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Abstract

Clarissa, an experimental voice enabled procedure browser that has recently been deployed
on the International Space Station, is as far as we know the first spoken dialog system in
space. We describe the objectives of the Clarissa project and the system’s architecture.
In particular, we focus on three key problems: grammar-based speech recognition using
the Regulus toolkit; methods for open mic speech recognition; and robust side-effect free
dialogue management for handling undos, corrections and confirmations.

We first describe the grammar-based recogniser we have build using Regulus, and report
experiments where we compare it against a class N-gram recogniser trained off the same
3297 utterance dataset. We obtained a 15% relative improvement in WER, and a 37%
improvement in semantic error rate. The grammar-based recogniser moreover outperforms
the class N-gram version for utterances of all lengths from 1 to 9 words inclusive.

The central problem in building an open-mic speech recognition system is being able
to distinguish between commands directed at the system, and other material (cross-talk),
which should be rejected. Most spoken dialogue systems make the accept/reject decision by
applying a threshold to the recognition confidence score. We show how a simple and general
method, based on standard approaches to document classification using Support Vector
Machines, can give substantially better performance, and report experiments showing a
relative reduction in the task-level error rate by about 25% compared to the baseline
confidence threshold method.

Finally, we describe a general side-effect free dialogue management architecture that
we have implemented in Clarissa, which extends the “update semantics” framework by
including task as well as dialogue information in the information state. We show that this
enables elegant treatments of several dialogue management problems, including correc-
tions, confirmations, querying of the environment, and regression testing.
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1 Introduction

On the International Space Station (ISS), astronauts execute thousands of complex

procedures to maintain life support systems, check out space suits, conduct science

experiments and perform medical exams, among their many tasks. Today, when

carrying out these procedures, an astronaut usually reads from a PDF viewer on

a laptop computer, which requires them to shift attention from the task to scroll

pages.

This article describes Clarissa, an experimental voice-enabled procedure reader

developed at NASA Ames during a three year project starting in early 2002, which

enables astronauts to navigate complex procedures using only spoken input and

output (there is also a conventional GUI-style display, for situations where it is fea-

sible for the astronaut to watch the screen). We hope that this will offer significant

advantages for carrying out hands- and eyes-busy tasks in the challenging environ-

ment of microgravity. Clarissa has a vocabulary of about 260 words and supports

about 75 different commands, including reading steps, scrolling forwards or back-

wards in the procedure, moving to an arbitrary new step, reviewing non-current

steps, adding or removing voice notes, displaying pictures and setting alarms or

timers. The software was installed on the ISS in January 2005. To the best of our

knowledge, Clarissa is the first spoken dialogue system in space.

To build Clarissa, we have had to address several interesting research problems.

We have also had to do a good deal of mainstream software engineering, for example

to build the GUI display component and the process on the ISS server machine

which holds the database of procedures, and in general to make sure that the

system works well enough to pass the stringent NASA flight requirements. In this

paper, we will focus more or less exclusively on the research aspects. The rest of this

section gives an overview of the key problems, and summarises the main content of

the paper.

First, consider the relationship between the original PDF version of the proce-

dure, and the interactive spoken version presented by Clarissa. These two versions

will typically differ in a variety of ways. There are several written constructions,

like tables, which cannot be directly transposed into the spoken modality; it is also

frequently the case that material which is left implicit in the written version needs

to made explicit in the spoken one. These issues are discussed in Section 3.

The next point concerns the user language supported by the system. In general,

any type of spoken dialogue system has to steer a course between two basic strate-

gies. At one end, the system can try to adapt to the user. The implementors collect

data representing what users would ideally like to be able to say; a common way to

do this is to use Wizard of Oz methods. The system is then configured to perform

as well as possible on the sample data, usually using statistical techniques. At the

other end of the scale, the burden of adaptation is put on the user: the system is

designed to offer a predefined range of coverage, which the user is required to learn.

In practice, of course, some compromise between these two positions is normal.

For many applications, the robustness inherent in the data-driven approach makes

it the preferable choice. Astronauts, however, are very far from being typical users;
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they are highly intelligent, willing to invest time in learning to use the system,

and in most cases come from an aeronautics background where use of controlled

language is the norm. For this kind of user, a designed coverage approach has clear

attractions; performance for expert users is better, and it is easier to reconfigure

the system in response to changes in the specification. Our approach to recognition

is discussed in Section 4.

Robustness with respect to variation in user language is not particularly impor-

tant for an application like Clarissa. However, two other kinds of robustness are

critical. Since the whole point of the system is to support hands- and eyes-free op-

eration, recognition has to be performed in an “open-mic” mode. This implies that

the system needs to be able to reject spoken input (“cross-talk”) not intended for

it. Our approach to handling cross-talk is described in Section 5. Robustness is also

crucial at the level of dialogue management. For the usual reasons, recognition can

never be completely accurate; if the system misrecognises, it must be easy for the

user to undo or correct the misrecogition. Our approach to dialogue management,

described in Section 6, supports an elegant and robust handling of correction moves.

1.1 A note on versions

The lengthy certification and sign-off process required by NASA means that soft-

ware actually deployed in space typically lags behind the latest development version,

and for these reasons the version of Clarissa described in this paper differs in some

respects from the one currently installed on the ISS. In general, our focus is on

presenting what we think are the best solutions to the design problems we have

encountered, rather than on strict historical accuracy.

2 System Overview

The Clarissa system runs on a standard A31p IBM laptop under Windows 2000. It

consists of a set of software modules, written in several different languages, which

communicate with each other through the SRI Open Agent Architecture (Martin

et al. 1998). Commands can be issued either using voice, or through the GUI. This

section gives an overview of the system as a whole. We start by listing the different

types of supported functionalities (Section 2.1), and then describe the main modules

(Section 2.2).

2.1 Supported functionality

The system supports about 75 individual commands, which can be accessed using a

vocabulary of about 260 words. Many commands can also be carried out through the

GUI. The main system functionality is as follows. In each case, we briefly describe

the type of functionality, and give examples of typical commands.

• Navigation: moving to the following step (“next”), the preceding step (“pre-

vious”), or a named step (“go to step three”, “go to step ten point two”).
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• Visiting non-current steps, either to preview future steps or recall past ones

(“read step four”, “read note before step nine”).

• Opening and closing procedures (“open E M U checkout procedure”, “close

procedure”).

• Recording, playing and deleting voice notes (“record voice note”, “play voice

note on step three point one”, “delete voice note on substep two”).

• Setting and cancelling alarms (“set alarm for five minutes from now”, “cancel

alarm at ten twenty one”).

• Showing or hiding pictures (“show figure two”, “hide the picture”).

• Changing volume for TTS and prerecorded audio (“increase volume”, “qui-

eter”).

• Temporarily switching off speech recognition, to put the system in a mode

where it will only react to a key-phase used to restore normal function (“sus-

pend”, “resume”).

• Querying status (“where are we”, “list voice notes”, “list alarms”).

• Commands associated with “challenge verify mode”. This is a special mode

suitable for particularly critical parts of a procedure, which aggressively asks

for confirmation on each step. The user can directly enter or exit this mode

(“enter challenge verify mode”, “exit challenge verify mode”), or else set chal-

lenge verify mode on a specified step or range of steps (“set challenge verify

mode on steps three through twelve”).

• Responding to system questions. Most of the dialogue is user-initiative, but

the system can enter short information-seeking subdialogues in certain situ-

ations. The most important types of responses are yes/no words (“yes”, “af-

firmative”, “no”, “negative”) and numerical values (“zero”, “eleven”, “eight

thousand two hundred four”, “sixty one point five”, “no value”).

• Undoing and correcting commands. Any command can be undone (“undo”,

“go back”) or corrected (“no I said increase volume”, “I meant exit review

mode”). In some cases, the command can be expressed elliptically (“no I said

three point one”, “I meant step four”).

2.2 Modules

The main software modules of the system are the following:

Speech Processor The Speech Processor module is built on top of the commer-

cial Nuance Toolkit platform (Nuance 2003), and is implemented in C++

using the RecEngine API. The top-level functionalities it provides are speech

recognition and spoken output. Speech recognition can be carried out using

either a grammar-based or a statistical language model; speech output can

be either through playing recorded wavfiles, or by using a TTS engine. The

Speech Processors’s output from speech recognition always includes a list of

words, each tagged with a confidence score. When using a grammar-based

language model, it also includes a logical form representation defined by the

grammar. Note that the grammar’s “logical forms” and the dialogue man-

ager’s “dialogue moves” are not the same.
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Semantic Analyser The Semantic Analyser is implemented in SICStus Prolog.

It receives the output of the Speech Processor (a string of words, possibly

combined with a logical form), and converts it into a dialogue move. The

methods used to do this combine hand-coded patterns and corpus-derived

statistical information, and are described in Sections 4.1 and 4.2.

Response Filter Since recognition is carried out in open microphone mode, at

least some of the speech input needs to be rejected. This function is performed

by the Response Filter. The Response Filter receives the surface input from

the recogniser (a list of words tagged with confidence scores), and produces a

binary judgement, either to accept or to reject. It is implemented in C using

Support Vector Machine techniques described in Section 5.

Dialogue Manager The Dialogue Manager is implemented in SICStus Prolog. It

accepts dialogue moves from the Semantic Analyser and the Output Manager,

and produces a lists of abstract dialogue actions as output. It also maintains

a dialogue state object, which encodes both the discourse state and the task

state. The Dialogue Manager is entirely side-effect free; its operation is spec-

ified by a declarative update function. This is described further in Section 6.

Output Manager The Output Manager accepts abstract dialogue actions from

the Dialogue Manager, and converts them into lists of procedure calls. Ex-

ecuting these calls results in concrete system responses, which can include

production of spoken output, sending display requests to the GUI, and send-

ing dialogue moves back to the Dialogue Manager. The Dialogue Manager is

implemented in SICStus Prolog.

GUI The GUI is written in Java Swing, and mediates normal keyboard and screen

based interaction with the user. It accepts input from the Output Manager

in the form of display requests. It can also convert keyboard input from the

user into dialogue moves, which are sent to the Dialogue Manager.

3 Writing voice-navigable documents

The problem of representing written documents for spoken use can be surprisingly

complex. In the case of Clarissa, several important and potentially conflicting con-

straints had to be satisfied by the design of the procedure representation. First,

since ISS procedures are critical formal documents that typically reflect hundreds

or even thousands of person-hours of effort, including a lengthy approval process,

it is not feasible to replace them with a new structure. Second, although the as-

sociated visual display is required to faithfully reproduce the official procedures,

reading out the procedures verbatim is unworkable. Third, the NASA procedure

writing community must accept the spoken version as equivalent in content to the

original procedure, or it cannot be formally approved as a valid substitute in the

safety-critical environment of the ISS. And finally, all procedure specific information

must be incorporated into the procedure representation, rather than the browser

code, to enable use of the same procedure browser for many procedures.

Our approach to satisfying these contraints represents procedures in an XML

format that contains all the text and layout information present in the original
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written procedure, together with additional information which specifies how the

text is to be read out in the context of procedure execution. For each procedure,

an XML file is compiled into an HTML display document which will exactly mimic

the appearance of the original paper document, and also an annotated structure

that can be followed by the dialogue manager and which will permit the text to be

augmented and paraphrased where appropriate to enable it to be read aloud in a

natural manner.

The browser treats this compiled XML procedures as data. This makes it possible

to drop in an updated procedure without re-compiling the entire Clarissa system.

Clarissa currently handles five International Space Station procedures. These pro-

cedures are fairly elaborate; they average approximately 53 steps each and require

an average of 980 lines of XML to represent them.

Given that the spoken version can, and in a number of cases must, differ from the

original written version of the procedure, we are compelled to address the question

of how much, and in what ways the versions can differ. A basic design principle in

Clarissa is that the spoken version models what a human would read aloud while

using the document to do a task. In some parts of the procedures the written and

spoken versions are the same and in others they diverge. The divergences are the

major source of complexity in the XML representation. These divergences arise from

basic differences between the modalities and perhaps even more crucially from the

fact that the spoken version must be adequate for possible values of the document’s

dynamic content as well as the document’s use.

In some cases, the differences are minor: wording for fluent speech often differs

from highly abbreviated and/or acronym filled text. For example: “H20 vlv ↔

MSB” would read better as “water valve, disconnect from micro-sample bag”. In

other cases, visual and spoken structures are so different that even if one wanted to

read that part of the document verbatim, it would not be clear how to do it. Tables

are a clear example. Visually, a table provides information in the formatting. One

can scan top and side headers to understand what the values in a table cell mean or

what kind of material should be filled in to the table cell. Lines typically individuate

the cells. What should a spoken version of a table be like? How do you “read” lines

separating cells, or “read” the spatial layout of the table? A human reading aloud

would probably not give details of the formatting or read all the headers but would

present the table information in a way motivated by how the table needed to be

used. Was the table to be read out, or filled in? In what order should cells be read?

Figure 1 illustrates the relationship between the written and spoken versions in

the case of a table used to elicit values from the user and record them. In this

procedure, maintenance is done on between one and three space suits (EMUs). At

the beginning of the procedure the spoken system adds queries about which EMUs

will be used so that it can restrict its later activity to only the relevant columns

of the table. To fill in the table, a human reader would likely elicit the values by

incorporating the column and row header information into a query or directive for

each cell. The system follows this strategy, associating a query to the user with each

cell. Once the user answers, the information is displayed in the relevant cell of the
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Fig. 1. Adding voice annotations to a table

table. Note that language must also be added for reading out symbols, and some

of the abbreviations and acronymns.

3.1 Representing procedure-related discourse context

As we have already seen, procedures will frequently need to encode requests to

acquire information from the user. This information will then become part of the

task-related discourse context, and is stored as the bindings of variables defined in

the procedure. Later steps may access the variable bindings so as to make decisions

about conditional steps, using suitable XML constructs.

The use of context variables creates problems when combined with the require-

ment that users should be able to move around freely in the procedure. Suppose

that a value for variable V is acquired at step 5, and is then used as part of a

condition occurring in step 10. If the user skips straight from step 4 to step 10, V

will be unbound, and the condition will not be evaluable. In situations like these,

we would like the dialogue manager to be able to alert the user that they need to

execute the earlier step (in this case, step 5) before moving to step 10.

In the general case, this problem appears to be quite intractable; use of a suf-

ficiently expressive variable-setting language can require arbitrarily complex rea-

soning to determine which steps need to be executed in order to give a binding to

a specific variable. A workable solution must involve restricting the way in which

variables may be set. The solution we have implemented is fairly drastic, but was

sufficient for the purposes of the initial Clarissa project: for each variable V , we

only permit V to be assigned a value in at most one procedure step, so that it is

possible to associate V with the step in which it can potentially receive a value. If a

jump results in attempted evaluation of an unbound variable, the dialogue manager

can then tell the user that they first need to execute the relevant earlier step.
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4 Grammar-based recognition

As described in Section 2, Clarissa uses a grammar-based recognition architecture.

At the start of the project, we had several reasons for choosing this approach over

the more popular statistical one. First, we had no available training data. Second,

the system was to be designed for experts who would have time to learn its coverage;

although there is not a great deal to be found in the literature, an earlier study

in which we had been involved (Knight et al. 2001) suggested that grammar-based

systems outperformed statistical ones for this kind of user. A third consideration

that affected our choice was the importance of “open mic” recognition; there was

again little published research, but folklore results suggested that grammar-based

recognition methods had an edge over statistical ones here too.

Obviously, none of the above arguments are very strong. We thus wanted to

implement a framework which would allow us to compare grammar-based methods

with statistical ones in a methodologically sound way, and also retain the option

of switching from a grammar-based framework to a statistical one if that later

appeared justified. The Regulus and Alterf platforms, which we have developed

under Clarissa and other earlier projects, are designed to meet these requirements.

The basic idea behind the Regulus platform is to construct grammar-based lan-

guage models using example-based methods driven by small corpora. Since grammar

construction is now a corpus-driven process, the same corpora can also be used to

build normal statistical language models, facilitating a direct comparison between

the two methodologies. On its own, however, Regulus only permits comparison at

the level of recognition strings. Alterf extends the paradigm to the semantic level, by

providing a uniform trainable semantic interpretation framework which can work on

either surface strings or logical forms. Section 4.1 provides an overview of Regulus

and Alterf, and Section 4.2 describes how we have used them in Clarissa.

Exploiting the special properties of Regulus and Alterf, Section 4.3 presents an

evaluation of Clarissa’s speech understanding component, including a methodologi-

cally sound comparison between the implemented grammar-based architecture and

a plausible statistical/robust counterpart. In terms of speech understanding on in-

domain utterances, our bottom-line conclusion is that, at least for this application,

grammar-based methods significantly outperform statistical ones.

4.1 Regulus and Alterf

Regulus (Rayner et al. 2003; Regulus 2005) is an Open Source toolkit, which can

be used to derive a domain-specific Nuance recogniser from a training corpus in a

series of steps:

1. The starting point is a general unification grammar, loosely based on the

Core Language Engine grammar for English (Pulman 1992). For a given do-

main, such as Clarissa, this grammar is extended with a set of domain-specific

lexicon entries.

2. The training corpus is converted into a “treebank” of parsed representations.

This is done using a left-corner parser representation of the grammar.
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3. The treebank is used to produce a specialised grammar in Regulus format,

using the Explanation Based Learning (EBL) algorithm (van Harmelen and

Bundy 1988; Rayner 1988; Rayner et al. 2002).

4. The specialised grammar is compiled into a Nuance GSL grammar, using the

methods described in (Rayner et al. 2003).

5. The Nuance GSL grammar is converted into runnable speech recognisers by

invoking the Nuance Toolkit compiler utility.

Alterf (Rayner and Hockey 2003) is another Open Source toolkit, whose purpose

is to allow a clean combination of rule-based and data-driven processing in the se-

mantic interpretation phase. Alterf characterises semantic analysis as a task slightly

extending the “decision-list” classification algorithm (Yarowsky 1994; Carter 2000).

We start with a set of semantic atoms, each representing a primitive domain con-

cept, and define a semantic representation to be a non-empty set of semantic atoms.

For example, in Clarissa we represent the utterances

“please speak up”, “set alarm for five minutes from now”, “no i said next”

respectively as

{increase volume}, {set alarm, 5, minutes}, {correction, next step}

where increase volume, set alarm, 5, minutes, correction and next step are

semantic atoms. As well as specifying the permitted semantic atoms themselves,

we also define a target model which for each atom specifies the other atoms with

which it may legitimately combine. Thus here, for example, correction may legit-

imately combine with any atom, but minutes may only combine with correction,

set alarm or a number.

Training data consists of a set of utterances, in either text or speech form, each

tagged with its intended semantic representation. We define a set of feature ex-

traction rules, each of which associates an utterance with zero or more features.

Feature extraction rules can carry out any type of processing. In particular, they

may involve performing speech recognition on speech data, parsing on text data,

application of hand-coded rules to the results of parsing, or some combination of

these. Statistics are then compiled to estimate the probability p(a | f) of each

semantic atom a given each separate feature f .

At runtime, these probability estimates are used to associate a set of semantic

atoms with an utterance. The decoding algorithm is very simple: we just walk down

the list of available semantic atoms, starting with the most probable ones, and add

them to the semantic representation we are building up when this does not conflict

with the consistency rules in the target model. We stop when the atoms suggested

are too improbable, that is, have probabilities below a specified threshold.

4.2 Using Regulus and Alterf in Clarissa

We now describe the details of how we have used the Regulus and Alterf platforms

in Clarissa. The Clarissa Regulus grammar is composed of the general Regulus

grammar and the general function-word lexicon, together with a Clarissa-specific
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Table 1. Summary information for Clarissa lexicon.

POS #Entries Example Example context

Lemmas Words

Verb 129 645 go “go to step three”
Noun 99 127 caution “read caution before step eleven”

Number 25 25 zero fiver “set alarm for ten zero fiver”
Interjection 20 20 copy “copy go to step three”
Preposition 15 15 on “give me help on navigation”
Adjective 15 15 skipped “list skipped steps”
Adverb 10 10 louder “speak louder”

Total 313 857

Table 2. Examples of rules in specialised version of Clarissa grammar.

Rulea Freqb Example

S --> V NP 606 “[[delete] [the voice note]]”
NP --> step NUMBER 481 “go to [[step] [four]]”
SIGMA --> INTERJECTION NP 344 “[[no i meant] [four point one]]”
S --> V NP POST MODS 295 “[[set] [timer] [for two minutes]]”
POST MODS --> P NP 228 “set alarm [[at] [three zero six]]”
V --> go back 108 “[go back]”
NP --> the voice note 40 “cancel [the voice note]”
S --> V P NP POST MODS 28 “[[go] [to] [the note] [before step one]]”

a Context-free skeleton only
b Frequency of occurrence in the training corpus

domain lexicon containing 313 lemmas, which realise 857 surface lexical rules. Ta-

ble 1 summarizes the data for the domain-specific lexicon.

The training corpus used for grammar specialisation contains 3297 examples; of

these, 1349 have been hand-constructed to represent specific words and construc-

tions required for the application, while the remaining 1953 are transcribed exam-

ples of utterances recorded during system development. The parameters guiding the

grammar specialisation process have been chosen to produce a fairly “flat” gram-

mar, in which many noun-phrases become lexical items. This reflects the generally

stereotypical nature of language in the Clarissa domain. The specialised unification

grammar contains 491 lexical and 162 non-lexical rules; Table 2 shows examples of

specialised grammar rules, together with associated frequencies of occurrence in the

training corpus. The specialised grammar is compiled into a CFG language model

containing 427 non-terminal symbols and 1999 context-free productions. Finally,

the training corpus is used a second time to perform probabilistic training of the

CFG language model using the Nuance compute-grammar-probs utility, and the

resulting probabilistic version of the language model is compiled into a recognition

package using the nuance-compile utility.
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Fig. 2. Examples showing different levels of representation for a Clarissa utterance. We
show the surface words, the general logical form produced by the Regulus grammar and
derived recogniser, the list of semantic atoms produced by Alterf, and the dialogue move.

Surface

“no i said go to step five point three”

Logical form

[[interjection, correction],

[imp,

form(imperative,

[[go,

term(pro, you, []),

[to, term(null, step, [[number, [decimal,5,3]]])]]])]]

Alterf output

[correction, go to, [decimal,5,3]]

Dialogue move

correction(go to([decimal,5,3]))

Semantic representations produced by the Clarissa grammar are general domain-

independent logical forms. By construction, the same representations are produced

by the specialised grammar and the derived recogniser. The Alterf package is used

to convert these general representations into unordered lists of semantic atoms; a

final post-processing stage transforms Alterf output into the “dialogue moves” used

as input by the dialogue manager. Figure 2 shows examples of these different levels

of representation.

Recall that the Alterf algorithm requires definition of feature extraction rules,

so that it can then trained to acquire associations between extracted features and

cooccurring semantic atoms. We have experimented with three different kinds of

feature extraction rules: surface N-grams, hand-coded surface patterns and hand-

coded logical form patterns. Unsurprisingly, we discovered that surface N-gram

features were not particularly reliable. (Figures are presented in Section 4.3 sup-

porting this contention). We then implemented two more sets of feature extraction

rules, which defined different types of hand-coded patterns. The first set consists

of conventional phrasal patterns over the tokenised recognition string, written in a

simple string-matching language; the second set encodes structural patterns in the

logical form. Examples of string-based and logical-form-based patterns are shown in

Figure 3. The version of Clarissa described here has 216 string-based patterns and

305 logical-form-based patterns. The patterns have been developed and debugged

using the 3297 utterance training corpus: on this corpus, each set of patterns has a

classification error rate of about 0.5%.
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Fig. 3. Examples of string-based and logical-form-based patterns used in Clarissa.

String-based patterns

% ‘‘decrease’’ followed by ‘‘volume’’ -> decrease_volume

surface_pattern([decrease,’...’,volume], decrease_volume).

% ‘‘back’’ not following ‘‘go’’ and at the end -> previous_line

surface_pattern([not_word(go),back,’*end*’], previous_line).

% ‘‘put’’ followed by ‘‘voice note’’ -> record_voice_note

surface_pattern([put,’...’,voice,note], record_voice_note).

Logical-form-based patterns

% ‘‘decrease’’ with object ‘‘volume’’ -> decrease_volume

lf_pattern([decrease,_,term(_,volume,_)],decrease_volume).

% ‘‘back’’ used as an interjection -> previous_line

lf_pattern([interjection,back],previous_line,back).

% ‘‘put’’ with ‘‘voice_note’’ -> record_voice_note

lf_pattern([put,_,term(_,voice_note,_),_],record_voice_note).

4.3 Evaluating speech understanding performance

Having described the speech understanding architecture, we now present an evalu-

ation. There are a large number of types of experiment which we could potentially

have carried out. Given limited resources, we decided to focus on two main ques-

tions:

• How does the Regulus grammar-based framework compare against a more

conventional framework using a class N-gram language model and a set of

phrase-spotting rules?

• How do different types of features compare against each other? In particular,

are logical-form-based patterns more effective than string-based or N-gram

patterns, and is it useful to combine several types of pattern?

The next issue to resolve is the choice of appropriate performance metrics and test

data. Given that we are essentially interested in speech understanding performance,

our primary metric is semantic error rate. The choice of appropriate test data was

unfortunately not straightforward. Ideally, we would have liked to test on astronaut

subjects, but the virtual impossibility of getting significant quantities of astronaut

time forced us to adopt a compromise. We compared the small amount of astronaut

data we were able to obtain against the results of a pilot study using naive subjects

with no previous exposure to the system, but this revealed a serious mismatch. The

astronauts were very familiar both with the procedure-following task and with use

of controlled language, and moreover had a strong motivation to learn to use the

system; the naive subjects had neither the relevant background, nor any particular

reason to want to acquire the relevant skills. The performance figures reflected this

imbalance, with the astronauts scoring enormously better than nearly all of the

naive subjects.

We obtained a much closer fit against the data recorded by system developers

during the course of the project. Although the developers know the system a little

better than the astronaut users, our intuitive observation was that the difference was
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Table 3. WER and SER for two recognisers trained on the same data.

Recognisera WER SER

GLM 6·27% 9·79%
SLM 7·42% 12·41%

a Type of language model used: either Regulus-derived grammar-based language model
(“GLM”) or class N-gram language model (“SLM”)

not large, and that the astronauts would probably catch up after only a relatively

short period of use. The figures below are thus based on a sample of 8158 in-

domain utterances (23369 words) collected and transcribed during the course of the

project. By “in-domain”, we mean here that the utterances expressed commands

meaningful in the context of the Clarissa task, and that the system should ideally

have responded to them. Behaviour on out-of-domain data, where the best response

is to ignore the utterance, is considered in Section 5. The data had not previously

been used for development purposes, and can be considered as unseen.

In order to compare the Regulus-based recogniser with a conventional architec-

ture, we used the Nuance SayAnything c© tool and the same 3297 utterance training

set to build a standard class N-gram model. Raw recognition performance figures

for the two recognisers, measured in terms of WER and SER, are shown in Table 3.

The main experimental results are presented in Table 4. Here, we contrast speech

understanding performance for the Regulus-based recogniser and the class N-gram

recogniser, using several different sets of Alterf features. For completeness, we also

present results for simulated perfect recognition, i.e. using the reference transcrip-

tions. We used six different sets of Alterf features:

N-grams: N-gram features only.

LF: Logical-form-based patterns only.

String: String-based patterns only.

String + LF: Both string-based and logical-form based patterns.

String + N-grams: Both string-based and N-gram features.

String + LF + N-grams: All types of features.

As can be seen, the GLM performs considerably better than the SLM. The best

SLM version, S-3, has a semantic error rate of 9.6%, while the best GLM version,

G-4 has an error rate of 6.0%, a relative improvement of 37%. Part of this is clearly

due to the fact that the GLM has better WER and SER than the SLM. However,

Table 3 shows that the relative improvement in WER is only 15% (7.42% versus

6.27%), and that in SER is 21% (12.41% versus 9.79%). The larger improvement

by the GLM version at the level of semantic understanding is most likely accounted

for by the fact that it is able to use logical-form-based features, which are not

accessible to the SLM version. Although logical-form-based features do not appear

to be intrinsically more accurate than string-based features (contrast rows T-2 and

T-3), the fact that they allow tighter integration between semantic understanding

and language modelling is intuitively advantageous.
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It is interesting to note that the combination of logical-form-based features and

string-based features outperforms logical-form-based features alone (rows G-4 and

G-2). Although the difference is small (6.0% versus 6.3%), a pairwise comparison

shows that it is significant at the 1% level according to the McNemar sign test.

There is no clear evidence that N-gram features are very useful. This supports the

standard folk-lore result that semantic understanding components for command

and control applications are more appropriately implemented using hand-coded

phrase-spotting patterns than general associational learning techniques.

Table 4. Speech understanding performance for 8158 test sentences recorded

during development, on 13 different configurations of the system.

Version Reca Featuresb Rejectedc Incorrectd AllErrorse

T-1 Text N-grams 7·3% 5·9% 13·2%
T-2 Text LF 3·1% 0·5% 3·6%
T-3 Text String 2·2% 0·8% 3·0%
T-4 Text String + LF 0·8% 0·8% 1·6%
T-5 Text String + LF + N-grams 0·4% 0·8% 1·2%

G-1 GLM N-grams 7·4% 9·7% 17·1%
G-2 GLM LF 1·4% 4·9% 6·3%
G-3 GLM String 2·9% 4·8% 7·7%
G-4 GLM String + LF 1·0% 5·0% 6·0%
G-5 GLM String + LF + N-grams 0·7% 5·4% 6·1%

S-1 SLM N-grams 9·6% 11·9% 21·5%
S-2 SLM String 2·8% 7·4% 10·2%
S-3 SLM String + N-grams 1·6% 8·0% 9·6%

a Type of recognition: either simulated perfect recognition (“Text”), recognition using
the Regulus-derived grammar-based language model (“GLM”) or recognition using a
class N-gram language model (“SLM”).

b Alterf features used
c Utterances given no semantic interpretation
d Utterances given incorrect semantic interpretation
e Sum of “Rejected” and “Incorrect”

Finally, Table 5 presents a breakdown of speech understanding performance, by

utterance length, for the best GLM-based and SLM-based versions of the system.

There are two main points we want to make here. First, speech understanding

performance remains respectable even for the longer utterances; second, the perfor-

mance of the GLM-based version is consistently better than that of the SLM-based

version for all utterance lengths.

5 Rejecting user speech

Section 4 presents figures describing the performance of the speech understanding

component of the system, assuming that the task can be described as that of taking
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Table 5. Speech understanding performance, broken down by utterance length, for

the best GLM-based and SLM-based versions of the system (cf. Table 4). Results

are omitted for the small group of utterances of length 10 or more.

Length #Utts Best GLM (G-4) Best SLM (S-3)

WER SER SemER WER SER SemER

1 3049 5·7% 3·5% 2·5% 6·3% 4·2% 3·5%
2 1589 12·0% 12·0% 8·7% 14·6% 18·4% 14·6%
3 950 7·2% 12·8% 7·2% 10·4% 15·2% 15·4%
4 1046 7·6% 14·8% 9·9% 7·7% 15·6% 14·7%
5 354 5·7% 14·4% 9·0% 6·1% 19·8% 10·8%
6 543 2·8% 11·1% 7·2% 4·1% 15·3% 9·8%
7 231 3·0% 16·0% 3·5% 4·6% 19·5% 6·5%
8 178 4·4% 14·6% 4·5% 3·6% 16·3% 5·7%
9 174 3·9% 20·1% 9·2% 4·0% 20·7% 10·3%

an input utterance constituting a valid system command, and assigning a correct

semantic interpretation to it. This characterisation, however, omits an important

dimension. At least some of the time, we know that input speech will not consist

of valid system commands. The most common reason for this will be cross-talk:

the user may break off addressing the system to converse with another person, but

their remarks will still be picked up by the microphone and subjected to speech

recognition1. There is also the possibility that the user will say something that is

outside the system’s sphere of competence, either though carelessness or because

they are uncertain about its capabilities.

We will refer to the choice between accepting and rejecting output from the

speech recogniser as the “accept/reject decision”. Usually, the speech recogniser

produces a confidence score as part of its output, and the accept/reject decision

is made simply by rejecting utterances whose confidence score is under a specified

threshold. A recent example is (Dowding and Hieronymus 2003), which reported an

accuracy of 9.1% on cross-talk identification using the confidence threshold method.

In this section, we will show that adapted versions of standard kernel-based meth-

ods from the document classification literature can substantially improve on the

baseline confidence threshold approach. First, however, we define the problem more

precisely.

5.1 The Accept/Reject Decision Task

We need to introduce suitable metrics for evaluating performance on the accept/reject

task. We can define the following three categories of utterance:

Type A: Utterances directed at the system, for which a good semantic interpre-

tation was produced.

1 For long side-conversations, the user has the option of using the “suspend” command
(cf. Section 2.1) to pause recognition.
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Type B: Utterances directed at the system, and to which the system could in

principle respond, but for which the semantic interpretation produced was

incorrect. Usually, this is due to faulty recognition.

Type C: Utterances not directed at the system, or directed at the system but to

which the system has no adequate way to respond.

We would like to accept utterances in the first category, and reject utterances in

the second and third. If we want to measure performance on the accept/reject task,

the most straightforward approach is a simple classification error rate. Ultimately,

however, what we are most interested in is measuring performance on the top-

level speech understanding task, which includes the recognition task, the semantic

interpretation task, and the accept/reject task described here.

Constructing a sensible metric for the top-level task involves taking account of

the fact that some errors are intuitively more serious than others. In a Type A

error, the user can most often correct by simply repeating themself. In a Type B

error, the user will typically have to wait for the system response, realise that it is

inappropriate, and then undo or correct it, a significantly longer operation. A Type

C error has all the drawbacks of a Type B error, and affects not only the user, but

also the person with whom they are having the side conversation. This analysis

suggests that errors should not all be counted equally, but rather be weighted to

define a loss function. It is not easy to give clear justifications for particular choices

of weights. A reasonable candidate, which we will use in the rest of this paper, is to

assigns weights of 1 to Type A, 2 to Type B and 3 to Type C. We divide the total

weighted score over a given corpus by the maximum possible loss value, giving a

normalised loss function whose value is always between 0 and 1.

The discrepancy between the local loss function associated with the classifier

and the task-level loss function raises the issue of how to align classifier objectives

with task-level ones. In this initial work, we simplify the problem by decoupling the

speech understanding and accept/reject subtasks, using separate metrics. Since the

weighting on the task metric penalises false accepts more heavily than false rejects,

we introduce an asymmetric loss function on the classifier score, which weights false

accepts twice as heavily as false rejects. We will refer to this as the u2 metric, and

use it as the filtering task metric to compare different parameter settings.

5.2 An SVM-based approach

There are several information sources which could potentially be used as input to

the accept/reject classification problem. So far, we have limited ourselves to the

surface result returned by the Nuance recogniser, which consists of a list of words,

each tagged by a numerical confidence value.

As already noted, the usual way to make the accept/reject decision is through

a simple threshold on the average confidence score; the Nuance confidence scores

are of course designed for exactly this purpose. Intuitively, however, it should be

possible to improve the decision quality by also taking account of the information

in the recognised words. Looking through our data, we could see examples which
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had high enough average confidence scores to be accepted, but contained phrases

that were very implausible in the context of the application. In the other direction,

we noticed that the confidence scores for several common short utterances (in par-

ticular “yes” and “no”) appeared for some reason to be artificially depressed; these

utterances could safely be accepted with a lower confidence threshold than usual.

We wanted a method that could identify and exploit patterns like these.

The accept/reject decision is clearly a kind of document classification problem.

It is well known (Joachims 1998) that margin-based classifiers, especially Support

Vector Machines (SVM), get good results for this kind of task. Our original intu-

ition, when beginning this piece of work, was that standard SVM-based document-

classification tools could be applied successfully to the accept/reject decision task;

in practice, due to its stability and ready availability for research purposes, we used

Joachims’s SVM-light platform (Joachims 2005). There were two key issues we had

to address in order to apply SVM-light to the new task. First, we had to construct

a suitable kernel function, which would define similarity between two recognition

results; this kernel would need to reflect the fact that the objects were not text

documents, but speech documents which had been passed through a noisy channel.

Second, we had to take account of the asymmetric nature of the cost function.

5.2.1 Choosing a kernel function

As recognition results consist of sequences of words tagged with confidence scores,

the kernel function must be based on this information. The simple bag of word repre-

sentation, as traditionally used to represent written documents, loses the important

confidence score information, and is unlikely to produce good results. Preliminary

experiments not reported here confirmed that this was indeed the case.

We consequently modified the bag of words representation, so as to weight each

word by its associated confidence score. This means the the recognition result is

initially mapped into a vector in an V -dimensional space, where V is the vocabulary

size; the component on each dimension is the confidence score on the relevant word,

or zero if the word did not occur in the recognition result. If a word occurs multiple

times, the confidence scores for each occurrence are summed; it is possible that a

“max” or “min” operator would have been more appropriate, but multiple word

occurrences only obtained in about 1% of the utterances. We also added an extra

component to the vector, which represented the average of all the word confidence

scores.

By using different kernel functions on the vector space representation, we were

able to take into account various kinds of lexical patterns. In particular, nonlinear

polynomial kernels of degree N encode unordered cooccurrences of N words (un-

ordered gappy N -grams). In practice, we found that values of N higher than 2 gave

no additional gains. We also experimented with string subsequence kernels (Lodhi

et al. 2002), but these failed to improve performance either, while being computa-

tionally much more expensive. In the experiments reported below, we thus restrict

ourselves to linear and quadratic kernels, representing unigram and unordered non-

local bigram information.
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5.2.2 Making the cost function asymmetric

There are at least two ways to introduce asymmetric costs in standard SVM im-

plementations. Recall that SVM is optimizing a mixed criterion, which combines

classification errors on a training set and a measure of complexity related to the

margin concept ((Shawe-Taylor and Cristianini 2004), p. 220). The simplest method

is to penalize the distance to the margin for misclassified examples more highly for

false positives than for false negatives. This can be done directly using the j pa-

rameter in the SVM-light implementation.

The drawback to the first approach is, however, that the algorithm is not really

optimising the utility function, but a more or less related quantity (Navia-Vázquez

et al. 2004); this prompted us to investigate the use of calibration as well. Calibra-

tion (Bennett 2003) aims at transforming SVM scores into posterior probabilities

in a way that is independent from the class priors (basically P (s(x) | Class) where

s(x) is the score associated with observation x). The optimal Bayesian decision

can then be adapted, once the new class priors are known (P (Class)), as well as

error costs. For a binary problem (accept/reject) with equal cost of errors for all

negative examples, when the class distribution can be assumed to be the same on

both training and test sets, it is sufficient to approximate P (Class = A | s(x)), as

the optimal Bayes decision is then based on minimizing the expected loss function.

In our case, the u2 function penalises false accepts twice as heavily as false rejects:

the optimal decision rule is thus to accept the utterance if

(2P (Class = B or C | s(x))) < P (Class = A | s(x))

or, equivalently, if P (Class = A | s(x)) > 2/3. We used Isotonic Regression

(Zadrozny and Elkan 2002) to realize the mapping from SVM-scores into approxi-

mate posterior probabilities.

5.3 Experiments

A corpus of 10409 recorded and labelled spoken utterances was used in order to

investigate the impact of three factors on classification and task performance:

Classifier We used three types of classifier: a simple threshold on the average con-

fidence score; an SVM with a linear kernel; and an SVM with a quadratic

kernel. The SVM classifiers used a set of features consisting of the average

confidence score together with the weighted bag of words over the total vo-

cabulary.

Asymmetric Error We used two different techniques to deal with asymmetric

error costs: the j intrinsic parameter of SVM-light, and the recalibration pro-

cedure using Isotonic Regression. Recall that recalibration aims at optimising

the u2 loss function at SVM classification level, and not the task-level loss

function. Without recalibration, the decision threshold on SVM-scores is 0.

Recognition We contrasted GLM and SLM methods, specifically using the best

GLM-based recogniser (G-4) and the best SLM-based recogniser (S-3) from

Table 4.
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For each choice of parameters, we performed 10 random splits (training/test sets)

of the initial set of labelled utterances, learned the model on the training sets, and

evaluated the loss functions on the corresponding test sets. The final scores were

obtained by averaging the loss functions over all 10 runs. Table 6 presents results

for the most interesting cases.

Table 6. Performance on accept/reject classification and the top-level speech

understanding task, on 12 different configurations of the system.

ID Reca. Classifierb jc Ad Be Cf Allg u2
h Taski

ST-1 SLM Threshold 1·0 5·5% 59·1% 16·5% 11·8% 15·1% 10·1%
SL-1 SLM Linear 1·0 2·8% 37·1% 9·0% 6·6% 8·6% 7·4%
SL-2 SLM Linear 0·5 4·9% 30·1% 6·8% 7·0% 8·1% 7·2%
SQ-1 SLM Quad 1·0 2·6% 23·6% 8·5% 5·5% 7·0% 6·9%
SQ-2 SLM Quad 0·5 4·1% 18·7% 7·6% 6·0% 7·0% 7·0%
SQ-3 SLM Quad/r 1·0 4·7% 18·7% 6·6% 6·1% 6·8% 6·9%

GT-1 GLM Threshold 0·5 7·1% 48·7% 8·9% 9·4% 10·7% 7·0%
GL-1 GLM Linear 1·0 2·8% 48·5% 8·7% 6·3% 8·3% 6·2%
GL-2 GLM Linear 0·5 4·7% 43·4% 6·0% 6·7% 7·9% 6·0%
GQ-1 GLM Quad 1·0 2·7% 37·9% 6·8% 5·3% 6·7% 5·7%
GQ-2 GLM Quad 0·5 4·0% 26·8% 6·0% 5·5% 6·3% 5·6%
GQ-3 GLM Quad/r 1·0 4·3% 28·1% 4·7% 5·5% 6·1% 5·4%

a Type of recognition: either Regulus-derived grammar-based language model (“GLM”)
or class N-gram language model (“SLM”)

b Type of classifier used: “Threshold” = simple threshold on average confidence; “Linear”
= SVM classifier with linear kernel; “Quad” = SVM classifier with quadratic kernel;
“Quad/r” = recalibrated version of SVM classifier with quadratic kernel

c Value of SVM-light j parameter
d Classifier error rate on in-domain utterances with correct semantic interpretation
e Classifier error rate on in-domain utterances with incorrect or no semantic interpretation
f Classifier error rate on out-of-domain or cross-talk utterances
g Classifier error rate on all data
h Weighted average of classifier error rate using u2 weights
i Normalised task metric loss

5.4 Analysis of results

The following conclusions can be drawn from the figures in Table 6. Each of these

conclusions was confirmed by hypothesis testing, using the Wilcoxon rank test, at

the 5% significance level.

5.4.1 Improvement on baseline performance

The SVM-based method is very considerably better than the baseline confidence

threshold method. The average classification error fell from 9.4% for the best base-

line configuration (GT-1) to 5.5% for the best SVM-based configuration (GQ-3), a
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relative improvement of 42%. In particular, the false accept rate for cross-talk and

out-of-domain utterances improved from 8.9% (close to the 9.1% cited in (Dowding

and Hieronymus 2003)) to 4.7%, a 47% relative improvement, while the error rates

on the other individual classes also improved. On the task performance metric, the

improvement was from 7.0% to 5.4%, or 25% relative.

5.4.2 Kernel types

Quadratic kernels performed better than linear (around 25% relative improvement

in classification error); however, this advantage is less marked when considering

the task metric (only 3 to 9% relative increase). Though small, the difference is

statistically significant. This suggests that meaningful information for filtering lies,

at least partially, in the co-occurrences of groups of words, rather than just in

isolated words.

5.4.3 Asymmetric error costs

We next consider the effect of methods designed to take account of asymmetric

error costs (cf. Section 5.2.2). Comparing GQ-1 (no treatment of asymmetric error

costs) with GQ-2 (intrinsic SVM-optimisation using the j-parameter) and GQ-

3 (calibration), we see that both methods produce a significant improvement in

performance. On the u2 loss function that both methods aim to minimise, we attain

a 9% relative improvement when using calibration and 6% when using intrinsic

SVM optimisation; on the task metric, these gains are reduced to 5% (relative) for

calibration, and only 2% for intrinsic SVM-optimisation, though both of these are

still statistically significant. Error rates on individual classes show that, as intended,

both methods move errors from false accepts (classes B and C) to the less dangerous

false rejects (class A). In particular, the calibration method manages to reduce the

false accept rate on cross-talk and out-of-domain utterances from 6.8% on GQ-1 to

4.7% on GQ-3 (31% relative), at the cost of an increase from 2.7% to 4.3% in the

false reject rate for correctly recognised utterances.

5.4.4 Recognition methods

Using the confidence threshold method, there was a large difference in performance

between the GLM-based GT-1 and the SLM-based ST-1. In particular, the false

accept rate for cross-talk and out-of-domain utterances is nearly twice as high

(16.5% versus 8.9%) for the SLM-based recogniser. This supports the folklore result

that GLM-based recognisers give better performance on the accept/reject task.

When using the SVM-based methods, however, the best GLM-based configura-

tion (GQ-3) performs about as well as the best SLM-based configuration (SQ-1) in

terms of average classification error, with both systems scoring about 5.5%. GQ-3

does perform considerably better than SQ-1 in terms of task error (5.4% versus

6.9%, or 21% relative), but this is due to better performance on the speech recog-

nition and semantic interpretation tasks. Our conclusion here is that GLM-based
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recognisers do not necessarily offer superior performance to SLM-based ones on

the accept/reject task, if a more sophisticated method than a simple confidence

threshold is used.

6 Side-effect free dialogue management

Most spoken dialogue systems have some notion of context, which typically will

include the preceding dialogue, the current state of the task, or both. For example,

consider the reaction of a simulated robot to the command “Put it on the block”.

This might include both remembering a recently mentioned object to serve as a

referent for “it” (dialogue context), and looking around the current scene to find an

object to serve as a referent for “the block” (task context). The Dialogue Manager

(DM) will thus both access the current context as an input, and update it as a

result of processing utterances.

Contextual information is usually distributed through the DM as part of the

current program state. This means that processing of an input utterance involves

at least some indirect side-effects, since the program state will normally be changed.

If the DM makes procedure calls to the output module, there will also be direct side-

effects in the form of exterior actions. As every software engineer knows, side-effects

are normally considered a Bad Thing. They make it harder to design and debug

systems, since they render interactions between modules opaque. The problem tends

to be particularly acute when performing regression testing and evaluation; if a

module’s inputs and outputs depend on side-effects, it is difficult or impossible to

test that module in isolation. The upshot for spoken language systems is that it is

often difficult to test the DM except in the context of the whole system.

In this section, we will describe an architecture which directly addresses the

problems outlined above, and which has been implemented in Clarissa. There are

two key ideas. First, we split the DM into two pieces: a large piece, comprising nearly

the whole of the code, which is completely side-effect free, and a small piece which is

responsible for actually performing the actions. Second, we adopt a consistent policy

about representing contexts as objects. Both discourse and task-oriented contextual

information, without exception, are treated as part of the context object.

6.1 Side effect free dialogue management

Clarissa implements a minimalist dialogue management framework, partly based

on elements drawn from the TRIPS (Allen et al. 2000) and TrindiKit (Larsson

and Traum 2000) architectures. The central concepts are those of dialogue move,

information state and dialogue action. At the beginning of each turn, the dialogue

manager is in an information state. Inputs to the dialogue manager are by definition

dialogue moves, and outputs are dialogue actions. The behaviour of the dialogue

manager over a turn is completely specified by an update function f of the form

f : State×Move → State×Actions
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Thus if a dialogue move is applied in a given information state, the result is a new

information state and a set of zero or more dialogue actions.

In the Clarissa system, most of the possible types of dialogue moves represent

spoken commands. For example, increase(volume) represents a spoken command

like “increase volume” or “speak up”. Similarly, go to(step(2,3)) represents a

spoken command like “go to step two point three”. The dialogue move undo rep-

resents an utterance like “undo last command” or “go back” Correction utterances

are represented by dialogue moves of the form correction(X); so for example

correction(record(voice note(step(4)))) represents an utterance like “no, I

said record a voice note on step four”. There are also dialogue moves that represent

non-speech events. For example, a mouse-click on the GUI’s “next” button is rep-

resented as the dialogue move gui request(next). Similarly, if an alarm goes off

at time T , the message sent from the alarm agent is represented as a dialogue move

of the form alarm triggered(T). The most common type of dialogue action is a

term of the form say(U), representing a request to speak an utterance abstractly

represented by the term U. Other types of dialogue actions include modifying the

display, changing the volume, and so on.

The information state is a vector, which in the current version of the system

contains 26 elements. Some of these elements represent properties of the dialogue

itself. In particular, the last state element is a back-pointer to the preceding

dialogue state, and the expectations element encodes information about how the

next dialogue move is to be interpreted. For example, if a yes/no question has just

been asked, the expectations element will contain information determining the

intended interpretation of the dialogue moves yes and no.

The novel aspect of the Clarissa DM is that all task information is also uniformly

represented as part of the information state. Thus for example the current location

element holds the procedure step currently being executed, the current alarms el-

ement lists the set of alarms currently set, associating each alarm with a time and a

message, and the current volume element represents the output volume, expressed

as a percentage of its maximum value. Putting the task information into the infor-

mation state has the desirable consequence that actions whose effects can be defined

in terms of their effect on the information state need not be specified directly. For

example, the update rule for the dialogue move go to(Loc) specifies among other

things that the value of current location element in the output dialogue state

will be Loc. The specific rule does not also need to say that an action needs to be

produced to update the GUI by scrolling to the next location; that can be left to a

general rule, which relates a change in the current location to a scrolling action.

More formally, what we are doing here is dividing the work performed by the

update function f into two functions, g and h. g is of the same form as f , i.e.

g : State×Move → State×Actions

As before, this maps the input state and the dialogue move into an output state

and a set of actions; the difference is that this set now only includes the irreversible
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actions. The remaining work is done by a second function

h : State×State → Actions

which maps the input state S and output state S ′ into the set of reversible actions

required to transform S into S ′; the full set of output actions is the union of the

reversible and the irreversible actions. The relationship between the functions f ,

g and h can be expressed as follows. Let S be the input state, and M the input

dialogue move. Then if g(S, M) = 〈S ′, A1〉, and h(S, S′) = A2, we define f(S, M) to

be 〈S′, o(A1 ∪A2)〉, where o is a function that maps a set of actions into an ordered

sequence.

In Clarissa, h is implemented concretely as the set of all solutions to a Prolog

predicate which contains one clause for each type of difference between states which

can lead to an action. Thus we have for example a clause which says that a difference

in the current volume elements between the input state and the output state

requires a dialogue action that sets the volume; another clause which says that an

alarm time present in the current alarms element of the input state but absent

in the current alarms element requires a dialogue action which cancels an alarm;

and so on. The ordering function o is defined by a table which associates each type

of dialogue action with a priority; actions are ordered by priority, with the function

calls arising from the higher-priority items being executed first. Thus for example

the priority table defines a load procedure action as being of higher priority than a

scroll action, capturing the requirement that the system needs to load a procedure

into the GUI before it can scroll to its first step.

6.2 Specific issues

6.2.1 “Undo” and “correction” moves

As already noted, one of the key requirements for Clarissa is an ability to handle

“undo” and “correction” dialogue moves. The conventional approach, as for example

implemented in the CommandTalk system (Stent et al. 1999), involves keeping a

“trail” of actions, together with a table of inverses which allow each action to be

undone. The extended information state approach described above permits a more

elegant solution to this problem, in which corrections are implemented using the

g and h functions together with the last state element of the information state.

Thus if we write u for the “undo” move, and l(S) to denote the state that S’s

last state element points to, we can define g(S, u) to be 〈l(S), ∅〉, and hence

f(S, u) will be 〈l(S), o(h(S, l(S)))〉. Similarly, if we write c(M) for the move which

consists of a correction followed by M , we can define f(S, c(M)) to be 〈S ′, o(A ∪

h(S, S′))〉, where S′ and A are defined by g(l(S), M) = 〈S ′, A〉.

In practical terms, there are two main payoffs to this approach. First, code for

supporting undos and corrections shrinks to a few lines, and becomes trivial to

maintain. Second, corrections are in general faster to execute than they would be

in the conventional approach, since the h function directly computes the actions

required to move from S to S ′, rather than first undoing the actions leading from



24 M. Rayner and others

l(S) to S, and then redoing the actions from l(S) to S ′. When actions involve

non-trivial redrawing on the visual display, this difference can be quite significant.

6.2.2 Confirmations

Confirmations are in a sense complementary to corrections. Rather than making

it easy for the user to undo an action they have already carried out, the intent

is to repeat back to them the dialogue move they appear to have made, and give

them the option of not performing it at all. Confirmations can also be carried out at

different levels. The simplest kind of confirmation echoes the exact words the system

believed it recognised. It is usually, however, more useful to perform confirmations

at a level which involves further processing of the input. This allows the user to

base their decision about whether to proceed not merely on the words the system

believed it heard, but also on the actions it proposes to take in response.

The information state framework also makes possible a simple approach to con-

firmations. Here, the key idea is to compare the current state with the state that

would arise after responding to the proposed move, and repeat back a description

of the difference between the two states to the user. To write this symbolically,

we start by introducing a new function d(S, S ′), which denotes a speech action

describing the difference between S and S ′, and write the dialogue moves repre-

senting “yes” and “no” as y and n respectively. We can then define fconf (S, M),

a version of f(S, M) which performs confirmations, as follows. Suppose we have

f(S, M) = 〈S′, A〉. We define fconf (S, M) to be 〈Sconf , d(S, S′)〉, where Sconf is

constructed so that f(Sconf , y) = 〈S′, A〉 and f(Sconf , n) = 〈S, ∅〉. In other words,

Sconf is by construction a state where a “yes” will have the same effect as M would

have had on S if the DM had proceeded directly without asking for a confirmation,

and where a “no” will leave the DM in the same state as it was before receiving M .

There are two points worth noting here. First, it is easy to define the function

fconf precisely because f is side-effect free; this lets us derive and reason about the

hypothetical state S ′ without performing any external actions. Second, the function

d(S, S′) will in general be tailored to the requirements of the task, and will describe

relevant differences between S and S ′. In Clarissa, where the critical issue is which

procedure steps have been completed, d(S, S ′) describes the difference between S

and S′ in these terms, for example saying that one more step has been completed,

or three steps skipped.

6.2.3 Querying the environment

An obvious problem for any side-effect free dialogue management approach arises

from the issue of querying the environment. If the DM needs to acquire external

information to complete a response, it may seem that the relationship between

inputs and output can no longer be specified as a self-contained function.

The framework can, however, be kept declarative by splitting up the DM’s re-

sponse into two turns. Suppose that the DM needs to read a data file in order to

respond to the user’s query. The first turn responds to the user query by producing
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an action request to read the file and report back to the DM, and an output infor-

mation state in which the DM is waiting for a dialogue move reporting the contents

of the file; the second turn responds to the file-contents reporting action by using

the new information to reply to the user. The actual side-effect of reading the file

occurs outside the DM, in the space between the end of the first turn and the start

of the second. Variants of this scheme can be applied to other cases in which the

DM needs to acquire external information.

6.2.4 Regression testing and evaluation

Regression testing and evaluation on context-dependent dialogue systems is a no-

toriously messy task. The problem is that it is difficult to assemble a reliable test

library, since the response to each individual utterance is in general dependent on

the context produced by the preceding utterances. If an utterance early in the se-

quence produces an unexpected result, it is usually impossible to know whether

results for subsequent utterances are meaningful.

In our framework, regression testing of contextually dependent dialogue turns

is unproblematic, since the input and output contexts are well-defined objects. We

have been able to construct substantial libraries of test examples, where each exam-

ple consists of a 4-tuple 〈InState, DialogueMove, OutState, Actions〉. These libraries

remain stable over most system changes, except for occasional non-downward-

compatible redesigns of the dialogue context format, and have proved very useful.

7 Summary and conclusions

We have presented a detailed description of a non-trivial spoken dialogue system,

which carries out a potentially useful task in a very challenging environment. In the

course of the project, we have addressed several general problems and developed

what we feel are interesting and novel solutions. We conclude by summarising our

main results.

7.1 Procedures

The problem of converting written procedures into voice-navigable documents is

not as simple as it looks. A substantial amount of new information needs to be

added, in order to make explicit the instructions which were implicit in the original

document and left to the user’s intelligence. This involves adding explicit state to

the reading process. Jumps in the procedure can leave the state inconsistent, and

it is not trivial to ensure that the system will always be able to recover gracefully

from these situations.

7.2 Recognition

For this kind of task, there is reasonable evidence that grammar-based recognition

methods work better than statistical ones. The extra robustness of statistical meth-

ods does not appear to outweigh the fact that the grammar-based approach permits
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tighter integration of recognition and semantic interpretation. Speech understand-

ing performance was substantially better with the grammar-based method. We were

able to make a clear comparison between the two methods because we used a care-

fully constructed methodology which built the grammar-based recogniser from a

corpus, but there is no reason to believe that other ways of building the grammar-

based recogniser would have led to inferior results.

7.3 Response filtering

The SVM based method for performing response filtering that we have developed

is considerably better than the naive threshold based method. It is also completely

domain-independent, and offers several possibilities for further performance gains.

We consider this to be one of the most significant research contributions made by

the project.

We are currently extending the work described here in two different directions.

First, we are implementing better calibration models (cf. Section 5.2.2), which in

particular will allow us to relax the assumption that the class distributions are

the same in the training and test data; second, we are investigating what further

gains can be obtained from use of word-lattice recognition hypotheses and rational

kernels (Haffner et al. 2003; Cortes et al. 2004). We expect to be able to report on

both of these issues in the near future.

7.4 Dialogue management

The fully declarative dialogue management framework that we have implemented is

applicable to any domain, like ours, where the dialogue state can be fully specified.

If this condition is met, our method is simple to implement, and offers a clean and

robust treatment of correction and confirmation moves. Perhaps even more signif-

icantly, it also permits systematic regression testing of the dialogue management

component as an isolated module.

7.5 General

The challenge of creating a dialogue system to support procedure execution on the

ISS posed a number of interesting research problems. It also demanded production

of a prototype system robust enough to pass the rigorous software approval process

required for deployment in space. We have now reached a point in the project where

we think we can claim that the research problems have been solved. The system

as a whole performs solidly, and people both inside and outside NASA generally

experience it as a mature piece of production-level software. This includes several

astronauts with first-hand experience of using other procedure viewers during space

missions.

As described earlier, we have been able to carry out detailed testing of the indi-

vidual system components. We would now like to address the bottom-line question,

namely whether Clarissa actually is an ergonomic win compared to a conventional
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viewer. Obviously, hands- and eyes-free operation is an advantage. This, however,

must be balanced against the fact that reading from a screen is faster than reading

aloud.

Based on initial studies we have carried out within the development group, our

impression is that tight usability experiments are not straightforward to design; an

astronaut who is using a speech-enabled procedure reader has to make non-trivial

changes in his normal work practices, in order to fully exploit the new technology.

In other words, the challenge is now to learn how to work efficiently together with

a voice-enabled automatic assistant. We are currently discussing these issues with

training and work practice groups at NASA, and hope to be able to report on them

in a later paper.

Acknowledgements

Work at ICSI, UCSC and RIACS was supported by NASA Ames Research Center

internal funding. Work at XRCE was partly supported by the IST Programme of

the European Community, under the PASCAL Network of Excellence, IST-2002-

506778. Several people not credited here as co-authors also contributed to the im-

plementation of the Clarissa system: among these, we would particularly like to

mention John Dowding, Susana Early, Claire Castillo, Amy Fischer and Vladimir

Tkachenko. This publication only reflects the authors’ views.

References

Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., and Stent, A. (2000). An
architecture for a generic dialogue shell. Natural Language Engineering, Special Issue
on Best Practice in Spoken Language Dialogue Systems Engineering, pages 1–16.

Bennett, P. (2003). Using asymmetric distributions to improve text classifier probability
estimates. In Proceedings of the 26th ACM SIGIR Conference, Toronto, Ontario.

Carter, D. (2000). Choosing between interpretations. In Rayner, M., Carter, D., Bouillon,
P., Digalakis, V., and Wirén, M., editors, The Spoken Language Translator. Cambridge
University Press.

Cortes, C., Haffner, P., and Mohri, M. (2004). Rational kernels: Theory and algorithms.
Journal of Machine Learning Research, pages 1035–1062.

Dowding, J. and Hieronymus, J. (2003). A spoken dialogue interface to a geologist’s field
assistant. In Proceedings of HLT-NAACL, Edmonton, Alberta.

Duda, R., Hart, P., and Stork, H. (2000). Pattern Classification. Wiley, New York.
Haffner, P., Cortes, C., and Mohri, M. (2003). Lattice kernels for spoken-dialog classifica-

tion. In Proceedings of ICASSP 2003, Hong Kong.
Joachims, T. (1998). Text categorization with support vector machines: Learning with

many relevant features. In Proceedings of the 10th European Conference on Machine
Learning, Chemnitz, Germany.

Joachims, T. (2005). http://svmlight.joachims.org/. As of 15 March 2005.
Knight, S., Gorrell, G., Rayner, M., Milward, D., Koeling, R., and Lewin, I. (2001). Com-

paring grammar-based and robust approaches to speech understanding: a case study.
In Proceedings of Eurospeech 2001, pages 1779–1782, Aalborg, Denmark.

Larsson, S. and Traum, D. (2000). Information state and dialogue management in the
TRINDI dialogue move engine toolkit. Natural Language Engineering, Special Issue on
Best Practice in Spoken Language Dialogue Systems Engineering, pages 323–340.



28 M. Rayner and others

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C. (2002). Text
classification using string kernels. Journal of Machine Learning Research, pages 419–
444.

Martin, D., Cheyer, A., and Moran, D. (1998). Building distributed software systems with
the open agent architecture. In Proceedings of the Third International Conference on
the Practical Application of Intelligent Agents and Multi-Agent Technology, Blackpool,
Lancashire, UK.
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