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Abstract: This paper shows how existing band-pass filtering techniques and their exten-
sions may be applied to the common problem of estimating current trends or cycles. These 
techniques give estimates which are “optimal” given the available data, so their standard 
errors represent a lower bound on what can be achieved with other univariate techniques. 
Applications to the problems of estimating current trend productivity growth, core infla-
tion and output gaps are considered. These illustrate the different factors which determine 
how accurately the underlying trend is measured and the degree to which estimated cycles 
tend to lead or lag the true cycle.
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1.0  Introduction

A common problem in macroeconomics is that of measuring the business cycle, or more 
generally, of separating long-run trends from short-term movements. A technique which 
does so may be thought of as a filter, one which is applied to raw economic data prior to 
analysis. The best known is the Hodrick-Prescott (HP) filter, which has become the bench-
mark against which all other filters in macroeconomics are compared.1

The HP filter is unabashedly arbitrary; it was proposed and adopted largely on the basis 
that it gave results which “looked reasonable.” Its use has since been rationalized as an 
approximate band-pass filter. A band-pass filter is one which isolates movements in a 
series between a specified upper and lower frequency or duration; movements outside this 
desired frequency band are eliminated. As commonly used with quarterly economic data, 
the HP filter eliminates or greatly reduces most long-run movements in the series while 
preserving those at roughly business cycle frequencies.2 The result is a detrended series 
which looks like a business cycle and has served as an agnostic basis for much economic 
analysis.3

Given its preeminent role and its arbitrary nature, the HP filter has been the focus of much 
emulation and innovation in recent years. Baxter and King (1999) argue in favour of 
replacing the HP filter with a more exact band-pass filter, arguing that better results come 
from using a better approximation. Gomez (2001) and Pollock (2000) propose the use of 
other ad hoc filters which are commonly used in engineering and which also approximate 
band-pass filters.4 Pedersen (1998) and Kaiser and Maravall (2001) propose extensions or 
modifications to the HP filter to improve its performance. However, most of this literature 
has ignored the application to current analysis.

The distinguishing feature of current analysis is that it interprets the most recently availa-
ble information; the cycle (or trend) of interest is that at the end of the data sample. The 
dominant focus of the above literature is historical analysis, in which we care mostly about 
the cycle (or trend) somewhere in the middle of the sample. This distinction is sometimes 
critical. Most of the analysis in the existing literature is restricted to symmetric filters; to 
isolate the cycle or trend at time t, such filters use an equal number of observations from 
before and after t.5 This precludes their use at the end of sample. Other filters are justified 

1. Its current popularity stems from its use in the seminal working paper Hodrick and Prescott (1977), 
finally published as Hodrick and Prescott (1997), although the technique dates from the 1920s.

2. In practice, business cycles are defined to have durations between 6 and 32 quarters. This definition 
gained popularity after Baxter and King (1999) cited Burns and Mitchell (1947) as characterizing busi-
ness cycles in this way. It is useful to remember that these numbers are not written in stone; Stock and 
Watson (1998) quote Burns and Mitchell (1947, p. 3) as stating that business cycles vary in duration “... 
from more than one year to ten or twelve years.”

3. The claim that HP-filtered output “looks like” a business cycle is a popular misstatement. Business cycle 
measurement and analysis, since its infancy, has used the HP filter (or even simpler moving-average fil-
ters which produce similar results.) It is therefore probably more accurate to say that the output of these 
filters have defined what we think of as business cycles. See Morley, Nelson and Zivot (1999).

4. Both examine Butterworth filters, of which they note the HP filter is simply a special case.
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on the basis of their mid-sample properties, but may behave quite differently at the end of 
sample.6 

This paper considers the filtering problem from the perspective of current analysis. Rather 
than use ad hoc approximations to band-pass filters, it shows how to construct one-sided 
band-pass filters which are optimal in a minimum mean-squared-error sense. Unlike the 
filters mentioned in the above literature, the optimal filter will vary with the properties of 
the data series to be filtered. While such filters are little known in macroeconomics, they 
are not new; the annex of this paper reviews the contributions of Koopmans (1974) and 
Christiano and Fitzgerald (1999). The body of this paper gives an overview of these opti-
mal filters and applies them to three problems of widespread interest; estimating the cur-
rent output gap, the current trend growth rate of productivity and the current trend rate of 
inflation.

Related to the filtering literature discussed above is another one which examines the relia-
bility of filtered estimates of trends and cycles.7 Since the current analysis filter discussed 
in this paper minimizes a MSE criterion, we can relate its reliability to those of other fil-
ters examined in this literature. It also establishes an upper bound on the accuracy that any 
such filters can hope to achieve. Because this bound depends in a complicated way on the 
properties of the data analysed, we investigate the properties of the optimal filter for the 
three common problems in current analysis.

The next section of the paper provides a non-technical overview of band-pass filtering and 
the optimal one-sided band-pass filter. A derivation and a more detailed discussion of this 
filter may be found in the technical appendix. Section 3.0 applies the filter to three com-
mon macroeconomic problems of measuring trend and cycles and discusses the results. 
Section 4.0 summarizes the conclusions and suggests avenues for further research.

5. Baxter and King (1999), for example, suggest reserving about five years of data from each end of the 
sample to provide the necessary leads and lags.

6. The HP filter is a case in point. Comparisons to band-pass filters are based on its symmetric MA repre-
sentation, which is a limit the filter approaches in the middle of a large sample. Its representation at the 
end of sample is quite different; see St. Amant and van Norden (1997).

7. Examples of this include Setterfield et al. (1992), Staiger, Stock and Watson (1997), Orphanides and van 
Norden (1999, 2002) and Cayen and van Norden (2002).
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2.0  An Optimal Band-Pass Filter for Current Analysis

2.1  Filters: A Primer8

A filter may be thought of as an algorithm for processing a time series in order to get a 
more meaningful statistic; e.g. the process of averaging measured rainfall at a given loca-
tion to get “average” rainfall. We can describe this mathematically as

(EQ 1)

where  is our statistic,  is our time series and  is our filter. While such processing 
could be complex, attention often focuses on a particularly simple and tractable case; the 
linear, time-invariant filter. Such filters can be described as

(EQ 2)

The distinguishing features of such filters are that the weight  we put on a particular 
observation does not depend on , and that the operation is linear in .9 If we think of  
as a random error term, the Wold decomposition theorem tells us that this class of filters is 
related to the class of ARMA process. In this situation, since the properties of  are held 
fixed, the properties of S are determined by .

We are often particularly interested in the dynamics of S, which may be uniquely charac-
terized via frequency or spectral analysis. The idea is to decompose all the movements in S 
into cycles of varying frequency and amplitude. Such a unique decomposition exists if S is 
stationary (and if not, we assume that we can difference it until it is.) Furthermore, since 
cycles of different frequencies are uncorrelated in the long run, the variance of S will sim-
ply be the sum of its variances over all frequencies. The relative importance of these dif-
ferent frequencies in the overall variance tells us something about the dynamic behaviour 
of the series. For example, an i.i.d. error will display a constant variance at all frequencies, 
while a random walk will have much more variance at low frequencies (long cycles) than 
at high (short cycles.) The function decomposing the total variance by frequency is com-
monly called the spectrum or spectral density and is typically shown graphed from 0 (low-
est frequencies, infinitely-long cycles) to  (highest observable frequencies, cycles of 2 
periods.)

The spectrum of S depends on the properties of both  and . To understand the effects of 
, we can divide the spectrum of S by that of  to define the squared gain or transfer 

8. This section provides an intuitive introduction to the filtering terms used in the rest of this paper. It may 
be skipped without loss of continuity by those familiar with spectral analysis.

9. Several well-known filters do not belong in this class. Examples include the HP filter (where the weights 
vary with t) and the Hamilton filter for the probability of being in a particular regime (which is a non-lin-
ear function of .)
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function of . Frequencies at which the squared gain is greater than 1 are accentuated in S, 
while those at which the squared gain is (close to) zero are (nearly) removed from S. The 
aim of band-pass filtering is to choose  to match a particular kind of squared gain func-
tion; one which has a gain of 1 over a particular frequency range (l,u) |  and 
zero elsewhere. The case where  is called a low-pass filter while  is called a 
high-pass filter. 

If a filter has the property  it is called a symmetric filter, whereas if  
 then the filter is said to be one-sided.10 Symmetric filters have the property that S 

will tend neither to lead nor to lag movements in the corresponding components of y; the 
same is not generally true for non-symmetric filters.11 This effect of non-symmetric filters 
is called phase shift and in general will vary from one frequency to another. 

2.2  Business Cycle Filters

Band-pass filtering is an approach to the measurement of trends or cycles in macroeco-
nomics whose appeal rests on two key assumptions;

1. We can agree on some threshold duration such that we wish to interpret movements of 
longer duration as trends and shorter duration as cycles. 

2. Aside from this, we wish to remain fairly agnostic about the economic or stochastic 
processes generating the data.

In this case we may detrend the data using a low-pass filter (one which passes all frequen-
cies below the threshold, i.e. all durations above the threshold) to isolate the trend, or 
equivalently, use a high-pass filter to isolate the cycle. Two of the three applications we 
study below use low-pass filters to isolate such trends. The case of business cycles is more 
complex since we wish to exclude both the trend component and a seasonal/short-lived 
component. We therefore need a band-pass filter to block both the very long and very 
short duration movements.

The ideal band-pass filter would have a gain of zero outside the (l,u) interval and a gain of 
one inside. Deviations from the former condition allow leakage from undesired frequen-
cies, while deviations from the later distort the “true” cycle present in the data. The unique 
filter with such properties exists and is given by the formula

(EQ 3)

One problem with this ideal filter is that we require the sum in (EQ 2) to go from  to 
. Truncating this sum at some finite values, say -N and N, results in a approximate filter 

10.The only one-sided symmetric filter is the trivial filter which just multiplies  by a constant; we’ll typi-
cally ignore that special case and talk as if these two classes are mutually exclusive. 

11.For example, consider the difference between a centre-weighted and a one-sided moving average.
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in which desired rectangular shape of its squared gain is contaminated by sinusoidal 
imperfections. (See Figure 1.) Baxter and King (1999) suggest that using values of N as 
small as 20 in quarterly data gives reasonable results for US business cycles if we adopt 
the Burns and Mitchell cut-offs of 6 and 32 quarters. 

The problem with this approach is that it cannot be used for current analysis. Using N=20 
implies that our most recent estimates of the business cycle would be 20 quarters prior to 
the last quarter for which we had data. One way around this would to use the Baxter-King 
formula at the end of the sample, simply omitting (i.e. replacing by zero) the missing 
observations which are not yet known. As shown in Figure 1, this gives poor results, even 
for large values of N; the resulting filters have a gain which is far from 1, vary considera-
bly over the frequency band of interest, and leak much more of the frequencies outside the 
desired band. Stock and Watson (1998) use a different ad hoc solution. They fit the availa-
ble time series to a simple AR model, then use forecasts from the fitted model in place of 
the required future observations. Unfortunately, they do not provide a justification for this 
procedure, nor do they examine how closely it approximates the ideal filter. 

Another criticism that has been made of this approach is that even if the filter we use has a 
gain function which is close to that of the ideal filter, this need not imply that the series it 
produces will be a good approximation of the ideally filtered series.12 The problem is that 
many economic series display a “Typical Granger Spectral Shape”; the density in their 
spectrum is highly concentrated at the lowest frequencies. This in turn means that for 
band-pass or high-pass filtering (e.g. for measuring business cycles), we care much more 
about how well we approximate the ideal filter at low frequencies than at high frequen-
cies.13

2.3  Optimal Current-Analysis Filters

To adapt the band-pass filtering approach to a current analysis context, we would like to 
have some optimal filter  which minimizes

(EQ 4)

In other words, given T observations on the series we wish to filter , the optimal filter 
will give us the minimum mean squared error (MSE) estimate of what the ideal filter 
would give us with data from  to . As shown in the Annex to this paper, this problem 
has a unique solution under fairly standard conditions.14 In the case where  is station-
ary, we find that 

12.For example, see Guay and St. Amant (1997)
13.Pedersen (1998) re-examines HP filters from this perspective and suggests alternatives to the traditional 

value of 1600 for its smoothing parameter.
14.The annex gives solutions for the case of ARIMA(p,d,q) processes ( ) and surveys related con-

tributions in the literature.
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(EQ 5)

where

, a length T column vector

, a T x T matrix.

, 
a length T column vector.

, a 2q+1 
column vector.

, a T x 2q+1 matrix

, a 2q+1 column vector

 is the weight of the ideal filter, given by (EQ 3).

In general, these optimal weights depend on (a) the number of observations T we have, (b) 
the dynamics of our series , as measured by its autocovariances, and (c) the ideal 
weights  from (EQ 3). Furthermore, they have an intuitive interpretation as the solution 
to a regression problem; one where we regress the doubly-infinite set  on our T 
observations . The resulting coefficients are our optimal weights, and therefore our min-
imization problem (EQ 4) simply seeks to minimize the variance of the regression residu-
als.15 

We can better understand this formula and the above intuition if we consider two special 
cases. First, suppose that  is i.i.d. This means that  for all , so we may 
set q=0. This makes  a scalar, equal to the variance of y, and  is simply the identity 
matrix times this variance. This means that (EQ 5) further simplifies to 

. Put another way, in this case the optimal solution is simply a trun-
cated version of ideal weights, precisely the same solution which was seen to give very 
poor results in Figure 1.

Now suppose that y follows a stationary MA(Q) process. Since its autocovariances will be 
zero for leads and lags greater than Q, this again effectively determines q in (EQ 5). How-
ever, suppose that instead of using the optimal weights, we use the Stock and Watson 
approach of padding our T observations with Q forecasts/backcasts from the MA model at 
each end of the sample, then using the Baxter-King approximate filter with N=Q. The esti-

15.This interpretation is developed further in the Annex, particularly in Section 2.1.

β Σy
1–

B σy⋅ ⋅=

β B̂0 … B̂T 1–, ,[ ]′=

Σy σy 0, σy 1, σy 2, … σy T 1–,, , , ,[ ]′=

σy j, σy j–( ) σy j– 1+( ) σy j– 2+( ) … σy T 1– j–( ), , , ,[ ]′=

σy σy q–( ) σy q– 1+( ) σy q– 2+( ) … σy q( ), , , ,[ ]′=

σy q( ) cov yt yt q+,( )=

B B0 B1 B2
… BT 1–

, , , ,[ ]′=

Bj Bj q– Bj q 1+– Bj q 2+– … Bj q+, , , ,[ ]′=

Bj

yt
Bj

Bj yT j–⋅{ }
y

yt σy l( ) 0= l 0≠
σy Σy

β B0 … BT 1–, ,[ ]=



Optimal band-pass filtering and the reliablity of current analysis Simon van Norden

January 29, 2004 8 

mate from this two-step ad hoc procedure will be identical to the estimate from our opti-
mal filter. This is because the optimal weights given in (EQ 5) reflect both the weights 
used to form forecasts/backcasts at the ends of the available sample, as well as the weights 
which the Baxter-King filter would place on them. Put another way, (EQ 5) implies that 
the Stock-Watson two-step procedure will give optimal estimates at the end of sample pro-
vided that (1) we use the “right” forecasting model to pad our data, (2) we pad our sample 
until our forecasts have converged to zero.

Another feature of (EQ 5) is that it lets us solve for the minimum value of (EQ 4). This is 
useful, since it tells us how well our best end-of-sample estimates can approximate the 
ideal estimates. The general solution is given by 

(EQ 6)

In the above case where y is i.i.d., this reduces to 

(EQ 7)
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3.0  Applications 

We now examine the performance of the optimal filter by applying it to three problems of 
common interest; estimating the current output gap, the current trend growth rate of pro-
ductivity and the current trend rate of inflation. The first of these differs from the other 
two in that we analyse the raw data in levels, not growth rates, and that we seek to isolate 
the intermediate frequencies rather than the low frequencies. Because the optimal filter is 
a function of the dynamic properties of the series analysed, our results can be expected to 
differ across applications.

3.1  Data

The output series ( ) is the natural logarithm of Euro-zone real GDP for the period 
1991Q1 to 2003Q2. The inflation series  is the monthly difference of the natural loga-
rithm of the Euro-zone Harmonized Index of Consumer Prices (seasonally adjusted) cov-
ering the period January 1995 to August 2003. The productivity series  is difference 
of the natural logarithm of quarterly data on Real GDP per person employed from 1991Q1 
to 2003Q2. Note that deterministic components were removed from all three series prior 
to analysis. In the case of  the series were demeaned; for  and  a deterministic lin-
ear trend was also removed.

For each series, two different estimates of the autocovariance function  were then 
constructed. The first fit a low-order ARMA model to the data (Table 1), then used the 
estimated parameters of the ARMA model to calculate the implied covariances.16 The 
second used a nonparametric kernel estimate.17 In both cases, each data sample of N 
observations was used to calculate N-1 autocovariances. The two approaches gave some-
times similar estimates, as shown in the top left panel of Figure 2 through Figure 4, with 
the nonparametric kernel tending to capture somewhat more complex and persistent 
dynamics. The second panel (top right) in each of these figures shows the corresponding 
spectrum for each series.

The dynamics of the three series look quite different. Quarterly productivity growth shows 
little persistence and is close to white noise; its ARMA spectrum is nearly flat and the ker-
nel-estimated spectrum shows no clear tendancy to rise or fall as the frequency increases. 
Output shows slowly decaying autocovariances, consistent with estimated autoregressive 
roots of nearly 0.95. Its spectrum displays the typical Granger shape, with density power-
fully concentrated in the low frequencies. Monthly inflation falls between these two 
extremes, with the dynamics of its ARMA approximation showing less persistence that 
those of the nonparametric kernel estimate.18 The result is two very different-looking 
spectra, with the ARMA-based estimate looking quite flat, but the kernel-based estimate 

16.The ARMABIC3() procedure from the COINT module for GAUSS by Ouliaris and Phillips (1995) was 
used for estimation and model selection. This uses the BIC criterion for model selection and a 2 or 3 stage 
Hannan-Rissanen iterative estimation procedure.

17.The results presented here use the Quadratic-Spectral kernel (without the data-dependent band-width 
selection.) Limited experimentation suggested that the results were not sensitive to this choice.

Yt
πt( )
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showing even more concentration in the low frequencies than the spectrum for output 
growth.

3.2  Filtering Productivity Growth

Trends in productivity growth are the subject of considerable analysis, with interest in cur-
rent trends having intensified in recent years. While it is widely acknowledged that labour 
productivity is procyclical, most analysis of productivity growth does little to explicitly 
separate its trend and cyclical components beyond examining averages of growth rates 
over several years. It would therefore be useful to construct optimal estimates of current 
trend productivity, as well as to know how reliable such estimates may be. This is pre-
cisely what the results from Section 2.0 now enable us to do.

Since we are trying to remove business cycle influences from productivity growth, we 
adopt the Burns-Mitchell-Baxter-King characterization of these cycles as having durations 
of up to 8 years in length. Our ideal filter for quarterly data is therefore a symmetric low-
pass filter which blocks all frequencies above . This together with the results pre-
sented in Section 3.1 are all we need to construct the optimal filter. Its properties are 
described in Figure 2 and Table 2. 

The third panel in Figure 2 (middle row, left column) compares the weights of the optimal 
and ideal filters. In the case of the ARMA model, the two are almost identical. This is 
because the ARMA model implies quarterly productivity growth is almost serially uncor-
related; this is almost the simple case discussed in Section 2.3. The weights for the kernel 
model are similar, but die away more slowly and are somewhat more volatile, reflecting 
the somewhat greater persistence in the series which the kernel detects. 

Panels 4 and 6 in Figure 2 (right column, middle and bottom rows) compare the spectral 
properties of the three filters and the two optimally-filtered series. The gain of the optimal 
kernel filter shows a pattern similar to that shown in Figure 1 for other truncated ideal fil-
ters; the biggest difference being the absence of a lower bound on the filter. 19 The optimal 
ARMA filter has a somewhat similar shape, but tends to have a lower squared gain at most 
of the frequencies shown. Note that the kernel filter has a particularly high gain at the start 
of the stop band (about 0.8 near ); this is roughly double the corresponding 
squared gain for the ARMA filter. This difference is to be expected given the peaks and 

18.ARMA model selection for the CPI data was problematic. It is doubtful that the MA(12) adequately cap-
tures the persistence of inflation, since this would imply that inflation shocks completely die out in 12 
months. 

19.To understand why a filter with a gain everywhere less than 1 may still be optimal, consider the effect of 
scaling all the filter weights by some constant k>1. This has the effect of scaling the squared gain every-
where by . In the case of the ARMA filter, this will reduce the difference between its gain and that of 
the ideal filter at frequencies below the cutoff frequency (i.e. reducing compression), thereby improving 
the estimate. However, this benefit is counterbalanced by the effect of increasing the difference between 
the two filters at frequencies above the cutoff (i.e. increasing leakage.) The optimal scale is the one at 
which the marginal benefits at some frequencies of a change in scale are exactly equal to the marginal 
costs at all other frequencies.

π 16⁄

k2

ω 0.2=
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valleys of the kernel-estimated spectrum in these ranges; there is a dip in the density 
around  and so leakage in this area is less important for the kernal filter than for 
the ARMA filter.

Multiplying the spectral density at a given frequency from Panel 2 by the squared gain at 
that frequency from Panel 4 gives us the spectrum of the filtered series shown in Panel 6. 
In contrast to the relatively flat spectra shown in Panel 2, our low-pass filters have succeed 
in powerfully concentrating the spectrum of the filtered series over the desired frequen-
cies. At the same time, however, the imperfections of the optimal filters are clearly visible; 
the spectral density at the low frequencies is much less than that in the raw data, and the 
ARMA-filtered spectrum has a small artificial peak at the cutoff frequency, which implies 
a modest, but spurious, cycle in the filtered series.20

The overall performance of the filter across all frequencies is summarized by the statistics 
presented in Table 2. The variance of the raw series (line 1) is simply the area under the 
spectra shown in Panel 2 of Figure 2.21 Similarly, the variance of the ideally filtered series 
(line 2) is the area under those spectra lying between frequencies 0 and . In this case, 
the ideally-filtered trend accounts for under 20% of the total variance of the observed 
series. The optimally-filtered estimate of that trend captures betwee half and three-quar-
ters of the variance of the ideal trend. The difference between the ARMA and Kernel mod-
els becomes more apparent when this is expressed in terms of correlations and noise-
signal ratios. Here we see that the Kernel model implies an N/S ratio less than half that of 
the ARMA model , as well as an 86% correlation with the ideal estimate compared to 
74.5% for the ARMA model. 

The fifth panel of Figure 2 (bottom row, left column) shows the degree of phase lag 
implied by the filters. The last row of Table 2 shows the mean phase lag, which simply 
uses the spectral density of the filtered series (the sixth panel in Figure 2) to produce a 
weighted average lag for the filtered series. We see that the phase lag is positive at all the 
frequencies shown, increasing as we move from the highest frequencies to those near the 
cutoff. However, these frequencies have little weight in the filtered series, whose density 
is concentrated in the pass-band below the 32Q cutoff. Here, the phase lag varies across 
the two estimates, with that for the kernel estimate dropping from a high of about 5 peri-
ods to a low near 1. The ARMA estimate gives a larger lag than the kernel estimate every-
where in the pass band, with the difference becoming larger as the frequency approaches 
zero. As a result, the mean phase lag is almost a full year (see Table 2) for the ARMA esti-
mate but only just over half a year for the kernel estimate.

20.Of course, the current application is designed to produce a single point estimate rather than a series, so 
this point may be moot.

21.Strictly speaking, it is twice that area, since the full spectrum is symmetric about 0; the figure shows only 
half that range. This applies to the analysis of subsequent rows in this table as well.

ω 0.2=

π 16⁄
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3.3  Filtering Inflation

As the objective of price stability has moved to the forefront of monetary policy formula-
tion throughout much of the world over the past decade and a half, more attention has been 
given to the question of how to measure and monitor progress towards this goal. Most 
monetary authorities propose a modified (or “core”) measure of inflation which aims to 
capture persistent trends in inflation or inflationary pressures.22 It would therefore be of 
interest to use band-pass filters to construct optimal measures of current trends in infla-
tion, where these trends are again defined using a low-pass filter. The appropriate cut-off 
frequency to use for such a filter is debatable; for the example we study in this section a 
frequency of  (corresponding to cycles lasting 48 months) is used in order to give 
seasonal influences and short-run nominal shocks ample time to dissipate. Results are pre-
sented in Table 3 and Figure 3.

The third panel (left column, middle row) in Figure 3 shows us that the optimal weights 
now put a much higher weight on the most recent observations than the ideal weights. 
Again, the ARMA-model weights converge much more quickly to the ideal weights than 
the kernel model, presumably reflecting the greater persistence in the kernel-estimated 
dynamics.

The fourth panel (right column, middle row) shows that the gain functions of the optimal 
filters are again different from that of the ideal filter in several respects. The gain function 
for the ARMA filter again resembles the shape we encountered in Figure 1, with a gain of 
less than 0.5 for most of the pass band, and a gain near 1 for only a narrow band near the 
cutoff frequency. Although the gain drops sharply beyond that point, it stays significantly 
above zero for the rest of the graphed frequency range. The gain of the kernel filter resem-
bles that of the ARMA filter over the pass band, with the exception of a near-zero gain at 
frequency zero. Outside the pass-band, however, there are multiple peaks with gains close 
to or exceeding 50%. 

The sixth panel (right column, bottom row) shows that despite the apparently irregular 
gain functions, both of the resulting filtered series capture most of the density of the raw 
series at the low frequencies and have a very sharp drop in density at the cutoff frequency, 
with very little density at the higher frequencies. This reflects the fact that both filters have 
sharp drops in gain at the cutoff frequency, and that the potentially large leakage they 
allow from much higher frequencies is relatively unimportant due to their lack of impor-
tance in the original spectrum. Similarly, we may note that the variable gain of the kernel 
filter within the pass-band does not appear to greatly distort the spectrum of inflation 
within this band. This is because peaks in the raw spectrum correspond to frequencies 
around which the gain is not far from 1, while areas of particularly low gain in the pass-
band correspond to troughs in the raw spectrum.

Table 3 confirms the relatively good performance of optimal filter for both the ARMA and 
kernel-based models. Both give estimates which have correlations of over 88% with the 

22.Unlike the techniques examined in this paper, many other approaches to measuring core inflation rely on 
the analysis of disaggregated price movements.

π 24⁄
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true trend rate of inflation, and their noise-signal ratios are both under 30%. This 
improved performance is consistent with the basic intuition we saw in Section 2.3, that 
persistence tends to improve the quality of current estimates of the trend. We can under-
stand this in terms of the Stock-Watson two-step procedure; the more persistent a series is, 
the better we are able to forecast it and therefore the better we approximate the ideal filter. 
Another way to understand these results is to recall that as persistence increases, the spec-
trum of our data series becomes increasingly concentrated in the lowest frequencies. Since 
our goal is to design a low-pass filter, this in turn reduces the importance of leaking higher 
frequencies, allowing us to increase the average gain of the optimal filter and thereby bet-
ter approximate the ideal filter. 

Although the phase lag of these filters varies by frequency, the lags are smaller than in the 
productivity growth case and rarely exceed half a year (6 months.) The lag for both filters 
peaks at the cutoff frequency and for the kernel filter it then quickly falls to zero in both 
directions. As a result, its mean phase lag is a trivial 0.68 months. Phase lag for the 
ARMA filter falls off more gradually, however, resulting in a mean lag of just over one 
quarter.

3.4  Filtering GDP

Optimal filters for business cycles and their properties are described in Figure 4 and Table 
4. Unlike the two previous filters we have considered, this is a band-pass rather than a 
low-pass filter, and it uses the values suggested by Baxter and King  to 
define the frequencies of interest.

Panel 3 (left column, middle row) of Figure 4 shows that the optimal ARMA weights are 
indistinguishable from the ideal weights, while the kernel weights resemble the ideal 
weights in many respects. Panel 4 (right column, middle row) shows that the squared gain 
of the optimal ARMA filter again resembles the patterns we saw in Figure 1, but that for 
the kernel filter is different in some important respects. It has a non-trivial gain at zero fre-
quency, a pronounced peak (with a gain > 1) in the middle of the pass-band and very low 
gain as it approaches the high-frequency cutoff. However, it closely resembles the squared 
gain of the ARMA filter near the low-frequency cut-off and above the high-frequency cut-
off.

Panel 6 (right column, bottom row) shows that both filtered series have effectively 
blocked the high-frequency part of the original spectrum, but that both seem to pass signif-
icant amounts at the lowest frequencies. Results in Table 4, similar for both models, appar-
ently reflect this low-frequency leakage. The correlation of optimal and ideal filter 
estimates is about 80%, and the noise-signal ratio ranges from 46% for the kernel model to 
60% for the ARMA model. 

Phase lag for these models is small for most frequencies with the exception of those below 
the lower cutoff, where it becomes positive and large (peaking with a lag of over two 
years) for the kernel model, and negative (i.e. a phase lead) and large (peaking at three 
years) for the ARMA model. However, the relatively low spectral density of the filtered 
series in this region greatly reduces their overall impact. As shown in Table 4, mean phase 

π 16⁄ π 3⁄,( )
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lag is negative for both series, with a lead of roughly two and a half quarters for the 
ARMA model and less than one quarter for the kernel model. 

3.4.1  The reliability of current estimates of the output gap

Estimates of the reliability of output gaps are of particular interest for the design of opti-
mal monetary policies. It is therefore of interest to compare the above results with other 
recent estimates in the literature.

Christiano and Fitzgerald (1999) solve roughly the same optimal filter problem solved in 
this paper.23 However, on the basis of experiments with models in the IMA(1,q) class, 
they conclude that most economic time series can be nearly-optimally filtered if we 
assume that they are random walks and solve for the corresponding approximately optimal 
filter.24 In that case, the filter weights become functions of only the cutoff frequencies and 
the sample size. They calculate that the correlation between their nearly-optimal filter and 
the ideally-filtered measure of the business cycle is roughly 0.65 and that the noise-signal 
ratio is 0.77.25 This is a lower correlation than we find for either model, while their noise-
signal ratio is higher. 

Orphanides and van Norden (1999, 2002) and Cayen and van Norden (2002) study other 
filters which do not have optimal band-pass properties but are nonetheless used to meas-
ure business cycles. They compare the rolling estimates produced when such filters are 
applied at the end of sample to historical estimates produced after many subsequent years 
of data are available.26 The size of this revision in estimated business cycles corresponds 
to the difference between our ideal and optimal filter estimates. Using US data, Orpha-
nides and van Norden (1999) find correlation coefficients ranging from 0.63 to 0.96, 
depending on the model used.27 Cayen and van Norden (2002) use Canadian data and 
finds correlation coefficients for the same models ranging from 0.70 to 0.84.28 We can 
also reconstruct noise-signal ratios for the former paper based on the ratio of the reported 
standard deviation of the revisions to the standard deviation of the final measure of the 
output gap. These figures are reported in Table 5; the values range from 0.34 to 0.79. 

23.See the Annex for a discussion.
24.The fact that they use low-order IMA models presumably guarantees that the optimal weights and their 

approximate weights will differ only for the last few observations, and even then not very much. It would 
be interesting to see whether the usefulness of the random walk approximation would be sustained if ker-
nel or ARIMA models were instead used to derive optimal filters.

25.The correlation is taken from the end-point of the graph in the left column, middle row of their Figure 6, 
while the signal-noise ratio is given in the discussion on p. 21 in Christiano and Fitzgerald (1999). Note 
that their band-pass filter is set to pass all cycles with durations from 2 to 8 years versus the 6 to 32 quar-
ters used here.

26.In the terminology of these papers, these are the Final and the QuasiFinal estimates. The Final - QuasiFi-
nal revision is a better analogue to the estimation error considered in this paper since both ignore the role 
of uncertainty in the underlying data generating process. 

27.Orphanides and van Norden (1999), Table 1, p. 32. Results are correlations between Quasi-Final and 
Final estimates for the Watson, Clark and Harvey-Jaeger Models. 

28.Cayen and van Norden (2002), Table 1, p. 33.
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While it may appear counter-intuitive that non-optimal models appear sometimes to give 
better correlations or noise-signal ratios than the optimal measures developed in this 
paper, it should be remembered that the two are not strictly comparable since their defini-
tions of trend and cycle differ. However, these results suggest that the optimal frequency-
based techniques should not be expected to give markedly more accurate estimates than 
other sophisticated time-series methods. 
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4.0  Conclusions

The derivations contained in the annex show how to construct optimal band-pass filters 
for them ARIMA models commonly used with macroeconomic time series. Together with 
the above applications of such filters, this produces several interesting results.

First, it illustrates how the accuracy of such filters may vary considerably. When a series 
has little or no predictability, as is the case for the ARMA model of productivity growth, 
this limits our ability to measure the current long-term trend. We found therefore that cur-
rent estimates of trend productivity growth based on the ARMA model have correlations 
of about 75% with comparable estimates constructed with the benefit of hindsight; put 
another way, their noise-signal ratio is about 80%. The ARMA model therefore implies 
that the measurement of productivity trends is the most difficult of the three problems con-
sidered in this paper. The kernel model suggests that productivity trend measurement is 
substantially easier, however. Reconciling these results is left to future work.

The results for inflation illustrate how increased predictability improves our measurement 
of current trends. Both of the models we examined imply that current inflation trends can 
be measured with considerable accuracy, giving about 90% correlations with the best ex-
post measures and noise-signal ratios just above 20%. 

Persistence acts as a double-edged sword, however, when we seek to measure current 
cycles, as shown by the results for business cycle measurement. On the one hand, it 
improves the amount of information available about the future of the series, thereby reduc-
ing the difference between current and future estimates of trend. On the other hand, by 
increasing the relative amount of noise to be filtered out, it increases the potential effects 
of leakage and therefore of measurement error. In the case of business cycle measurement, 
we see that optimal filters do not perform especially well; their correlations and noise-sig-
nal ratios are similar to those for productivity growth. 

The results for business cycle measurement are somewhat surprising in light of previous 
work examining the performance of non-frequency-based models of trend and cycles. 
Comparison of these results seems to show that the latter will in some cases perform as 
well or better than the optimal methods analysed here. The comparisons are potentially 
misleading, however, since the definitions of trend and cycle are not comparable across 
models. The previous work also focused on models in which output was assumed to fol-
low a stochastic trend rather than the deterministic trend assumed here. A reconciliation of 
these results should examine the extent to which the results for frequency-based filters are 
sensitive to the assumption of trend-stationarity.

More generally, the sensitivity of optimal filters to the assumed dynamics of the data 
series requires further evaluation. This would allow a closer scrutiny of Christiano and Fit-
zgerald’s (1999) claim that the assumption of random walk dynamics is adequate for most 
macroeconomic time series, which is a potentially important simplification for applied 
work. It would also have implications for the accuracy with which business cycles may 
realistically be measured. The only source of error considered in this paper’s analysis is 
the extent to which estimated cycles will be revised as new observations become availa-
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ble. As noted in Orphanides and van Norden (1999, 2002), other sources include estima-
tion error in the autocovariance function, data revision, and model misspecification. The 
results presented above should therefore be viewed as lower bounds on the total measure-
ment error in frequency-based estimation of current trends and cycles. 
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5.0  Annex: Derivation of Optimal Filter

This Annex presents a derivation of the optimal one-sided band-pass filter. It draws on 
Christiano and Fitzgerald (1999), who derive the optimal filtered estimated at each point 
in the sample for an IMA(1,q) process.The proof is given in two stages. In section 5.2 we 
derive the solution under the assumption that our process is a stationary MA(q) process 
with finite variance. Sections 5.3 and 5.4 discuss extensions to the ARMA and ARIMA 
cases. Section 6.0 then compares the contribution of Christiano and Fitzgerald (1999) to 
that of Koopmans (1974) and provides additional intuition about the nature of the solution.

After this Annex was prepared, Schleicher (2001) provided a more compact derivation of 
the optimal filter for the ARIMA case, which also extends the results to below to any arbi-
trary point in the sample instead of just the endpoint.

5.1  Notation and Basic Assumptions

We have a sample of T discrete observations on some stochastic series . We assume 
that  contains no deterministic components (constants or non-stochastic trends).29 
For the remainder of this section, we also assume that  is covariance-stationary with a 
known MA(q) representation for finite q. We also require that the covariance matrix of 

 exists and has a unique inverse. Finally, we will assume that 
the power spectrum of y also exists and is given by30

(EQ 8)

where  is the covariance between  and .

Ideally, we would want to choose  to partition the spectrum of , so that  con-
tains all the fluctuations in  with frequencies between some lower limit l and some 
upper limit u, , and  contains those fluctuations with frequencies below l or 
above u.31 We can do so with an infinite-order time-invariant linear filter

(EQ 9)

29.Typically, one would regress the raw data series on a polynomial time trend and use the residuals as , 
which may be stationary or stochastically integrated. As in all spectral analysis, we ignore the potentially 
important effects of any imperfections in this detrending.

30.Covariance stationarity plus finite variance is sufficient to guarantee the properties on the covariance 
matrix. The power spectrum conditions will be satisfied if the coefficients on the MA representation are 
absolutely summable; covariance stationarity guarantees that they are square summable.

31.For example, isolating the fluctuations between 6 and 32 quarters in length with quarterly data would cor-
respond to  and .
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such that  and  where  is the lag operator. 
The coefficients of this ideal filter are given by 32

(EQ 10)

Our problem is to choose a set of filter weights  to solve

(EQ 11)

where

(EQ 12)

for complex z on the unit circle.

5.2  Solution for the MA(q) case

5.2.1  First Order Conditions

Rewrite (EQ 11) as 

(EQ 13)

Differentiating (EQ 13) with respect to each element of , we obtain T first order con-
ditions

(EQ 14)

In fact

32.Christiano and Fitzgerald (1999) further impose the restriction that , which is reasonable except 
in the special case of low-pass filters.
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 and (EQ 15)

so (EQ 14) becomes

(EQ 16)

Noting that  is symmetric about 0, we obtain

(EQ 17)

and

(EQ 18)

(EQ 16) implies

(EQ 19)

Using the fact that  when  and  when 
, we can see that (EQ 19) simply picks out one term at a time from the con-

volutions of the filter coefficients and the spectrum of . 

Because  has the properties  and  , we can write

(EQ 20)
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, a 2q+1 
column vector.

We can similarly transform the right-hand side of (EQ 19), taking care to account for the 
truncation of , and obtain

(EQ 21)

where

, a length T column vector

, a 
length T column vector.

This allows us to rewrite (EQ 19) compactly as 

(EQ 22)

5.2.2  Solving the system of FOCs

In (EQ 22),  and  are known and determined by the data, while  is given by (EQ 
3). This leaves us with T linear equations to solve for the T elements of . Stacking these 
T equations gives us 

(EQ 23)
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(EQ 25)

which is therefore just the covariance matrix of the vector . 
Our solution is therefore applicable whenever this covariance matrix exists and is of full 
rank.

5.3  The Stationary ARMA(p,q) Case

If we wish to extend our analysis from the MA(q) to the ARMA(p,q) case, we can use to 
Wold Representation Theorem to recast the ARMA model as an infinite-order MA. 
Assuming that the other conditions mentioned before (EQ 8) are respected, we can con-
tinue to write our optimization problem as before and derive the same first-order condi-
tions. The analysis then proceeds until (EQ 20), which becomes

(EQ 26)

where  and  are now doubly-infinite-dimensional vectors. We require only that their 
dot-product is well defined and finite. Stacking our T equations in (EQ 23) proceeds as 
before, the only change being the dimensions of  and  but not their product. The final 
solution in (EQ 5) is therefore unchanged.

Applying the filter to ARMA processes will in practice require that we truncate the infi-
nite sum at some point, hoping that the omitted covariance terms are sufficiently close to 
zero. Of course, for given parameters for the ARMA process, theoretical autocovariances 
may easily be calculated, so that the only limitation to the precision of our calculations are 
computing power and storage capacity. It would be irrealistic, however, to believe that we 
can infer much about autocovariances beyond the N-1th lag from a sample of only N 
observations. 
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5.4  The ARIMA(p,d,q) Case

We can try to analyse nonstationary ARIMA(p,d,q) processes by first noting that after dif-
ferencing d times, we have ARMA(p,q) processes. It would therefore be tempting to sim-
ply assume a sample of size T+d, difference it d times, and then apply the analysis as for 
stationary ARMA models to the differenced data. There are two faults with this approach, 
both of which can be seen in our objective function (EQ 11). First, instead of attempting to 
match the ideal band-pass filter  on the nonstationary data, we are trying to match it 
on the differenced data, which is equivalent to setting  as our target filter. 
Secondly, the power spectrum used to weight the deviations from the ideal filter would 
now be  instead of ; it is not clear how to motivate such a choice in practice.

Instead, note that (EQ 3) implies that we can factor 

(EQ 27)

 and (EQ 28)

This implies that the ideal band-pass filter will render stationary any series integrated of 
order no more than 2.33 From our objective function in (EQ 11), we can see that its value 
will be less than infinity if and only if our one-sided filter  also renders  stationary. 
We can therefore presume that the optimal one-sided filter may similarly be factored as

(EQ 29)

 and (EQ 30)

This common factoring of the ideal and one-sided filters allows us to find solutions in the 
cases of I(1) and I(2) processes. In the first subsection, below, we detail the proof for the 
case of IMA(1,q) processes. Thereafter, we briefly discuss the IMA(2,q) case. Extensions 
to the ARIMA case should be clear from the above discussion of the ARMA case.

5.4.1  The IMA(1,q) Case

Suppose we have T+1 observations on a process . Our minimization prob-
lem in (EQ 13) can then be rewritten as

33.See Den Haan and Sumner (2001) for a related discussion.
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(EQ 31)

where now . We can also now factor 

(EQ 32)

where  is the power spectrum for the first-difference of . This means that (EQ 31) 
simplifies to 

(EQ 33)

We now have an optimization problem that is analogous to our original problem in (EQ 
11); the only differences are three substitutions:

1. we use the power spectrum of  rather than of .

2. the function we seek to match is now  rather than 

3. the optimization is over the T coefficients of the differenced filter  rather than the 

T+1 coefficients .

As in the original proof, we work with the spectrum of a stationary series (now ) on 
which we have T observations. We therefore arrive at an analogous first-order condition, 
replacing (EQ 22) with 

(EQ 34)
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, a length T column vector

These may be stacked and solved for the optimal , given by 

(EQ 35)

where

, a T x 2q+1 matrix

, a T x T matrix.

While (EQ 35) determines , this gives us only T conditions with which to identify the 
T+1 coefficients . The remaining condition is (EQ 29), which implies that the sum over 
j of  must equal zero. 

5.4.2  The IMA(2,q) Case

The proof for the IMA(2,q) case with T+2 observations proceeds analogously to the 
IMA(1,q) case; we again transform the original minimization problem into one involving 
the power spectrum of a stationary series. This means working throughout the proof with 
T observations on , its power spectrum  and autocovariance function , 
the 2nd difference of the ideal band-pass filter  and recovering the optimal 1-sided 
filter for 2nd-differenced data .

The basic intuition should by now be clear. Because we know that the ideal 2-sided filter 
will give us a stationary series, we can transform the optimization problem into an equiva-
lent problem using suitably differenced data and a suitably differenced ideal filter. This 
approach may break down if we try to go beyond the I(2) case since the ideal filter is no 
longer sure to give a stationary filtered series. Fortunately, the vast majority of economic 
time series do not require models with orders of integration larger than 2.34

34.An alternative approach would be to change the definition of the ideal filter to ensure stationarity.
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6.0  Annex: Historical Antecedents

The tools of frequency-domain analysis and signal processing theory have been available 
for over a quarter-century. The idea of deriving an optimal filter defined as in (EQ 11) is 
an obvious one, and the derivation of its closed-form solution is not difficult. Despite this, 
it is barely mentioned or discussed in modern econometrics or macroeconomics.35 Chris-
tiano and Fitzgerald (1999) derive the optimal filtered estimated at each point in the sam-
ple for an IMA(1,q) process.36 They make no specific references to previous derivations 
of this type. However, they refer to Stock and Watson (1998)’s time-domain procedure of 
forecasting future values of output to “pad” the sample and then applying the Baxter-King 
filter, but do not clearly state its relationship.37

However, Koopmans (1974) gives the closed-form solution for a closely related prob-
lem.38 He considers the case of two weakly-stationary processes , where we 
observe only  but we know their cross spectral density  as well as their spectral 
densities . (Recall that knowing  is equivalent to knowing their cross-
covariance function .) We wish to construct the linear filter  which minimizes

(EQ 36)

subject to the restriction that  is a polynomial in only non-negative powers of L. 

Koopmans’ proof relies on an underlying intuition based on projections. The optimal one-
sided filter is simply the projection from the space spanned by  into the space 
spanned by past and present values of , . This can be broken down into two pro-
jection steps; the first being the projection of  onto the space spanned by past, present 
and future values of  , then projecting that result onto .39 

He begins by noting that the optimal two-sided filter has a transfer function given by

(EQ 37)

35.One reason may be that most introductory treatments of such techniques assume (1) that the data being 
analysed are stationary, and (2) that our data series are very long. Another reason may be that economists 
are confused about how to apply such techniques to nonstationary data; see Den Haan and Sumner’s cri-
tique of Harvey and Jaeger (1993) and Cogley and Nason (1995) [Ibid., section 3.2, esp. p. 11-12.]

36.They assert that the proof could extended to ARIMA (p,1,q), but that this would be “tedious.” Schleicher 
(2001) provides just such an extension, with a proof which is considerably more elegant than the original 
proof in Christiano and Fitzgerald (1999).

37.This is the method used in the BPFILTER.SRC routine provided by Estima for RATS; the routine is Alan 
Taylor’s translation of Watson’s code for Stock and Watson (1998).

38.See Koopmans (1974), particularly Section 7.6 “Linear Filtering in Real Time,” pp. 249-252 and Section 
5.5 “Bivariate Spectral Parameters”, esp. example 5.5 pp 147-148. Again, there is no mention of the ori-
gin of the derivation, presumably because it was considered too well-known or trivial a result.

39.The projection may be broken into two steps because  is a subspace of .
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Applying the optimal one-sided filter  to our available series  will give 
the same result as applying the doubly-infinite optimal two-sided filter  to a doubly-
infinite “padded” series  where  for ,  otherwise.  is 
simply the optimal forecast/backcast value of  given the available sample from 1 to T. 
Stock and Watson (1998)’s approach is therefore an approximation of this which truncates 
the forecast/backcast at some finite values.

The relationship to the problem at hand can be understood by considering the latent varia-
ble . Ideally, we would like to estimate  (unobserved) output gap. This is possi-
ble if we know , its autocovariance function with observed output. This will be the 
case if we postulate a structural model, as in the structural unobserved components used 
by Harvey (1985), Kuttner (1994), Gerlach and Smets (1997), Kaiser and Maravall 
(2001), etc. The optimal estimates we obtain from the above correspond to the solutions 
these authors obtain using the standard recursive Wiener-Kolmogorov filtering and 
smoothing equations. Of course, results may be highly sensitive to the specification of the 
structural model, as noted by Morley, Nelson and Zivot (1999).

The band-filtering approach remains agnostic about the structural model by choosing  to 
be the optimally band-filtered component of observed output. Since the form of the opti-
mal filter  is known,  and . We can therefore 
construct the optimal finite-sample approximation of  as a function of only the dynamic 
properties of output. In doing so, however, we ignore the fact that this definition of  is 
only an approximation of the output gap we ultimately care about. To see this, note that as 
our sample becomes large, our estimation error for  in the middle of our sample tends 
asymptotically towards zero in this approach, whereas in the unobserved approach we 
have asymptotic standard errors associated with our smoothed estimates. 

6.1  Koopmans’ Proof

Since  is weakly stationary, it has a Wold representation 

(EQ 38)

where  is white noise and we define  to the transfer function associated with the 
above filter. The spectrum of  is therefore . If  is (as above) 
the transfer function of the optimal symmetric band-pass filter, then since we seek to esti-
mate , we need to replace it with  to account for the offset of v periods. It 
therefore follows that the optimal two-sided estimates of  are given by 

(EQ 39)

where
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The one-sided problem simply replaces future values of  with their expectation, which 
is zero. This means that the optimal one-sided estimate is given by 

(EQ 40)

where (EQ 41)

This derivation has its counterpart in the derivation for the MA(q) presented above in Sec-
tion 5.2. (EQ 5) shows us that we are projecting the optimal filter  into the space 
spanned by our T observations on  via the  and  terms. Note that there are effec-
tively two distinct truncations occurring; one due to the limited persistence of the underly-
ing MA process and another due to the finite sample size.40 

40.The former is easy to overlook in Koopmans’ treatment as he assumes a possibly infinite MA representa-
tion.
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8.0  Tables  
TABLE 1. Estimated ARMA Models

Series
# AR Parameters 1 1 1

0.401 0.904 0.882

# MA Parameters 0 0 2
0.380

10.38 3.45 26.18

# Observations 49 92 50
Frequency Quarterly Monthly Quarterly

TABLE 2. Optimal Filter for Productivity Growth Trends

Statistic ARMA Model Kernel Model

1) Variance of Raw Series (x )a

a.  Differences between the ARMA and kernel estimates of the variance are due to 
approximations in the construction of the theoretical autocorrelations of the 
ARMA model; the kernel estimates precisely match the sample variance of the 
series.

12.37 17.90

2) Variance of Ideally Filtered Series (x )b

b. Calculated as the integral of the spectral density over the interval [-u,u]. 

1.78 2.81

3) Variance of Optimally Filtered Series (x )c

c. Calculated as the integral of the spectral density over the interval .

0.99 2.08

4) MSE of Filtered Estimate (x )d

d. Calculated as (2) - (3).

0.79 0.74

5) Correlation with Ideal Estimatee

e. Calculated as .

0.745 0.859

6) N/S ratiof

f. Calculated as (4) / (3).

0.799 0.355

7) Mean Phase Lag (Quarters)g

g. Calculated as the integral of the product of the phase lag and the spectral density 
of the filtered series.

3.862 2.435

Qt πt Yt

ρ

θi∑
σ2 106×
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TABLE 3. Optimal Filter for Inflation Trendsa

a. See footnotes for Table 2.

Statistic ARMA Model Kernel Model

1) Variance of Raw Series (x ) 18.86 25.05

2) Variance of Ideally Filtered Series (x ) 11.00 16.01

3) Variance of Optimally Filtered Series (x ) 8.63 12.80

4) MSE of Filtered Estimate (x ) 2.37 3.21

5) Correlation with Ideal Estimate 0.886 0.894
6) N/S ratio 0.275 0.251
7) Mean Phase Lag (Months) 3.33 0.68

TABLE 4. Optimal Filter for Business Cyclesa

a. See footnotes for Table 2.

Statistic ARMA Model Kernel Model

1) Variance of Raw Series (x ) 211.3 224.2

2) Variance of Ideally Filtered Series (x ) 60.72 92.51

3) Variance of Optimally Filtered Series (x ) 38.02 63.53

4) MSE of Filtered Estimate (x ) 22.70 28.98

5) Correlation with Ideal Estimate 0.791 0.829
6) N/S ratio 0.597 0.456
7) Mean Phase Lag (Quarters) -2.43 -0.70

TABLE 5. Reconstructed Noise-Signal Ratios from Orphanides and van Norden (1999)

Model
Errorsa

(1)

a. Figures are the reported standard deviations for Final - Quasi-
Final revisions, taken from Orphanides and van Norden 
(1999) Table 4, p. 36. 

Finalb
(2)

b. Figures are the reported standard deviations for Final output 
gaps, taken from Orphanides and van Norden (1999) Table 1, 
p. 32. 

Noise/Signal = (1)/(2)
Clark 1.11 2.11 0.53
Harvey-Jaeger 1.22 1.55 0.79
Watson 1.16 3.44 0.34
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