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Abstract

Parallel discrete-event simulation (PDES), simply referred to as
parallel simulation, is concerned with the execution of discrete-event
simulation on parallel computers. PDES has been recognized as a chal-
lenging research field bridging between modeling and simulation, and
high-performance computing. By exploiting the potential parallelism
in a simulation model, PDES can overcome the limitations imposed
by sequential simulation both in the execution time and the mem-
ory space, and therefore demonstrate as a viable technique for solving
large-scale complex models. In this article, we provide a brief overview
of the current state of PDES, identify its fundamental challenges, and
discuss existing principal solutions resulted from three decades of inten-
sive research in this field. Further, we report specific research advances
in high-performance modeling and simulation of large-scale computer
networks as an exemplar of typical PDES applications.

1 Simulation and Parallelization Methods

1.1 Simulation with Discrete Events

Simulation—the practice of mimicking the operations of systems over time—
is one of the most important and widely used techniques in operations re-
search. These systems are abstracted as models in the form of mathematical
or logical relationships. In simulation, one uses computers to evaluate the
models numerically in a controlled environment, where data are gathered
and used to estimate the behavior of the target systems. Simulation is effec-
tive for prototyping new system designs, as well as providing insight to the



true characteristics of existing systems. Simulation is particularly indispens-
able for studying large-scale and complex systems, which can be otherwise
intractable to closed-form mathematical or analytical solutions. Due to the
practical nature of the design process where simplified assumptions fly in
the face of required complexities, simulation is an irrefutable choice for both
system design and evaluation.

A simulation model specifies the state evolution over time. The target
system can be viewed either as a continuous system, where state changes
continuously with respect to time, as a discrete system, where state is mod-
ified only at specific points in time, or as a hybrid system, which consists
of both continuous and discrete elements. In simulation, time progression
is described by the so-called “time advancement function”, which specifies
two classes of simulation methods: time-driven and event-driven. In a time-
driven (or time-stepping) simulation, time is measured at small intervals
giving the impression that the system evolves continuously over time. As
such, it is naturally more suitable for simulating continuous systems. In
an event-driven (or discrete-event) simulation, time leaps through distinct
points in time, which we call events. Consequently, event-driven simula-
tion is more appropriate for simulating discrete systems. Note that one
can combine both types of simulations, for example, in a computer network
simulation, using discrete events to represent detail network transactions,
such as sending and receiving packets, and using continuous simulation to
capture the fluid dynamics of overall network traffic [34].

This article mainly focuses on discrete-event simulations and efficient
techniques to parallelize them. It is necessary to first understand what
constitutes a sequential discrete-event simulation before we proceed to review
the parallelization methods. A discrete-event simulation maintains a data
structure called the event-list, which is basically a priority queue that sorts
events according to the time at which they are scheduled to happen in
the simulated future. A clock variable T is used to denote the current
time in simulation. At the heart of the program is a loop; the simulator
repeatedly removes an event with the smallest timestamp from the event-
list, sets the clock variable T to the timestamp of this event, and processes
the event. Processing an event typically changes the state of the model and
may generate more future events to be inserted into the event-list. The loop
continues until the simulation termination condition is met, for example,
when the event-list becomes empty or when the simulation clock has reached
a designated simulation completion time.
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1.2 Parallelization Methods

Parallel discrete-event simulation (PDES), also known simply as parallel
simulation, is an important research area cross-cutting between modeling
and simulation, and high-performance computing. PDES is concerned with
executing a single discrete-event simulation program on parallel computers,
which can be shared-memory multiprocessors, distributed-memory clusters
of interconnected computers, or a combination of both. By exploiting the
potential parallelism in the model, PDES can overcome the limitations im-
posed by sequential simulation in both the execution time and the memory
space. As such, PDES can bring substantial benefit to time-critical sim-
ulations, and simulations of large-scale systems that demand an immense
amount of computing resources.

The simplest form of parallel simulation is called replicated trials [23],
which executes multiple instances of a sequential simulation program con-
currently on parallel computers. This approach has the obvious advantage
of simplicity and it can expedite the exploration of a large parameter space.
The disadvantage is that each replicated trial does not provide any speedup
and cannot overcome the memory limit due to sequential execution. To ad-
dress the latter problem, Hybinette and Fujimoto [25] introduced a cloning
method as an efficient parallel computation technique to allow simultane-
ous exploration of different simulation branches resulted from alternative
decisions made in simulation.

Another form of parallel simulation is to assign different functions of a
simulation program, such as random number generation and event handling,
to separate processors. This method is called functional decomposition [11].
The main problem is the lack of ample parallelism. Also, the tight coupling
of the simulation functions creates an excessive demand for communication
and synchronization among the parallel components, which can easily defeat
the parallelization effort.

More generally, one can view simulation as a set of state variables that
evolve over time. Chandy and Sherman [10] presented a space-time view
of simulation, where each event can be characterized by a temporal coordi-
nate, indicated by the the timestamp of the event, and a spatial coordinate,
indicated by the location of the state variables affected by the event. Ac-
cordingly, the state space of a discrete-event simulation can be perceived as
consisting of a continuous time axis and a discrete space axis; the objec-
tive of the simulation is therefore to compute the value at each point in the
space-time continuum. This space-time view provides a high-level unifying
concept for parallel simulation, where one can divide the space-time graph
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into regions of arbitrary shape and assign them to separate processors for
parallel processing. For example, Bagrodia, Chandy, and Liao [3] presented
a distributed algorithm using fixed-point computations.

A special case of the space-time view is the time-parallel approach, which
is based on temporal decomposition of the time-space continuum. Time-
parallel simulation divides the space-time graph along the time axis into
non-overlapping time intervals, and assign them to different processors for
parallel processing. Due to the obvious dependency issue, that is, the ini-
tial state of a time interval must match the final state of the preceding
time interval, the efficiency of this approach relies heavily on the model’s
ability of either rapidly computing the initial state or achieving fast con-
vergence under relaxation. For this reason, only a limited number of cases
using time-parallel simulation exist in the literature. Successful examples
include trace-driven cache simulations [22, 46], queuing network and Petri
net simulations [1, 31], and road traffic simulations [28].

Orthogonal to the time-parallel approach, space-parallel simulation is
based on data decomposition, where the target system is divided into a col-
lection of subsystems, each simulated by a logical process (LP). Each LP
maintains its own simulation clock and event-list, and is only capable of
processing events pertaining to the subsystem to which it is assigned. These
LPs can be assigned to different processors and executed concurrently. Com-
munications between the LPs take place exclusively by exchanging times-
tamped events. Space-parallel simulation is in general more robust than the
other parallelization approaches, mainly because data decomposition is nat-
urally applicable to most models. For this reason, we focus on space-parallel
simulation for the rest of this article.

2 Synchronization Algorithms

In a discrete-event simulation, events need be processed in a non-decreasing
timestamp order, because an event with a smaller timestamp has the poten-
tial to modify the state of the system and thereby affect events that happen
later. This is what we call the causality constraint. Provided that simultane-
ous events—events with the same timestamps—are sorted deterministically
and consistently using certain tie-breaking rules, the causality constraint im-
plies a total ordering of events. In parallel simulation, the global event-list
in sequential simulation is replaced by a set of event-lists; each LP main-
tains its own simulation clock and a separate event-list that contains events
that can only affect the state of the corresponding LP. Since each LP pro-
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Figure 1: Simulation of Two Queues

cesses events on its own event-list in timestamp ordering—a property also
known as the local causality constraint—the total ordering maintained by
the original sequential discrete-event model is replaced by a partial ordering
similar to Lamport’s “happens before” relationship [29]. The fundamental
challenge is therefore associated with the difficulty of preserving the local
causality constraint at each LP without the use of a global simulation clock.

We use a simple example to illustrate this problem (Figure 1). Suppose
there are two interconnected queues, A and B, with jobs in both queues
waiting to be serviced. After a job is serviced at one queue, it joins the
other queue after a certain delay. There are two types of simulation events:
one representing the job arrival and the other representing the job depar-
ture. The two queues are simulated by two LPs running on two separate
processors. Upon processing the “job departure” event at one LP, a “job
arrival” event will be sent from the LP to the other LP. Figure 1 shows
that a job enters Queue A at time 4 (represented by E1), departs at 10
(E3), and then travels to Queue B at 14 (E4), while another job enters
Queue B at time 7 (E2) and leaves at 19 (E5). Since the two queues are
simulated on separate processors, it is possible that the LP handling Queue
B gets to process E5 immediately after processing E2, while the other LP
is still in the middle of processing E1 at Queue A. That is, it is probable
that an event (in this case, E4) could later arrive from the other LP carry-
ing a timestamp smaller than the LP’s current simulation clock. To avoid
potential causality errors, some synchronization mechanism needs to be in
place. Specifically, an LP must be able to make the right decision whether
to process the smallest-timestamped event on its local event-list.

The distinction on how local causality constraint is enforced underscores
the difference between two major parallel simulation methods. Conservative
parallel simulation eliminates the possibility of any causality errors; that is,
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an LP must be blocked from processing the next event in its event-list until
it is sure that it will not cause out-of-order event execution due to future
events from other LPs. In contrast, optimistic parallel simulation allows
events to be processed out of order. Once a causality error is detected, the
offending LP must be rolled back and recover from such an error. In order
for the simulation to roll back from possible erroneous computations, state
saving and recovery mechanisms must be provided.

3 Conservative Synchronization

3.1 The CMB Algorithm

The first parallel simulation synchronization protocol is the CMB algorithm
proposed independently by Chandy and Misra [7], and Bryant [5]. In CMB,
LPs are connected via directional links, through which events are trans-
ferred from one LP to another in chronological order (with nondecreasing
timestamps). Events are enqueued at the receiving LPs—there is one input
queue for each incoming link at an LP. Also, each input queue is associated
with a clock variable, set to be either the timestamp of the first event in
the queue, or, if the queue is empty, the timestamp of the last processed
event (or zero initially). Each LP maintains a loop: at each iteration, the
LP selects an input queue with smallest clock value and processes the event
at the beginning of the input queue; if the input queue is empty, the LP
blocks until an event arrives at the queue and then continues at the next
iteration.

Since LPs block on empty input queues (with the smallest clock value),
deadlock may happens once a waiting cycle is formed, in which case no
progress will be made even if there are events in other input queues. The
CMB algorithm uses null messages to avoid this pathological situation. A
null message does not represent any real activities in the model; it carries
only a timestamp and is regarded as a guarantee from the sending LP that it
won’t send events in the future with timestamps smaller than the timestamp
of the null message. Upon receiving a null message, an LP can advance the
clock associated with the input queue. The LP can further propagate the
time advancement to its successor LPs, possibly by sending out more null
messages. Consequently, no waiting cycle is formed and deadlock is avoided.

It is important to note that the use of null messages is not the only
way to prevent deadlocks. Alternatively, one can allow deadlock to happen,
and subsequently detect and recover from deadlock situations [8]. Deadlock
recovery is based on the observation that events with the smallest timestamp

6



in the system can always be processed safely. In cases where deadlocks
happen more frequently, however, this may result in a significant amount of
sequential execution that can adversely affect the overall performance.

3.2 Exploiting Lookahead

The CMB algorithm introduced an important concept regarding local event
processing. Each LP must determine the lower bound on the timestamps
(LBTS) of future events to arrive from other LPs. LBTS is actually the upper
bound up to which the LP can safely process its local events and advance
its simulation clock without introducing causality errors. CMB uses a small
time increment ahead the LP’s current simulation clock as the timestamp
of the null messages it sends to the successor LPs. This is the essential idea
behind the concept of lookahead, which is defined as the amount of simula-
tion time that an LP can predict into the simulated future (and therefore
allow other LPs to safely advance their simulation clocks). In other words,
lookahead is the inherent asynchrony in the simulation model—with a posi-
tive lookahead, an LP can process events within a certain range independent
of its neighbors. Extensive performance studies (e.g., [14,15,51]) confirmed
the positive correlation between lookahead and parallel performance of con-
servative algorithms.

Exploiting lookahead takes on two directions. One direction focuses on
extracting lookahead from model characteristics. Nicol [45] provided a clas-
sification of lookahead based on different levels of knowledge that can be
extracted from the model. Several models exhibit good lookahead proper-
ties. A notable example is the simulation of first-come-first-serve (FCFS)
stochastic queuing networks [43]. By pre-sampling the job service time and
determining branch destination at the time when a job enters the queue,
one can improve the lookahead tremendously. Another example is the sim-
ulation of continuous-time Markov chains (CTMC) [21,40,41]. The method
exploits the mathematical structure of CTMC models (more specifically,
the uniformization property) that allows the pre-selection of synchroniza-
tion points ahead of time. Consequently, the synchronization complexity
therefore can be reduced significantly.

The other direction focuses lookahead extrapolation for general appli-
cations. Chandy and Sherman’s conditional event approach [9] takes into
account two types of events: definite events, which are bound to happen re-
gardless of the earlier events, and conditional events, which can be canceled
because of earlier events. This algorithm requires each LP determine the
lower bound on the timestamp of future events it will send to each of its
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neighbor LPs on the condition that its earliest local conditional event will
not be canceled. This lower bound can be calculated as the timestamp of
the earliest conditional event on the local event-list plus lookahead. Since
the earliest conditional event in the system is actually a definite event, the
algorithm uses a global min-reduction to find out the true lower bound and
use it as the LBTS for all LPs to process their local events.

The topology of the model—how LPs are connected with each other—
plays an important role in the lookahead computation. Lubachevsky’s bounded
lag algorithm [37] takes advantage of the minimum propagation delay be-
tween logical processes and the so-called opaque period within which the
state of an LP is not affected by other LPs due to the model’s non-preemptive
behavior. The algorithm introduces a time interval B, called the lag, using
which the algorithm computes the “sphere of influence”, which is the set of
LPs that can possibly affect a given LP within B units of simulation time.
These are the LPs that need to be considered to determine whether events
on the given LP with timestamps between T (the current simulation time)
and T + B can be safely processed. Ayani’s distance-between-objects algo-
rithm [2] also exploits the distance between the LPs; it uses a shortest-path
algorithm to determine the LP’s LBTS. The time-of-next-event algorithm
proposed by Groselj and Tropper [20] also explores the LP topology; the
algorithm considers situations where multiple LPs reside on a single pro-
cessor and allows efficient computation of the greatest lower bound of all
LPs on a processor. Nicol [44] established a scalability analysis based on a
window-based synchronization algorithm. The algorithm is similar to the
conditional-event approach in that it also uses a global min-reduction to
determine the time of next synchronization point.

In general, LP-based conservative synchronization methods can be viewed
as a scheduling problem where LPs are selected to run on parallel proces-
sors. Xiao et al. [62] introduced an asynchronous multi-level LP-scheduling
algorithm, called the critical channel traversing (CCT) algorithm, to ac-
commodate simulation models with small computational granularity. CCT
schedules groups of LPs among the processors using a shared data struc-
ture to reduce unnecessary low-level synchronization overheads. Nicol and
Liu [42] proposed a composite synchronization scheme combining both syn-
chronous and asynchronous scheduling algorithms to avoid the potential
performance pitfalls from either synchronous or asynchronous mechanism
used alone.
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4 Optimistic Synchronization

Optimistic synchronization enforces the local causality constraint differently
from its conservative counterpart: an LP is allowed to process events that
arrive in the simulated past, as long as the simulation is able to detect such
causality errors, rewind the simulation clock, and roll back the erroneous
computations.

4.1 Time Warp

It is safe to say by and large that Jefferson’s Time Warp algorithm [26] is the
most far-reaching parallel synchronization protocol. The protocol was first
conceived to be offering a general solution to all parallel simulation prob-
lems, although the overhead associated with many aspects of the protocol’s
execution eventually caught up. As a result, the protocol set forth an era of
intensive research in the PDES field.

In Time Warp, each LP saves the events received from other LPs in
the input queue, and those sent to other LPs in the output queue. Also,
the state variables are saved in the state queue each time before an event
is processed. When an event arrives with a timestamp smaller than the
current simulation clock (called the straggler event), the LP must be rolled
back to the saved state immediately before the timestamp of the straggler
event. All actions that the LP might have affected on other LPs later than
the timestamp of the straggler event must also be canceled. This can be
achieved by sending anti-messages corresponding to the original messages
that are stored at the output queue. Upon receiving an anti-message, the
LP will annihilate the corresponding message in the input queue. If the
anti-message carries a timestamp smaller than the LP’s current simulation
clock (and thus become a straggler event), the LP will also be rolled back
accordingly.

Simple and elegant as it appears to be, the algorithm must address the
important issue of memory consumption: as the simulation progresses, the
size of the input, output, and state queues could increase without bound.
Furthermore, since rollback does not apply to irrevocable operations, such
as I/O, the algorithm must also determine when these irrevocable operations
can be executed. The global virtual time (GVT) is defined as the minimum
timestamp of all events and messages (including both positive messages and
anti-messages) in the system at a given wall-clock time. One can show that
the system will never roll back to a time earlier than GVT. As such, GVT
can be viewed as a measure of progress, where messages or state vectors
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earlier than GVT can be reclaimed (in a process called fossil collection).
Irrevocable operations that happen before GVT can also be committed.

Time Warp needs to overcome several practical problems pertaining to
its performance: state saving inevitably introduces memory overhead; roll-
back allows more complexities, where state needs to be restored, and anti-
messages need to be sent, which can possibly cause further rollbacks rippling
through the entire system. These problems have prompted a lot of interest-
ing research, some of which we describe next.

4.2 State Saving, GVT and Rollback

State saving is necessary to undo modifications to the state variables caused
by erroneous computations. There are three types of state-saving techniques:
copy state saving makes a copy of all state variables each time an event is
processed; incremental state saving saves only those state variables modi-
fied as a result of processing an event; and infrequent state saving adjusts
the interval between checkpoints and reduces the frequency of state saving.
Incremental state saving can be made automatic, by overloading the assign-
ment operators in certain object-oriented programming languages [55], by
using specific hardware support [16], or by directly modifying the executable
files [61]. To enable infrequent state saving, the rollback mechanism must
be able to handle situations where an LP may be rolled back to a state not
immediately before the straggler event. In this case, the LP must coast for-
ward, re-processing events until the desired state is reached. For this reason
infrequent state saving must be applied judiciously. Lin et al. [33] studied
the trade-off between the state-saving interval length and the rollback cost,
and suggested an analytically optimal solution.

GVT computation is a major source of overhead for Time Warp. The
task of computing GVT amounts to capturing a consistent snapshot of the
state of a distributed system. According to Samadi [56], there are two ma-
jor issues: the transient message problem and the simultaneous reporting
problem. A transient message is a message that has been sent but not yet
received; either the sender or the receiver LP must account for the message
in the GVT computation, or inconsistency would happen. Simultaneous re-
porting is also related to the possible miscount of transient messages; it is,
however, prompted by the difference in the ordering of events perceived by
different LPs. Samadi’s algorithm [56] employs a message acknowledgment
scheme to solve the transient message problem and adopts a barrier syn-
chronization method to solve the simultaneous reporting problem. To avoid
the expensive barrier synchronization, Preiss’s algorithm [49] arranges the
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LPs in a ring and uses a token traversal approach to compute GVT. Mat-
tern’s algorithm [38] uses two broadcasts to define separate “cuts” and uses
messages with “colors” to distinguish those spanning across the cuts.

Optimizations can also be applied to reduce the overhead from rollbacks.
Gafni [19] proposed lazy cancellation to avoid canceling messages that are
more likely to be re-created after rollbacks. The algorithm does not im-
mediately send anti-messages during a rollback; instead, they are sent only
when the same positive messages are not re-created. West [60] proposed
another method called lazy re-evaluation to avoid re-processing the events,
which can be achieved by comparing the state vectors. Both methods re-
quire additional time for comparing messages or state vectors, which could
cause more erroneous computation to be spread further.

One interesting alternative to the state-saving approach is reverse com-
putation, proposed by Carothers, Perumalla, and Fujimoto [6]. Rather than
saving the state to enable rollback, reverse computation performs the in-
verses of the individual operations that correspond to the normal event
processing (i.e., by executing the code backwards) to get the system back
to an earlier state. This method alleviates the state-saving cost from the
forwarding computation path and transfers the cost to the reverse computa-
tion path. It can also be viewed as trading the memory space (which would
otherwise be consumed by state saving) with the execution time (for the
more expensive rollback). Significant improvements over traditional state-
saving methods have been reported both in run time and memory utiliza-
tion for fine-grain models, including queuing network models. One potential
problem for reverse computation is that not all operations are reversible,
in which case the method is degenerated to the traditional state-saving ap-
proach. The increased rollback cost may also get erroneous computations
to be propagated to more LPs possibly causing unstable behavior.

4.3 Curbing Optimism

In practice, “pure” Time Warp usually does not provide an acceptable per-
formance. Many alternative solutions have been proposed that effectively
limit optimistic execution to circumvent various performance hazards.

Lin and Preiss [32] first introduced the concept of storage optimality. A
storage optimal parallel simulator can complete the execution of any model
using no more than the memory space required to complete a sequential
execution multiplied by some constant factor. To achieve storage optimality,
a necessary condition is that the parallel simulator should be able to reclaim
the memory space beyond the sequential execution requirement, even if it
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implies restraint in the speculative execution. Several algorithms run on
shared-memory multiprocessors qualify for the storage optimality, which
include Jefferson’s cancel-back algorithm [27], and Lin and Preiss’s artificial
rollback algorithm [32]. Preiss and Loucks’s prune-back algorithm [50] is
designed for distributed-memory architectures; however, it fails to meet the
storage optimality requirement.

A number of optimistic parallel simulation algorithms are proposed to
curb optimism. For example, the moving time window approach [57] uses a
window to control how far an LP may get ahead of other LPs. The effec-
tiveness of this algorithm obviously depends on the size of the moving time
window. Reynolds [52] introduced a classification method for optimistic
synchronization protocols based on two attributes: aggressiveness and risk.
Aggressiveness specifies that events on an LP can be processed out of times-
tamp order, where risk suggests that messages generated by aggressive event
processing are allowed to be sent to other LPs. For example, the SRADS
protocol by Dickens and Reynolds [13] is aggressive, but allows no risk: it
permits only local rollbacks; messages are not sent unless the LP is sure that
the messages will not be rolled back. As an extension, the breathing time
bucket approach, proposed by Steinman [58], introduced a quantity called
event horizon. An LP’s local event horizon is the smallest timestamp of any
new messages that are generated as a result of processing local events. The
global event horizon can be computed as the minimum of the local event
horizons among all LPs. The algorithm allows only messages with a sending
time prior to the global event horizon to be sent out. By doing that, it can
be shown that these messages will never be rolled back.

Many have tried to compare conservative and optimistic simulations;
yet it comes at no surprise that there is no conclusive answer to which is
a better approach. This is mainly because parallel simulation performance
largely depends on the characteristics of the simulation model. On the one
hand, conservative synchronization, due to its low operational overhead and
small memory footprint, can usually achieve good performance as long as
good lookahead can be extracted from the model. On the other hand, the
optimistic approach can exploit the full parallelism in the model through
speculative execution. However, optimistic execution requires state saving,
GVT computation, fossil collection and rollbacks, which could bring signifi-
cation design complexity and memory overhead.
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5 High-Performance Modeling and Simulation of
Large-Scale Networks

PDES has been applied in many areas, such as military applications (includ-
ing war games and training exercises), on-line gaming, business operations,
manufacturing, logistics and distribution, transportation, computer systems
and computer networks. In this section, we review the latest development in
high-performance modeling and simulation of large-scale computer networks
as an example of successful PDES applications.

Internet is described by Paxson and Floyd [47] as “an immense moving
target”: its size, heterogeneity, and rapid change pose a daunting challenge
for accurately simulating its complex behavior. Over the years, researchers
have developed several parallel simulators that can model networks at un-
precedented scales. For example, Riley, Fujimoto, and Ammar [53] used
a federated approach to parallelize the popular ns-2 simulator [4]. The
original sequential discrete-event simulation engine is “refurbished” with
parallel functions to allow time-synchronized event distribution. There are
also unadulterated efforts in developing parallel network simulations from
scratch. One early effort is the Telecommunications Description Language
(TeD), proposed by Perumalla, Ogielski, and Fujimoto [48], which allows
parallel execution of large network models with an optimistically synchro-
nized parallel simulation engine.

The Scalable Simulation Framework (SSF) was later developed as a com-
mon Application Programming Interface (API) for parallel simulations of
large-scale telecommunication systems [12]. SSF is different from TeD in
that it does not require a separate programming language; SSF network
models are written in common programming languages (Java or C++) us-
ing simple simulation constructs that support transparent conservative par-
allel execution on different platforms. A similar effort is the Georgia Tech
Network Simulator (GTNetS) [54], which is a full-fledged simulation envi-
ronment embellished with a rich set of network protocol implementations.
The GTNetS effort has recently evolved into ns-3 [24], which is a renewed
effort for open community development of network simulations. Both SSF
and GTNetS are developed based on conservative synchronization proto-
cols. ROSSNet [63], on the other hand, is a large-scale network simulator
using an optimistic approach. It offers a compact and light-weight imple-
mentation framework that reduces the amount of state required to simulate
large-scale network models. ROSSNet uses reverse computation to enable
fast optimistic execution on commodity multi-processor systems.
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Two important application areas using high-performance network simu-
lation have shown very promising results: on-line simulation and real-time
simulation. On-line network simulation refers to the use of network simu-
lation as an integrated service for real-time network management with the
goal of improving parameter tuning, network planning, network monitoring,
and network traffic engineering (e.g., [59, 64]). Parallel simulation allows
detailed performance analysis faster than real time and thus can be used to
predict, control and fine-tune network parameters in real time. Real-time
network simulation refers to simulation of large-scale networks in real time
so that the virtual network can interact with real implementations of net-
work protocols, network services, and distributed applications. Real-time
simulation allows network immersion, where a simulated network is made
indistinguishable from a physical network in terms of conducting network
traffic between real applications. It provides the necessary realism, scalabil-
ity, and flexibility for experimental networking research [35].

6 Additional Readings

This article is but scratching the surface of the exciting field of paral-
lel discrete-event simulation. Due to space limitations, we are not able
to provide an in-depth study of the problems and solutions. There are
many excellent surveys of the parallel discrete-event simulation field (e.g.,
[17, 30, 36, 39]). Fujimoto’s book on PDES [18] provides an in-depth review
of the intriguing problems and solutions in the area.
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