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ABSTRACT

Recent evidence suggests that some characteristics of com-
puter and telecommunications systems may be well de-
scribed usingheavy taileddistributions — distributions
whose tail declines like a power law, which means that the
probability of extremely large observations is non-negli-
gible. For example, such distributions have been found
to describe the lengths of bursts in network traffic and the
sizes of files in some systems. As a result, system design-
ers are increasingly interested in employing heavy-tailed
distributions in simulation workloads. Unfortunately, these
distributions have properties considerably different from
the kinds of distributions more commonly used in simu-
lations; these properties make simulation stability hard to
achieve. In this paper we explore the difficulty of achiev-
ing stability in such simulations, using tools from the the-
ory of stable distributions. We show that such simulations
exhibit two characteristics related to stability: slow con-
vergence to steady state, and high variability at steady
state. As a result, we argue that such simulations must be
treated as effectively always in a transient condition. One
way to address this problem is to introduce the notion of
time scale as a parameter of the simulation, and we dis-
cuss methods for simulating such systems while explicitly
incorporating time scale as a parameter.

1 INTRODUCTION

Recently the phenomenon of network trafficself-similarity
has received significant attention in the networking com-
munity [7]. Self-similarity refers to the condition in which
a timeseries’s autocorrelation function declines like a power-
law, leading to positive correlations among widely sepa-
rated observations. Thus the fact that network traffic often
shows self-similarity means that it shows noticeable bursts
at a wide range of time scales—typically at least four or
five orders of magnitude. A related observation is that
the distribution of file sizes in some systems also declines
like a power-law—meaning that file sizes also often span
many orders of magnitude [2]. Both of these conditions

have been shown to be well described using distributions
that areheavy tailed—distributions whose tails follow a
power law.

Heavy tailed distributions behave quite differently from
the distributions more commonly used to describe charac-
teristics of computing systems, such as the Normal distri-
bution and the exponential distribution, which have tails
that decline exponentially (or faster). In contrast, because
their tails decline relatively slowly, the probability of very
large observations occurring when sampling random vari-
ables that follow heavy tailed distributions is non-negligi-
ble. In fact, the distributions we discuss in this paper have
infinite variance,reflecting the extremely high variability
that they capture.

As a result, designers of computing and telecommu-
nication systems are increasingly interested in employing
heavy-tailed distributions to generate workloads for use in
simulation. However, simulations employing such work-
loads may show unusual characteristics; in particular, they
may be much less stable than simulations with less vari-
able inputs. In this paper we discuss the kind of instabil-
ity that may be expected in simulations with heavy-tailed
inputs and show that they may exhibit two features: first,
they will be very slow to converge to steady state; and sec-
ond, they will show highly variable performance at steady
state. To explain and quantify these observations we rely
on the theory ofstabledistributions [4, 12].

To deal with the slow convergence of these simula-
tions to steady state, we suggest that simulations explicitly
incorporate the notion of time scale as a parameter. This
means that researchers recognize that their simulations are
not achieving steady state, but rather finite-time-scale ap-
proximations to steady state. To do so requires methods to
measure the movement toward steady state in a simulation
as a function of the number of observations that have been
made of the heavy tailed random variable. We suggest
simple first steps in this regard by using order statistics
for heavy random variables.

In general however many of the problems associated
with the simulations using heavy-tailed workloads seem
quite difficult to solve. This paper does not primarily sug-
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Figure 1: Sample Data from Heavy Tailed Distribution with� = 1:2
gest solutions but rather draws attention to these problems,
both to yield insight for researchers using simulation and
to suggest areas in which more research is needed. As
a result we conclude with a summary of the issues that
should be addressed when using simulations with heavy-
tailed workloads.

2 HEAVY TAILED DISTRIBUTIONS

2.1 Background

Let X be a random variable with cdfF (x) = P [X �x] and complementary cdf (ccdf)�F (x) = 1 � F (x) =P [X > x]. We say here that a distributionF (x) is heavy
tailed if �F (x) � cx�� 0 < � < 2 (1)

for some positive constantc, wherea(x) � b(x) meanslimx!1 a(x)=b(x) = 1: If F (x) is heavy tailed thenX
shows very high variability. In particular,X has infinite
variance, and if� � 1,X has infinite mean. Section 3 will
explore the implications of infinite moments in practice;
here we note simply that iffXi; i = 1; 2; :::g is a sequence
of observations ofX then the sample variance offXig as
a function ofi will tend to grow without limit, as will the
sample mean if� � 1.

The simplest heavy tailed distribution is thePareto
distribution which is power-law over its entire range. The
Pareto distribution has pmfp(x) = �k�x���1 0 < k � x
and cdf F (x) = P [X � x] = 1� (k=x)� (2)

in which the positive constantk represents the smallest
possible value of the random variable.

In practice, random variables that follow heavy tailed
distributions are characterized as exhibiting many small
observations mixed in with a few large observations. In
such datasets, most of the observations are small, but most
of the contribution to the sample mean or variance comes
from the few large observations.

This effect can be seen in Figure 1, which shows 10,000
synthetically generated observations drawn from a Pareto
distribution with� = 1:2 and mean� = 6. On the left
hand side of the figure the scale allows all observations
to be shown; on the right they axis is expanded to show
the region from 0 to 200. These figures show the charac-
teristic, visually striking behavior of heavy tailed random
variables. From the left plot it is clear that a few large
observations are present, some on the order of hundreds
to one thousand; while from the right plot it is clear that
most observations are quite small, typically on the order
of tens or less.

An example of the effect of this variability on sam-
ple statistics is shown in Figure 2. This figure shows the
running sample mean of the data points from Figure 1, as
well as a level line showing the mean of the underlying
distribution (6). Note that the sample mean starts out well
below the distributional mean, and that even after 10,000
observations it is not close in relative terms to the distri-
butional mean.

2.2 Heavy Tails in Computing Systems

A number of recent studies have shown evidence indicat-
ing that aspects of computing and telecommunication sys-
tems can show heavy tailed distributions. Measurements
of computer network traffic have shown that autocorrela-
tions often show heavy tails; this is the phenomenon of
self similarity [5, 7]. Measurements of file sizes in the
Web [1, 2] and in I/O patterns [11] have shown evidence
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Figure 2: Running Mean of Data from Figure 1

that file sizes can show heavy tailed distributions. And fi-
nally, the CPU time demands of Unix processes have also
been shown to follow heavy tailed distributions [6].

The presence of heavy tailed distributions in measured
data can be assessed in a number of ways. The simplest is
to plot the ccdf on log-log axes, and visually inspect the
resulting curve for linearity over a wide range (several or-
ders of magnitude). This is based on Equation (1), which
can be recast as:limx!1 d log �F (x)d logx = ��
so that for largex, the ccdf of a heavy tailed distribution
should appear to be a straight line on log-log axes with
slope��.

An example empirical dataset is shown in Figure 3,
which is taken from [2]. This figure is the ccdf of file sizes
transferred through the network due to the Web, plotted on
log-log axes. The figure shows that the file size distribu-
tion appears to show power law behavior over approxi-
mately three orders of magnitude. The slope of the line fit
to the upper tail is approximately�1:2, yielding�̂ � 1:2.

3 STABILITY IN SYSTEMS WITH HEAVY TAILED
WORKLOADS

As heavy tailed distributions are increasingly used to char-
acterize workload characteristics of computing systems,
researchers interested in simulating such systems are be-
ginning to use heavy tailed inputs to simulations. For ex-
ample, [10] describes methods for generating self-similar
time series for use in simulating network traffic and [9]
uses heavy-tailed file sizes as inputs to a network simula-
tion. However, an important question arises: how stable
are such simulations? This can be broken down into two
questions:
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1. How long until such simulations reach steady state?,
and

2. How variable is system performance at steady state?

In this section we will show that if simulation outputs
are dependent on all the moments of the distributionF
then the answers to the above questions can be surprising.
Essentially, we show that such simulations can take a very
long time to reach steady state; and that such simulations
can be much more variable at steady state than is typical
for traditional systems.

Note that some simulation statistics may not be di-
rectly affected by all the moments of the distributionF ,
and our conclusions do not necessarily apply to those cases.
For example, the mean number of customers in anM=G=1
queueing system may not show unusual behavior even if
the service time distributionF is heavy tailed because that
statistic only depends on the mean ofF . Also, some mea-
sured statistics may not be made unstable by high vari-
ance, but rather may be a measure of high variance—e.g.,
the Hurst parameterH which measures the high variance
in burst length of self-similar network traffic.

Since not all simulation statistics will be affected by
heavy tailed workloads, we choose a simple statistic to
show the generality of our observations: the sample mean
of the heavy tailed inputs. Since our results apply to the
sample mean of the input, we expect that any system prop-
erty that behaves like the sample mean should show sim-
ilar behavior. For example, assume we want to achieve
steady state in a particular simulation. This implies that
the measured system utilization�=�x (where� is the aver-
age interarrival time and�x is the sample mean of service
times over some period) should be close to the desired sys-
tem utilization�. For this to be the case,�x must be close
to its desired mean�.



To analyze the behavior of the sample mean, we are
concerned with the convergence properties of sums of ran-
dom variables. The normal starting point for such discus-
sions would be the Central Limit Theorem (CLT). Unfor-
tunately, the CLT applies only to sums of random vari-
ables with finite variance, and so does not apply in this
case. In the place of the CLT we instead have limit theo-
rems for heavy tailed random variables first formulated by
Lévy [4, 12].

To introduce these results we need to define the no-
tationA d! B which means that the random variableA
converges in distribution toB (roughly, has distributionB for largen). Then the usual CLT can be stated as: forXi i.i.d. and drawn from some distributionF with mean� and variance�2 <1, defineAn = 1n nXi=1 Xi
and Zn = n�1=2(An � �); (3)

then Zn d! N (0; �2) (4)

whereN (0; �2) is a Normal distribution.
However, whenXi are i.i.d. and drawn from some

distributionF that is heavy tailed with tail index1 < � <2; then if we defineZn = n1�1=�(An � �) (5)

we find that Zn d! S� (6)

whereS� is an�-Stabledistribution. The�-Stable distri-
bution has four parameters:�, a location parameter (anal-
ogous to the mean), a scale parameter (analogous to the
standard deviation), and a skewness parameter. Based
on the value of the last parameter, the distribution can
be either skewed or symmetric. A plot of the symmet-
ric �-Stable distribution with� = 1:2 and location zero
is shown in Figure 4. From the figure it can be seen that
this distribution has a bell-shaped body much like the Nor-
mal distribution but that it has much heavier tails. In fact
the�-Stable distribution has power-law tails that follow
the same� as that of the distributionF from which the
original observations were drawn.

From Equations (5) and (6) we can make two observa-
tions about the behavior of sums of heavy tailed random
variables. First, Equation (5) states that such sums may
converge much more slowly than is typical in the finite
variance case. Second, Equation (6) states that even after
convergence, the sample mean will show high variability—
it follows a heavy tailed distribution.

These effects can be seen graphically in Figure 5. This
figure shows histograms ofAn for varying valuesn. On

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-8 -6 -4 -2 0 2 4 6 8

p
(x

)

x

Figure 4: Pmf of an�-Stable Distribution

the left we show the case in which theXis were drawn
from an Exponential distribution; on the right we show
the case in which theXis were drawn from a strictly pos-
itive heavy tailed distribution with� = 1:4; in both cases
the mean of the underlying distribution was 1. The plot
on the left shows that the most likely value of the sam-
ple mean is equal to the true mean, even when summing
only a small number of samples. In addition, it shows that
as one sums larger numbers of samples, the sample mean
converges quickly to the true mean. However, neither of
these observations are true for the case of the heavy tailed
distribution on the right. When summing small numbers
of samples, the most likely value of the sample mean is
far from the true mean, and the distribution progresses to
its final shape rather slowly.

Thus we have seen that the convergence properties of
sums of heavy tailed random variables are quite different
from those of finite variance random variables. We relate
this to steady state in simulation as follows: presumably
for a simulation to reach steady state, it must at a mini-
mum have seen enough of the input workload to observe
its mean. Of course it may be necessary for much more
of the input to be consumed before the simulation reaches
steady state, so this condition is a relatively weak one.
Still, we show in the next two subsections that this condi-
tion has surprising implications for simulations.

3.1 Slow Convergence to Steady State

In Equation (5),Zn represents a constant (since for largen, Zn converges in distribution). Thus another way of
formulating Equation (5) is:jAn � �j � n1=��1:
In this form it is more clear how slowlyAn converges to�.
If � is close to 1, then the rate of convergence, measured
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Figure 5: Histogram ofAn asn varies for Exponential (left) and Heavy Tailed (right) Random Variables.

as the difference betweenAn and�, is very slow—until,
for � = 1, the average does not converge at all, reflecting
the fact that the mean is infinite.

Suppose one would like to useAn to form a estimate
of the mean� that is accurate tok digits. Alternatively,
one might state that a simulation has reached steady state
when the observed mean of the inputAn agrees with� tok digits. Then we would likejAn � �j=� � 10�k:
Now, as a rough approximation:jAn � �j = c1n1=��1
for some positive constantc1. Then we find that:n � c210 k1�1=� :
We can say that given this many samples,k digit accuracy
is “highly likely.”

For example, assume we would like 2-digit accuracy
in An, and supposec2 � 1. Then the number of samplesn necessary to achieve this accuracy is shown in Table 1.
This table shows that as� ! 1, the number of samples
necessary to obtain convergence in the sample mean ex-
plodes. Thus, it isnot feasiblein any reasonable amount
of time to observe steady state in such a simulation as we
have defined it. Over any reasonable time scale, such a
simulation isalways in transient state.

3.2 High Variability at Steady State

Equation (6) shows that even at steady state, the sample
mean will be distributed according to a heavy tailed dis-
tribution, and hence will show high variability. Thus, the
likelihood of an erroneous measurement of� is still non-
negligible. Equivalently, the simulation still behaves er-
ratically.

Table 1: Number of Samples Necessary to Achieve 2 Digit
Accuracy in Mean as a Function of�� n

2.0 10,000
1.7 72,000
1.5 1,000,000
1.2 1012
1.1 1022

To see this more clearly, let us define aswampingob-
servation as one whose presence causes the estimate of�
to be at least twice as large as it should be. That is, if we
happen to encounter a swamping observation in our simu-
lation, the observed mean of the input will have a relative
error of at least 100%.

In a simulation consisting ofn inputs, a swamping ob-
servation must have value at leastn�. Let us assume that
the inputs are drawn from a Pareto distribution. Such a
distribution has� = k�=(� � 1). Then the probabilitypn� of observing a value ofn� or greater ispn� = P [X > n�] = � knk�=(�� 1)�� = ��� 1n� ��
and the probabilityp of observing such a value at least
once inn trials is p = 1� (1� pn�)n:

Figure 6 shows a plot ofp as a function of� for n =105. (The figure is not significantly different for other val-
ues ofn, e.g.,106; 107.) It shows that even in a relatively
long simulation, the probability of a swamping observa-
tion is not negligible; when� is below about 1.3, such an
observation could occur more often than once in a hun-
dred simulations. The probability declines very rapidly
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for � < 1:1 not because the variability of the simula-
tion is declining, but because of the way we have de-
fined the swamping observation: in terms of the distri-
butional mean. When� = 1, the mean is infinite, and so
it becomes impossible to observe a value greater than the
mean.

Taken together, Table 1 and Figure 6 also provide some
insight into the value of� above which it may be possible
to obtain convergent, consistent simulations. The table
shows that simulation convergence becomes impractical
when� is somewhere in the region between 1.7 and 1.5;
and the Figure shows that simulations become erratic at
steady state in approximately the same region. As a re-
sult, we can conclude that the difficulties inherent in sim-
ulations with heavy tailed inputs are likely to be particu-
larly great when� is less than about 1.7; and that when� is greater than or equal to about 1.7 it may be feasi-
ble (given sufficient computing effort) to obtain consistent
steady state in simulation.

4 TIME SCALE AS A SIMULATION PARAMETER

The observations in the previous section suggest that for
simulations involving heavy tailed workloads, steady state
is elusive—especially when� is less than approximately
1.7. One way to address this in simulation is to explicitly
incorporate the notion of time scale. Doing so recognizes
that no system ever sees an infinite sized input, or runs
for an infinite amount of time. Instead, real systems ex-
periencefinite-time-scaleapproximations to steady state.
Therefore all sample moments of the input will be finite,
even when some moments of the underlying distribution
are infinite.

To do this, we need some way to relate the infinite-
moment underlying distribution (one with infinite support)
to the proper finite-moment distribution (one with finite
support) as a function of the amount of time that the simu-
lation runs. If we express the amount of time that the sim-

ulation runs in terms of the number of observations made
of the input random variable, then one way to address this
problem is throughorder statistics.Order statistics pro-
vide estimates of quantities such as the largest out ofn
observations of some random variable [3].

LetXi; i = 1; 2; :::; n be i.i.d. samples from some dis-
tributionF (x). DefineY = maxnXi; then the distribu-
tion of Y is Fn(x). If F is heavy tailed, thenE[Y ] exists
if � > 1. For example, consider the Pareto distribution
defined in Equation (2). Then:E[Y ] = knB(n; 1� 1=�) � E[X ]n1=�
where B is the Beta function [8]. Then, over a sequence
of n observations, theXis may be considered to be drawn
from a finite-support distribution bounded above byE[Y ].

In addition, this allows use to analyze systems whose
workloads are heavy tailed, but with bounded support. For
example, a Web server will have some largest file—this
constitutes the upper bound on its file size distribution.
Call this upper boundB. Then ifE[Y ] � B, the system
behaves as if theXis were drawn from an unbounded dis-
tribution. But if the simulation runs long enough forE[Y ]
to approach or exceedB, then the system behaves as if theXis were drawn from the bounded distribution.

5 Conclusions

We have shown that a difficult problem arises when sim-
ulating systems with heavy tailed workloads. In such sys-
tems, steady-state behavior can be elusive, because average-
case behavior depends on the presence of many small ob-
servations as well as a few large observations.

This problem has two implications:

1. Since a number of large but rare observations must
occur before average case behavior is evident, con-
vergence of a simulation to steady state may be slow.
It may not be possible in any reasonable time to
achieve steady state.

2. Since many small observations must occur to bal-
ance the presence of large observations, large ob-
servations can have a dominating effect on perfor-
mance results even at steady state. Simulations may
still behave erratically even at steady state.

Our results indicate the researchers running simula-
tions using heavy tailed workloads with� less than about
1.7 should consider carefully the stability of their results.
In those cases, a fruitful approach may be to incorporate
time scale explicitly into the stability analysis using tech-
niques from order statistics.
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