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Abstract

In this paper, we examine a method for feature subset selection based on Information

Theory. Initially, a framework for de�ning the theoretically optimal, but computationally in-

tractable, method for feature subset selection is presented. We show that our goal should be to

eliminate a feature if it gives us little or no additional information beyond that subsumed by

the remaining features. In particular, this will be the case for both irrelevant and redundant

features. We then give an e�cient algorithm for feature selection which computes an approxi-

mation to the optimal feature selection criterion. The conditions under which the approximate

algorithm is successful are examined. Empirical results are given on a number of data sets,

showing that the algorithm e�ectively handles datasets with a very large number of features.
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1. Introduction

In the classic supervised learning task, we are given a training set of labeled �xed-length feature
vectors, or instances, from which to induce a classi�cation model. This model, in turn, is used to
predict the class label for a set of previously unseen instances. Thus, in building a classi�cation
model, the information about the class that is inherent in the features is of utmost importance.
While, in a theoretical sense, having more features should only give us more discriminating power,
the real-world provides us with many reasons why this is not generally the case.

Foremost, many induction methods su�er from the curse of dimensionality. That is, as the
number of features in an induction task increases, the time requirements for an algorithm grow
dramatically, sometimes exponentially. Therefore, when the set of features in the data is su�ciently
large, many induction algorithms are simply intractable. This problem is further exacerbated by the
fact that many features in a learning task may either be irrelevant or redundant to other features
with respect to predicting the class of an instance. In this context, such features serve no purpose
except to increase induction time.

Furthermore, many learning algorithms can be viewed as performing (a biased form of) estima-
tion of the probability of the class label given a set of features. In domains with a large number of
features, this distribution is very complex and of high dimension. Unfortunately, in the real world,
we are often faced with the problem of limited data from which to induce a model. This makes
it very di�cult to obtain good estimates of the many probabilistic parameters. In order to avoid
over-�tting the model to the particular distribution seen in the training data, many algorithms em-
ploy the Occam's Razor (Blumer, Ehrenfeucht, Haussler & Warmuth 1987) bias to build as simple
a model as possible that still achieves some acceptable level of performance on the training data.
The same Occam's Razor bias often leads us to prefer a small number of relatively predictive over
a very large number of features that, taken in the proper, but complex, combination, are entirely
predictive of the class label. Irrelevant and redundant features also cause problems in this context
as they may confuse the learning algorithm by helping to obscure the distributions of the small set
of truly relevant features for the task at hand.

In light of these considerations, a number of researchers have recently addressed the issue of
feature subset selection in machine learning. As de�ned by John, Kohavi & P
eger (1994), this
work is often divided along two lines: �lter and wrapper models.

In the �lter model, feature selection is performed as a preprocessing step to induction. Thus
the bias of the learning algorithm does not interact with the bias inherent in the feature selection
algorithm. Two of the most well-known �lter methods for feature selection are RELIEF (Kira &
Rendell 1992) and FOCUS (Almuallim & Dietterich 1991). In RELIEF, a subset of features in
not directly selected, but rather each feature is given a relevance weighting indicating its level of
relevance to the class label. It is important to note that this method is ine�ective at removing
redundant features as two predictive but highly correlated features are both likely to be given high
relevance weightings. The FOCUS algorithm conducts an exhaustive search of all feature subsets
to determine the minimal set of features that can provide a consistent labeling of the training data.
This consistency criterion makes FOCUS very sensitive to noise or inconsistencies in the training
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data. Moreover, the exponential growth of the size of the power set of the features makes this
algorithm impractical for domains with more than 25-30 features.

Another feature selection methodolgy which has recently received much more attention is the
wrapper model (John et al. 1994) (Caruana & Freitag 1994) (Langley & Sage 1994). This model
employs a search through the space of feature subsets using the estimated accuracy from an in-
duction algorithm as the measure of goodness for a particular feature subset. Thus, the feature
selection is being \wrapped around" an induction algorithm, so that the bias of the operators that
de�ne the search and that of the induction algorithm strongly interact. While these methods have
encountered some success on induction tasks, they are often prohibitively expensive to run and
can break down when very large numbers of features are present. Furthermore, the methods leave
something to be desired in terms of theoretical justi�cation. While an important aspect of feature
selection is how well a method helps an induction algorithm in terms of accuracy measures, it is
also important to understand how the induction problem in general is a�ected by feature selection.

In this work, we address both theoretical and empirical aspects of feature selection. We de-
scribe a formal framework for understanding feature selection, based on ideas from Information
Theory (Cover & Thomas 1991). We then present an e�cient implemented algorithm based on
these theoretical intuitions. The algorithm overcomes many of the problems with existing methods:
it has a sound theoretical foundation; it is e�ective in eliminating both irrelevant and redundant
features; it is tolerant to inconsistencies in the training data; and, most importantly, it is a �lter
algorithm which does not incur the high computational cost of conducting a search through the
space of feature subsets as in the wrapper methods, and is therefore e�cient for domains containing
hundreds or even thousands of features.

2. Theoretical Framework

A data instance is typically described to the system as an assignment of values f = (f1; : : : ; fn)
to a set of features F = (F1; : : : ; Fn). As usual, we assume that all of the data instances (including
those in the training set) are drawn from some probability distribution over the space of feature
vectors. Formally, for each assignment of values f to F , we have a probability Pr(F = f ).

A classi�er is a procedure that takes as input a data instance and classi�es it as belonging to
one of a number of possible classes c1; : : : ; c`. The classi�er must make its decision based on the
assignment f associated with an instance. Optimistically, the feature vector will fully determine
the appropriate classi�cation. However, this is rarely the case: we do not typically have access to
enough features to make this a deterministic decision. Therefore, we use a probability distribution
to model the classi�cation function. More precisely, for each assignment of values f to F we have
a distribution Pr(C j F = f ) on the di�erent possible classes, C.

A learning algorithm implicitly uses an approximate version of the conditional distribution
Pr(C j F ) | the empirical frequencies observed in the training set | to construct a classi�er for
the problem. It is well-known that the number of features has a strong e�ect on the performance of
a learning algorithm. On the one hand, the existence of irrelevant or redundant features can degrade
the accuracy of a learning algorithm, causing it to use less-than-optimal features for classi�cation.
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On the other hand, the computational complexity of many learning algorithms depends heavily on
the number of features. Therefore, it is often useful to reduce the feature set before the classi�er is
constructed.

Let us consider the e�ect of feature space reduction on the distribution that characterizes the
problem. Let G be some subset of F . For example, F might consist of a pair of features (A;B)
and G might consist of the single feature A. Given a feature vector f , we use fG to denote the
projection of f onto the variables in G. For example, for the feature vector f = (a; b), f(A) = (a).
Now, consider a particular data instance characterized by f . In the original distribution, this data
instance induces the distribution Pr(C j F = f ). In the reduced feature space, the same instance
induces the (possibly di�erent distribution) Pr(C j G = fG). Our goal is to select G so that these
two distributions are as close as possible. As our distance metric, we use the information-theoretic
measure of cross-entropy (also known as KL-distance (Kullback & Leibler 1951)). Thus, we can
view this as selecting a set of features G which cause us to lose the least amount of information in
these distributions.

Formally, let � and � be two distributions over some probability space 
. The cross-entropy

of � to � is de�ned as D(�; �) =
P

x2
 �(x) log
�(x)

�(x)
. Note that the roles of � and � are not

symmetrical in this de�nition. Generally speaking, the idea is that � is the \right" distribution,
and � is our approximation to it. Then, D(�; �) measures the extent of the \error" that we make
by using � as a substitute for �. Thus, cross-entropy is particularly suitable for our application,
with Pr(C j f ) in the role of the \right" distribution �, and Pr(C j fG) in the role of �. In this
case, the probability space 
 is the set of possible classi�cations fc1; : : : ; cng. Therefore, we de�ne
�G(f ) = D(Pr(C j f );Pr(C j fG)). Of course, in order to have a metric which allows us to compare
one feature setG to another, we must integrate the values �G(f ) for di�erent feature vectors f into
a single quantity. Naively, we might think to simply sum the cross-entropy for the di�erent feature
vectors, or to consider the maximum cross-entropy over all feature vectors. Neither of these ideas
take into consideration the fact that some feature vectors are far more likely to occur than others,
and that we might not mind making a larger mistake in certain rare cases. Therefore, we want to
�nd a feature set G for which �G =

P
f Pr(f )�G(f ) is reasonably small.

Clearly, the feature set that minimizes this quantity is simply F , since that maintains the exact
distribution. This suggests that we use a backward elimination algorithm, where at each state we
eliminate a feature Fi in a way that allows us to remain as close to this distribution as possible.
Intuitively, we use a greedy algorithm where we eliminate the feature Fi which would cause us the
smallest increase in �. That is, we have a current feature set G, initially set to F . At each stage,
we want to eliminate the feature Fi such that �(G�fFig) is as close as possible to �G.

Unfortunately, it is impractical to simply implement this idea as described, since the computation
of �G is exponential in the number of features in our domain. Furthermore, we cannot really
compare our approximate distribution to the true conditional distribution Pr(C j F ), since the
precise distribution is not available to us. Rather, we have a training set which provides us only a
rough approximation to it. In those cases where we have a large number of features, the number of
data instances in our training set corresponding to any particular assignment f will be very small.
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Therefore, as the number of features grow, our ability to use the training set to approximate this
conditional distribution decreases (exponentially).

As we now show, we can utilize ideas from probabilistic reasoning (Pearl 1988) to circumvent
this problem (to some extent). Intuitively, features that cause a small increase in � are those that
give us the least additional information beyond what we would obtain from the other features in
G. We can capture this intuition via the formal notion of conditional independence.

De�nition 1 Two variables (e.g., Fi or C) are said to be conditionally independent given some

set of variables X if, for any assignment of values a, b, and x to the variables A, B, and X

respectively, Pr(A = a j X = x ; B = b) = Pr(A = a j X = x ) (see (Pearl 1988) for more details).

That is, B gives us no information about A beyond what is already in X .

It is now easy to show that:

Proposition 1 Let G be a subset of features and Fi be a feature in G. Then Fi is conditionally
independent of C given G 0 = G � fFig if and only if �G0 = �G.

Thus, we can eliminate a conditionally independent feature Fi from G without increasing our dis-
tance from the desired distribution. Intuitively, removing a feature which is \almost" conditionally
independent will not make our distance grow too large.

While it is also impractical to test for conditional independence given G 0, this reformulation of
the problem points the way to a solution. Intuitively, if all of the information in Fi is subsumed by
the features in G 0, it is almost certainly subsumed by some subset of these features. After all, it is
very unlikely that all of these (usually very many) features are actually required.

De�nition 2 Let M be some set of features which does not contain Fi. We say that M is a
Markov blanket for Fi if Fi is conditionally independent of F �M � fFig given M . (See (Pearl
1988, p. 97).)

It is easy to see that if M is a Markov blanket of Fi, then it is also the case that the class C is
conditionally independent of the feature Fi givenM . Therefore:

Corollary 2 Let G be a subset of features and Fi be a feature in G. Assume that some subset M

of G is a Markov blanket of Fi. Then �G0 = �G.

However, the Markov blanket condition is stronger than conditional independence. It requires that
M subsume not only the information that Fi has about C, but also about all of the other features.
While it might be very di�cult to �nd such a set M (as discussed in Section 3), use of Markov
blankets as the basis for feature elimination has a number of very desirable properties.

Intuitively, we want to remove features for which we �nd a Markov blanket within the set of
remaining features. We now show that features judged as unnecessary based on this criterion remain
unnecessary during the rest of the process. Assume, for example, that we remove a feature Fi based
on a Markov blanket M . At some later phase, we might remove some other feature Fj 2 M . In
general, the removal of Fj might now render Fi relevant again; that is, if we were to add Fi back
in, we might not be able to remove it again. As we now show, this is not the case.
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Theorem 3 Let G be our current set of features, and assume that some (previously removed)

feature Fi 62 G has a Markov blanket within G. Let Fj 2 G be some feature which we are about

to remove based on some Markov blanket within G. Then Fi also has a Markov blanket within

G � fFjg.

Proof: The proof is based on the basic independence properties of probability distributions, as
described in (Pearl 1988, p. 84). We will use the notation I(X;Y j Z) to denote the conditional
independence of two variables or sets of variables X and Y given a set of variables Z. LetMi � G
be the Markov blanket of Fi (note that this is not necessarily the same Markov blanket which we
used in order to remove Fi in the �rst place); letMj �G be the Markov blanket which we are now
using to remove Fj. It is straightforward to show that if Mi does not contain Fj, then it remains
a Markov blanket for Fi even after the removal of Fj from G. Therefore, consider the case where
Fj 2Mi and de�neMi =M 0

i [ fFjg. We will show that M 0
i [Mj is a Markov blanket for Fi. Let

X denote G � fFjg � (M 0
i [Mj). We need to show that I(Fi;X j (M 0

i [Mj)). From the Markov
blanket assumption for Fj and the Decomposition property, we have that I(Fj; (X [M 0

i ) j Mj).
Using the Weak Union property, we obtain that I(Fj;X j (M 0

i [Mj)). Similarly, we can derive
that I(Fi; (X [ (Mj �M

0
i )) j M

0
i [ fFjg), and therefore that I(Fi;X j M 0

i [Mj [ fFjg). From
these two facts, we can use the Contraction property to show the desired result.

Thus, the Markov blanket criterion only removes attributes that are really unnecessary. As
interesting is the fact that the converse is also true. There are two types of attributes that are
generally perceived as being unnecessary: attributes that are completely irrelevant to the target
concept, and attributes that are redundant given other attributes. It is easy to see that the Markov
blanket criterion captures both of these. Attributes that are completely irrelevant will simply be
unconditionally independent of everything, so that they will be removed based on a Markov blanket
consisting of the empty set of features. Even if we have a set of attributes that are correlated only
with each other, but are completely independent of the class variable, the Markov blanket criterion
will remove them one by one: at each stage, the remaining irrelevant features will be used as a
Markov blanket for the one we are trying to remove. If, on the other hand, we have a feature whose
value is fully determined (or even probabilistically determined) by some set S, we will be able to
remove it by using S as its Markov blanket. Very few feature selection techniques are able to deal
with both of these types of unnecessary features.

It is interesting to compare our approach to another, seemingly very similar one, often used in
the literature (Singh & Provan 1996). There, rather than starting out from the full feature set and
eliminating features, we begin with an empty set of features and add features one by one. Usually,
the metric used to add features is information gain: we add to our current G the feature Fj that
maximizes the expected cross-entropy between Pr(C j G) and Pr(C j G [ fFjg). It is fairly easy
to show that our idea of using a Markov blanket to estimate the cross-entropy can also be applied
in the case of forward selection. Therefore, it might seem that the two approaches are essentially
minor variants on the same theme. We claim that this is not the case: Our formal framework
provides us with the tools to compare forward selection and backward elimination, and justi�es our
choice of backward elimination. The idea is as follows. Recall that our goal was to remain as close
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j

Figure 1: Forward vs. backward selection

as possible to the \correct" conditional distribution Pr(C j F ). By removing features that only
take \small steps" away from this distribution, we can remain close to it. By contrast, the forward
selection scheme starts out with the prior distribution Pr(C) given no features. It then tries to
take \large steps" away from that distribution. If we agree that the goal of this process is to get as
close as possible to the \right" distribution, the problem becomes clear. There is no guarantee that
taking a large step away from initial distribution actually gets us closer to the goal distribution.
For example, as illustrated in Figure 1, adding Fj might let us take a much larger step than adding
Fi, but the resulting distribution Pr(C j Fj) is actually further from the \right" distribution than
Pr(C j Fi). As we show in Section 4, this behavior actually occurs on some of our data sets.

3. An Approximate Algorithm

In the previous section, we showed how we can eliminate a feature Fi from a candidate feature
set G by �nding a Markov blanket M for Fi. Unfortunately, there might not be a full Markov
blanket for a feature, but rather one that only approximately subsumes the information content
of the feature. Furthermore, �nding either a true or an approximate Markov blanket might be
very hard. In this section, we present one simple algorithm which provides a heuristic approach
to dealing with this problem. Broadly, our algorithm iteratively selects one candidate set Mi for
each feature Fi, and uses a very rough heuristic to estimate how close Mi is to being a Markov
blanket for Fi; the feature Fi for which Mi is closest to being a Markov blanket is eliminated, and
the algorithm repeats.

Our intuition for constructing a candidate Markov blanket is based on the following intuition:
Assume that Fi does, in fact, have a Markov blanketMi. We can think of Fi as directly in
uencing

the features inMi. Therefore, these features will tend to be quite strongly correlated with Fi. Other
features, on the other hand, are conditionally independent of Fi givenMi. Thus, Fi in
uences them
only indirectly, via Mi. There is a well-known \folk-theorem" that probabilistic in
uence tends
to attenuate over distance; that is, direct in
uence is typically stronger than indirect in
uence.
(This has been shown both formally and empirically in certain special cases in (Draper & Hanks
1994, Kozlov & Singh 1995).) Therefore, we heuristically choose, as an approximation to the Markov
blanket, some set of K features which are strongly correlated with Fi.

We now want to �gure out how close Mi is to being a Markov blanket for Fi. Unfortunately,
evaluating the conditional independence expression in De�nition 2 is typically very expensive. We
try to approximate this notion by observing that, if Mi is really a Markov blanket for Fi, then
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D(Pr(C j M = fM ; Fi = fi);Pr(C j M = fM )) = 0 for any assignment of feature values fM and
fi to M and Fi respectively. (This follows from the same techniques used in Corollary 2.) We
therefore de�ne the expected cross-entropy:

�G(Fi jMi) =
X

fMi
;fi

Pr(Mi = fMi
; Fi = fi) �

D(Pr(C jM = fM ; Fi = fi);Pr(C jM = fM )):

If Mi is, in fact, a Markov blanket for Fi, then �G(Fi jMi) = 0. Hopefully, if it is an approximate
Markov blanket, then this value will still be low.

These approximations result in the following algorithm: We begin by computing the correlation
factor �ij = Cov(Fi;Fj)

Stddev (Fi)Stddev (Fj)
of every pair of features Fi and Fj. We then instantiate G to F ,

and iterate the following steps until some prespeci�ed number of features have been eliminated:
(1) For each feature Fi 2 G, let Mi be the set of K features Fj in G � fFig for which �ij has
largest magnitude. (2) Compute �G(Fi jMi) for each i. (3) Choose the i for which this quantity is
minimal, and de�ne G = G � fFig.

This algorithm is simple and fairly easy to implement. However, it is clearly suboptimal in
many ways, particularly due to the very naive approximations that it uses. We now discuss the
consequences of these and some ways in which the algorithm can be improved. First, the current
algorithm eliminates a prespeci�ed number of features, and constructsMi sets of a �xed prespeci�ed
sizeK. It is easy to have the algorithm stop automatically when the expected cross-entropy estimate
for dropping any remaining feature gets too large. It is also fairly straightforward to extend the
algorithm to pick a di�erent sizeMi based on the number of features which were highly correlated
with Fi. There is, however, an important tradeo� that must be kept in mind. Theoretically, the
larger the conditioning set, the likelier it is to subsume all of the information in the feature, thereby
forming a Markov blanket. On the other hand, larger conditioning sets fragment our training
set into small chunks (corresponding to the di�erent assignment of values to the features in Mi),
signi�cantly reducing the accuracy of our probability and hence cross-entropy estimates. Therefore,
it is crucial, when doing this modi�cation, to have a penalty term associated with adding additional
features to Mi.

More importantly, we would like to improve our techniques for choosing the candidate Markov
blanketsMi and for evaluating how close each one is to fulfulling the Markov blanket assumption.
In particular, the expected cross-entropy does not really test for the Markov blanket property: The
expected cross-entropy will also have value 0 if Fi is conditionally independent of C givenMi. But
we have already pointed out that conditional independence is a weaker property than the Markov
blanket assumption. In fact, using conditional independence as a selection criterion can lead to
counterintuitive behavior. For example, as we can see in our results, increasing the size K of the
conditioning set can actually cause the results to degrade. While some of this is due to fragmentation
of the training set (see below), some of it is caused by the fact that conditional independence is not
a monotonic property. That is, it is possible for a certain feature to be conditionally independent
of C given some conditioning set M , but strongly correlated with C given a strict superset of M .
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Dataset # Classes # Features Training Set Size Testing Set Size
Corral 2 6 32 128
LED24 10 24 200 3000
Vote 2 48 (Boolean encoding) 300 135
DNA 3 180 (Boolean encoding) 2000 1186
Reuters1 3 1675 233 104
Reuters2 3 1646 251 128

Table 1: Datasets used and their properties | arti�cial (1st group) and real-world (2nd group).

In a way, this is not surprising. It is well-known that additional information can cause correlations
that were not present before to appear (Pearl 1988). To illustrate this in our context, consider a
text classi�cation problem, where the data instances are documents, the features are the presence
or absence of a word, and the classes are document topics. The word mining is not signi�cantly
correlated with the topic machine-learning. Therefore, if we were to run our algorithm with K = 0,
we would probably eliminatemining fairly early. However, this word is strongly correlated with the
word data; moreover, if we condition on the presence of the word data, there is a strong correlation
between the word mining and the topic machine learning. Thus, by putting the word data into our
conditioning setM , we have caused a seemingly irrelevant word to become relevant. The converse
can also occur, so that we can get the estimated \relevance" of a feature 
uctuating multiple times
as we change K. (We have observed this behavior in some of our datasets.) We believe that the
performance of our algorithm will be signi�cantly improved by the use of more re�ned techniques
(e.g., Bayesian methods) to choose a candidate (or even several candidates) Markov blanket, and by
the use of a more precise formula for evaluating how close the di�erent candidates are to ful�lling
the requirement.

4. Results

In order to empirically test our theoretical model for feature selection as implemented by our
approximate algorithm, we ran a number of experiments on both arti�cial and real-world data.
These datasets include: the Corral data which was arti�cially constructed by John et al. (1994)
speci�cally for research in feature selection; the LED24, Vote, and DNA datasets from the UCI
repository (Murphy & Aha 1995); and two datasets which are a subset of the Reuters document
collection (Reuters 1995). These datasets are detailed in Table 1. We selected these datasets as
they are either well understood in terms of feature relevance or they contain many features and are
thus good candidates for feature selection.

We �rst analyze the arti�cial domains. The Corral dataset has been noted by previous re-
searchers (John et al. 1994) as particularly di�cult for �lter methods since, of the 6 features in this
domain, the target concept is a Boolean function of only four of the features: (A ^ B) _ (C ^D).
The �fth feature is entirely irrelevant and the sixth feature is \correlated" with the target concept
in that it matches the class label 75% of the time. Thus, many �lter approaches which use for-
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ward selection are likely to always select the correlated feature. This, however, poses a problem for
induction methods, such as C4.5, which are likely to initially split on the correlated feature, thus
fragmenting the data enough that the true target concept cannot be recovered in the subtrees. It
is important to note, however, that, due to the disjunctive nature of the target function, the Naive
Bayesian classi�er is actually better o� with the correlated feature than without it. This seems to
be more a shortcoming of the simplicity of this induction method than a 
aw with feature selection
methods that eliminate the correlated feature.

We veri�ed this experimentally, �nding that forward selection (even with conditioning) always
selects the correlated feature (thereby taking a \large" step in a suboptimal direction, as in Figure 1).
Running backward elimination with conditioning, on the other hand, allows us to overcome this
problem: we can eliminate the correlated feature, since it has no e�ect on the class distribution for
the function given the features that determine the target concept (or some large subset thereof).
When we conditioned on 2 features and set the algorithm to drop 2 features, for example, it
eliminated both the correlated and irrelevant features. Conditioning on 3 or 4 features, however,
did not eliminate the correlated variable, due to the non-monotonicity property discussed above.

In the LED24 domain, we �nd a situation (albeit arti�cial) where conditioning on correlated
features actually makes it more di�cult to determine an appropriate subset of features. This
domain contains 7 relevant and 17 irrelevant features. Moreover, the class label in the LED24
domain entirely determines the value of each relevant feature, whereas the irrelevant features are
random. Thus, there is no dependence between features given the class label. As a result, we would
expect that conditioning on correlated features would only confuse our algorithm by forcing it to
unnecessarily estimate a larger number of probability values with the same amount of data, thus
leading to poorer estimates. Again, this conjecture was veri�ed experimentally, as our method in
fact selected the 7 relevant features, but only when we conditioned on no variables.

To test how our method of feature subset selection a�ected classi�cation, we employed both a
Naive Bayesian classi�er (Duda & Hart 1973, Langley, Iba & Thompson 1992) and C4.5 (Quinlan
1993) as induction algorithms; these were applied both to the original datasets and to the datasets
�ltered through our feature selection algorithm (using both forward selection and backward elimi-
nation). Accuracy results for the UCI data are given in Table 2.

As seen in the accuracy results for Corral and for Vote, selection of the appropriate feature set
can have a large impact on classi�cation accuracy. More importantly, however, is the fact that, in
many domains, our feature selection algorithm can make dramatic reductions in the feature space
and consequently improve classi�cation performance. This is especially true in the Corral domain
for C4.5, the LED24 domain (with no conditioning), and the Vote domain for Naive Bayes (with
conditioning and aggressive feature elimination). In the DNA domain we see some of the most
dramatic results: accuracy improvements after eliminating 100, or even 150, of the 180 features
with our method!

As far as computational expense, our �lter approach also shows promise for scaling to larger
domains. Both theoretical and empirical results show that the time complexity of our algorithm
is quite low. Theoretically, it requires O(n2(m + log n)) operations for computing the correlation
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# Features Naive Bayes Accuracy C4.5 Accuracy
Dataset Orig.=Final K Orig. Fwd. Bckwd. Orig. Fwd. Bckwd.

0 84.4% 84.4% 81.2% 75.0%
1 81.3% 81.3% 75.0% 81.2%

Corral 6 = 4 2 90.6% 81.3% 87.5% 81.2% 81.2% 100.0%
3 81.3% 81.3% 81.2% 81.2%
4 81.3% 81.3% 81.2% 75.0%
0 67.9% 67.9% 65.3% 65.6%

LED-24 24 = 14 1 64.2% 67.2% 67.8% 65.7% 64.6% 67.3%
2 66.6% 64.6% 63.0% 64.1%
0 70.5% 70.5% 68.9% 68.9%

LED-24 24 = 7 1 64.2% 51.6% 53.0% 65.7% 51.1% 51.7%
2 63.9% 68.5% 61.7% 64.2%
0 91.9% 91.9% 97.0% 97.0%

Vote 48 = 28 1 91.9% 91.9% 91.9% 97.0% 97.0% 95.6%
2 91.9% 91.9% 97.0% 97.0%
0 95.6% 94.8% 97.0% 97.0%

Vote 48 = 8 1 91.9% 95.6% 94.8% 97.0% 97.0% 97.0%
2 97.0% 96.3% 97.0% 97.0%
0 94.5% 94.9% 93.6% 93.4%

DNA 180 = 80 1 93.3% 92.2% 92.5% 92.3% 92.2% 91.2%
2 93.6% 94.4% 93.8% 93.4%
0 93.3% 93.8% 93.9% 93.8%

DNA 180 = 30 1 93.3% 83.0% 91.2% 92.3% 82.0% 92.7%
2 77.1% 93.6% 77.4% 93.4%

Table 2: Accuracies for Naive-Bayes and C4.5 using feature selection.

matrix and sorting it, where n is the initial number of features and m is the number of instances.
The subsequent feature selection process requires O(r � n � k �m � 2k � c) time, where r is the number
of features to eliminate, k is the small, �xed number of conditioning features and c is the number
of classes. Using caching schemes, it is possible to reduce the second term by close to a factor of n,
due to the fact that an eliminated feature is likely to be in the Mi of only a few of the remaining
features. Thus, we need only recompute a new Mi and its expected cross-entropy for this small
number of features. Empirically, this low running time allows us to deal with very large domains in
a reasonable amount of time. By way of comparison, Kohavi (1995) obtains similar accuracy results
on the DNA dataset for Naive-Bayes and C4.5 using the wrapper approach, but notes that doing
so takes 15 hours on a Sun sparc 10. In our experiments, an ine�cient implementation of our
algorithm (one that did not utilize clever data structures to reduce the running time) reduced the
DNA dataset by 100 features using between 6 and 15 minutes on the same machine (depending on
the number of conditioning variables). This is a time savings of two orders of magnitude! Moreover,
since our approach is a �lter method, we do not need to re-run the algorithm for every induction
algorithm we choose to run on a reduced-feature dataset.
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# Features Naive Bayes Accuracy C4.5 Accuracy
Dataset Orig.=Final K Orig. Fwd. Bckwd. Orig. Fwd. Bckwd.
Reuters1 1675 = 675 0 94.2% 95.2% 95.2% 95.2% 96.2% 96.2%

2 91.4% 97.1% 88.5% 95.2%
Reuters2 1646 = 646 0 87.5% 87.5% 87.5% 89.8% 93.0% 89.8%

2 88.3% 89.1% 91.4% 92.2%

Table 3: Accuracies for Reuters text datasets using feature selection.

The ability to deal e�ectively with very high-dimensional datasets allows us to apply our work
to the domain of information retrieval. (In fact, this was part of the original motivation for our
work.) In these applications, we have a feature for every word in the corpus, which leads to
an overwhelming number of features. Therefore, such datasets present an exceptional challenge
for many feature selection algorithms. In particular, feature selection using a wrapper method is
simply intractable due to the prohibitive cost of running an induction algorithm thousands of times
on very high-dimensional data. Hence, an e�cient �lter method, akin to the one method described
here, is the only suitable approach.

To test this empirically, we constructed two high-dimensional datasets from the Reuters col-
lection, each of which contains articles on three topics (classes). The �rst subset, Reuters1, is
comprised of articles on the topics co�ee, iron-steel, and livestock. These topics are not likely to
have many meaningful overlapping words. Reuters2, on the other hand, contains articles on re-
serves, gold, and the gross national product, which are likely to have many similar words used in
di�erent contexts across topics. Each article was encoded into a binary vector, where each feature
denoted whether a particular word occured in the article or not. As a simple pre-processing step,
all words which occurred less than 3 times in each dataset were eliminated simply as a means for
removing extremely rare words such as unique names.

We ran our feature selection algorithm on the Reuters datasets in order to reduce the feature
space by 1000 features | down to nearly 1=3 it original size! The results of these experiments are
shown in Table 3, which also includes results for forward selection. In the Reuters1 domain, where
we expect more distinct terms between topics (and hence less feature interaction) we see that both
feature selection methods have a tendency to work comparably well without conditioning informa-
tion, producing good accruacy results. When conditioning is introduced, however, the results using
the backward elimination method clearly dominate those obtained using forward selection. Employ-
ing forward selection is simply inadequate for �nding good features with conditioning information.
In the second Reuters domain, however, we see that employing backward elimination allows the
algorithm to e�ectively make use of conditioning information to increase the accuracies of both
induction methods in a drastically reduced feature space. We were surprised to �nd that forward
selection worked as well as it did without conditioning information in this case (its performance
being comparable to backward elimination with conditioning), and seek to address this question in
future work. In general, this observation is compatible with the general trend found in the UCI
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datasets, that forward selection can sometimes achieve comparable performance to backward elim-
ination, but only without conditioning features. Due to the computational cost of the conditioning
process, it would be useful to understand the circumstances under which unconditioned forward
selection is e�ective. This would allow us to apply this computationally easier algorithm in those
cases where it applies, while using backward elimination for those datasets where features contain
more complex interactions.

As for resource comsumption, eliminating 1000 features from the Reuters datasets took about
1.5 hours on a Sun Sparc 10. By way of comparison, a rough estimate of the time required by a
wrapper approach such as that of Caruana & Freitag (1994) or John et al. (1994) to eliminate this
many features is on the order of thousands of hours, assuming the method does not get caught in
a local minima �rst and prematurely stops eliminating attributes as a result.

5. Conclusions

We have presented a theoretically justi�ed model for optimal feature selection based on using
cross-entropy to minimize the amount of predictive information lost during feature elimination.
Within this theoretical framework, we prove several desirable properties of using such a method for
feature selection. Moreover, we present an algorithm that approximates our theoretical model and
provide extensive empirical testing. We show that this algorithm is e�ective at drastically reducing
the feature space in many learning tasks while also helping to improve accuracy in many cases.

It is important to note that our method attempts to eliminate features in a way that keeps the
conditional probability of the class given the features as close to the original distribution as possible.
This is not the same as attempting to maintain the same classi�cation for each instance. While this
too is a desirable goal, it is necessarily speci�c to a particular induction algorithm. Rather, we focus
on an algorithm-independent paradigm for feature subset selection, viewing an induction algorithm
as a biased method for approximating the probability distribution of class labels given features and
transforming this distribution into a classi�cation. We stay free of the bias of a particular induction
algorithm by simply maintaining as much as possible the underlying conditional distribution of class
labels that the induction algorithm attempts to approximate.

Due in large part to its induction-bias-free nature, our approach provides only modest gains in
accuracy for most domains. However, it can be used as a tool for obtaining much better accuracy for
very high-dimensional datasets. Currently, when faced with such a domain, we are essentially forced
to use one of the simpler, less computationally intensive induction algorithms such as Naive Bayes
(whose performance is linear in the number of features). The use of our feature selection algorithm as
a pre-processing step will enable the use of more powerful, but computationally expensive, induction
algorithms (such as full Bayesian classi�ers). In this way, we hope to be able to make such induction
methods much more applicable to large problems with many features. Furthermore, although we
argue that wrapper methods are, a priori, too computationally expensive for such datasets, we
can use them on the feature-reduced datasets resulting from our algorithm. This will allow us to
produce a classi�er which is optimized for accuracy with respect to a speci�c induction algorithm,
by searching in the �ltered feature space. Taken together, we hope to e�ectively tackle induction
problems in very large feature spaces.
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