A short constructive proof of the Erdős–Gallai characterization of graphic lists

Amitabha Tripathi*, Sushmita Venugopalan[†], and Douglas B. West[‡]
September 6, 2009

Abstract

Erdős and Gallai proved that a nonincreasing list (d_1, \ldots, d_n) of nonnegative integers is the list of degrees of a graph (with no loops or multi-edges) if and only if the sum is even and the list satisfies $\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min\{k, d_i\}$ for $1 \leq k \leq n$. We give a short constructive proof of the characterization.

AMS Subject classification: 05C07

Keywords: graphic list, graphic sequence, degree sequence

A list of nonnegative integers is graphic if it is the list of vertex degrees of a graph, where our model of graph forbids loops and repeated edges. Historically, such lists have also been called graphic sequences. A graph with degree list d is a realization of d.

Many characterizations of graphic lists are known; Sierksma and Hoogeveen [10] list seven criteria involving inequalities on the list elements. With additional results, these also appear in [9]. Additional characterizations are due to Havel [7] and Hakimi [5], Koren [8], and probably others.

The best-known explicit characterization is that by Erdős and Gallai [4]. Many proofs of it have been given, including by Berge [2] (using network flow or Tutte's f-Factor Theorem), Harary [6] (a lengthy induction), Choudum [3], Aigner–Triesch [1] (using ideals in the dominance order), Tripathi–Tyagi [11] (indirect proof), etc. The purpose of this note is to give a short direct proof that constructs a graph whose degree list is the given list.

^{*}Indian Institute of Technology, Hauz Khas, New Delhi, India, atripath@maths.iid.ac.in

[†]Rutgers University, Piscataway, NJ 08854, sushvenu@math.rutgers.edu. Work done while at Indian Institute of Technology, New Delhi, India

[‡]University of Illinois, Urbana, IL 61801, west@math.uiuc.edu. Research partially supported by the National Security Agency under Award No. H98230-06-1-0065.

Theorem 1 (Erdős–Gallai [4]) A list (d_1, \ldots, d_n) of nonnegative integers in nonincreasing order is graphic if and only if its sum is even and, for each integer k with $1 \le k \le n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min\{k, d_i\}, \text{ for } 1 \le k \le n.$$
 (1)

Proof. Necessity is immediate and standard: each edge is counted twice to yield even sum, and the right side is the maximum contribution to the sum of the first k degrees from edges induced by the corresponding vertices and edges to the remaining vertices.

For sufficiency, let a *subrealization* of a nonincreasing list (d_1, \ldots, d_n) be a graph with vertices v_1, \ldots, v_n such that $d(v_i) \leq d_i$ for $1 \leq i \leq n$, where $d(v_i)$ denotes the degree of v_i . Given a list (d_1, \ldots, d_n) with even sum that satisfies (1), we construct a realization through successive subrealizations. The initial subrealization has n vertices and no edges.

In a subrealization, the *critical index* r is the largest index such that $d(v_i) = d_i$ for $1 \le i < r$. Initially, r = 1 unless the list is all 0, in which case the process is complete. While $r \le n$, we obtain a new subrealization with smaller deficiency $d_r - d(v_r)$ at vertex v_r while not changing the degree of any vertex v_i with i < r (the degree list increases lexicographically). The process can only stop when the subrealization is a realization of d.

Let $S = \{v_{r+1}, \dots, v_n\}$. We maintain the condition that S is an independent set, which certainly holds initially. Write $v_i \leftrightarrow v_j$ when $v_i v_j \in E(G)$; otherwise, $v_i \leftrightarrow v_j$.

Case 0) $v_r \leftrightarrow v_i$ for some vertex v_i such that $d(v_i) < d_i$. Add the edge $v_r v_i$.

Case 1) $v_r \leftrightarrow v_i$ for some i with i < r. Since $d(v_i) = d_i \ge d_r > d(v_r)$, there exists $u \in N(v_i) - N(v_r)$, where $N(z) = \{y \colon z \leftrightarrow y\}$. If $d_r - d(v_r) \ge 2$, then replace uv_i with $\{uv_r, v_iv_r\}$. If $d_r - d(v_r) = 1$, then since $\sum d_i - \sum d(v_i)$ is even there is an index k with k > r such that $d(v_k) < d_k$. Case 0 applies unless $v_r \leftrightarrow v_k$; replace $\{v_rv_k, uv_i\}$ with $\{uv_r, v_iv_r\}$.

Case 2) $v_1, \ldots, v_{r-1} \in N(v_r)$, and $d(v_k) \neq \min\{r, d_k\}$ for some k with k > r. In a subrealization, $d(v_k) \leq d_k$. Since S is independent, $d(v_k) \leq r$. Hence $d(v_k) < \min\{r, d_k\}$, and Case 0 applies unless $v_k \leftrightarrow v_r$. Since $d(v_k) < r$, there exists i with i < r such that $v_k \nleftrightarrow v_i$. Since $d(v_i) > d(v_r)$, there exists $u \in N(v_i) - N(v_r)$. Replace uv_i with $\{uv_r, v_iv_k\}$.

Case 3) $v_1, \ldots, v_{r-1} \in N(v_r)$, and $v_i \leftrightarrow v_j$ for some i and j with i < j < r. Case 1 applies unless $v_i, v_j \in N(v_r)$. Since $d(v_i) \geq d(v_j) > d(v_r)$, there exist $u \in N(v_i) - N(v_r)$ and $w \in N(v_j) - N(v_r)$ (possibly u = w). Since $u, w \notin N(v_r)$, Case 1 applies unless $u, w \in S$. Replace $\{uv_i, wv_i\}$ with $\{v_iv_j, uv_r\}$.

If none of these Cases apply, then v_1, \ldots, v_r are pairwise adjacent, and $d(v_k) = \min\{r, d_k\}$ for k > r. Since S is independent, $\sum_{i=1}^r d(v_i) = r(r-1) + \sum_{k=r+1}^n \min\{r, d_k\}$. By (1), $\sum_{i=1}^r d_i$ is bounded by the right side. Hence we have already eliminated the deficiency at vertex r. Augment r and continue.

The proof can be implemented as an algorithm to construct a realization of the degree list. Since the subrealization improves lexicographically with each step, the number of steps is at most $\sum d_i$. To bound the time for each step, we maintain the graph as lists of neighbors and non-neighbors for each vertex. We look through the non-neighbors of v_r to see if Case 0 or Case 1 applies. To apply Case 1 we access lists twice to find u and possibly check degrees of the high-indexed vertices to find u. The implementation of Cases 2 and 3 involve similar operations. Each step is implemented using a constant number of set-membership queries. Thus the running time is naively at most $O(n \sum d_i)$. With clever maintenance of sets using sophisticated data structures involving trees, the factor of u can be reduced.

References

- [1] M. Aigner and E. Triesch, Realizability and uniqueness in graphs, *Discrete Math.* 136 (1994), 3–20.
- [2] C. Berge, Graphs and Hypergraphs. (North-Holland, 1973).
- [3] S. A. Choudum, A simple proof of the Erdős–Gallai theorem on graph sequences, *Bull. Austral. Math. Soc.* 33 (1986), 67–70.
- [4] P. Erdős and T. Gallai, Graphs with prescribed degrees of vertices (Hungarian), *Mat. Lapok* 11 (1960), 264–274.
- [5] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, SIAM J. Applied Math. 10 (1962), 496–506.
- [6] F. Harary, Graph theory, (Addison-Wesley, 1969).
- [7] V. Havel, A remark on the existence of finite graphs (Czech.) Časopis Pěst. Mat 80 (1955), 477–480.
- [8] M. Koren, Extreme degree sequences of simple graphs, *J. Combin. Theory B* 15 (1973), 213–224.
- [9] N. V. R. Mahadev, and U. N. Peled, *Threshold graphs and related topics*, Annals of Discrete Mathematics 56, (North-Holland, 1995).
- [10] G. Sierksma, and H. Hoogeveen, Seven criteria for integer sequences being graphic, J. Graph Theory 15 (1991), 223–231.
- [11] A. Tripathi and H. Tyagi, A simple criterion on degree sequences of graphs, *Discrete Appl. Math.* 156 (2008), 3513–3517.