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Abstract

This article proposes an original method for grading the colours between different images or

shots. The first stage of the method is to find a one-to-one colour mapping that transfers

the palette of an example target picture to the original picture. This is performed using an

original and parameter free algorithm that is able to transform any N -dimensional probability

density function into another one. The proposed algorithm is iterative, non-linear and has a low

computational cost. Applying the colour mapping on the original picture allows reproducing

the same ‘feel’ as the target picture, but can also increase the graininess of the original picture,

especially if the colour dynamic of the two pictures is very different. The second stage of the

method is to reduce this grain artefact through an efficient post-processing algorithm that

intends to preserve the gradient field of the original picture.
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1. Introduction

A major problem in the post production industry is matching the colour between
different shots possibly taken at different times in the day. This process is part of the
large activity of film grading in which the film material is digitally manipulated to have
consistent grain and colour. The term colour grading will be used specifically to refer
to the matching of colour. Colour grading is important because shots taken at different
times under natural light can have a substantially different feel due to even slight changes
in lighting.

Currently in the industry, colour balancing (as it is called) is achieved by experienced
artists who use edit hardware and software to manually match the colour between frames
by tuning parameters. For instance, in an effort to balance the red colour, the digital
samples in the red channel in one frame may be multiplied by some factor and the output
image viewed and compared to the colour of some other (a target) frame. The factor is
then adjusted if the match in colour is not quite right. The amount of adjustment and
wether it is an increase or decrease depends crucially on the experience of the artist. This
is a delicate task since the change in lighting conditions induces a very complex change
of illumination. It would be beneficial to automate this task in some way.

The technique proposed in this paper is an example-based re-colouring method. The
idea, which has raised a lot of interest recently [1,2,3,4,5], is illustrated on Figure 1. The
original picture is transformed so that its colours match the palette of the small image,
regardless of the content of the pictures. Consider the two pictures as two sets of three
dimensional colour pixels. A way of treating the re-colouring problem would be to find
a one-to-one colour mapping that is applied for every pixel in the original image. For
example in the figure, every blue pixel is re-coloured in gray. The new picture is identical
in every aspects to the original picture, except that the picture now exhibits the same
colour statistics, or palette, as the target picture.

The first stage of colour grading is thus to find a colour mapping that transfers the
colour statistics of a picture example to the original picture. The transfer of statistics
encompasses an entire range of possibilities from the simple match of the mean, vari-
ances [1], covariance [2,6] to the exact transfer of the whole probability density function
(pdf) of the samples [7,3,5]. This paper considers the latter general problem of finding
a one-to-one mapping function that transforms the source samples into a new sample
set that exhibits the same pdf as the target samples. Finding a one-to-one mapping
for one dimensional (1D) samples is a simple task that can be solved in the same way
as grayscale picture equalisation [8]. The difficulty resides in extending the method to
higher dimensions. This paper proposes a simple method that performs an exact colour
pdf transfer, based on the iterative use of the one-dimensional pdf transfer. The advan-
tage of the method is that the pdf transfer operates in 1D which means that the overall
algorithm has a linear computational complexity of O(M), where M is the number of
samples or pixels processed. Moreover working in 1D considerably reduces the memory
load required by the algorithm.

Applying the colour mapping is enough to transfer the colour ‘feel’ to the original
picture. However if the colour palette is very different, the resulting mapping can be
stretched and the transformation produces some grain artefacts on parts of the picture.
This can be understood if the mapping is done from a low dynamic range to a high dy-
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Fig. 1. Colour transfer example. The original picture is transformed using our method so that its colours

match the palette of the vignette.

namic range. The resulting mapping is stretched and thus enhances the noise level of the
picture, which appears as grainy. Although the noise could be attenuated by employing
colour filtering techniques [9,10], these might degrade the picture itself. Instead, we pro-
pose here a post-process which aims at protecting the original picture by preserving its
original gradient field while still applying the colour transfer. This balance is done using a
variational approach inspired by Poisson editing techniques [11]. Preserving the gradient
of the original picture especially protects the flat areas and more generally results in the
exact aspect of film grain/noise than the original image.

Organisation of the Article. After an overview of existing techniques in section 2, the
mechanism of the proposed iterative pdf transfer technique is detailed in section 3. The
re-graining stage is exposed in section 4 and comparative results are discussed in section
5.
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2. Related Works

Re-colouring a picture using another has many applications in computer vision. In
digital restoration [12] for instance, the idea is to recolour paintings that have been faded
by smoke or dust. The process can also be used for colour image equalisation for scientific
data visualisation [13] or simply useful for non-realistic rendering. There are thus a few
articles which disclose ideas that could be used. These are discussed next.

Transfer of Colour Statistics. The first popular method proposed by Reinhard [1]
matches the mean and variance of the target image to the source image. The transfer of
statistics is performed separately on each channel. Since the RGB colour space is highly
correlated, the transfer is done in another colour space lαβ that has uncorrelated compo-
nents and accounts for human-perception of colour [14]. The method has been extended
to sequences in [4]. A better approach is to consider possible dependence between chan-
nels and transferring the covariance information by aligning the principal component
axes [2,6]. These colour transfer techniques are limited to affine transformations of the
colour space. The motion picture industry employs however routinely non-linear colour
grading techniques. Hence, in a practical situation, some example-based recolouring sce-
narios actually require non-linear colour mapping.

A simple approach to the non-linear mapping is to perform a histogram matching [8]
(or histogram specification as it is sometimes called) on the three colour channels inde-
pendently [15]. A more complex mapping is considered in [13] for colour equalisation (c.f.
grayscale histogram equalisation). That work proposes to deform tessellation meshes in
the colour space to fit to the 3D histogram of a uniform distribution. This method can be
seen as being related to warping theory which is explicitly used in [16] where the transfer
of the 2D chromatic space is performed directly by using a 2D-bi-quadratic warping.
An interesting approach proposed by Morovic [7] is to extend naturally the 1D case
by treating the mapping via linear programming and the popular Earth-Mover distance
(EMD). In that way the colour transfer is exact and minimises the amount of colour
changes. The major disadvantage of using the EMD is that pixels of same colour are
sometimes assigned to different colours. For instance some red pixels could be assigned
to blue whereas others to green, and it is proposed in [7] to assign the colour randomly.
Also the computational cost becomes intractable if a very fine clustering of the colour
space is desired. Another, and computationally simpler, exact colour histogram matching
technique has also been proposed by Neumann [3].

Note that, aside from these methods based on colour statistic transfer, Shen and
Xin [17] have recently developed a technique that synthesises the color of 3D objects. The
method is derived from a dichromatic reflection model and produces realistic recolouring
under different illuminant. The methods requires however the use of image segmentation
and is thus not yet well suited to generic automated tasks.

Dealing with Content Variations. One important aspect of the colour transfer prob-
lem is the change of content between the two pictures. Consider a pair of landscape images
where the sky in one picture covers a larger area than in the other. When transferring
the colour from one picture to the other, the excess of sky colour may be used in parts of
the scenery on the ground in the other. This is because all colour transfer algorithms are
sensitive to variations in the areas of the image occupied by the same colour. They risk
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overstretching the colour mappings and thus producing unbelievable renderings. To deal
with this issue a simple solution [1,2,17] is to manually select swatches in both pictures
and thus associate colour clusters corresponding to the same content. This is tantamount
to performing manual image segmentation, and is simply impractical for a large variety
of images, and certainly for sequences of images.

One automated solution is to invoke the spatial information of the images to constrain
the colour mapping [18,19,20]. In an extreme situation, colour from a coloured image
may be required to be transferred to a grayscale image. Hence similarities between spatial
neighbourhoods of the two pictures is then the only way to create a colour transfer oper-
ation automatically. This is a computationally demanding solution. Another automated
solution is to restrict the variability on the colour mapping. For example in [21,22], the
pixels of both images are classified in a restricted set of basic colour categories, derived
from psycho-physiological studies (red, blue, pink, etc. ). The colour transfer ensures for
instance that blue-ish pixels remain blue-ish pixels. This gives a more natural transfor-
mation. The disadvantage is that it limits the range of possible colour transfers.

Drawing from these remarks, the method that we propose is based on an exact colour
transfer technique but has the advantage of being computationally attractive. The han-
dling of content variations is implicitly dealt with in the re-graining process, which pro-
tects the content of the original image.

3. Colour Distribution Transfer

Consider that the original and example images can be represented as two sets of M
and M ′ colour samples {ui}i≤M and {vi}i≤M ′ respectively. The colour samples are of
dimension N = 3 and can be represented for instance by the RGB component: ui =
(Ri, Gi, Bi). Other colour spaces like Lαβ, Lab, Luv, could be considered but since the
complete statistics are transferred, this has no consequences. To simplify the study, it is
considered that the samples are issued from a continuous colour pdf f for the original
samples, and g for the example colour samples 1 . The problem is to find a differentiable
mapping t that transforms the original colour pdf f into a new colour pdf that matches
the target pdf g. This latter problem will be referred to as the Distribution Transfer
problem.

3.1. The 1-D Case

For the 1-dimensional case, the distribution transfer problem has a very simple solution.
The differentiable mapping yields the following constraint which simply corresponds to
a change of variables:

f(u)du = g(v)dv with t(u) = v (1)

Integrating both sides of the equality yields

∫ u

f(u)du =

∫ t(u)

g(v)dv (2)

1 Note that the colour pdfs can be numerically estimated using kernel density approximations [23]
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Using cumulative pdf notations F and G for f and g yields the expression for the mapping
t,

∀u ∈ R , t(u) = G−1 (F (u)) (3)

where G−1(α) = inf {u|G(u) ≥ α}. The mapping can then easily be solved by using
discrete look-up tables.

3.2. The N -D Case

Extending the 1-dimensional case to higher dimensions is sadly not trivial. As in [7]
and [3], the method considers an exact pdf colour matching. The idea proposed here still
preserve some monotonous and smoothness properties but avoids the direct manipula-
tion of the voluminous 3D colour pdf as in [7,3]. The idea is to break down the problem
into a succession of 1-Dimensional distribution transfer problems. Consider the use of the
N -dimensional Radon Transform. It is widely acknowledged that via the Radon Trans-
form, any N -dimensional function can be uniquely described as a series of projections
onto 1-dimensional axes [24]. In this case, the function considered is a N -dimensional
pdf, hence the Radon Transform projections result in a series of 1-dimensional marginal
pdfs. Intuitively then, operations on the N -dimensional pdf should be possible through
manipulations of the 1-dimensional marginals. Consider that after some sequence of such
manipulations, all 1-dimensional marginals match the corresponding marginals of the tar-
get distribution. It then follows that, by nature of the Radon Transform, the transformed
f , corresponding to the transformed 1-dimensional marginals, now matches g.

There are now several questions to answer. How to manipulate the 1-dimensional pdfs?
What guarantee is there of eventual convergence? How many axes are needed? Is there
an optimal sequence of axes? The following paragraphs provide the answers to these
questions.

3.3. Description of the Manipulation

The operation applied to the projected marginal distributions is thus similar to that
used in 1-dimension. Consider a particular axis denoted by its vector direction e ∈ R

N .
The projection of both pdfs f and g onto the axis e results in two 1-dimensional marginal
pdfs fe and ge. Using the 1-dimensional pdf transfer mapping of the equation (3) yields
a 1-dimensional mapping te along this axis:

∀u ∈ R , te(u) = G−1
e

(Fe (u)) (4)

For a N -dimensional sample u = [u1, · · · , uN ]T, the projection of the sample on the axis
is given by the scalar product eTu =

∑

i eiui, and the corresponding displacement along
the axis is

u→ u + (te(e
Tu)− eTu) e (5)

After transformation, the projection f ′
e

of the new distribution f ′ is now identical to ge.
The manipulation is explained in figure 2.

Considering that the operation can be done independently on orthogonal axes, the
proposed manipulation consists in choosing an orthogonal basis R = (e1, · · · , eN ) and
then applying the following mapping τ :
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Algorithm 1 IDT method

1: Initialisation of the data set source u
k ← 0 , u(0) ← u

2: repeat
3: take a rotation matrix R = [e1, · · · , eN ]
4: for every rotated axis i of the rotation, get the projections fi and gi

5: find the 1D transformation ti that matches the marginals fi into gi

6: remap the samples u according to the 1D transformations:

u(k+1) = u(k) + R











t1(e
T

1u
(k))− eT1u

(k)

...

tN (eTNu(k))− eTNu(k)











7: k ← k + 1
8: until convergence on all marginals for every possible rotation

9: The final one-to-one mapping T is given by: ∀ j ,uj 7→ t(uj) = u
(∞)
j
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The 1-D pdf’s give 

the Mapping

After Mapping, the new 

1-D marginal matches the 

target marginal pdf

initial 2-D pdf f

initial 1-D marginal

target 1-D marginal

Fig. 2. Illustration of the data manipulation, based on the 1-dimensional pdf transfer on one axis.

τ(u) = u + R











t1(e
T

1u)− eT1u

...

tN (eTNu)− eTNu











(6)

where ti is the 1-dimensional pdf transfer mapping for the axis ei.
The idea is that iterating this manipulation over different axes will result in a sequence

of distributions f (k) that hopefully converges to the target distribution g. The overall
algorithm will be referred to as the Iterative Distribution Transfer (IDT) algorithm.

A theoretical proof that the algorithm converges when the target distribution is the
standard normal distribution is given in the appendix A. The experimental study in the
following section suggests that convergence occurs for any distribution. The study also
considers the problem of finding sequence of axes that maximises the convergence speed
of the algorithm.

3.4. Results and Choice of Axis Sequence

To explore the convergence, the Kullback-Leibler (KL) divergence is used as a measure
to quantify how well the transformed distribution f (k) matches the target pdf g. The
Kullback-Leibler is defined as follows:

DKL(f‖g) =

∫

u

f(u) ln

(

f(u)

g(u)

)

du (7)

One simple experiment that could be used to assess the impact of axis sequences on
convergence is simply to choose two particular datasets, use one as a target pdf and the
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other as a source pdf. Then for various axis sequences, the KL measure could be used to
assess convergence as each iteration of the algorithm proceeds. Since the KL divergence
is estimated here on sample datasets, the kernel density modelling [23] is used to estimate
the underlying pdfs as follows:

D(f ‖ g) =
1

M

M
∑

i=1

ln





∑

j K
(

‖ui−uj‖
hi

)

∑

j K
(

‖ui−vj‖
hi

)



 (8)

where K is the Epanechnikov kernel. The Epanechnikov kernel is the function K(u) =
(3/4)(1 − u2) for −1 < u < 1 and zero for u outside that range. To account for the
sparseness of samples, it is crucial to use a variable bandwidth approach. Typically, for
a sample ui, the bandwidth hi increases with the sparseness of the samples around ui.
A clear outline of the bandwidth selection is available in [25], and that is used here.
A major aspect of the experiment is that the KL divergence has to be non-negative.
This is indeed observed in numerical results (see figure A.1), but not for any choice of
bandwidth values. To counterbalance this sensitivity of the measure to the quality of the
pdf estimation, the pdf is over-smoothed by taking large values of kernel bandwidths. The
resulting KL divergence measure is under-evaluated since both estimated pdfs are more
uniform. Another consequence is that the convergence speed reported on the figure A.2
is actually slower than the true one.

It is now possible to study the convergence of the distribution transfer method by
measuring the mean KL divergence over the iterations. In the following experiments, the
plots are obtained by averaging the KL measure for 100 different pdfs. Figure A.2 shows
the evolution of the KL divergence for a random selection of axis set sequences, with both
random initial and target distributions. It transpires from the results that the algorithm
convergences for any continuous distribution.

Taking a random selection of orthogonal bases seems to be sufficient to obtain con-
vergence, however it is shown hereafter, that a better choice of axis sequence can still
substantially improve the convergence speed. This can be understood by considering that
random axes are probably correlated. Figure A.3 confirms this intuition. The figure dis-
plays the average KL divergence after two iterations of the algorithm for 2D pdfs. At
iteration 1, a fixed set of axes is chosen, thus the plot shows the evolution of the KL
divergence depending on the choice of axes at iteration 2. The graph clearly shows that
the KL improvement depends on the correlation between axes.

Intuitively then, an interesting heuristic would be to consider a sequence of rotations
that maximises the distances between the current axis set at iteration k and the previous
axis sets. Define the distance between two axes by

d(e1, e2) = min(‖e1 − e2‖2, ‖e1 + e2‖2) (9)

with e1 and e2 the supporting axis vectors. To find axes that are far apart, one solution is
to maximise the distances d(e1, e2). This turns out to a numerically unstable solution. A
better formulation is to consider instead the minimisation of the potential 1/(1+d(e1, e2))
and then to insure that distances are far apart:

[

e1
k+1, · · · , e

N
k+1

]

=

arg min
[e1,··· ,eN ]







k
∑

l=1

N
∑

i=1

N
∑

j=1

1

1 + d(ej
l , e

i)







(10)
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with the constraint that the bases are orthogonal. This minimisation problem can be nu-
merically simulated under MATLAB using the downhill Simplex algorithm [26]. The con-
straint of normalisation ‖e‖ = 1 can be avoided by taking hyperspherical coordinates [27].
The orthogonality of the base can be obtained using Gram-Schmidt orthogonalisation.
The resulting first bases for dimension 2 and 3 are given in appendix tables A.1 and A.2.
Note that since the algorithm is iterative, it is not crucial to require high accuracy in the
estimation of the bases. The code used to find the bases is available on [28].

The improvements on the convergence speed are shown on figures A.4 and A.5. One
can expect on average a speed improvement of 1.5 in 3D to 2.15 in 2D. This is consistent
with the fact that axes are more likely to be decorrelated in higher dimensions. The
sequence which is sought, is optimal on average over the couple of pdfs. Note that other
strategies could be explored, like finding the optimal sequence of axis for a particular
couple of distributions.

4. Reducing Grain Noise Artefacts

Applying the colour mapping as it is on the picture might however produce some grain
artefacts as shown in figure 3 and 4. When the content differs, or when the dynamic
ranges of both pictures are too different, the resulting mapping function can be stretched
on some parts (see figure 3-e), and thus enhances the noise level (see figure 3-c). This can
be understood by taking the simple example of a linear transformation t of the original
picture I: t(I) = a I + b. The overall variance of the resulting picture is changed to
var{t(I)} = a2 var{I}. This means that a greater stretching (a > 1) produces a greater
noise.

The solution proposed here to reduce the grain is to run a post-processing algorithm
that forces the noise level to remain the same. The idea is to adjust the gradient field of
the resulting picture so that it matches the gradient field of the original picture. If the
gradient fields of both pictures are similar, the noise level will be the same. Matching
the gradient of a picture has been addressed in different computer vision applications
like high dynamic range compression [29]; the value of this idea has been thoroughly
demonstrated by Pérez et al. in [11]. Manipulating the image gradient can be efficiently
done by using a variational approach. The problem here is slightly different, since re-
colouring also implies changing the contrast levels. Thus the new gradient field should
only loosely match the original gradient field.

Denote I(x, y) the 3-dimensional original colour picture. To simplify the discussion,
coordinates are omitted in the expressions and I, J , ψ,φ, etc. actually refer to I(x, y),
J(x, y), ψ(x, y) and φ(x, y). Let t : I → t(I) be the colour transformation. The problem
is to find a modified image J of the mapped picture t(I) that minimises on the whole
picture range Ω

min
J

∫∫

Ω

φ · ||∇J −∇I||2 + ψ · ||J − t(I)||2dxdy (11)

with Neumann boundaries condition ∇J |∂Ω = ∇I|∂Ω so that the gradient of J matches
with the gradient of I at the picture border ∂Ω. The term ||∇J −∇I||2 forces the image
gradient to be preserved. The term ||J − t(I)||2 ensures that the colours remain close
to the target picture and thus protects the contrast changes. Without ||J − t(I)||2, a
solution of equation (11) will be actually the original picture I.
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The weight fields φ(x, y) and ψ(x, y) affect the importance of both terms. Many choices
are possible for φ and ψ, and the following study could be easily be changed, depending
on the specifications of the problem.

The weight field φ(x, y) has been here chosen to emphasise that only flat areas have
to remain flat but that gradient can change at object borders:

φ =
30

1 + 10 ||∇I||
(12)

The weight field ψ(x, y) accounts for the possible stretching of the transformation t.
Where ∇t is big, the grain becomes more visible:

ψ =

{

2/ (1 + ||(∇t)(I)||) if ||∇I|| > 5

||∇I||/5 if ||∇I|| ≤ 5
(13)

where (∇t)(I) is the gradient of t for the colour I and thus refers to the colour stretching.
The case ||∇I|| ≤ 5 is necessary to re-enforce that flat areas remains flat. While the
gradient of t is easy to estimate for grayscale pictures, it might be more difficult to
obtain for colour mappings. The field can then be changed into:

ψ(x, y) =

{

1 if ||∇I|| > 5

||∇I||/5 if ||∇I|| ≤ 5
(14)

Numerical Solution. The minimisation problem in equation (11) can be solved using
the variational principle which states that the integral must satisfy the Euler-Lagrange
equation:

∂F

∂J
−

d

dx

∂F

∂Jx

−
d

dy

∂F

∂Jy

= 0 (15)

where

F (J,∇J) = φ · ||∇J −∇I||2 + ψ · ||J − t(I)||2 (16)

from which the following can be derived:

φ · J − div (ψ · ∇J) = φ · t(I)− div (ψ · ∇I) (17)

This is an elliptic partial differential equation. The expression div (ψ · ∇I) at pixel x =
(x, y) can be approximated using standard finite differences [30] by:

div (ψ · ∇I) (x) ≈
∑

xn∈Nx

ψxn
+ ψx

2
(Ixn

− Ix) (18)

where Nx corresponds to the four neighbouring pixels of x. Using this in equation (17)
yields a linear system as follows:

a1(x, y)J(x, y − 1) + a2(x, y)J(x, y + 1)+

a3(x, y)J(x− 1, y) + a4(x, y)J(x+ 1, y)+

a5(x, y)J(x, y) = a6(x, y)

(19)

with
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a1(x, y) = −
ψ(x, y − 1) + ψ(x, y)

2

a2(x, y) = −
ψ(x, y + 1) + ψ(x, y)

2

a3(x, y) = −
ψ(x− 1, y) + ψ(x, y)

2

a4(x, y) = −
ψ(x+ 1, y) + ψ(x, y)

2
a5(x, y) =

1

2

(

4ψ(x, y) + ψ(x, y − 1) + ψ(x, y + 1)

+ ψ(x− 1, y) + ψ(x+ 1, y)
)

+ φ(x, y)

a6(x, y) =

1

2

(

ψ(x, y) + ψ(x, y − 1))(I(x, y − 1)− I(x, y))

+ (ψ(x, y) + ψ(x, y + 1)(I(x, y + 1)− I(x, y))

+ (ψ(x, y) + ψ(x− 1, y)(I(x− 1, y)− I(x, y))

+ (ψ(x, y) + ψ(x+ 1, y)(I(x+ 1, y)− I(x, y))
)

+ φ(x, y)I(x, y)

The system can be solved by standard iterative methods like SOR, Gauss-Seidel with
multigrid approach. Implementations of these numerical solvers are widely available and
one can refer for instance to the Numerical Recipes [26]. The main step of these methods
is to solve iteratively for J(x, y). Note that J(x, y) and ai(x, y) are of dimension 3, but
that each colour component can be treated independently. For instance, the iteration for
the red component field is of the form

J
(k+1)
R (x, y) =

1

aR
5 (x, y)

(

aR
5 (x, y)

− aR
1 (x, y)J

(k)
R (x, y − 1)− aR

2 (x, y)J
(k)
R (x, y + 1)

− aR
3 (x, y)J

(k)
R (x− 1, y)− aR

4 (x, y)J
(k)
R (x+ 1, y)

)

(20)

where J
(k)
R (x, y) is the result in the red component at the kth iteration.

5. Results

The proposed colour grading technique has been tested on a number of different sce-
narios. Examples of colour grading for matching lighting conditions are presented in the
figure 5. On the first row, the colour properties of the sunset are used to synthesise the
‘evening’ scene depicted at sunset. On the second row, the colour grading allows correc-
tion of the change of lighting conditions induced by clouds. Even when using the grain
artefact reducer, an unavoidable limitation of colour grading is the clipping of the colour
data: saturated areas cannot be retrieved (for instance the sky on the golf image cannot
be recovered). A general rule is to match pictures from higher to lower range dynamics.
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(a) original (b) target palette

0 50 100 150 200 250
0

50

100

150

200

250

(c) recoloured (d) re-grained (e) mapping

Fig. 3. Result of grain reducing. The two consecutive archive frames (a) and (b) suffer from extreme

brightness variation (this artefact is known as flicker [31]). The corresponding mapping transformation
(e) is overstretched, which results in an increased level of noise on the mapped original frame (c). The

proposed grain artefact reducer is able to reproduce the noise level of the original picture. The top of

the original picture is saturated and cannot be retrieved but the algorithm succeeds in preserving the
soft gradient.

(a) original (b) target palette

(c) after our colour transfer (d) after re-graining

Fig. 4. Artefact grain reducing for colour picture. See how the details of the picture are preserved, while
the spurious graininess in the sky is washed out.
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The figure 6 displays examples of colour restoration of faded movies. The idea is similar
to colour grading as the idea is to recreate different atmospheres. The target pictures
used for recreating the atmosphere are on the second row.

Comparisons with other methods. The comparison has been done using Figure 7
as the original and Figure 8 as the target palette. Neumann’s results are displayed on
Figure 9 and ours on Figures 10 and 11. Our method seems to give a slightly better colour
mapping (the tree is brown and the houses remain red). However these methods are both
based on exact colour pdf transfers, thus these methods will produce results of similar
nature. The major difference in the results occurs after the re-graining process. As seen
on Figure 12, the re-graining process helps a lot to reduce the graininess resulting from
the colour mapping.

Results on Figure 13 using a PCA-based method similar to [2] and [6] are also visually
pleasing. This is usually the case with PCA methods because the mapping is linear and
no obvious artefacts are generated. PCA methods however cannot reduce the colour
palette and non authorised colours are still present. Results using Reinhard’s technique
are displayed on Figure 14. To be successful, Reinhard’s technique requires that the user
places swatches to decide of colour correspondences.

The overall method takes around a second per image at PAL resolution on a 2GHz
machine using a commercial implementation of the method.

6. Conclusion

This paper has proposed an original technique for colour grading. The technique is
based on an exact transfer of colour pdf of the target picture. The possible grain artefacts
are removed in a second step. The overall technique is simple, easy to implement and
works for a large variety of scenarios, even when the example picture is very different
from the processed images.

The idea of re-using the statistics of real images to grade images is a simple but
powerful method for rendering images. The method is part of the larger domain of non-
parametric image processing, which has been proved to be a successful approach in the
recent years. Future works will explore new applications using statistics of other features
(shape, textures, etc.).

Appendix A. Convergence Study

This appendix investigates the theoretical convergence properties of this algorithm.
The following theorem establishes the convergence of the algorithm when the target pdf
is the standard normal distribution (denoted by N (0, idN )). Thus by combining the
mappings at each iteration, it is possible to find for any distribution f a differentiable
bijective mapping tf = τk ◦ · · · ◦ τ1 that transforms f into the standard distribution
N (0, idN ). Consider then the two differentiable mappings tf and tg that transform f
and g into N (0, idN ). Using the standard distribution N (0, idN ) as a pivot results in
the transformation t−1

g ◦ tf , which is a differentiable bijective mapping that transforms
f into g, and is therefore a solution of the distribution transfer problem:

15



at evening at sunset grading (a) using (b)

(a) - with clouds (b) - without clouds grading (a) using (b)

Fig. 5. Examples of colour grading for matching lighting conditions. On the first row, the colour properties

of the sunset are used to synthesise the ‘evening’ scene depicted at sunset. On the second row, the colour

grading allows to correct the change of lighting conditions induced by clouds.

Original Frame 70’s atmosphere pub atmosphere

Target 70’s atmosphere Target pub atmosphere

Fig. 6. Example of colour grading for image and video restoration. It is possible to recreate different

atmospheres. Here an old faded film is transformed to match the colour scheme of a movie from the 70’s
and a pub ambiance.
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Fig. 7. original (Kitaj, R.B, The Oak Tree, 1991)
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Fig. 8. Target palette (Nemcsics, A. ,Europe, 2003)
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Fig. 9. Results from Neumann [3]
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Fig. 10. Our iterative colour transfer results.
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Fig. 11. Our results after re-graining.

Fig. 12. Detail of the colour transfer between Figures 7 and 8. On the left the original, in the middle

results from Neumann and the right our results.
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Fig. 13. Results using a PCA based technique, similar to [6,2]
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Fig. 14. Results using Reinhard’s method without any interaction. To be successful the method would
require a user interaction.
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tf : f → N (0, idN )

tg : g → N (0, idN )

∀u ∈ R
N , t(u) = t−1

g (tf (u))

(A.1)

The results of the convergence study presented in the paper indicate however that
the algorithm converges to the solution even if the target distribution is not the normal
distribution. Figure A.1 shows an example illustrating the convergence of the process
for 2-dimensional pdfs. Thus the method can also be used directly to find a mapping
between f and g, without having to resort to the standard distribution as a pivot.
Theorem 1 (Isotropic Case) Let f be an N -dimensional pdf and denote by g the pdf
of the standard normal distribution N (0, idN ). Consider the differentiable transformation
τk that matches as in equation (6) the marginals of f to the projections of g for a random
set of axes. Then the sequence defined by f (0) = f and f (k+1) = τk(f (k)) converges to
the target distribution: f (∞) = g.
Proof. Denote the original pdf f and the target standard normal pdf g. For a particular
set of axes, denote f1, · · · , fN the marginals of f and g1, · · · , gN the marginals of g. The
standard distribution is isotropic and for all axes, it can be written as the product of
its marginals: g = g1 · · · gN . The key of the proof is to show that the Kullback-Leibler
divergence decreases for any set of axes.

The Kullback-Leibler divergence, or relative entropy, is a quantity which measures the
difference between two probability distributions. It is computed as follows:

DKL(f‖g) =

∫

u

f(u) ln

(

f(u)

g(u)

)

du (A.2)

As with many measures over distributions, the KL divergence is not a proper distance.
The KL divergence does not satisfy the triangular inequality and is not symmetric.
However the KL divergence is always non-negative and DKL(p, q) is zero iff p = q.

DKL(f‖g) =

∫

u

f(u) ln

(

f(u)

g(u)

)

du

=

∫

u

f(u) ln

(

f(u)

f1(u1) · · · fN (uN )

)

du

+

∫

u

f(u) ln

(

f1(u1) · · · fN (uN )

g(u)

)

du

= DKL(f‖f1 · · · fN )

+

∫

u

f(u) ln

(

f1(u1) · · · fN (uN )

g1(u1) · · · gN (uN )

)

du

Then by marginalising,
∫

u

f(u) ln

(

fi(ui)

gi(ui)

)

du

=

∫

u1

· · ·

∫

uN

f(u1, · · · , uN ) ln

(

fi(ui)

gi(ui)

)

du1 · · ·duN

=

∫

ui

fi(ui) ln

(

fi(ui)

gi(ui)

)

dui

= DKL(fi‖gi)

(A.3)
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Table A.1

Optimised rotations for N = 2

No. 1 2 3 4 5 6

x 1.000000 0.000000 0.707107 0.707107 0.923880 -0.382683 0.923880 0.382683 0.555553 0.831481 0.980781 0.195110

y 0.000000 1.000000 0.707107 -0.707107 -0.382683 -0.923880 -0.382683 0.923880 0.831481 -0.555553 -0.195110 0.980781

No. 7 8 9 10 11 12

x 0.555587 -0.831458 -0.195071 -0.980789 0.989456 0.144836 0.597236 0.802066 0.969564 -0.244837 0.858711 0.512460

y -0.831458 -0.555587 0.980789 -0.195071 -0.144836 0.989456 0.802066 -0.597236 -0.244837 -0.969564 -0.512460 0.858711

it follows eventually that

DKL(f‖g) = DKL(f‖f1 · · · fN ) +
N

∑

i=1

DKL(fi‖gi) (A.4)

Consider now that the mapping transforms f into f ′ and f1 · · · fN into f ′1 · · · f
′
N . It holds

for f ′ that:

DKL(f ′‖g) = DKL(f ′‖f ′1 · · · f
′
N ) +

N
∑

i=1

DKL(f ′i‖gi) (A.5)

The transformation is such as for each axis i, f ′i = gi, thus
∑N

i=1DKL(f ′i‖gi) = 0.
Also the KL divergence is left invariant by bijective transformation, which implies that
DKL(f ′‖f ′1 · · · f

′
N ) = DKL(f‖f1 · · · fN ). Thus the KL difference decreases at each itera-

tion by:

DKL(f‖g)−DKL(f ′‖g) =
N

∑

i=1

DKL(fi‖gi) ≥ 0 (A.6)

Since DKL(f‖g) is decreasing and non-negative, it must have a limit. Consider that the
orthogonal basis at each iteration is picked up randomly from a finite set of orthog-
onal bases O. Then for each orthogonal matrix of O, the corresponding sub-sequence

DKL(f (σ(k))‖g) is also decreasing and convergent and
∑N

i=1DKL(f
(σ(k))
i ‖gi) → 0. This

means that for this basis the marginals converge to the corresponding marginals of g.
Since this is true for any choice of O, all marginals of f converge to the marginals of
g. The important point here is that by picking up bases randomly, each possible basis
becomes an adherent point of the basis sequence. The Radon transform of f (k) converges
to the Radon transform of g and since the Radon transform admits a unique inverse, this
shows also that the pdf f (k) converges to g. �
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Table A.2

Optimised rotations for N = 3

No. 1 2 3 4
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No. 5 6 7 8
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y -0.910887 0.242977 0.333536 0.910699 -0.333174 0.244177 0.645399 0.498377 -0.578862 0.143443 -0.104197 0.984158
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[28] F. Pitié, PDF Transfer - Thesis Material (2006).

URL www.sigmedia.tv/research/PDFTransfer/

[29] R. Fattal, D. Lischinski, M. Werman, Gradient domain high dynamic range compression, in:

Proceedings of the 29th annual conference on Computer graphics and interactive techniques

(SIGGRAPH ’02), ACM Press, New York, NY, USA, 2002, pp. 249–256.

[30] J. Weickert, B. ter Haar Romeny, M. Viergever, Efficient and Reliable Schemes for Nonlinear

Diffusion Filtering, IEEE Transactions on Image Processing 7 (3) (1998) 398–410.
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