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Abstract 
 
The server farms that support massively multiplayer games contain hundreds of 
computers, many of which represent geographic areas that are so close or intertwined that 
the operations on these machines need to be tightly synchronized. As the richness of 
game content and cross-server interactions increases, the need for synchronization grows 
as well.  
 
In this chapter we describe algorithms that have been developed for parallel and 
distributed simulation systems to provide guaranteed synchronization of event execution 
and time advance across any number of networked computers. Modifications have 
emerged which customize the original algorithms to make them more efficient for 
interactive virtual worlds.  
 
The goal of this chapter is to describe the algorithms in terms that can be understood by 
an experienced programmer, provide the necessary computer code to begin implementing 
the techniques, and explain the costs and benefits of using these techniques.  
 
Introduction 
 
Synchronization of event execution and time progression across parallel and distributed 
computers has been an issue in high performance computing circles for decades. The 
programmers who created massive models of nuclear blast effects found that their 
simulations were too big to be handled by a single processor of any size. Therefore, they 
turned to parallel computing to give them the horsepower to run these in a reasonable 
amount of time. But that immediately created a new problem of synchronizing the events 
that were occurring on these multiple independent processors.  
 
Since then, distributed computing has spread to a number of other application domains. 
Interactive training for the military and computer gaming are two of the most popular. 
Massively multiplayer games (MMPGs) are the most extreme form of distributed 
computer game and demand event synchronization just as the nuclear models and training 
simulations do.  
 
Impacts on the Massively Multiplayer Experience 
 
MMPGs like Asheron’s Call find that event and time synchronization across machines in 
their server farm is a major issue. Jeff Johnson of Turbine Entertainment says that, “the 
biggest problem that Turbine has in managing its seamless worlds’ server-side is in 
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dealing with asynchronicity and serializing server game state at arbitrary points of 
execution” [Johnson04]. Generally MMPG server systems follow one of two major 
architectures: (1) the zone-based model where objects are represented on a single 
machine that is responsible for a specific geographic area of the virtual world, and (2) the 
distributed (or seamless) model in which objects are represented on multiple servers and 
their state values and event lists must be constantly synchronized [Beardsley03]. Though 
the second model desperately requires a reliable synchronization mechanism, even the 
zone-based model contains game events, boundary conditions, and system management 
operations that require synchronization.  
 
Poor or non-existent synchronization across servers impacts both the players’ experience 
with the game and the ability to manage and control operations within the game engine. 
In some cases, inconsistent event execution can result in different outcomes of event 
sequences on the servers and potentially expose this inconsistency to the player client 
machines [Smith00].  
 
Synchronization is a difficult thing to achieve and does impose performance costs and 
operational limitations. However, the increasing complexity of MMPGs and the growing 
horsepower and bandwidth that drives them is going to justify the resources for 
synchronization just as these resources have opened the door for better AI and physics in 
the past.  
 
Available Solutions 
 
There are a number of different solutions to the event and time synchronization problem. 
Each provides slightly different capabilities at different performance costs. The first, 
most common, and least expensive is the best effort method. This calls for each message 
receiving process to buffer messages, order them according to their timestamp, and 
execute them in the hope that all of the sent events for the buffered period have been 
received. When a late message is received, the event managing software must make a 
decision to either execute the event late or to delete it. This decision is usually very 
specific to the game and the type of the event. It is essential that this decision is made 
deterministically and applied identically on every machine. However, even a 
deterministic algorithm cannot deliver uniform results on multiple machines. Message 
delivery delay varies from one machine to the next and the buffering of events does not 
result in the same events being included in the buffers on every machine. For example, 
consider an event E1 sent to computers M1 and M2. On computer M1, event E1 may 
have been received, ordered, and properly executed. But on computer M2, event E1 may 
have arrived late and been subject to either late execution or deletion. This uncertainty of 
results is a major motivation for the creation of more predictable synchronization 
algorithms.  
 
A second popular method of synchronization is through the use of a central timeserver. 
One process is anointed as the master of all time progression. Its job is to set the pace of 
execution for all game processes in the server farm and to determine when conditions 
warrant moving forward, slowing down, or stopping. This method improves on best effort 
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in that all of the processes are slaved to one master and thus remain much more closely 
aligned in time. However, it does not provide any mechanism to guarantee that messages 
are executed in the same order on multiple machines. Also, as the “master of time”, this 
process can ignore the performance issues of heavily loaded slave processes, allow them 
to fall behind, and create opportunities for causal event violations. Many of the message 
passing algorithms that have been created to address this problem are actually ad hoc or 
partial implementations of synchronization algorithms we are about to prescribe.  
 
The leading method for reliable event and time synchronization is the 
Chandy/Misra/Bryant (CMB) algorithm and several useful modifications of this 
algorithm. CMB requires exchanging messages between servers that define which event 
timestamps have been executed and determine the readiness to move forward to the next 
time increment [Fujimoto90]. In this chapter, we will describe CMB and some 
modifications that are particularly useful to MMPGs.  
 
Another synchronization method that is very popular within academia and some 
analytical communities is Time Warp. This is a very exotic method that is difficult to 
understand, implement, and modify for an MMPG. Readers interested in this technique 
should dig into the references provided at the end of the chapter [Fujimoto00 and 
Smith00].  
 
Time in the Virtual World 
 
Before explaining CMB event and time synchronization in greater detail, it is important 
to establish some basic properties of time management in simulations and games. Some 
of these characteristics are required to create a simulation that is causally consistent and 
others are necessary to enable CMB to work.  
 

1. Virtual Time is Real. When discussing the subject of time in a virtual world, the 
significant value is the time that is created and managed by the software, not the 
“real time” experienced by flesh-and-blood players. When we manage time 
advance in a game we are often attempting to align virtual time with real time, but 
all events and the entire digital world are referenced to virtual time, not real time.  

2. Discrete Step Size. In a game, time moves forward in discrete increments. In 
many systems these steps are so small that it appears to the player that time is 
moving continuously. But that is an illusion just as a movie appears to present a 
continuous moving image even though it actually has a step size of 24 frames-per-
second. Effectively, the step size defines an increment that is small enough that all 
events scheduled in that period can be treated as if they occurred simultaneously.  

3. Monotonically Increasing. Game time is always monotonically increasing. This 
means that event timestamps always increase or stay the same. They do not ever 
go backward. This is an important property because it means that if a process 
generates an event with a timestamp of 100 on it, then it will never again generate 
an event with a stamp of 99, 98, or any other value less than 100.  

4. Event Timestamps. All events in a simulation are time stamped. There are no 
orders, commands, inquiries, or reports that are created without a stamp indicating 
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the time at which they should be executed. It is not so important to stamp them 
with the time that they are created, though there is some value in that as well, the 
essential time is that at which the event must be executed by the game.  

5. Network Message Lag. The delivery of messages across a computer network 
always takes time and induces lag. Therefore, messages on the receiving end are 
“old” in that they represent the state of the sender some delta milliseconds in the 
past. Additionally, there is no guarantee that messages sent will be received in the 
order that they were sent, or even received at all.  

6. Limited Remote Information. The receiver of messages always has a limited 
amount of information about the state of the sender of the messages. This 
limitation has a direct impact on the content of messages and the reasoning that 
must be performed on the receiving computer.  

 
Managed Synchronization 
 
Chandy/Misra/Bryant Algorithm 
 
CMB is known as a “distributed k-reduction algorithm”. It can be used to synchronize 
any number of independent processes running on different processors or on the same 
processor. Using event timestamps from all of the participating processes the CMB 
algorithm calculates the “Global Virtual Time” (GVT) for the entire group. GVT is the 
minimum timestamp on all exchanged messages. Virtual worlds generate and transmit 
events that are scheduled to be executed at some time in the future. GVT identifies the 
latest timestamp on events that can safely be processed without creating a causal error. 
All events up to and including those at GVT can be processed without worry that a 
synchronized process will create another event in the past of GVT.  
 
When implementing CMB, the infrastructure that receives the event messages maintains 
one queue for each of the other remote participants in the synchronization. As events 
arrive from the remote processes, they are logged in the appropriate queue (Figure 1). 
The GVT mechanism evaluates the timestamps in each queue and identifies the lowest 
value in the queues. That timestamp becomes the next GVT value and all events with that 
timestamp are released to the modeling software for execution. Events with higher 
timestamps remain in the queue awaiting future release. As events are released, it is 
possible for one or more of the queues to become empty. When this occurs the 
mechanism cannot advance the value of GVT because it cannot determine what the 
lowest timestamp for the associated process will be. Therefore, when this occurs, GVT 
must remain at its current value until an event arrives to fill the empty queue. This 
algorithm is illustrated in the following code sample. 
 

/* basicGVT illustrates the original 
Chandy/Misra/Bryant algorithm – without mods */ 
void basicGVT( void )  
{ 
/* integer used for iterating through the list of 
processes */  
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int processIndex = 0; 
 
/* integer used for iterating through the event queue 
of each process*/ 
int queueIndex = 0; 
 
/* Initialize stop */ 
 bool stop = NULL; 
 
/* Next Global Virtual Time “nextGVT” initialized to 
some large number */ 
nextGVT = setNextGVT (99999); 
 
/* This while loop iterates through each of the 
processes and their queues, and checks for the lowest 
timestamp.*/ 
while ( ((processIndex < numberOfProcesses) && (stop 
== NULL)) ; processIndex++)  
{ 
 /* If event queue is not ordered, check every  
event. If ordered, just check the first event. This 
for loop iterates until the queue is empty */ 
for (queueIndex = 0; e[processIndex][queueIndex]; 
queueIndex++)  
{ 
/* Checks the timestamp to see if it is the new 
minimum and sets nextGVT if it is. */ 
nextGVT = min(nextGVT, e[processIndex][queueIndex]-
>timestamp); 
 } /* end for */ 
 
/* If the current “processIndex” queue was empty. */ 
 if (queueIndex ==0)  
{  
/* stop calc*/ 
  stop = 1;  
 
/* Sends a NULL message.  Null messages are required 
to keep the process from entering a deadlock state. */ 
  sendNullMessage ( );  
 
 } /* end if */ 
 
} /* end while */ 
 
if (stop == NULL)  
{ 
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 GVT = nextGVT; 
} /* end if stop */ 
 
} /* end basicGVT */ 
 

 

 
Figure 1. Chandy/Misra/Bryant Event Queues to Calculate GVT 

 
Empty queues can result in a deadlock in which process P1 is awaiting an event from 
process P2, while P2 is waiting for an event from P3, and P3 is awaiting an event from 
P1. To break this deadlock, CMB implements “Null Messages” (the black messages in 
Figure 1). These are not true executable events. They are messages that simply carry the 
timestamp for the next event that a process intends to generate. Null Messages are usually 
generated at a scheduled rate that is driven by the largest acceptable deadlock time. The 
original CMB algorithm generated a Null Message after each real executable event. This 
essentially reduced deadlock time to zero, but at the cost of doubling the number of 
messages being sent between computers. The newer timed-release mechanism is much 
more bandwidth economical, but at the expense of a short deadlock period.  
 
The computation of GVT is so simple that the CPU expense is almost insignificant. The 
real impact is that it regulates the pace of all processes to match that of the slowest 
process in the synchronization. This is one of the features that later modifications have 
improved upon.  
 
Advance Request/Grant Modification 
 
CMB was designed for analytical simulations such as nuclear blast studies or models of 
national air traffic patterns. When this algorithm migrated into the military training 
domain, specific modifications were made to improve its performance. In a military 
training simulation, there can be thousands of objects sending event messages to dozens 
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of different computers. Evaluating the timestamp on all of these messages proved to be 
redundant and unnecessary. During a given time step, thousands of objects generate event 
messages with the same timestamp. Under these conditions, the GVT algorithm found 
itself comparing thousands messages with the same timestamp.  
 
To reduce these comparisons, an “Advance Request” and “Advance Grant” message pair 
was created. Advance Request was a request by the process to move to a specific time in 
the future (Figure 2). In most cases, this corresponded to the timestamps on the thousands 
of event messages. But, it reduced the number of timestamps to be compared for GVT 
from a number on the order of the number of objects in the virtual world (n*10,000s), to 
a number on the order of the number of processes running (n*10s). In the case of large 
object database this can represent an improvement of three orders of magnitude. When 
the GVT algorithm determines the next safe timestamp to advance to, it provides an 
“Advance Grant” message to those processes that are allowed to move to their requested 
time. Processes that had requested a time further in the future do not receive a response 
and are expected to wait until they receive a grant – usually after a slower machine has 
caught up to that time.  

 
Figure 2. Advance Request Messages Reduce Cost of GVT Calculation 

 
The changes to the original method shown above are limited to the while loop. In this 
snippet of sample code it is clear that the number of events being evaluated has been 
significantly decreased through the elimination of the entire inner for loop.  
 

/* This while loop iterates through all of the 
processes, and looks for the advanceRequest message 
with the lowest time. It then sets the nextGVT to that 
time.  Note that this algorithm only checks each 
process once for an advance request rather than 
iterate through each processes entire queue.  */ 
while ( ((processIndex < numberOfProcesses) && (stop 
== NULL)) ; processIndex ++)  
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{ 
/* Checks the process for an advance request */ 

 if (e[processIndex]->advanceRequest)  
{ 

/* sets the nextGVT to the advance request 
time if it is less than the current 
minimum*/ 

       nextGVT = min(nextGVT,  
e[processIndex]->advanceRequest); 

} 
/* Sends a null message if the queue is empty */ 
else  
{ 

/* stop calc*/ 
stop = 1;  

 
/* Sends a NULL message.  Null messages are 
required to keep the process from entering a 
deadlock state. */ 
sendNullMessage ( ); 

     
 } /* end if */ 
 
} /* end while */ 
 
if (stop == NULL)  
{ 

/* Sets the Global Virtual Time “GVT” to the new 
time obtained from the advance request */ 

 GVT = nextGVT;  
  

/* Publish Advance Grant message.  Once this is 
published processes are allowed to move to the 
requested time and execute events for those 
times.*/ 
sendAdvanceGrant(GVT);  
 

} /* end if */ 
 
This modification significantly improved the performance of calculating GVT. However, 
it did not improve the situation in which the slowest process was regulating the entire 
family of processes involved in CMB.  
 
Lower Bound Time Stamp and Lookahead 
 
The next major modification to CMB is often referred to as the Lower Bound Time 
Stamp (LBTS) method [Mattern93]. This takes advantage of the fact that most 
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simulations and games have a defined, discrete time step size.  Under the traditional GVT 
method, when one process is operating on events at time 100, other remote processes are 
allowed to process all events up to and including those with stamp 100. However, using 
LBTS, remote processes recognize that a simulation operating at 100 right now will 
generate future event messages with timestamps of 100 plus one time step. Therefore, if a 
process’ step size is 4, a remote simulation can be given permission to execute all events 
up to and including those with stamps of 104, knowing that the first process will not 
generate a message at 101 because it is not capable of it. Under the exact same 
conditions, LBTS is more aggressive than GVT and allows faster processes to move 
ahead of slower ones by some fraction of one step size. This can be extremely useful 
when different processes use different step sizes. In some cases, there are simulations 
with a step size of 1 working together with others using a step size of 2 or 3. (These are 
conceptual numbers that illustrate the ratio of size. An actual simulation process would 
use a step size such as 100 milliseconds, 200 milliseconds, or 1 second – which have 
ratios 1:2:10 and can be exploited by LBTS.) When this happens, the simulation using 
step size of 1 will find useful work to do with stamps or 103, when the simulation with 
step size of 2 would otherwise have regulated it back to 102 under GVT (Figure 3).  

 
Figure 3. Comparison of GTV and LBTS 

 
This slight modification can maintain causal consistency across the family of servers 
while also reducing the drag caused by the slower machines. The changes necessary to 
implement this are entirely limited to the if statement on advanceRequest. GVT is 
no longer equal to the lowest advance request value, but to the lowest of the sum of each 
processses’ advance request and its lookahead value. 
 

 if (e[processIndex]->advanceRequest)  
 { 

   nextGVT = min(nextGVT, 
(e[processIndex]->advanceRequest + 
e[processIndex]->lookAhead)); 

 } 
 
Deconflicting Simultaneous Timestamps 
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The discussion above provides the general solution to the synchronization problem. But 
there are several unique issues that must be dealt with to allow this mechanism to work. 
In a multiserver game, it is desirable to have all events processed in the same order on 
each server. This goes beyond time ordering them. It includes processing those with the 
same timestamps in the same order on multiple machines. Several interesting 
mechanisms have been created to support this [Fujimoto00].  
 
Assume that the game time step size is 100 milliseconds. Then a timestamp value would 
have one hundred milliseconds as their smallest digit. A timestamp value of “12345” 
would represent 1,234 seconds and 500 milliseconds into the game. To support absolute 
ordering of events, this number must be augmented with more information. Some 
researchers point out that this is almost equivalent to stamping events with a unit smaller 
than the game’s native step size. But, there other techniques that are a little more complex 
than that.  
 
The first option is to add an ID number to the timestamp that is an incrementing counter 
that resets to zero each time the game ticks to the next step. This means that every event 
is tagged with a time, such as 12345, but also receives a counter. Therefore its time and 
ID number might be 12345.002, followed by an event stamped 12345.003, 12345.004, 
etc. This inclusion of an ID number works very well for indicating the order in which 
events are created. It also allows a receiving process to use this information to identify 
any event messages that are missing. In this paper we use ‘.’ to delimit the information, 
which is a useful method for explaining the concepts. But in practice these values may fit 
into different digit positions within a single large integer or may be stored in different 
variables. 
 
However, the order in which messages are created is not necessarily the order in which 
they should be executed. This has led to the practice of creating an “age” and a “priority” 
for messages. The “age” identifier is like a generational indicator. Events that are stored 
in the initial starting data set have an age of 0. When one of those events causes another 
event to be created, the created event has an age of 1. When that one causes an event, it 
will have an age of 2. If an event of age 3 triggers the creation of two new events, then 
both of them have an age of 4. This insures that whenever an event is caused by another 
event, the causal order between the two is maintained. When age is combined with the 
unique ID described earlier, it insures that an ordering algorithm always places two 
sibling events in the order that they were created. Adding age as part of the timestamp 
can be done in many ways, but we will illustrate it as “timestamp.age.ID” or 
“12345.002.004” in which 12345 is the actual timestamp, 002 is the age, and 004 is the 
unique ID.  
 
Priority indicates specific events that should be processed ahead of others. These are 
usually events that have a need to be executed very quickly after being sent. For example, 
in an FPS game, any explosion events should have a higher priority than player-to-player 
chat messages. The use of a priority stamp can replace the use of age or be combined 
with it. Retaining all of these pieces of data may result in a timestamp that includes 
“timestamp.priority.age.ID”. 
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The age and ID modifications were created to improve synchronization within a time 
step. Priority allows the sender to specify which events should be addressed first.  
 
Conclusion 
 
This chapter has described algorithms that are designed to synchronize event execution 
and time advance in distributed simulations and virtual worlds. These techniques have 
been in use for many years in the high performance computing community. As MMPGs 
grow more complex and comprehensive, they develop a similar need for strict 
synchronization between some or all of the servers within the server farm. The 
Chandy/Misra/Bryant algorithm and the modifications shown here are the most 
applicable event and time synchronization algorithms that can be applied in this 
environment. At one time the speed of computers and networks limited the use of these 
algorithms to simulations with timestep sizes on the order of 1 minute. However, as 
hardware performance has improved, it has been possible to bring these algorithms into 
simulations operating with 1 second or 100 millisecond timesteps. Continually improving 
hardware performance, algorithm optimization, and the complexity of distributed virtual 
worlds will make these methods accessible to simulations with even smaller timesteps in 
the future. 
 
Like all new additions to game software, the computational costs and impacts of the new 
algorithm must be balanced against the benefits provided. Many games and even military 
simulations operate sufficiently well without strict synchronization. The purpose of 
MMPGs is to provide a believable immersive experience. The demands for accuracy are 
not as high as those for modeling nuclear blasts or chemical reactions. Algorithms like 
CMB will earn their way into MMPGs as they become better understood, the costs for 
implementing them are known, specific MMPG optimizations emerge, and the 
complexity of MMPG worlds increases.   
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