
An Anonymous Credit Card System

Elli Androulaki and Steven Bellovin

Technical Report CUCS-010-09

Abstract. Credit cards have many important benefits; however, these same benefits often carry with
them many privacy concerns. In particular, the need for users to be able to monitor their own trans-
actions, as well as bank’s need to justify its payment requests from cardholders, entitle the latter to
maintain a detailed log of all transactions its credit card customers were involved in. A bank can
thus build a profile of each cardholder even without the latter’s consent. In this technical report, we
present a practical and accountable anonymous credit system based on ecash , with a privacy preserving
mechanism for error correction and expense-reporting.

1 Introduction

Motivation: Credit Cards vs. Consumer’s Privacy. Credit cards have many useful properties. Apart
permitting delayed payment, they provide users with logs of their own transactions, receipts, and the op-
portunity to challenge and correct erroneous charges. However, these same benefits are a privacy risk: banks
can use the same information to build and sell profiles of their customers. We need a system that preserves
the benefits of credit cards without violating users’ privacy.

In the context of e-commerce, privacy of an entity is being able to transact with other entities without
any unauthorized outsider being able to acquire any transaction-related information. In addition, no party
should be able to build profiles of any other party based on purchases without the latter’s consent. Being
closely related to their owners’identities, credit cards’ extended use constitutes a serious threat to consumers’
privacy: Frequent occurrences of credit card losses, credit card number based-impersonation attacks as well
as human nature errors, i.e. overcharge of a client, make it necessary for cardholders to be able to monitor
their own transaction activity and for merchants to provide banks with detailed description of each credit card
transaction. Under the umbrella of the need of immediate charge justification/correction, each bank, which
is no more trusted than the people operating it, acquires a global view of its customers’ transaction activity.
None of the currently deployed credit card systems offer consumer’s privacy towards banks. Given the fact
that the percentage of credit card-based purchases is increasing, a deployable privacy preserving credit card
system has become quite important. This is the problem we have solved.
Privacy Preserving Payment Mechanisms. Anonymous Credit Cards were introduced in 1994 by Low
etl. [lpm94]. However, their scheme involves many trusted parties and offers no expense report or error
correction service. Current schemes have some of the privacy problems mentioned earlier:
Ecash. Ecash [chl05,dcn90] is a substitute of money on the Internet which cannot be faked, copied or spent
more than once. It is known to provide absolute anonymity, namely no one can relate a particular ecash coin
(ecoin) with its owner. One would argue that ecash could solve the problem we described before. Consumers
can indeed buy anonymous ecoins from a bank/mint and use them in their online transactions. However,
ecash is a prepayment based — as opposed to the most popular credit based — scheme, and used strictly
for online transactions; additionally, the complete anonymity it guarantees gives no opportunities for error
correction or expense reporting.
Anonymous Debit Cards(ADCs). Anonymous Debit Cards are prepaid ecash -based cards, which are recharged
by cardholders and used to pay for goods anonymously. However, their use is very limited; among the reasons
are the lack of error correction and proof of purchase mechanisms; additionally, they operate in a debit rather
than a credit fashion, i.e. the amount of money paid by it, is subtracted from one’s account, when the card
is initially obtained.

Our Contribution. In this technical report we introduce a privacy-preserving credit card mechanism which
can be applied in current credit card systems. In particular, we present a realizable protocol to support
“credit card”-based online and offline transactions, in which banks, unless authorized by the cardholder, do
not acquire any knowledge of their customers’ transactions. At the same time, cardholders are provided with
detailed reports regarding their purchases and may participate on any type of merchant credit card offers.
For the purposes of our system, we made use of a combination of two types of the compact cash [chl05]
scheme for payments, and a combination of blind [cl02] and plain digital signatures for the rest of our
system’s operations.

In the following sections we will briefly present our system’s main functions. For space reasons, we have put
the more detailed presentation of all the services provided by our scheme in [?]. It also includes full security
proofs.

2 System Architecture

A typical credit card mechanism consists of cardholders (consumers), merchants (sellers), Acquiring Banks,
Card-Issuing Banks and Credit Card Associations.

When eligible to issue a credit card, a consumer collaborates with a Card Issuing Bank she maintains
an account with. The Card Issuing Bank charges the cardholders for outpayment and bears the risk of
fraudulent use of the card. On the other hand, Merchants, who are eligible to receive credit card payments,
are in agreement with an Acquiring Bank authorized to receive payments on behalf of them. Banks are
organized in Credit Card Associations, that set the transaction rules between Card Issuing and Acquiring
Banks.

For convenience, in the following sections, we will refer to merchant as ‘he’, to client as ‘she’ and to any
type of Bank as ‘it’. In addition, we will use the following acronyms: CIB for Card Issuing Banks, ABs for
Acquiring Banks, ACCA for our Anonymous Credit Card Association and ACCs for the anonymous credit
cards of our system.

As we aim to to create a realizable system, we assume that our adversary has all the powers and motives
a real Bank/merchant/cardholder or groups of them would have. In addition, we assume that all parties
have as main objective to increase their profit and would not act against it. More specifically,

– All types of Banks are “honest but curious”, namely while they are trusted to do their functional
operations correctly, they may collude and combine the information they possess to track their customers’
activities.

– Merchants are mostly interested in receiving their payment. However, they may try to ”deceive” a
customer into making her pay more. In addition, for advertising purposes, merchants may be motivated
— if cost effective — to collaborate with Banks to profile their customers. In offline transactions the
merchant knows the customer’s face. However, any attempt to identify a customer manually (i.e. by
comparing pictures online) is not cost effective and is thus highly unlikely.

– Cardholders may try to “cheat”, i.e. not to pay, to attempt to forge an ACC or to frame another customer
by accusing her of having cheated.

3 Requirements

Privacy and the rest of our system requirement will be presented in this section. For simplicity and as we
assumed collaboration between Banks, we will refer to all of them as if they constituted a unite organization,
a general Bank.

Privacy. Given a simple (online) cardholder-merchant transaction, no (client/merchant)-unauthorized third
party — including the Bank — should be able to gain any information regarding that particular transaction
or link it to a particular cardholder even with merchant’s collaboration (Customer Anonymity w.r.t Bank

2

and merchants). In addition, given a cardholder, tracing her ACC based transactions should be impossible
(non-Traceability). However, we require that the privacy provided in our system is conditional : guaranteed
for honest cardholders, but immediately revoked for dishonest ones.

As mentioned before, one of our fundamental requirements is system’s Deployability, i.e. our proto-
cols should be possible to be applied on the current credit card systems’ architecture described in previous
section. Credit Card Unforgeability and non-Transferability are also required, as our cards should
not be forgeable or used by any third party. It should be possible for cardholders to track their transac-
tions (Expense Report Service) and provide an undeniable proof of any mischarge (Error Correction
Service) without endangering their privacy. Privacy preserving Loss Recovery of the card and Special
interest rate offers — i.e. card promotion agreements between the Bank and the merchants — common in
current credit card systems should also be supported.

4 Anonymous Credit Card System

Our credit mechanism can be viewed as a long term loan. The cardholder is credited the amount she borrows
to transact, while credit limit is the highest price that loan can get. The amount borrowed is outpaid in a
predefined interest rate as in current credit card systems. To avoid charges for a bigger amount than the one
she has spent, the cardholder is required — at the end of each predefined time period, which is usually a
month — to provide undeniable proof of the amount of money she has spent.

Identities-Master Secrets. Entities in our system (cardholders, banks, merchants) are identified by the signa-
ture keys they issue after entering the system. However, the transaction activity of each cardholder is entirely
enabled by a master secret, Ms , which is part of her secret signature-related information. As impossible to
be certified without a bank’s collaboration, proof of possession of a valid Ms denotes a valid cardholder and
any attempt to cheat would result in recovery of the identity and Ms of the misbehaving entity.

Bank Data Management. CIBs maintain a large database consisting of their customers’ account information.
In particular, CIBs manage Ddebit for customers’ debit accounts, Dcredit for the credit accounts, Danon for the
temporary anonymous accounts used only in online ACC transactions and Dhist which is used as a log of
Dcredit and Danon. ABs — which may/may not be CIBs — are connected to merchants’ debit accounts.

System Operation. ACCs are issued with the collaboration of a CIB and the intended cardholder, who has
already opened an account with the former. ACC’s functionality is based on two types of ecash wallets, which
are withdrawn at the ACC issuing procedure: the payment wallet Wp and the identity one Wid. The two
wallets have the same number of ecoins , which is in proportion to the credit limit of the cardholder. However,
they differ to their traceability mechanism in case of double-spending. If double-spent, Wp only reveals the
identity of the double-spender. On the contrary, if part of Wid is double-spent, Ms of the double-spender and
all the ecoins withdrawn by the latter are revealed. Wp’s traceability attributes are used in the loss recovery
protocol, while Wid’s are used in identifying malicious parties.

Payment procedure basically consists of a merchant authentication phase followed by two ecash spending
procedures. In offline purchases, the cardholder uses merchant’s machine to spend the same number of ecoins
from both wallets, Wp and Wid. Spent ecoins ’ value corresponds to the price of the product. Transaction
details are signed by merchant and stored (as receipt) in the card. Merchant is paid when he deposits the
ecoins he has obtained through his customers to his AB. Apparently, any attempt on cardholder’s side to
cheat, i.e. by using two copies of the same card will reveal — because of the Wid double-spending defense
mechanism — the cheater’s Ms . To enable online purchases, customer sets up an anonymous account with
her CIB. In particular, she makes use of an ATM machine where she spends the amount of ecash she would
like to use for the online purchases from both wallets. Both parties agree on secret information which would
enable a cardholder to authorize the intended merchant’s AB to substract safely money from that anonymous
account. Secret information is renewed so that replay attacks can not succeed. At the end of each month,

3

the cardholder deposits in person the unspent part of her wallets to her CIB, so that the former is charged
accordingly.

Each cardholder is encouraged each fixed time interval to back up the content of her ACC. In case of
loss, the backed up ACC content is simply copied to another card. Faking ACC’s loss and making use of
both ACCs (the new and the old) will reveal customer’s identity, who is imediately charged1. In all cases,
the content of the card is encrypted so that only its legal owner can read its content. Expense Report Service
is achieved through a decryption of the transaction-part of the card which can take place locally, at client’s
machine.

ACC promotion offers are realized through coupons obtained by each merchant from the ACCA. Coupons
are stored in the ACC at the end of the transaction and deposited by the cardholder to her CIB, for the
former to obtain better interest rates. To preserve cardholder anonymity coupons’ deposit procedure is done
in two phases.
In what follows we will use the following notation:

• SigC(Msg) (SigH
C(Msg)) for the signature of C on Msg (H(Msg)).

• B[G]SigM(Msg) (B[G]SigH
M(Msg)) for the blind [group] signature of Mon Msg(H(Msg)).

• {Msg}K for the encryption of Msg under key K. For efficiency, we induct every asymmetric encryption a
symmetric one. Therefore, {Msg}PK denotes {K}PK ||{Msg}K for a random K.

4.1 Building Blocks

ECash. An ecash system consists of three types of players: a bank, cardholders and merchants. Below are
the supported procedures (see [chl05]).

• (pkB, skB)← EC.BKeyGen(1k, params) is the key generation algorithm for the bank.
• (pkC, skC)← EC.UKeyGen(1k, params) is the key generation algorithm for cardholders.
• 〈W,>〉 ← EC.Withdraw(pkB, pkC, n) [C(skC),B(skB)]. The cardholder C withdraws a wallet W of n coins from the

bank B.
• 〈W ′, (S, π)〉 ← EC.Spend(pkM, pkB, n) [C(W),M(skM)]. The cardholder C spends an ecoin by giving it to the

merchant M. C gets the updated wallet W , and M obtains an ecoin (S, π) where S is a serial number and π is a
proof.

• 〈>/⊥, L′〉 ← EC.Deposit(pkM, pkB) [M(skM, S, π), B(skB, L)]. M deposits (S, π) into its account in the bank B. L′

is the updated list of the spent coins (i.e. (S, π) is added to the list).
• (pkC, ΠG)← EC.Identify(params, S, π1, π2). Given two coins with the same serial number, i.e. (S, π1) and (S, π2),

B finds the identity of the double-spender pkC and the corresponding proof ΠG.
• >/⊥ ← EC.VerifyGuilt(params, S, pkC, ΠG). It verifies the proof ΠG that the cardholder pkC is guilty of double-

spending coin S.

In [chl05], except for the conventional ecash system, Camenisch, Hohenberger and Lysyanskaya introduce an
ecash system with an extended double-spending detection mechanism: apart from the identity of the double-
spender, all the digital coins she has withdrawn are revealed. In particular, in addition to the aforementioned
procedures (which in the second scheme are slightly different), the [chl05]’s second scheme is extended with
the following procedures:

• ((S1, Π1), . . . , (Sm, Πm)) ← EC.Trace(params, S, pkC, ΠG, D). Given a double-spender pkC of a digital coin with
serial S and a proof of guilt ΠG, such that EC.VerifyGuilt(params, S, pkC, ΠG) accepts, EC.Trace outputs the serial
numbers (S1, . . . , Sm) of all the digital coins pkC has withdrawn along with the corresponding proofs of ownership
(Π1, . . . Πm).

• >/⊥ ← EC.VerifyOwnership(params, S,Π, pkC). Given a double-spender pkc, EC.VerifyOwnership verifies that a
digital coin with serial S has been withdrawn by him.

Secure e-cash scheme satisfies the following conditions: (1) Correctness. If an honest cardholder runs EC.Withdraw
with an honest bank, then neither will output an error message. If an honest cardholder runs EC.Spend
with an honest merchant, then the merchant accepts the coin. (2) Balance. No collection of cardholders

1 Anonymity revocation in this case is not absolute; only the identity of the person having double-spent is revealed
and not her master secret.

4

and merchants can ever spend more coins than they withdrew. (3) Identification of double-spenders. Sup-
pose the bank B is honest, and M1 and M2 are honest merchants who ran the EC.Spend protocol with
the adversary whose public key is pkC. Suppose the outputs of M1 and M2 are (S, π1) and (S, π2) respec-
tively. This property guarantees that, with high probability, EC.Identify(params, S, π1, π2) outputs a key
pkC and proof ΠG such that EC.VerifyGuilt (params, S, pkC, ΠG) accepts. (4) Anonymity of cardholders. B,
even when cooperating with any collection of malicious cardholders and merchants, cannot learn anything
about a cardholder’s spendings other than what is available from side information from the environment.
(5) Exculpability. When S is a coin serial number not double-spent by cardholder Cwith public key pkC, the
probability that EC.VerifyGuilt(params, S,ΠG, pkC, n) accepts is negligible. The extended ecash version, we
mentioned before also suppports (6) Full Transaction traceability of double-spenders. In particular, given a
double-spender pkC on an ecoin with serial S and proof of guilt ΠG, EC.Trace(params, S, pkC, ΠG, D) outputs
((S1, Π1), . . . , (Sm, Πm)) so that for EC.VerifyOwnership(params, Si, Πi, pkC) accepts with high probability
for i = 1, . . . ,m.
We will use the first of the two compact ecash schemes presented here, for the payment wallet Wp and the
second one for the identity one Wid. To differentiate the procedures of the two schemes that have the same
name, we will use the subindex p when we refer to the procedures of the first scheme and the subindex id,
for the procedures of the second one.

Blind Signature Schemes. In this section, we describe the definition and security of the blind signatures.
See,[jlo97,cl02] and references within for more details.

Players. For our context, we can say there are two types of players: the bank and the cardholders. A card-
holder requests the bank to generate a signature on a message m. Then the bank generates a signature on
m without knowing the message m.

Procedures. A blind digital signature scheme consists of three procedures:

• (pkB, skB) ← BS.KeyGen(1k). This is a key-generation algorithm that outputs a public/secret key pair
(pkB, skB).

• 〈>/⊥, σ/⊥〉 ← BS.Sign(pkB)[B(skB),C(m)]. At the end of this interactive procedure, the output of the
bank B is either completed or not-completed and the output of the cardholder C is either the signature (σ)
or a failure sign (⊥).

• >/⊥ ← BS.Verify(m,σ, pkB) is a verification algorithm.

Security Properties. A blind signature scheme is said to be secure if it satisfies the following requirements:

• Unforgeability. Only the bank who owns the secret key skB can generate valid signatures.
• Blindness. The bank B does not learn any information about the message m on which it generates a

signature σ.

Blind Group Signature Schemes. Here we will describe the definition and security of group blind signa-
tures. See [lr98] for more details.

Players. For our context, we can say there are two types of players: the ACCA, the merchants and the
cardholders. In particular, the ACCA is the manager of the merchants’ group and merchants are required
to provide signatures on behalf of their group to cardholders, on quantities which are blind to them.

Procedures.

• (bgpk, bgsk)← BGS.Setup(1k). This algorithm generates a group public key bgpk and the ACCA’s master
secret key bgsk .

• 〈bgskM, JLogM〉 ← BGS.Join(bgpk)[M, ACCA(bgsk)]. When this interactive join procedure ends, the mer-
chant M obtains a secret signing key bgskM, and the ACCA (group manager) logs the join transcript in
the database D.

5

• σ ← BGS.Sign(bgpk)[M(bgskM),C(m)] and >/⊥ ← BGS.Verify(bgpk,m, σ), the signature and signature
verification algorithm of message m.

• M ← BGS.Open(bgsk, σ,D). This algorithm determines the identity of the party having generated the
signature σ. It can only be performed by the group manager, i.e. the ACCA.

Security Properties Apart from the Unforgeability and Blindness properties, which we have already intro-
duced, blind group signatures offer Signer Anonymity — since noone but the ACCA can determine which
group member produced it — and Undeniable Signer Identity, i.e. the ACCA can always detect the exact
signer of a signature.

4.2 System Operations

Setup. Every Bank B participating in the ADS generates a signature key pair: (pksB, sk
s
B), which identifies

it. To facilitate the withdrawal of the ecash wallets mentioned before, B makes the appropriate setup to
support the two compact ecash schemes in [chl05] and runs EC.BKeyGen to generate (pkwB , skwB). For the
purposes of authentication, efficiency and accountability in online transactions, each CIB publishes an array
of hashes Hashot and a gateway communication hash HGB .

Every merchant M collaborates with his AB, AB, to issue a signature key pair (pksM, sksM) with the
corresponding certificate CredM = SigB(pksM).

On the other hand, each customer C who opens an account with a CIB CIB collaborates with the latter
in EC.UKeyGen procedure of both compact ecash schemes [chl05]), mentioned in subsection 4.1, to issue
two signature key pairs:

(pkpC, sk
p
C), (pkidC , sk

id
C).

Although each one of the pairs above individually identifies C, for convenience, we will refer to both pairs as
(pksC, sk

s
C).

The ACCA chooses and publishes the transaction related hashes Hot, Ht and Hr.

ACC Issue. Let that customer C is eligible for a credit limit Lcredit with a CIB CIB. CIB and C collaborate
in EC.Withdrawp(sk

p
C, Lcredit) and EC.Withdrawid(skidC , Lcredit) for the latter to withdraw the payment Wp

and identity Wid wallets. In both withdrawal procedures, C provides a sksC related password, passpin. In the
issued ACC is also stored public information regarding the Banks participating in ACCA (params).

Apart from passpin, the cardholder chooses a set of passwords: a backup passe password — from which
her backup encryption key pair (pkeC, sk

e
C) — is derived and passte, pass

w
e , passce — which correspond to

three encryption key-pairs
(pketC , sk

et
C), (pkewC , skewC) and (pkecC , sk

ec
C),

that serve for encryption of transaction, wallet and coupon part of the card as we will describe later on.
Each cardholder also agrees on two hashes with Bank HK and HCB .

It is noticeable that no C-related identification information is included in the ACC, other than the infor-
mation one can infer from the credit limit of a cardholder (which equals the value in the wallets). On the
other hand, because of ecash properties, only the individual who issued the ACC, i.e. withdrew the wallets, is
able to use it, i.e. spend part of the wallets consisting it.

Payment

Offline Payment. It takes place between the cardholder C, who participates through her ACC (anony-
mously), and a merchant M.
1. M provides CredM to C, who checks its validity using params.
2. M signs a hash of the transaction details, Tdet = {date, time, product, price}, and provides C with

CredM, Tdet, SigHt
M

(Tdet),

where product is all the product related info stored in its bar code.

6

3. C verifies the product information and inserts her passwe to have her Wp and Wid wallets decrypted,
4. C enters her passpin to run EC.Spendp(skpC, price) - EC.Spendid(skidC , price) and spends price value

from both wallets. Let W ′p and W ′id be the remaining wallets.
5. M calculates RecT = SigHr

M
(Tdet−fin) and sends it to C, while he provides C with a printed transaction

record.
6. C encrypts RecT and Wp −Wid using her passte, pass

w
e respectively into:

ETdet = {Tdet||RecT }pketC
and EWp,id

= {W ′p||W ′id}pkewC
.

To receive his payment, M simply deposits to his AB, AB, the ecoins he has received from his cus-
tomers. AB contacts each customer’s CIB2, CIB, and collaborates with the latter to run EC.Depositp
and EC.Depositid (see section 4.1). Depending on whether double-spending has occurred, M may receive
credit for each pair of payment-identity ecoin deposited. If no double-spending is detected, CIB and
AB make the required transfer to M’s bank account. If there a double-spending is detected, CIB runs
EC.Identifyid on the double-spent identity ecoins to reveal the double-spenders’ pkidC . In addition, CIB
may run EC.Traceid to trace all the identity ecoins pkidC double-spender has withdrawn.

Online Payment. It is performed in two stages: initially the cardholder C collaborates with her CIB, CIB,
to set up one or more Anonymous Accounts (Anonymous Account Setup), which C addresses to make
her online purchases (Transaction Payment).
Anonymous Account Setup. The two parties involved, C and CIB collaborate through her ACC and an
ATM repsectively. Let that C has decided to open an anonymous account of Mot value for her online
transactions.
1. C interacts with CIB into

EC.Spendp(skpC,Mot) and EC.Spendid(skidC ,Mot)
to spend Mot from her Wp, Wid wallets respectively.

2. C chooses m, hot, a random Rot number and acknowledges CIB.
3. Chashes Rot m times using hash Hot = Hashot[hot]: (H(i)

ot (Rot), i = 1 . . . ,m). Let

AxC = H
(x)
ot (Ranon).

AmC will be the anonymous account number for the first transaction and in general the Am−(i−1)
C will

be the account number for the ith online transaction. C sends AmC , m, hot to CIB.
4. C establishes a pseudonym PCα , i.e. the public part of a key-pair (pkP , skP), for which she gets the

corresponding certificate:
CertP C

α
= SigCIBot(pk

C
α),

where CIBot is the online transaction section of CIB.
5. CIB stores in Danon

αC(m) = {AmC , hiot, M
m
ot , m, PC

α},

where for consistency, we use Mm
ot = Mot to express the balance of the AmC account.

6. CIB confirms account’s validity with

RecαC(m) = SigCIBot(H
r(αC(m)), CertPC

α
, time),

which serves as a proof of ownership of αC(m) and of the corresponding pseudonym PC
α.

7. C using passte encrypts αC(m) and RecαC(m) and stores them in her ACC.
Transaction Payment. Let that the cardholder C wants to purchase a product of value Vp from a merchant
M. We assume that C has logged in to M’s website anonymously.

2 CIBs may be identified by the form of the ecash deposited.

7

1. C provides M’s website — or the gateway G behind it — with the current number of her anonymous
account (AxC), while she uses Ax−1

C to calculate the following:

TInfoCIB = {{CredM, Tdet, A
x−1
C }Kα , AxC}pkeCIB

,

where Kα = HK(AxC) a key derived from AxC and HK = Hashot[hk] used for efficiency purposes.
2. G sends TInfoCIB to C’s CIB(CIB) as follows:

SigG(HGB(Tdet,CredM), time)

.
3. CIB decrypts TInfoCIB and checks whether it matches the information provided by G. CIB verifies

that AxC is an active anonymous account number in its Danon and that the current account balance
is enough for the payment included in Tdet. If there is an error, CIB sends G a transaction rejection
message:

RejCIB = SigCIBot(CredM, Tdet, A
x
C, reject),

which is then forwarded to C. To avoid any replay attacks, CIB updates the αC(x) entry of Danon to

αC(x− 1) = {AxC, hot, hk, M
x−1
ot , x− 1, CertP C

α
},

where Mx−1
ot = Mx

ot since no purchase took place.
4. CIB sends to G a signed endorsement on CredM, Tdet with check of value Vp addressed to M’s AB,

AB:
PaymCIB→M = SigCIBot(HMT (CredM, Tdet), AxC, AB, time), CredM , Tdet

where HMT is a hash agreed between Banks, used to reduce the signed text. CIB also updates (αC(x)
entry in its Danon to

αC(x− 1) = {(Ax−1
C , hot, hk, M

x−1
ot , x− 1}

where Mx−1
ot = Mx

ot − Vp.
5. G sends to CIB a confirmation of the valid transaction

RecT = SigHrG (CredM, Tdet − fin)

and forwards PaymCIB→M message to M’s AB for M’s account to be credited accordingly. As G is paid
in proportion to Vp, it has no motivation not to submit PaymCIB→M to AB.

6. CIB stores RecT, Tdet at its Dhist database.
We need to note that here Ax−1

C is used for authentication purposes, since C who generated Rot is the
only one, who knows the pre-image of AxC on Hot. M sends a receipt of the purchase to one of C’s email
addresses as well as to CIB, which stores everything under the anonymous account entry. When closing
the entry in Danon, C, through her ACC, demonstrates knowledge of PC

α, m and Rot to CIB and the latter
updates the content of C’s ACC accordingly (with RecT, Tdet and any additional wallets).

ACC BackUp. It takes place between a cardholder C, who participates in person, i.e. after having identified
herself to her CIB, and her CIB, CIB.
1. Cgenerates a random number Nb, creates the K = HK(Nb, passpin) and sends

BackUp = {Nb}pkeC , {ACCcontent||date− time}K

to CIB. K is used for efficiency purposes, since symmetric encryption is considered to be much faster.
We can see that only the valid owner of the card knows how to create K given Nb.

2. Both, C and CIB, hash and sign the BackUp into

BackUpx = SigHCBx (BackUp), x = {C,B},

where ACContent is the content of the anonymous credit card and date− time is the timestamp of the
backup.

3. CIB updates her Dhist.

8

Loss Recovery. It takes place between a cardholder C, who participates as an identity and her CIB, CIB.

1. C declares the loss of her ACC and is provided with the most recent BackUp of her ACC, BackUp.
2. C verifies that BackUp matches the most recent BackUpB of her and decrypts it.
3. C and CIB collaborate in EC.Spendp(skpC, |W ′p|) to spend the remaining payment wallet of the BackUp

(W ′p).
4. CIB credits C’s credit account for the amount spent till the BackUp had been taken (Lcredit - |W ′p|)

and waits till the merchants’ deposit time passes. For each double-spent digital coin detected, CIB runs
EC.Identifyp(S) to confirm its owner and credits C’s credit account accordingly. In this way, we avoid
overall exspose of C if the last BackUp kept is not up-to-date with the C’s most recent transactions.

5. CIB infers C’s overall spending amount and collaborates with her in EC.Withdrawp and EC.Withdrawid

procedures for the latter to issue new payment and identity wallets Wp and Wid.

As we can see, in this case there is a small breach in anonymity provided in our system: Bank will be able
to see with who customer interacted to spend the double-spent part of her payment wallet. In the following
section, we will elaborate on this privacy breach.

Monthly Payment Calculation . At the end of every month, each cardholder C proves to her CIB, CIB,
the amount of money she has spent throughout that month. To calculate C’s monthly payment, CIB applies
the formula used in current Credit Card Systems on C’s overall credits.

1. C enters her passwe to decrypt the remaining of her Wid wallet (W ′id) and interacts with CIB into
EC.Spendid(sksC, |W ′id|) to spend it entirely.

2. CIB updates C’s entry in Dcredit with the amount of money spent by C: Lcredit - |W ′id|.
3. CIB bills C based on the latter’s Dcredit entry.
4. If C is still eligible for an ACC, she interacts with CIB for issuing a new Wid and additional Wp according

to C’s new credit limit.

It is obvious that any attempt on C’s part to lie for the remaining Wid wallet, i.e. by presenting a former
version of the card, a part of Wid would be double-spent (to CIB and to a merchant) and EC.Traceid would
reveal sksC.

Expense Report-Error Correction.

Expense Report. The cardholder C enters her passte to decrypt the transaction related part of her ACC to
obtain the detailed chain of transactions. C may request for an expense report of her active anonymous
accounts by providing her CIB, CIB, anonymously with the following:

{expense− report, time,Ax−1
C }Kα , AxC,

where AxC is the current anonymous account number and Ax−1
C is used for authentication purposes.

CIB provides the report of AxC’s transaction activity and — for security purposes — updates Danon by
replacing αC(x) with αC(x− 1).

Error Correction. It takes place between a cardholder C, who participates as an identity, and the customer
service section of ACCA or of the merchant M involved. There are two error cases we examine here: (a)
C detects a mischarge at her expense report, in which case she contacts the ACCA in person, and (b)
C requests to cancel a transaction with a merchant M, in which case she contacts M in person. In both
cases C uses RecT as a proof of purchase.
For now we will refer to case (a). C contacts the ACCA and the ACCA contacts M. M can either accept
or reject the refund-request. If he rejects, his customer service department, (M-CS), sends to the ACCA:

RejM = SigM−CS(Merchant, Tdet, refund− reject, time).

9

ACCA, depending on its policy, may provide C with the refund:

RefCoupACCA→C = SigACCA−ref(C, RejM, Tdet, price, time),

where ACCA-ref is the refund section of ACCA. C interracts with her CIB, CIB, to deposit RefCoupACCA→C

and to withdraw additional payment and identity wallets of equivalent value. It is noticeable that in this
case, we do not care whether C’s identity is revealed, since no purchase was actually done. If M accepts
the return/mischarge:
1. M provides the ACCA with signed endorsements of the amount to be removed from his account and

added to C’s card/account. Signatures of this type may be special type of refund signatures issued
by M’s CS:

RefM = SigM−CS(Merchant, Tdet, refund− accept, refund, time),

where Merchant has all the merchant related account and certificate information.
2. The ACCA sends RefM to M’s AB, AB, for validation.
3. AB sends back to ACCA a confirmation:

RefConfAB = Sig
HAB−ref
AB (RefM − accept),

where HAB−ref is a refund-specific hash of AB.
4. For C to collect the payment, ACCA issues a digital check to C:

RefCoupACCA→C = SigACCA−ref(RefConfAB, RefM, Tdet, refund, time,C).

5. C then deposits RefCoupACCA→C to CIB, which contacts AB to make the appropriate transfers. C
interacts with CIB to issue Wid −Wp wallets of refund value.

In case (b), as mentioned before, C contacts M directly. If M accepts the return of the product, it provides
C with RefM, which C deposits to CIB. CIB makes the appropriate interbank communications to verify
RefM ’s validity and updates C’s account accordingly.
Timestaps are used for replay attacks to be avoided. It is noticeable that all messages exchanged here
are signed/timestamped. In this way replay and intersection attacks are avoided. Also, we make use of
different digital signature key-pairs than in the rest of the ACC protocols. This is done to avoid any
type of reflection attacks involving different protocols which use the same signature key-pairs. Another
important point in the expense report protocol is that privacy is not a concern and thus, no encryption
is used.

ACC Promotion Offers. This is the case where the Anonymous Credit Card Association (ACCA), some
CIBs and merchants have made an agreement, so that the CIBs provide better payment interest rates to
cardholders when they make many purchases from the participating merchants, i.e. the cardholder may
be eligible of paying out an amount Vp in NM parts without any interests applied on it. To support this
mechanism in our system we introduce coupons implemented with the blind group signature scheme.

The Anonymous Credit Card Association (ACCA), as the ACCA manager, makes the appropriate setup
for the blind group signature scheme [lr98], which will be used to instantiate the group of the promotion par-
ticipating merchants. In particular ACCA runs BGS.Setup mentioned in subsection 4.1 to generate pkbg

M
, skbg

M
,

i.e. the public and secret administration information of the merchants-group. Merchants, who participate in
the promotion offers, interact with the ACCA in BGS.Join to obtain a membership blind group signature
secret information skbg

M
. In addition, participating CIBs issue a plain blind signature key pair [o06,cl02]:

(pkbB,skbB).
Assuming coupons of value vMp and after having interacted with a merchant M in a transaction of value

Vp, a cardholder C contributes randomness r1, . . . , rN to obtain from M N = b Vp
vMp
c, blind signatures, the

credit coupons:
GBSigM (r1), . . . ,GBSigM (rN).

10

Credit coupons are separately encrypted and stored in the ACC with passc and should be deposited within
a month after the transaction has taken place. This may be enforced by changing group’s administration
information every month.

When she decides to deposit her coupons, C contacts her CIB through her ACC. If participating in the
ACC offers, C’s CIB, CIB checks coupons’ validity by contacting the ACCA. The ACCA runs BGS.Open pro-
cedure to recover merchant’s name, updates M-related statistics and checks M agreement details (Nmerchant).
CIB, using the technique in A.1 calculates the overall amount of money the C has to be favored in general,
CreditReduction, and issues a number of debit coupons of equivalent value. Debit Coupons are plain CIB
blind signatures on quantities chosen by C (r′1, . . . , r

′
N) and are – thus – unlinkable to particular credit

coupons:
BSigCIB(r′1), . . . ,BSigCIB(r′N).

C deposits the debit coupons at her convenience to CIB to reduce her credit amount by CreditReduction.

5 System Considerations

In this section, we will emphasize on particular system issues. For detailed Security Definitions and the
corresponding proofs, see Appendix B. Here, we will only sketch how the most important of our system’s
requirements are satisfied.

Cardholder Anonymity w.r.t Bank and the merchant/ Cardholder non-Traceability. Both of these two prop-
erties are satisfied through ecash anonymity and unlinkability properties mentioned in 4.1. Each payment
procedure is a typical ecash EC.Spend procedure from Wp and Wid wallets and can thus not be linked to
the cardholder C who issued the ACC or to any other spending (transaction) from the same wallets. On the
other hand, the anonymity provided is conditional: if C tries to spend more money than his credit-limit, i.e.
more ecoins from the initial amount in the two wallets, or lie at the monthly payment calculation procedure
— by providing a non-updated version of her ACC —, a part of Wid will inevitably be double-spent: to her
CIB (CIB) at the CreditUpdate procedure and to a merchant M in a Payment protocol. After M’s deposit
procedure, CIB detects the double-spending and runs EC.Identifyid on the double-spent identity ecoins to
reveal each double-spender’s pkidC . In addition, CIB may run EC.Traceid on the same ecoins to trace all the
identity ecoins withdrawn by each double-spender.

In the case of ACC promotion offers, the two aforementioned properties are satisfied through the blindness
property of blind (group) signatures. When deposited, credit coupons are linked to the merchant M who issued
them since C’s CIB, CIB, contacts the ACCA which is the manager of the group and can identify the coupons’
creator (signer). However, because of the blindness property, the ACCA or/and CIB(if colluding with the
ACCA) does not know the exact transaction the cardholder participated in, even when colluding with M.
In any case, Credit coupons are deposited anonymously and the debit coupons, which are issued in response
to the valid credit ones — and deposited by C in person — are blind to the CIB who issued them and thus
unlinkable to any particular credit coupon.

There are two cases, where we accept a small breach in a cardholder’s anonymity/transaction unlinkabil-
ity: (a) in the Loss Recovery and (b) in the Online Payment scenarios. At Loss Recovery process, when the
most recent BackUp is not up-to-date, C inevitably doublespends a part of her Wp wallet: to the merchants
she interacted with and to her CIB. pksC is then revealed and Bank knows who C interacted with. However,
this anonymity breach becomes less important if we require that backups are taken regularly. In the Online
Payment case, Bank can obviously trace what type of transactions a particular anonymous account is in-
volved in through Dhist. However, thanks to the unlinkability property of the ecash spent at the anonymous
account setup phase, linking that profile to a particular identity is impossible. In any case, the cardholder
may open as many anonymous accounts she wishes, in order to avoid transaction linkability.

11

Authorized Anonymity Revocation. This is the case where a cardholder, C, is a suspect of a offence
and Judge requests a detailed description of that C’s ACC related transactions. In our system, this can be
achieved only with C’s consent and in a way such that the later cannot lie for her transactions:

a. Cis asked to provide sksC for all her transactions to be revealed, which we want to avoid.
b. Cis asked to enter her passte to decrypt the transaction related part of her ACC and “spend” the rest

of her Wp to CIB. Transaction details of each transaction are signed by a merchant or C’s CIB (CIB)
— in the case of Anonymous Account Setup — and are, thus, impossible to be forged. To check for any
deceptive deletion of a transaction on cardholder’s side, CIB may use Dhist to check whether the overall
amount spent matches the aggregated amount in the backed-up transaction details.

On Security of Online Transactions. We can study it in two phases: (a) the security of the anony-
mous account setup and (b) the security of the management of the anonymous account, which includes the
transaction payments and the expense reports issued.

In case (a) cardholder Cauthentication is achieved through the passpin,Cis required to enter to create
the αC(m) account. As in the offline payment procedure, only the owner of the ACC may spend ecoins from
the wallets in it. Double-spending tracing mechanism restricts Cfrom using the spent part of her wallets
elsewhere.

Security in case (b) is achieved through the non-invertibility property of hash functions and the unforge-
ability of the digital signature schemes. More specifically, it is not possible for an unauthorized party to use
the balance of an account even if she knows the current anonymous account number (AxC); knowledge of
Hot and AxC’s pre-image w.r.t. Hot is required. Signed endorsement RecαC(m) of CIB on the initial account’s
value, prevent CIB from cheating. In addition, as Tdet and credm are part of InfoCIB, i.e. encrypted with a key
only CIB and Cmay derive, Gcannot lie for the price or the merchant M the payment is for. As timestamps
are included in every message and account numbers change in every authorized request, replay attacks or
offline account guessing attacks cannot succeed. Expense Report authorization is achieved in an exact similar
way.

Error Correction Issues. As mentioned before, in order to request a refund for an charging error having
occurred in the expense report, the carholder C is required to present RecT to the ACCA in person. In
offline transactions, the latter does not constitute a problem since RecT is completely unlinkable to other
transactions. However, if RecT refers to an online transaction, then — since CIB has all the information
regarding the (online) transaction activity of the anonymous account — C is automatically linked to all the
transactions of that particular anonymous account. We address this problem in two ways:

– We reduce the amount of transaction information linked to each account by encouraging cardholders
to open several — as opposed to one — anonymous accounts for their online purchases. This security
measure becomes even more attractive if we consider the fact that Anonymous Account Setup is similar
in terms of computation to an offline payment procedure,.

– We reduce the likelihood of an error taking place by introducing additional security measures at the
online transaction payment procedure. Apart from the current C authentication procedure in Transaction
Payment, we require that the CIB obtains an email-based transaction confirmation by the owner of the
anonymous account. Therefore, we make the following changes:

• At the Anonymous Account Setup. In addition to PC
α, C, provides the CIB with an email address,

emailP C
α

, which is added to αC(m). It is critical that emailP C
α

contains no C-identification information.
• At the Transaction Payment. At step 1, a nonce nonce is added to the TInfoCIB send by C to CIB:

TInfoCIB = {{CredM, Tdet, nonce}Ax−1
C

, AxC}pkeCIB ,

while after step 4 a confirmation email is sent to emailP C
α

address with Tdet and a function F of nonce,
to which C is required to respond for her purchase to be completed. If no confirmation is received
within a particular time interval a transaction rejection procedure on behalf of CIB takes place.

12

However, we do need to emphasize on the fact that involving electronic mail procedures in the online
purchase procedure, is likely to introduce other privacy related concenrs: Because of source tracing infor-
mation they may include, account owners’ confirmations may enable Banks/Merchants to link individual
transactions from different accounts as having been done by the same person.

ACC Unforgeability is satisfied through the Correctness and Unforgeability properties of the underlying
ecash schemes. ACC non-Transferability is also satisfied, sicne sksC is required for the card to be used in
both offline and online purchases.

Bank Dishonesty. BackUpB is used to avoid any attempt of a CIB to trick a cardholder into tracing more
of the latter’s transactions: Assuming the CIB provided a less recent backup, then a bigger part of Wp would
be double-spent and more merchants would be directly linked to the cardholder. BackUpB will act as an
undeniable proof of the date and integrity of the backup kept.

Merchant’s Honesty. Coupons’s deposit procedure enables a merchant-cardholder to use the coupons he
can issue to his customers for his own favor. We address this problem by enforcing ACCA to grant a par-
ticular number of coupons to each merchant. Coupons’ number is proportionate to merchant’s sales and, if
restricted, merchant will be motivated to use it to attract customers as opposed to use them for his own
purposes.

ACC Organization. ACCs’ content is organized in the following way: {ET 1 , . . . , ET ` , padding,EW ′p,id},
where ` is the number of transactions a cardholder has participated in and padding is used to avoid any
information leakage regarding `. This modular way of encryption is necessary for each of the procedures
mentioned before to be able to be executed individually.

Computing power. Credit card customers in our system lack in computing power: not all of them have
or know how to install software able to encrypt/ decrypt text, verify hashes, which are used in our system.
A solution on this problem would be that CIBs provide their customers with special machines dealing with
card encryption/decryption issues. The extra cost of these devices, may be provided by the cardholder as an
extra price for her privacy.

6 Conclusion

In this paper, we addressed e-commerce Context Privacy. In particular, we presented a deployable credit card
system which guarantees cardholder anonymity and transaction unlinkability even towards to Credit Card
Associations or Card Issuing Banks. In special circumstances the transactions of a party may be revealed but
only with that party’s consent. Undeniably, there are still issues to be dealt, such as password loss recovery,
operations’ transparency w.r.t. cardholders. However, we do believe that this paper is a good start for real
time privacy in current credit card systems.

References

[chl05] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In Advances in Cryptology - EURO-
CRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 302–321. Springer-Verlag, 2005.

[cl02] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In International Conference
on Security in Communication Networks – SCN, volume 2576 of Lecture Notes in Computer Science, pages
268–289. Springer Verlag, 2002.

[dcn90] A. F. D. Chaum and M. Naor. Untraceable Electronic Cash. 1990.
[jlo97] A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures (extended abstract). In Advances

in Cryptology - CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pages 150–164. Springer-
Verlag, 1997.

13

[lpm94] S. H. Low, S. Paul, and N. F. Maxemchuk. Anonymous credit cards. In CCS ’94: Proceedings of the 2nd
ACM Conference on Computer and communications security, pages 108–117, New York, NY, USA, 1994.
ACM.

[lr98] A. Lysyanskaya and Z. Ramzan. Group blind digital signatures: A scalable solution to electronic cash. In
In Financial Cryptography (FC), pages 184–197. Springer-Verlag, 1998.

[o06] T. Okamoto. Efficient blind and partially blind signatures without random oracles. In TCC, pages 80–99,
2006.

A Appendix

A.1 Coupon Number Calculation.

Let the following notation:

– r the interest applied in the card remaining amount each month. We basically need to ”undo” interest
rate application for the coupon-amount.

– tMp : Threshold value for issueing coupon agreed with a merchant M .
– vMp : Value of each coupon issued by Merchant M .
– NM : Number of times the amount of money spend by client can be payed out in without interest.
– AC : Amount of money customer C spent in merchant M. It is obvious that for a coupon to be issued, it

should be: AC ≥ tMp .

A customer who takes advantage of the offer, obtains nC = bAC
vMp
c coupons. As mentioned before, depending

on the agreement merchant has made with the ACCA, outpayment of a coupon will be destributed in NM
months. Thus, if the customer payed the normal interest rate r for outpaying amount A′C = nC × vMp , he
would have to pay:

CustomerOvercharge =

r × {1 +
NM − 1
NM

+
NM − 2
NM

+ . . .+
1
NM
} ×A′C =

r × {NM × (NM − 1)
2×NM

} ×A′C =

r × NM − 1
2

×A′C

The main concept is here that we make customer pay this additional amount per month but after having
removed this amount from his credit card in advance. Namely, during the montly credit card amount update
procedure, his credit amount gets ”enhanced” 3 by the additional amount she will have to pay during the
following months. However, there is a chaveat: the amount substracted from customer’s credit account should
be calculated in a fair way towards the Bank. In particular, assume that CreditReduction is the amount
removed from customer’s credit account, Bank will lose all the interest payments on it. Namely, Bank will
lose at most

CreditReduction× (1 + r)NM − CreditReduction.

Thus CreditReduction should satisfy the following:

CreditReduction = CustomerOvercharge− CreditReduction× {(1 + r)NM − 1} ⇐⇒

CreditReduction× {(1 + r)NM − 1} = CustomerOvercharge⇐⇒

CreditReduction =
CustomerOvercharge

(1 + r)NM − 1
⇐⇒

3 By enhanced we mean in favor of the customer, namely the amount customer is credited is reduced.

14

CreditReduction = r ×A′C ×
1
2

NM − 1
(1 + r)NM − 1

Given the fact that r ranges from 0.01 to 0.05, and NM from 3 to 20, we can see how CreditReduction
is about 30-40% of the initial amount paid. The reason we decided that this amount is added to customer’s
credit account as opposed to her savings one, is the way Banks operate, depositing actual money to customers
savings accounts would require from them cash that may not be willing to pay in advance.

B Security

Security is a principal requirement in our system. In this section, we provide strict definitions of our system’s
operations and we base on them to define our system’s security properties. Some of the definitions presented
in this section are inspired by previous work on other primitives, such as [?,chl05,?].

In what follows, we assume the typical Cardholder-Merchant-Bank system architecture.

B.1 Operations

When an operation is an interactive procedure (or a protocol consisting of multiple procedures) between
two entities C and B, we denote it by 〈OC, OB〉 ← Pro(IC, B)[C(IC), B(IB)], where Pro is the name of the
procedure (or protocol).

OC (resp.OB) is the private output of C (resp.B), IC, B is the common input of both entities, and IC (resp. IB)
is the private input of C (resp. B). We also note that depending on the setup, some operations may require
additional global parameters (i.e. some common parameters for efficient zero-knowledge proofs, a modulus
p, etc). Our system will need these additional parameters only when using underlying schemes that use such
parameters, e.g., ecash systems or blind group signatures. To simplify notation, we omit these potential
global parameters from the inputs to all the operations.

• (pkB, skB) ← Bkeygen(1k) is the key generation algorithm for Bank B. We denote by pkB all public informa-
tion regarding B, namely her public ([group]blind) signature and encryption keys and by skB the overall secret
information of B.

• (pkC, skC)← Ckeygen(1k) is the key generation algorithm for cardholders. We denote by pkC all public information
regarding a cardholder C, namely her public signature and encryption keys and by skC the overall secret information
of C.

• 〈(Wp,Wid), (Tp,id, Dcredit
′)〉/〈⊥,⊥〉 ← AnonymousCreditCardIssue (pkB, pkC, Lcredit) [C(skC), B(skB, Dcredit, Ddebit)].

A customer Cissues an ACC of credit limit Lcredit. value ecoins in the form of two wallets Wp and Wid from Bank
B. Bank, using Ddebit, checks if C is eligible for that. If so, ecash withdrawal procedure procedure is carried out
for C to acquire two Lcredit valued wallets Wp and Wid. B’s Dcreditis updated accordingly while B maintains Tp,id to
trace double-spenders in case of emergency.

• 〈(W ′
p, W

′
id), (Sp, πp, Sid, πid)〉/〈⊥,⊥〉 ← OfflinePayment(pkM, pkB, Tdet) [C(Wp,Wid, skC), M(skM)]. Customer

C, using her ACC spends Vp value from each wallet to M. Spent ecoins are pairs of (S, π), where S is a serial
number and π is the proof of its validity. For convenience, we will denote with (Sp, πp) and (Sid, πid) the set of
serial numbers and spending-proofs of ecoins spent from Wp and Wid wallets, respectively.

• 〈>, (Ddebit
′, Dhist

′)〉/〈⊥,⊥〉 ← MerchantPayment (pkM, pkB) [M(skM, Sp,id, πp,id), B(skB, Ddebit, Dhist)], where
for convenience

(Sp,id, πp,id) = (Sp, πp)∪(Sid, πid).

A merchant M deposits the ecoins he has received throughout his selling activity. If the ecoins deposited (Sp,id, πp,id)
are valid and not double-spent, Bank B updates the entry of M in its debit database Ddebit. Deposited ecoins are
then stored in the history database Dhist.

• 〈(W ′
p,id, αC(m)), (Sp,id, πp,id, Danon

′)〉/〈⊥,⊥〉 ← AnonymousAccountSetup(pkB, Mot, m, Rot)[C(Wp,id, skC),B(skB, Danon)].
In this procedure, C interacts through her ACC with Bank B to setup an anonymous account for online trans-
actions. Both parties know B’s public information (pkB), the new account’s balance Mot, m and Rot. The main
output is the new Danon entry for both parties.

15

• 〈>,PaymCIB, (D′anon, RecT)〉/〈RejCIB, RejCIB, Danon
′〉 ←

← OnlinePayment(pkG, pkCIB, Vp)[C(αC(x)), G(skG), CIB(Danon, skCIB)]. In this procedure, C uses her anonymous
account information to pay for the purchase of a product of value Vp. The CIB-related outputs are the updated
Danon and the transaction receipt, RecT. Gateway G receives the payment PaymCIB, while if something goes wrong
only CIB’s Danonchanges.

• 〈>,>, Ddebit
′〉/〈⊥,⊥, ⊥〉 ← OnlinePaymentDeposit(pkG, pkCIB, pkAB)

[G(skG, PaymCIB), CIB(skCIB), AB(Ddebit, skAB)]. Gdeposits PaymCIB to M’s AB, AB. AB, G and C’s CIB, CIB,
collaborate for M’s debit account to be updated (Ddebit’).

• Identify operation consists of two suboperations:
– (pkC, Π

G
p)/⊥ ← Identifyp(Sp, π

1
p, π

2
p) and

– (pkC, Π
G
id)/⊥ ← Identifyid(Sid, π

1
id, π

2
id).

If an ecoin from Wp (or Wid) is double-spent, with (Sp, π1
p) and (Sp, π

2
p) (or (Sp, π

1
p) and (Sp, π

2
p)), Bank can find

the customer who double-spent the ecoin with serial Sp (Sid) using Identifyp (or Identifyid). ΠG
p (ΠG

id) is a proof
that pkC double-spent the ecoin with the serial number Sp (Sid).

• VerifyGuilt operation also consists of two suboperations, one for each wallet in the anonymous card:
– >/⊥ ← VerifyGuiltp(Sp, Π

G
p , pkC) and

– >/⊥ ← VerifyGuiltid(Sid, Π
G
id, pkC).

Both operations output > if the customer C (represented by pkC) double-spent Sp from Wp and the corresponding
ecoin Sid from wallet Wid. ΠG

p and ΠG
id are the proofs of guilt of C, i.e. the outputs from the preceding Identify

procedure.
• 〈Si

id, Π
i
id〉 ← Traceid(Sid, pkC, ΠG

id, Dhist, L), where i = 1 . . . L. This algorithm first checks whether VerifiyGuiltid(Sid, Π
G
id, pkC)

accepts. If yes, the procedure outputs all L ecoins (Si
id, i = 1 . . . L) issued by the customer pkC along with the

proof Πi
id of pkC’s ownership. In any other case, this algorithm does nothing.

• >/⊥ ← VerifyOwnershipid(Sid, Πid, pkC, L). This algorithm allows to publicly verify the proof Πid that an ecoin
with serial number Sid belongs to a doublespender with public key pkC. We need to emphasize on the fact that
the latter two procedures can only be applied to ecoins spent from Wid type of wallets.

• 〈(BackUpB, (Dhist
′, BackUpC〉/〈⊥,⊥〉 ← BackUp (pkC, pkB, date)[C(skC, ACContent),B(sks

B, Dhist)]. Customers
follow this procedure in order to back their ACC up. Cardholders provide the encrypted content of their card
ACContent as well as a backup encryption password passe, while both parties output obtain a signed receipt of
the final form of the backup stored BackUpB, BackUpC.Dhist is also updated with the new backup-record.

• 〈ACC′, (D′credit, D′hist, Tp,id)〉/ 〈⊥,⊥〉 ← CardLossRecovery(pkC, pkB)[C(skC),B(sks
B, BackUp)]. C checks whether

BackUp provided by her CIB B, is valid and collaborates with B to generate a new ACC. B provides proof of
BackUp validity. If the BackUp is not up-to-date, B checks Dhistfor double-spending case.

• 〈(W ′
p,id,monthly payment), (Sid, πid, T

′
p,id, Dhist

′, Dcredit
′)〉/〈⊥,⊥〉 ← CreditUpdate(pkB, pkC)[C(skC), B(skB,

Dhist, Dcredit)]. CreditUpdate operation takes place between customer and Bank in order for customer to update her
credit account according to her purchases. Customer provides her secret information (passwords, sks

C and wallets)
and her outputs involve new wallets and her monthly bill. Bank checks Dhist for double-spending and if everything
is fine, it updates its Dcredit. Bank also obtains double-spending related tracing information for the new wallets
withdrawn (T ′p,id).

• ErrorCorrection operation has two versions.
– Version 1: This is the case, where an error has been detected in the expense report and we have two steps:

1. 〈RefCoupACCA→C, >, (RefM, RefConfAB),RefM〉/〈RefCoupACCA→C,>,RejM,−〉 ←
← RefundConf(pkM, pkCIB, pkAB)[C(RecT), M(skM), ACCA(skACCA), AB(skAB, Ddebit)], where the
C declares a charge error, i.e. requests a refund for a purchase she did not participate in. C obtains
RefCoupACCA→C, which is basically a payment check either from merchant’s AB, AB, or from the ACCA if
merchant M rejects (RejM) the refund. ACCA obtains (a) a proof of whether merchant accepted to provide
the refund (RefM) or not (RejM), (b) a proof from AB of M’s account balance, (RefundConf). AB simply
updates Dhistwith RefM.

2. 〈W ′
p,id, (T

′
p,id[, Dhist

′]), (Ddebit
′, Dhist

′)〉/〈⊥,⊥, ⊥〉 ←
← RefCoupDeposit(pkC, pkCIB, pkAB)[C(skC, RefCoupACCA→C), CIB(skCIB), AB(skAB, Dhist, Ddebit)]. C
interacts with her CIB, CIB, who contacts the AB/ACCA involved to deposit RefCoupDeposit. C’s outputs
are the new wallets. CIB updates Dhist if the error refers to an online transaction. M’s entry in AB’s Ddebitis
updated.

– Version 2: It refers to a plain purchase cancelation procedure:
〈RefM,>,Ddebit

′〉/〈⊥,⊥〉 ← PurchaseCancelation(pkM, pkC)[C(RecT), M(skM)], where C obtains a refund RefM
from M, which he deposits to her CIB.

• 〈(T i
det, i = 1 . . . x),D′anon〉 ← OnlineExpenseReportRequest[C(αC(x)), B(Danon)]. C requests for an expnse report of

her anonymous account with Bank B and provides the αC(x)-realted secret information. OnlineExpenseReportRe-
quest operation outputes the series of Am

C online transactions of C.

16

• 〈Wcoupons
′, N issued

M 〉/〈⊥,⊥〉 ← CouponIssue(bgpk,Ncoupons)[C(Randomness),M(gbuskM, N issued

M)]. Merchant M and
cardholder C collaborate for the latter to obtain Ncoupons discount coupons (credit coupons). At the end of this
procedure, C obtains a wallet Wcoupons of Ncoupons while M updates the number of coupons he has provided (N issued

M).
• 〈>, Dcredit

′,D′merchants〉/〈⊥,⊥〉 ← CouponDeposit(pkC, pkB) [C(Wcoupons, skC, N),B(skB, Dcredit, Dmerchants)]. In this
operation, customer C deposits N coupons from coupon wallets Wcoupons. Bank updates the merchants’ statistics
database as well as the customer’s credit account according to N .

B.2 Security Properties

Correctness.

1. If an honest customer C, eligible to own an anonymous credit card, runs AnonymousCreditCardIssue
with an honest Bank B, then neither will output an error message; if an honest customer C, who has
collaborated with a CIB CIB into a AnonymousCreditCardIssue procedure to issue an anonymous credit
card, runs OfflinePayment protocol using that card with an honest merchant M, then M accepts the
payment; if M runs MerchantPayment with an honest Bank AB, to deposit the payments he received
from honest clients, then M’s account will be increased by the value of the ecoins deposited.

2. If an honest customer C, owning a valid ACC, collaborates with her honest CIB CIB, into a Anony-
mousAccountSetup procedure to create an anonymous account AC, then CIB accepts. In addition, if C

• runs OnlinePayment protocol using AC’s secret information, then merchant’s gateway G accepts the
payment: when G runs OnlinePaymentDeposit, the cardholder’s CIB CIB accepts and the merchant’s
account will be increased by the price of the product purchased.

• runs OnlineExpenseReportRequest with CIB, for her AC account, C receives a detailed report of her AC

related online transactions.

3. If an honest cardholder C runs CreditUpdate with an honest Bank B, C’s credit account will be increased
by the aggregated amount of her purchases since her last CreditUpdate. C will be billed accordingly.

4. If an honest cardholder C detects a charging error and runs either version of ErrorCorrection protocol
with honest merchants and/or Banks, then all parties involved will accept and C obtains refund wallets.

5. If an honest cardholder C runs Loss Recovery protocol with an honest Bank B, then she obtains an ACC
with the same balance and transaction history as the one lost.

6. If an honest cardholder C obtains discount coupons Wcoupons from an honest merchant M through Coupon-
sIssue procedure and runs CouponDeposit with an honest Bank, ACCA accepts and updates C’s credit
account accordingly.

No OverSpending.
No cardholder should be able to spend more money than her credit limit.

Offline ACC Use. – No collection of cardholders should be able to spend more ecoins than the ones
contained in their anonymous cards. Suppose that N cardholders C1, . . . ,CN collude together, and
that the sum of the amount of ecoins allowed to them is

NC =
N∑
i=1

Lcredit
Ci .

Then, the number of different serial numbers of ecoins that can be spent to merchants — in Offline-
Payment procedures — and/or Banks — in AnonymousAccountSetup/sf CreditUpdate — procedures
is at most NC .

– Suppose that one or more colluding peers run the OfflinePayment protocol with two merchants M1

and M2, such that M1 gets (Sp,id1, πp,id1) and M2 gets (Sp,id2, πp,id2), where Sp,id1, Sp,id2, πp,id1

and πp,id2 the sets of serial numbers of pairs of spent payment-identity ecoins and the corresponding
proofs of validity, i.e.

Sp,id
i, πp,id

i = (Sip, π
i
p)∪(Siid, π

i
id), i = 1, 2.

17

Assume that Sp,id = Sp,id
1 ⋂

Sp,id
2 6= ∅, and πp,id the set of spending validity proofs that correspond

to Sp,id. Then, we require that Identifyx(Sx, πx), x = p, id outputs a public key pkC and a proof of
guilt ΠG such that VerifyGuiltx(pkC, Sx, Π

G) accepts.
– Each ecoin pair contained in payment-identity wallets that is accepted but not double-spent in the

MerchantPayment protocol increases by its exact value merchant’s AB’s Ddebit irrespective of the
beneficiary of the ecoins. However, we don’t regard it as a breach of security when a merchant M1

received an ecoin but passed it to M2, who deposited it into his debit account; in any event, this is
just another form of collusion. Another justification is that the peer M1 sacrifices his money.

Online ACC Use. – No collection of cardholders should be able to spend more in online purchases than
the sum of their current active anonymous accounts’ balance. Suppose that N cardholders C1, . . . ,CN
collude together, and that of the balance (Mmi

ot) of their active online accounts is

NAC =
N∑
`=1

Mmi
ot .

Then the overall amount of money that can be spent to merchants in online transactions or returned
to their owners is NAC .

Error correction may constitute an exception in this property if the cardholder lies for the error having
taken place and acquires from the ACCA — if we assume that merchant does not accept to provide a refund
— new wallets. We consider this to be a general risk credit card associations take. In addition, as in error
correction case customers identify themselves, it is a reasonable assumption may not attempt to cheat in
this way multiple times.

Credit Card Unforgeability.

– No customer/merchant or collection of customers and/or merchants should be able to create a credit
card of the form of the Anonymous Credit Card described before, which when used to run OfflinePayment
or AnonymousAccountSetup protocols with an honest merchant or Bank respectively noone outputs error
message.

BackUp Integrity.

– Let that a cardholder C has run BackUp protocol with her CIB, CIB, at a particular date. There should be
impossible for C to run Loss Recovery protocol with CIB, with a different backup than the most recent one.

No Unauthorized Use of ACC.
We require that an unauthorized individual may not make use of an ACC’s functionalities. In particular, we
consider the following cases:

Non Frameability. – No coalition of customers, even with Bank, can forge a proofΠG that VerifyGuiltp(pkC, S, ΠG)
or VerifyGuiltid(pkC, S, ΠG) accepts where pkC is the public key of an honest cardholder, i.e. a card-
holder who did not double-spent an ecoin with the serial number S.

ACC Payment. – (Offline Payments) No cardholder or merchant or collection of customers and/or mer-
chants should be able to use another customer’s ACC in OfflinePayment, or AnonymousAccountSetup
protocol without possessing skC.

– (Online Payments) No cardholder or merchant or collection of cardholders and/or merchants should
be able to run Online Payment protocol on an anonymous account they do not possess the secret of
succesfully, i.e. without error message.

Expense Report Request. – No cardholder or merchant or collection of customers and/or merchants
should be able to run OnlineExpenseReportRequest for an account AC successfully, without possessing
AC’s secret information.

18

Conditional Non Traceability.

– Non Tracing of non-double-spenders. Given that a cardholder C has issued an ACC with an honest CIB
CIB through an AnonymousCreditCardIssue protocol, participated in an OfflinePayment or AnonymousAc-
countSetup procedure, it should computationally impossible for any merchant or CIB or any collusion
between the two to infer any information regarding skC or pkC. In addition, given the outputs of two
different offline spending procedures of C it should be impossible to link one to the other as having been
done by the same person.

– (Non Frameability)No coalition of customers, even with Bank, can forge a proofΠG that VerifyGuiltp(pkC, S,ΠG)
or VerifyGuiltid(pkC, S,ΠG) accepts where pkC is the public key of an honest cardholder, i.e. a cardholder
who did not double-spent an ecoin with the serial number S.

– Tracing of double-spenders. Given that a cardholder C is shown guilty of double-spending ecoin Sp by a
proofΠG such that VerifyGuiltp accepts, this property guarantees that Traceid(params, Sid, pkC, ΠG, Dhist)
will output the serial numbers Sid1 , . . . , Sidm of all coins that belong to customer along with proofs of
ownership Πid1 , . . . , Πidm such that for all i with high probability, VerifyOwnershipid(Sidi , Πidi , pkC)
also accepts.

Coupon Security

– (Correctness) If a customer obtains discount coupons Wcoupons from an honest merchant M through
CouponsIssue procedure and runs CouponDeposit with an honest Bank, ACCA accepts and increases M’s
popularity and customer’s credit account accordingly.

– (Balance) No collection of customers should be able to deposit more coupons than the ones legaly issued
by merchants M1, . . . ,Mm they interacted. Suppose that N customers C1, . . . ,Cn collude together, and
that the sum of the coupons allowed to them is Ncoupons. Then, the number of different coupons that
can be accepted when deposited to Bank is at most Ncoupons.

– (Unforgeability) No customer or coalition of customers should be able to create coupon-wallet Wcoupons,
such that when provided to CouponDeposit are accepted by Bank as issued by an honest merchant
merchant, without M’s collaboration.

– (Anonymity) Bank or any coalition of merchants should not be able to link a particular coupon to a
particular identity.

B.3 Security Proof

The following theorem states the correctness and security of our general scheme.

Theorem 1. If the underlying primitives (ecash system, blind signatures and group blind signatures) are
secure, then our scheme satisfies correctness, no overspending, credit card unforgeability, backUp integrity,
no unauthorized use of ACC, conditional non-traceability and coupon security.

Lemma 1. If the underlying primitives (blind signatures, blind group signatures and E-Cash system) are
secure, then our scheme satisfies correctness.

Proof sketch: From the correctness of the secure E-cash scheme and the secure blind signature scheme, our
scheme satisfies the first (1) condition of the correctness. Hash functions’ invertibility satisfies the second (2)
and fourth (4) parts of correctness definition, while the balance property of the E-cash scheme guarantees the
third ACC correctness property. The combination of correctness and anonymity revocability attribute of the
underlying compact ecash scheme [chl05]satisfy the fifth (5) condition. The correctness of the secure group
blind signature scheme guarantees and of the plain blind signature scheme satisfy the last (6) correction
condition (see coupons’ security proof analysis for more details). ut

Lemma 2. If underlying primitives (digital signatures, blind signatures, blind group signaturs and E-Cash
system) are secure, then our scheme satisfies Credit Card Unforgeability.

19

Proof sketch: From the unforgeability and consistency of the secure E-cash scheme, our scheme guarrantees
that no valid wallets can be created without Bank’s collaboration. Thus, Anonymous Credit Card Unforgeability
is satisfied. ut

Lemma 3. If the underlying primitives (blind signatures and E-Cash system) are secure, then our scheme
satisfies No OverSpending.

Proof sketch: Offline Payment. Being ecash based, the offline conditions of No OverSpending definition are
all satisfied by the no overspending property of the underlying secure compact ecash scheme [chl05].
Online Payment. This is basically controlled by the bank, where the anonymous account is situated. After
each transaction, bank substracts from the anonymous account, the amount spent, while it rejects any
transaction requiring more money than the anonymous account’s balance. ut

Lemma 4. If the underlying primitives (digital signatures) are secure, then our scheme satisfies BackUp
Integrity.

Proof sketch: It is satisfied by the unforgeability property of digital signature. In particular, in the end of
the backup procedure, both Bank and customer sign a hash of the encrypted content of the card concatenated
with the corresponding date. Customer has no motivation to lie (because of double-spending consequences)
and Bank’s signature on the hash of the backup acts as undeniable proof of authenticity on client’s behalf. ut

Lemma 5. If the underlying primitives (E-cash, digital signatures, hash functions) are secure, then our
scheme satisfies No Unauthorized Use of ACC.

Proof sketch: We will address each ACC use seperately. Non framability is satisfied from the exculpability
of the secure E-cash scheme. No unauthorized offline payment requirement is satisfied through the all or
nothing non transferability property of the underlying E-cash scheme. In particular, to make a valid offline
payment using an ACC’s wallets, the secret key of the ACC owner is required. No unauthorized online
payment property is also satisfied by the non invertibility properties of hashes. To authenticate herself the
person attepting to make a payment is required to provide the pre-image of the current anonymous account
number she only knows. Automatic changes of the account number and timestamps prevent a third party to
succeed in replay attacks. Authentication in the Expense Report Request case is achieved in a similar case
as in online payment protocol. ut

Lemma 6. If the underlying primitives (blind signatures and blind group signatures) are secure, then our
scheme satisfies Coupons Security.

Proof sketch:

• (Correctness) Verifiability of a secure goup blind signature scheme guarantees that an ”honest but curious”
Bank will accept all the credit coupons generated by honest merchants and update the merchant statistics
database accordingly. Verifiability of a secure blind signature scheme guarantees that an ”honest but
curious” Bank will accept all the debit coupons generated by honest customers and update the credit
database accordingly.

• (Balance) Credit coupons are subjected to double-use check when deposited and debit coupons are only
issued in a rate one for each valid credit coupon. Since debit coupons are also subject to double-using
check when deposit, no customer or coalition of customers can eventually deposit more coupons (debit)
than the ones initially obtained by merchant.

• (Unforgeability) Unforgeability of blind group signatures guarantee that no customer or coalition of cus-
tomers can forge credit coupons. Unforgeability of blind signatures guarantees debit coupons’ unforge-
ability.

• (Anonymity) Blindness property of blind signature scheme guarantees that Bank cannot link a debit
coupon or a set of debit coupons to a credit or set of credit coupons. Thus Anonymity property is
satisfied.

20

ut

Lemma 7. If the underlying primitives (blind signatures, group blind signatures and E-Cash system) are
secure, then our scheme satisfies Credit card conditional non traceability.

Proof sketch: Simply from traceability attributes of the secure E-cash scheme, our scheme satisfies the
conditional non Traceability.

From the E-cash scheme properties, the only case for a customer’s identity to be revealed, is when she
double-spends part of her wallets to exceed her credit limit (identity or payment). As the two wallets are
spent concurrently in all payment procedures, double-spending a part of the payment wallet implies double-
spending the corresponding part of the identity one as well. Thus, the double-spender’s identity is revealed.

In our scheme, there are three cases, where a customer C double-spends parts of her wallet(s):

1. Closes her card, reports her loss but in the period between the last card backup and the loss of the card,
C has used the card to make purchases. In this case, C spends the rest of *only* the payment wallet to
Bank. Thus, although C’s transactions within this time period (critical) get revealed — when merchants
deposit the double-spent parts of C’s wallet — her transaction activity preceeding and following the
critical period remains secret.

2. C copies her card, and uses two cards at the same time. In this case, identity wallet is spent twice and
because of the tracing attribute of tracing enabled E-casht scheme, the serial numbers of all coins C has
withdrawn are revealed.

3. C copies her card, updates her credit limit using one copy and uses the other copy to make purchases.
This is another case of on purpose double-spending,similar to case 2.

ut

21

