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ABSTRACT

We consider fitting a straight line to data when the variances are not

constant. In most fields, it is fairly common folklore that how one

estimates the variances does not matter too much when estimating the

regression function. While this may be true, most problems do not stop with

estimating the slope and intercept. Indeed, the ultimate goal of a study may

be a prediction or a calibration. We show by an example that how one handles

the variance function can has large effects. The point is almost trivial,

but so often ignored that it is worth documenting. Additionally, this points

out that one ought to spend time trying to understand the structure of the

variability, a theoretical field that is not particularly well developed.
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1 INTRODUCTI ON

Consider a heteroscedastic regression model, in which we observe N pairs

(y,x) following the model

(1.1 )

(1. 2)

E(ylx) = f(x,P) ;

Standard Deviation(ylx) = ag(x,p,9)

While our remarks hold generally, in what follows it suffices to consider the

special case of linear regression for the mean and the power of the mean model

for the standard deviation, i.e.,

(1. 3) g(x,P,9) 9
f(x,P) .

When 9 0, we have the homoscedastic regression model, and unweighted least

squares will ordinarily be used to estimate p. For other values of 9,

generalized least squares can be used to estimate p, see Carroll & Ruppert

(1987) for a discussion and a review of the literature. Generalized least

squares is weighted least squares with estimated weights. The version of

generalized least squares used here for each 9 is fully iterated reweighted

least squares, sometimes called quasi-likelihood, see McCullagh & NeIder

(1983). In practice, 9 is unkown and must be estimated. The theory of such

estimation is given by Davidian & Carroll (1986).

The common folklore theorem of generalized least squares states that as

long as one's estimate 9 of 9 is root-N consistent, the resulting generalized

least squares estimate has the same asymptotic distribution as if 9 were known.
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See Judge, et al (1985) and Carroll & Ruppert (1982, 1987) for references and

proofs. Indeed, any generalized least squares estimate has the same limit

distribution as weighted least squares based on the correct weights, i.e., the

inverse of the square of (1.2).

The folklore theorem has an analogue in practice.

regression model with a reasonably sized data set, since unweighted least

squares is consistent its fitted values rarely differ much from the fitted

values from a generalized least squares fit. Consequently, the usual practice

is to treat the estimation of the variance function g(x,P,9) fairly cavalierly,

if at all. To quote Schwartz (1979), "there is one point of agreement among

statistics texts and that is the minimal effect of weighting factors on fitted

regression curves. Unless the variance nonuniformity is quite severe, the

curve fitted to calibration data is likely to be nearly the same, whether or

not the variance nonuniforming is included in the weighting factors". The

narrow focus on estimating the mean is misplaced, as Schwartz later notes, see

also Garden, et al (1980). Sometimes the variance function is itself of

importance. Box & Meyer (1985) state that "one distinctive feature of Japanese

quality control improveMent techniques is the use of statistical experimental

design to study the effect of a number of factors on variance as well as the

mean". Other times the variance function essentially determines the quantity

of interest. This occurs, for example, in the estimation of the sensitivity of

a chemical or biochemical assay, see Carroll, Davidian & Smith (1986).

However, there are even more basic problems where the variance function is of

considerable importance, namely prediction and calibration.

It is perhaps trite to state that how well one estimates the variance

function has a large effect on how well one can do prediction and calibration.

It is, however, a point that is rarely taken into account in practice, as any
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review of the (rudimentary) techniques in the assay literature will quickly

show. There are two ways to see this point. The first is through an

asymptotic theory outlined in section 3, where we show that the difference in

the length of a prediction interval between 9 known and unknown is

asymptotically distributed with variance a monotone function of how well one

estimates 9. The second and probably more useful way to see the effect of

variance function estimation is through an example. The large costs involved

in not weighting at all will be evident in this example, and will serve as an

object lesson.

2. CALIBRATION AND PREDICTION

Calibration experiments start with a training or calibration sample

(Y1 ,X1 ), ... ,(YN,xN) and then fit models to the mean and variance structures.

The real interest lies in an independent pair (Yo'~)' Sometimes ~ is known

and we wish to obtain confidence intervals for Yo; this is prediction. Other

times, Yo is easily measured but ~ is unknown and inference is to be made

about it, see Rosenblatt & Spiegelman (1982).

For example, in an assay x might represent the concentration of a

substance and y might represent a counted value or intensity level which varies

with concentration. One will have a new value Yo of the count or intensity and

wish to draw inference about the true concentration~. The calibration sample

is drawn so that we have a good understanding of how the reponse varies as a

function of concentration. The regression equation relating the response to
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concentration is then inverted to predict the concentration from the observed

response.

For the remainder of this section we will assume that the responses are

normally distributed, although this can be relaxed. Given a value ~, the

standard point estimate of the response Yo is f(~,fl). Let flG be a generalized

least squares estimate, and define

where ffl is the derivative of f with respect to p. For large calibration data

sets, the variance in the error made by prediction is

(2.1 )

Note that if the size N of the calibration data set is large, then the error in

prediction is determined predominately by the variance function

2 2
a g (f(~ fl),~,9),,

and not by the calibration data set itself.

confidence interval for the response Yo is given by

An approximate (1~)100%
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(2.2)

N-p
where tl~/2 is the (1~/2) percentage point of a t-distribution with N-p

degrees of freedom. For large sample sizes, this interval becomes

(2.3)

The prediction interval (2.2) is only an approximate (1~)100% confidence

interval because the function qN is not known but rather must be estimated.

The effect of ignoring the heterogeneity can be seen through examination

of (2.3) .
A 2

If a L is the unweighted mean squared error, then for large samples

we have the approximation

A2 2 2 2 N-1 ~N 2a L iii!5 a g = a ~. 1 g (x.,jJ,e)mean 1= 1

Thus the unweighted prediction interval for large sample sizes is approximately

(2.4) ( all y in the interval
N-p

f(Xc,jJL) ± tl~/2 a gmean } .

Comparing (2.3) and (2.4) we see that where the variability is small, the

unweighted prediction interval will be too long and hence pessimistic, and

conversely where the variance is large.

Now suppose that we are given the value of the response Yo and wish to

estimate and make inference about the unknown~. The estimate of ~ is that
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The most common interval estimate of

is the set of all values x for which YO falls in the prediction interval I(x),

i.e.

Calibration interval for ~ = { all x such that Yo e I(x)

where I(x) is given by (2.3) }.

The effect of not weighting is too long and pessimistic confidence intervals

for where the variance is small and the opposite where the variance is

mean.

large. As far as we know, little work has been done to determine whether one

can shorten the calibration confidence interval by making more direct use of

the variance function.

3 . ASYMPTOII CS

Assume throughout that the data are symmetrically distributed about their

Let PG be any generalized least squares estimate of P based on an

estimate of 9, call it 9 say. Davidian & Carroll (1986) introduce a class of

estimators which depend on the data only through PG, the design {xi}' and

either sample variances from replicates at each design

transformations of the squared residuals

point or on

This class of estimators includes most methods in the literature, see Judge, et
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Davidian & Carroll (1986) show that all members of their class of

estimators have the asymptotic expansion

(3.1)

In (3.1), a is a fixed vector and W
N

is asymptotically normally distributed.

Because the observations have symmetric distribution, WN is asmptotically

uncorrelated with PG.

Let PG(9) and PG(9) be generalized least squares estimates of P with 9

known and unknown respectively, and let 0(9) and 0(9) be the correspnding

estimates of o. The length of the prediction intervals with 9 known and

unknown are proportional to L(9) and L(9) respectively, where

The random variable

.dL N1/ 2{ L(9) - L(9) } /0

describes how well one approximates the length one would use if 9 were known.

Intuitively, we would like .dL to have smallest possible variability.

THEOREM: Suppose that WN in (3.1) is asymptotically normally distributed with

mean zero and covariance C = C(9) depending on the method of estimating 9.

Then, under regularity conditions, .dL is asymptotically normally distributed

with variance an increasing function of C(9).
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NOTE The Theorem remains valid if ~L is the normalized difference in length

between the interval with 9 unknown and the interval with completely specified

variance function.

PROOF (Sketch) It is easily seen that in the definition of L we may replace

qN by g. Further, ~L = A1 + A2 + A3 , where

1/2 A A A

A1 = N g("o,,6(9),9) {a(9) - a(9)}/a

N
1/2 {~(9) la} {g(~ ,,0(;) ,9) - g(~ ,,6(9) ,9)}

1/2 A A A A

N {a(9)/a} {g(~,,6(9),9) - g("o,,6(9),9)} .

P
Now, A3~ 0 since, from Carroll & Ruppert (1987), we have that

By a Taylor series.

Lemma A.3 of Carroll, Davidian & Smith shows that for some constant b("o)'

This shows that for some constant c(~).
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The proof is completed by applying (3.1) .

4. AN EXAMPLE

In Chapter 2, section 8, Carroll & Ruppert (1987) present the results of

an assay for the concentration of an enzyme (esterase). There were 113

observations, of which 5 were deleted. The observed concentration of esterase

was recorded and then a binding experiment was undertaken, so that the response

is the count of the number of bindings. These data were given to us by another

statistician and we are unable to give further detail into the background of

the experiment. We do not know whether the recorded concentration of esterase

in

we will assume it has been and thathas been accurately measured, although

there is little if any measurement error this predictor. The lack of

replicates in the reponse is rather unusual in our experience. Since the

response is a count, one might expect Poisson variation, i.e., the power of the

mean model holds with 9 = 0.50. In our experience with assays, such a model

almost always underestimates 9, with values between 0.60 and 0.90 being much

more common: see Finney (1976) and Raab (1981a).

The eventual goal of the study is to take observed counts and infer the

concentration of esterase, especially for smaller values of the latter. As is

typical in these experiments, a calibration or training data set is taken for

which the predictor variable esterase is known as is the counted response.

Carroll & Ruppert (1982) plot the data, which appears reasonably although not

perfectly linear. Actually, the logarithm of the response plotted against the
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logarithm of the predictor may appear more linear to some, and less

heteroscedastic. As in evident from that plot, the data exhibit rather severe

heterogeneity of variance. The Spearman correlation between absolute

studentized residuals and predicted values from an unweighted least squares fit

is p = 0.39 with formal computed significance level ~ 0.0001. Analysis as in

Carroll & Ruppert (1982) indicate that the constant coefficient of variation

model 9 1.0 is reasonable, although a value 9 = 0.9 might be even better.

For 9 = 1.0, the Spearman correlation between absolute studentized residuals

and predicted values is p = -0.10, with significance level 0.29. In Figure I,

we plot kernel regression estimates of the Anscombe studentized residuals,

i.e., the absolute studentized residuals to the power 2/3, see McCullagh &

NeIder (1983). Note that the plots indicate that 9 = 1.0 does a far better job

of accounting for the heteroscedasticity.

In these data, the effect of not weighting should be to have prediction

and calibration confidence intervals which are much too large for small amounts

of esterase and conversely for large amounts. In Figure 2 we plot the 95%

prediction intervals for the count response for unweighted versus weighted

regression: the effect is clear. A similar plot for the calibration intervals

shows the same effect: the unweighted analysis is much too conservative for

small amounts of esterase, and much too liberal for

Oppenheimer, et al (1983) state, "Rather dramatic

observed depending on whether a valid weighted or invalid

is used".

larger amounts. As

differences have been

unweighted analysis

This example shows that the actual prediction intervals are sensitive to

misspecification of the variance function. It should be clear by inference and

the previous section that one should make efforts to estimate the structural

variance parameter 9 as well as possible.
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FIGURE 1

The esterase assay data. This is a plot of the kernel
regression fits to the Anscombe absolute residuals against the
logarithms of the predicted values. The unweighted least
squares fit is the solid line, while the generalized least
squares fit for the constant coefficient of variation model is
the dashed line. Endpoint effects have been ajusted for by
selective deletion.

Figure 2

assay data. These are the 95% prediction
a new response. The dashed line is unweighted

while the solid line is the constant
variation fit. The lower part of the least
has been truncated at zero where necessary.

The esterase
intervals for
least squares,
coefficient of
squares interval


