

For the flow of two incompressible, immiscible fluids in a porous medium Ω ⊂ <d

(d ≤ 3), the mass balance equation for each of the fluid phases is [4, 13, 36]

φ
∂(ραsα)

∂t
+∇ · (ραuα) = ραqα, α = w, o, (7.1)

where α = w denotes the wetting phase (e.g., water), α = o indicates the nonwetting
phase (e.g., oil), φ is the porosity of the medium, and ρα, sα, uα, and qα are,
respectively, the density, saturation, volumetric velocity, and external volumetric
flow rate of the α-phase. The volumetric velocity uα is given by Darcy’s law

uα = −κκrα

µα
∇(pα − ραgZ), α = w, o, (7.2)

where κ is the absolute permeability of the porous medium, pα, µα, and κrα are the
pressure, viscosity, and relative permeability of the α-phase, respectively, g denotes
the gravitational constant, Z is the depth, and the x3-coordinate is in the vertical
downward direction. In addition to (7.1) and (7.2), the customary property for the
saturations is

sw + so = 1, (7.3)
and the two phase pressures are related by the capillary pressure function

pc(x, sw) = po − pw. (7.4)

Finally, we define qα in (7.1) by

qα =
∑

l

q(l)
α δ(x− x(l)), α = w, o,

where q
(l)
α indicates the volume of the fluid produced or injected per unit time at

the lth well, x(l), for phase α and δ is the Dirac delta function. Following [37], q
(l)
α

can be defined by

q(l)
α =

2πκκrα∆L(l)

µα ln
(
r
(l)
e /r

(l)
c

)
(
p(l) − pα − ραg(Z(l) − Z)

)
, (7.5)

where ∆L(l) is the length of the lth well, p(l) is the flowing bottom hole pressure at
the (datum level) depth Z(l), r

(l)
e is the equivalent radius, and r

(l)
c is the radius of

the lth well.
In this paper equations (7.1)–(7.5) are solved in an improved IMPES (implicit

pressure-explicit saturation) manner. To separate the pressure and saturation equa-
tions, we introduce the phase mobility functions

λα(x, sα) = κrα(x, sα)/µα, α = w, o,

and the total mobility
λ(x, s) = λw + λo,

where s = sw = 1− so. The fractional flow functions are defined by

fα(x, s) = λα/λ, α = w, o.

Following [3, 7], we define the global pressure as

p = po −
∫ s (

fw
∂pc

∂s

)
(x, ξ)dξ. (7.6)
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Finally, we define the total velocity

u = uw + uo. (7.7)

Now, under the assumption that the fluids are incompressible we apply (7.3) and
(7.7) to (7.1) to see that

∇ · u = q(p, s) ≡ qw + qo, (7.8)

and (7.4), (7.6), and (7.7) to (7.2) to obtain

u = −κ(λ(s)∇p + γ1(s)), (7.9)

where

γ1 = −λw∇xpc + λ

∫ s

∇x

(
fw

∂pc

∂s

)
(x, ξ)dξ − (

λwρw + λoρo

)
g∇Z.

Similarly, apply (7.4), (7.6), (7.9), and the constant densities to (7.1) and (7.2) with
α = w to obtain

φ
∂s

∂t
+∇ · {κfw(s)λo(s)

(∂pc

∂s
∇s + γ2(s)

)
+ fw(s)u

}
= qw(p, s), (7.10)

where
γ2 = ∇xpc − (ρo − ρw)g∇Z.

In (7.8) and (7.10), the well terms are now defined in terms of the global pressure
p and saturation s:

q(l)
α (p, s) =

2πκκrα∆L(l)

µα ln
(
r
(l)
e /r

(l)
c

)
(
p(l) − p− γα − ραg(Z(l) − Z)

)
, (7.11)

where

γo =
∫ s (

fw
∂pc

∂s

)
(x, ξ)dξ, γw =

∫ s (
fw

∂pc

∂s

)
(x, ξ)dξ − pc.

The pressure equation is given by (7.8) and (7.9), while the saturation equation is
described by (7.10). They determine the main unknowns p, u, and s. The model is
completed by specifying boundary and initial conditions. In this paper we consider
no-flow boundary conditions

u · ν = 0, x ∈ Γ,{
κfw(s)λo(s)

(∂pc

∂s
∇s + γ2(s)

)
+ fw(s)u

}
· ν = 0, x ∈ Γ.

(7.12)

The initial condition is given by

s(x, 0) = s0(x), x ∈ Ω. (7.13)

The differential system has a clear structure; the pressure equation is elliptic for p
and the saturation equation is parabolic for s. The parabolic equation is degenerate
in the sense that the capillary diffusion coefficient κfwλo∂pc/∂s can be zero. These
two equations are nonlinear. The mathematical properties of this system such as
existence, uniqueness, regularity, and asymptotic behavior of solutions have been
studied in [9, 10].

The global pressure p in (7.6) is used. The use of this variable reduces the
coupling between pressure and saturation equations [11]. It is also convenient in
the treatment of wells, as in (7.11). Also, in the case where fw and pc depend only
on s, it follows from (7.4) and (7.6) that

λ∇p = λw∇pw + λo∇po.
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This implies that the global pressure is the pressure that would produce the flow of
a fluid (with mobility λ) equal to the sum of the flows of fluids w and o.

It follows from (7.8) and (7.9) that

−∇ · [κ(λ(s)∇p + γ1(s))] = q(p, s).

This pressure equation is solved implicitly:

−∇ · [κn(λ(sn)∇pn + γ1(s
n))] = q(pn, sn), (7.14)

where pn represents the value of p at time level tn. On each control volume Vi, we
have

−
∫

∂Vi

κn(λ(sn)∇pn + γ1(s
n)) · ν d` =

∫

Vi

q(pn, sn) dx, (7.15)

to which the CVFE applies.
The saturation equation (7.10) is solved explicitly in time:

φ
sn+1 − sn

∆tn+1
+∇ · {κnfw(sn)λo(sn)

(∂pn
c

∂s
∇sn + γ2(s

n)
)

+ fw(sn)un
}

= qw(pn, sn),

where ∆tn+1 is the time step at level tn+1 and

un = −κn(λ(sn)∇pn + γ1(s
n)).

Again, as in (7.15) we see that, on each Vi,∫

Vi

φ
sn+1 − sn

∆tn+1
dx+

∫

∂Vi

{
κnfw(sn)λo(sn)

(∂pn
c

∂s
∇sn + γ2(s

n)
)

+fw(sn)un
} · ν d` =

∫

Vi

qw(pn, sn) dx.

(7.16)

An improved IMPES procedure [12] is used to solve (7.15) and (7.16). This
procedure utilizes an adaptive control strategy on the choice of the time step for
the saturation and takes a much larger time step for the pressure than for the
saturation. Through a stability analysis and a comparison with a simultaneous
solution procedure, we have shown that this improved procedure is effective and
efficient for the numerical simulation of two-phase flow and it is capable of solving
two-phase coning problems [12].

Table 2. Relative permeability data.
s κrw κro

0.22 0 1
0.3 0.07 0.4
0.4 0.15 0.125
0.5 0.24 0.0649
0.6 0.33 0.0048
0.8 0.65 0
0.9 0.83 0
1 1 0

This numerical example is chosen to check the applicability of the CVFE to
two-phase (water and oil) flow in a porous medium. The absolute permeability
κ is 100 md, the porosity is φ = 0.2, and the medium dimensions are 1, 050 ×
866 × 100 ft3 (the flow is two-dimensional; i.e., it is uniform in the x3-direction
and the gravity is ignored). There are five wells: a water injection located at the
center (525.00 ft, 433.00 ft) and four production wells located at (75.00 ft, 779.42 ft),
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(975.00 ft, 779.42 ft), (75.00 ft, 86.60 ft), and (975.00 ft, 86.60 ft). The bottom hole
pressures at injection and production wells are 3, 700 psi and 3, 500 psi, and the
water and oil viscosities are 0.4 cp and 6.0 cp, respectively. The relative permeability
data are given in Table 2 and the capillary pressure is zero. The initial condition is
s0 = 0.2. The harmonic average is used for the absolute permeability κ, while the
flux-based upstream weighting scheme is used for the phase and total mobilities, λα

and λ, α = w, o.
The grid size is chosen to be 50 ft between the centers of adjacent control volumes,

and the choice of time steps (in terms of a few days) is given as in [12]. We use a
saturation profile to check the grid orientation effect, which is shown in Fig. 6 at
217 days. From this figure, we see that the water front is a circle. This implies that
water spreads in the same speed in all directions, and thus the CVFE does not have
an orientation effect.

Fig. 6: The saturation at 217 days by the CVFE.

8. Concluding Remarks. We have systematically studied the CVFE methods
for numerical solutions of second-order partial differential equations. Their rela-
tionships to the finite difference and standard finite element methods are discussed.
Through their relationship to the finite differences, the upstream weighted CVFE
methods and the conditions on positive flux linkages are considered, and through
their relationship to the standard finite elements, error estimates for the CVFE
methods are obtained. These estimates are comparable to those for the standard fi-
nite element methods. Numerical experiments performed support the mathematical
theory derived in this paper. A two-phase flow application shows that the CVFE
methods are useful in reducing grid orientation effects.

Acknowledgements. The author would like to thank Professor Guanren Huan
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[7] G. Chavent and J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation,
North-Holland, Amsterdam, 1978.

[8] Z. Chen, Analysis of mixed methods using conforming and nonconfirming finite element
methods, RAIRO Model. Math. Anal. Numer., 27 (1993), 9–34.

[9] Z. Chen, Degenerate two-phase incompressible flow I: Existence, uniqueness and regularity
of a weak solution, Journal of Differential Equations, 171 (2001), 203–232.

[10] Z. Chen, Degenerate two-phase incompressible flow II: Regularity, stability and stabilization,
Journal of Differential Equations, 186 (2002), 345–376.

[11] Z. Chen and R. E. Ewing, Comparison of various formulations of three-phase flow in porous
media, J. Comp. Physics, 132 (1997), 362–373.

[12] Z. Chen, G. Huan, and B. Li, An improved IMPES method for two-phase flow in porous
media, Transport in Porous Media, 54 (2004), 361–376.

[13] Z. Chen, G. Huan, and Y. Ma, “Computational Methods for Multiphase Flows in Porous
Media,” in the Computational Science and Engineering Series, Vol. 2, SIAM, Philadelphia,
PA, 2006.

[14] Z. Chen and J. Li, A new stabilized finite volume method for the stationary Stokes equations,
submitted for publication.

[15] Z. Chen, R. Li, and A. Zhou, A note on the optimal L2-estimate of finite volume element
method, Adv. Comput. Math., 16 (2002), 291–303.

[16] S. H. Chou and D. Y. Kwak, Analysis and convergence of a MAC scheme for the generalized
Stokes problem, Numer. Meth. Partial Diff. Equ., 13 (1997), 147–162.

[17] S. H. Chou and D. Y. Kwak, A covolume method based on rotated bilinears for the generalized
Stokes problem, SIAM J. Numer. Anal., 35 (1998), 494–507.

[18] S. H. Chou and Q. Li, Error estimates in L2, H1 and L∞ in control volume methods for
elliptic and parabolic problems: a unified approach, Math Comp., 69 (2000), 103–120.

[19] S.-H. Chou and P. S. Vassilevski, A general mixed covolume framework for constructing
conservative schemes for elliptic problems, Math. Comp., 68 (1999), 991–1011.

[20] P. G. Ciarlet, “The Finite Element Method for Elliptic Problems,” North-Holland, Amster-
dam, 1978.

[21] E. F. D’Azevedo and R. B. Simpson, On optimal interpolation triangle incidences, SIAM J.
Sci. Stat. Comput., 10 (1989), 1063–1075.

[22] R. E. Ewing (ed.), “The Mathematics of Reservoir Simulation,” SIAM, Philadelphia, 1983.
[23] R. E. Ewing, T. Lin, and Y. Lin, On the accuracy of the finite volume element method based

on piecewise linear polynomials, SIAM J. Numer. Anal., 39 (2002), 1865–1888.
[24] P. A. Forsyth, A control volume finite element approach to NAPL groundwater contamina-

tion, SIAM J. Sci. Stat. Comput., 12 (1991), 1029–1057.
[25] L. S. Fung, A. D. Hiebert, and L. Nghiem, “Reservoir Simulation with a Control Volume

Finite Element Method,” SPE 21224, the 11th SPE Symp. Reser. Simul., Anaheim, 1991.
[26] B. Heinrich, ”Finite Difference Methods on Irregular Networks,” Birkhauser, Basel, Boston,

Stuttgart, 1987.
[27] B. Joe, Delaunay triangular meshes in convex polygons, SIAM J. Sci. Stat. Comput., 7 (1986),

514–539.
[28] R. D. Lazarov, I. D. Mishev, and P. S. Vassilevski, Finite volume methods for convection-

diffusion problems, SIAM J. Numer. Anal., 33 (1996), 31–55.
[29] P. A. Lemonnier, Improvement of reservoir simulation by a triangular discontinuous finite

element method, SPE paper 8249 presented at the 1979 Annual Fall Technical Conference
and Exhibition of SPE of AIME, Las Vegas, Sept. 23–26.

[30] B. Li, Z. Chen, and G. Huan, Control volume function approximation methods and their ap-
plications to modeling porous media flow I: The two-phase flow, Advances in Water Resources,
26 (2003), 435–444.

[31] B. Li, Z. Chen, and G. Huan, Control volume function approximation methods and their appli-
cations to modeling porous media flow II: The black oil model, Advances in Water Resources,
27 (2004), 99–120.

[32] R. Li, Generalized difference methods for a nonlinear Dirichlet problem, SIAM J Numer
Anal., 24 (1987), 77–88.



706 ZHANGXIN CHEN

[33] R. Li, Z. Chen, and W. Wu, “The Generalized Difference Method for Differential Equations-
Numerical Analysis of Finite Volume Methods,” Marcel Dekker, New York, 2000.

[34] R. Li and P. Zhu, Generalized difference methods for second order elliptic partial differential
equations (I) (in Chinese), Numer. Math., 4 (1982), 140–152.

[35] C. Liu and S. McCormick, The finite volume element method (FVE) for planar cavity flow,
Proc. 11th Internat. Conf. on CFD, Williamsburg, VA, June 28–July 2, 1988, 365–387.

[36] D. W. Peaceman, “Fundamentals of Numerical Reservoir Simulation,” Elsevier, New York,
1977.

[37] D. W. Peaceman, “Interpretation of Well-block Pressures in Numerical Reservoir Simulation,”
SPE 6893, 52nd Annual Fall Technical Conference and Exhibition, Denver, 1977.

[38] H. Rui, Analysis on a finite volume element method for the Stokes problems, Acta Mathe-
maticae Applicatae Sinica, English Series, 3 (2005), 359–372.

[39] R. S. Varga, “Matrix Iterative Analysis,” Prentice-Hall, Englewood Cliffs, NJ, 1962.
[40] S. Verma and K. A. Aziz, Control volume scheme for flexible grids in reservoir simulation,

Paper SPE37999, the 1997 SPE Symposium on Reservoir Simulation, Dallas, June 8-11, 1997.
[41] X. Ye, On the relationship between finite volume and finite element methods applied to the

Stokes equations, Numer. Methods Partial Diff. Equ., 5 (2001), 440–453.

Received for publication September 2006.
E-mail address: zchen@mail.smu.edu


