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This paper describes an architecture for exploiting implicit information about the 
grammar of the languages included in a parallel corpus.  By initially applying 
statistical word alignment and defining an appropriate representation format for 
cross-linguistic structural correspondence, this implicit information can feed a 
system for bootstrapping grammars.  The proposed architecture will be underlying 
in the new PTOLEMAIOS project. 

Dieses Papier beschreibt einer Architektur, mit der die implizit in Parallelkorpora 
enthaltene Information über die Grammatiken der beteiligten Sprachen ausgenutzt 
werden soll.  Wenn vorab eine statistische Wortalignierung angewandt wird und 
ein geeignetes Repräsentationformat für die crosslinguistische 
Strukturkorrespondenz definiert wird, kann diese implizite Information in einem 
Bootstrapping-Ansatz zum Grammatiklernen verwertet werden.  Die 
vorgeschlagene Architektur wird im neuen PTOLEMAIOS-Projekt zur Anwendung 
kommen. 

1. Introduction 

In this programmatic paper, an architecture for grammar learning based on 
parallel corpora is outlined.  This proposed architecture is the target for the 
PTOLEMAIOS project.1  More concretely, the project goal is to develop a formal 
architecture and implement a software system that allows one to train a syntactic 
grammar for a language L from a parallel corpus including L and multiple other 
languages, for which a relatively small set of sentences has been hand-annotated 
for syntactic correspondences across the languages.  The resulting grammar 
should be robust and have a broad coverage, while generally providing reliable 
analyses at the level of (at least clause-local) head-dependent relations; this will 
                                           
1 PTOLEMAIOS  is for “Parallel Text-based Optimization for Language Learning—Exploiting 

Multilingual Alignment for the Induction of Syntactic Grammars.”  The project has been 
accepted in the Emmy Noether program of the DFG (German Research Foundation); this 
means that a junior research group led by the author will be funded at the Saarland 
University in Saarbrücken. 



make the grammar applicable in NLP applications that involve 
syntactic/semantic parsing at moderate depth, such as information extraction, 
question answering, or advanced statistical machine translation. 

We can also phrase the project goal as a methodological challenge: to develop 
a formal framework for grammar learning which is sophisticated enough to 
allow for the integration of insights and assumptions from linguistic theory, and 
at the same time surface-oriented, robust, and computationally efficient enough 
so it can be applied on large amounts of real corpus data, without presupposing 
time-intensive manual annotation of more than a small subset of the data. We 
expect that with this methodological goal, our project results will transcend the 
immediate engineering achievements and contribute to our general 
understanding of the learnability of linguistic knowledge.  In particular, our 
software architecture will serve as an empirical testbed for linguistic 
representation systems (e.g., of lexical classes, functional/lexical category 
distinctions, morphological marking, argument structure, etc.) with respect to 
learnability properties-an aspect for which so far it has been very hard to test 
theoretical predictions empirically. 

Beyond the technical content of the project, I hope that the interdisciplinary 
nature of the approach will contribute to bridging the gap that has existed 
between the various neighboring disciplines concerned with aspects of language 
learning-a central issue in the cognitive sciences. 

2. Project methodology 

Let us call the initial system architecture we plan to achieve in the project the 
“PTOLEMAIOS I” system.  Figure 1 illustrates the architecture with a flowchart.  
The main input for the PTOLEMAIOS I system is a parallel corpus, including 
translated text in at least two languages.  As additional input, a subset of the 
parallel corpus is annotated with cross-linguistic information about phrasal 
correspondences and an underlying “pseudo meaning representation” which we 
will discuss below. We also use standard NLP preprocessing techniques, such as 
part-of-speech tagging and morphological analysis, to the extent that the 
required resources are available. As additional preprocessing, (i) the parallel 
corpus is sentence-aligned, following the standard algorithm of Gale and Church 
(1991), and (ii), a statistical word alignment is trained using the GIZA++ tool, 
which implements the standard IBM models (Och and Ney (2003)). 



 
Figure 1: The PTOLEMAIOS I architecture  

Besides the preprocessing components, the PTOLEMAIOS I system consists of a 
bootstrapping cycle for improving grammar models learned from the parallel 
corpus. The base learning component (section 2.1) at the core of the cycle 
involves candidate generation (creating generation alternatives to the one 
observed for each language in the corpus) and discriminative training of a 
grammar model. The outer loop (section 2.2) applies the grammar models of 
each stage to the corpus for the creation of a more accurate annotation as the 
basis for the next learning stage. The outer loop uses a noisy channel model for 
“parallel parsing”, inspired by the standard model underlying statistical MT. 

2.1 Base learning in PTOLEMAIOS I 

The central grammar models obtained in the base learning components are log-
linear models that predict for some language L, how likely it is to use a 
particular linguistic realization (let us call it t for “tree”) for a given underlying 
meaning representation m: we get a language-specific model for Pr(t|m). The 



realization of a meaning with the highest probability can be viewed as our 
prediction of the correct grammatical realization of the meaning in L. 

Note that the model is based on an expressive optimization, i.e., the 
comparison of alternative realizations of the same underlying meaning (as it is 
assumed in most linguistic work in Optimality Theory (OT)2), not an interpretive 
optimization as in classical statistical parsing. However, contrary to classical 
OT, we do not use a constraint ranking model, but the more robust probability 
models from statistical NLP. There are strong conceptual arguments for the 
expressive optimization architecture (compare also section 3): the most crucial 
aspect in knowing the syntax of English can be paraphrased as knowing that one 
has to say what did you see?, rather than what saw you? or saw you what? etc. 
In the initial implementation of the base learning component, we can build on an 
existing tool: the YASMET system.3 The crucial points to clarify here are (i) 
what representation formats are used for the underlying meaning m and 
candidate analyses t, and (ii) how to parameterize the learning (in OT terms, 
what constraints to assume). 

2.1.1. Representations 

An important aspect of candidate analyses in OT is the distinction between a 
part defining the surface form and a part defining the underlying form (in 
syntactic OT, this corresponds to the meaning). In the PTOLEMAIOS I 
architecture we use a comparatively simple candidate representation: A 
candidate analysis is characterized by a tree in which the nonterminal symbols 
are augmented with atomic-valued features (from a finite set of features, each 
allowing for values from a finite set); let us call this representation format an 
augmented phrase structure tree (APT). There may be nonterminal symbols that 
do not dominate a terminal symbol; all terminal symbols are dominated by non-
branching preterminal nodes. Consider for example the tree in figure 2, which 
we constructed for the English sentence We will find out all the necessary 
information, taken from the Europarl corpus.  The EN-Nth and EN-Cat features 
encode the surface order of the daughters within the local subtree and the part-
of-speech category of the syntactic head, respectively. Further feature 
distinctions for morphological form, sentence type etc. may be added. In our 
illustrations, only two categories are distinguished in the phrase structure 

                                           
2 For a discussion of directionality in formal OT syntax, see for instance Kuhn 2003. 
3 http://www.fjoch.com/YASMET.html. 



backbone of the feature grammar: clausal nodes (CL) and non-clausal nodes 
(X). 

 

Figure 2: Augmented Phrase Structure Tree 

The flat analysis of the clause-internal and NP-internal structure is motivated 
by the cross-linguistic context in which the analysis is used. We can assume 
very similar trees for translational correspondents as in (1) or the translations in 
(2). 
 
(1) EN We will find out all the necessary information 
 FR Nous chercherons toutes les informations nécessaires 
 We will seek all the information necessary 
 
(2) EN I am not satisfied with what happened 
 DE Nicht einverstanden bin ich jedoch mit  dem was   geschehen  ist 
  not agreeing am I however with that  what happened  has 

We go so far as to assume that translations have the same hierarchical graph 
structure—we may think of this as the consensus representation. Formally, the 
multilingual consensus tree is generated by a variant of an inversion 
transduction grammar (ITG; compare Wu 1997). In the type of transduction 
grammar we assume, there are three ways in which the realization in a particular 
language may differ from the others: it is possible (i) to use different orderings 
of the daughters of a nonterminal, (ii) to use different nonterminal symbols for 
realizing a preterminal, and (iii) to leave certain nonterminal symbols 
unrealized.4 

                                           
4 A fourth option might be added at some point, using a special re-ordering operation for non-

local realization (similar to the subtree cloning operation proposed by Gildea (2003)). 



Given these assumptions we can draw a single graph for all translational 
realizations of a sentence. The graph for (2) in figure 3 includes the English and 
the German tree. (The actual terminal symbols and the sequencing for English is 
shown, but the reader may verify that the German version of (2) can be obtained 
by ordering the sisters in each local subtree according to the DE-Nth feature.)  
We can now specify the candidate analyses for PTOLEMAIOS I. A candidate 
analysis is an augmented phrase structure tree (APT) like in figure 3, including 
information about n other languages from a parallel corpus. The surface part of 
a candidate analysis for language L is simply the word string obtained by 
forming the sequence of the L-Wd feature values when traversing the tree 
according to the order of daughter nodes according to the L-Nth feature. The 
meaning part of a candidate analysis is essentially the consensus tree 
representation. 

 

Figure 3: Candidate analysis for English, including pseudo meaning 
representation based on a German/English corpus 

We define a pseudo meaning representation (PMR) relative to a language L as 
the (in principle unordered) graph obtained from the APT by leaving out all L-
specific features and all terminal nodes. A PMR relative to L may contain nodes 
that have no overt realization in L (e.g., the jedoch node for the PMR for 
English in figure 3).  The meaning part of a candidate defines the expressive 
ompetitors, i.e., the candidate set in discriminative raining: the alternative 
realizations of the underlying PMR, i.e., variants of the hierarchical graph 
structure that may contain different words and a different ordering. 

2.2.1. Parameterization of the expressive competition model. 



Our grammar models determine Pr(t|m) for a particular language L. To estimate 
this conditional probability we apply a log-linear or Maximum Entropy model 
(Ratnaparkhi, 1999). This allows us to use a large number of constraints or 
learning features, which do not have to be statistically independent.  Since many 
aspects of t are fixed by the PMR format that we assume for m, only the 
following information needs to be determined by the model (relative to a 
specific language L): for a nonterminal node, whether or not it gets realized in L, 
and if it does get realized which is the syntactic head daughter, and what is 
relative order of the daughters. For preterminal nodes, the terminal realizing the 
node in language L has to be determined. 

In the flat APT representation, an entire clause is represented as a single 
subtree of depth 1, containing all argument and modifier phrases. Nominal 
phrases or prepositional phrases are also internally flat. Thus, most of the 
systematic cross-linguistic variation in the grammar of clauses and nominal 
phrases is reflected in ordering alternatives and the addition/omission of certain 
function words, i.e., these decisions are local to a subtree of depth 1. Therefore 
we will work with the following separability assumption: up to certain limited 
feature distinctions in our tree representations, the probability Pr(t|m) for the 
entire tree can be separated out into a product of probabilities for local subtrees; 
these can be computed separately and (at least approximately) combined by 
dynamic programming techniques for unification grammars.5 This means that 
the candidate sets that have to be effectively computed and compared are 
comparatively small. 

Since we plan to use a log-linear model, we can use fairly complex 
constraints in the training, reflecting linguistic insights into the levels of 
representation involved. Of course, we do not have access to a true, reliable 
semantic representation; it is a central hypothesis however that information from 
the other languages in the parallel text may be used as a substitute. Thanks to the 
assumption of an expressive optimization we will be in a position to experiment 
with the actual constraint sets assumed in the theoretical OT literature (to the 
extent that they can be adjusted to the specific representations we will assume). 

                                           
5 This is related to locality observations for OT competitions based on extended projections, 

which was made in (Kuhn, 2001). Dynamic programming techniques for log-linear models 
of syntax are discussed by Geman and Johnson (2002). 



2.2 The outer loop in PTOLEMAIOS I 

Where does the PMR information (which is required to learn information about 
the grammar of language L) come from if no full manual annotation of the 
corpus is planned? The answer is that expressive optimization decisions are 
learned using a bootstrapping approach involving several languages. Initially, 
either a small set of manually annotated sentence tuples from the parallel corpus 
is used (indicating clauses and major nominal/prepositional phrases and their 
syntactic heads), or an unsupervised grammar induction process exploiting just 
the statistical word alignment is applied (compare Kuhn (2004)).  

In each bootstrapping cycle, expressive-optimization-based log-linear 
grammar models are trained for each of the languages, using only training data 
for which the PMR has been assigned with high confidence. The result is a 
model for the conditional probability Pr(tL|m). Furthermore, the PMRs are used 
to train an unconditional model for Pr(m), using standard PCFG training on a 
canonical form of the underlying PMR trees with some compiled-out features. 
The models are then (re-)applied to the full training data in “parallel parsing 
mode” (see below), assigning PMRs with a certain confidence. The resulting 
data points for which a PMR tree could be determined with high confidence are 
used as training data for the next bootstrapping cycle of training log-linear 
models for the individual languages. Crosstalk between the grammars and the 
inherent redundancy of parallel corpora leads to an increase of the amount of 
usable training data. 

2.2.1. (Parallel) Parsing with a noisy channel model 

This is the central procedure in the PTOLEMAIOS learning approach. The input to 
the parallel parsing step are corresponding sentences in two or more languages 
from a parallel corpus and statistical word alignment(s) for the sentence tuples. 
The resources used are the unconditional PMR model and a log-linear grammar 
model for each of the languages under consideration. Let us call the models used 
a family of PMR transduction grammars. 

To keep the discussion simple, we will discuss parallel parsing for the case of 
parsing sentences in just two languages; the situation with more languages is 
analogous.  The output of parallel parsing is the most probable PMR underlying 
each pair (or tuple) of input sentences.  The application of the various 
probability models follows the noisy channel model, which is underlying in all 
work on Statistical Machine Translation (MT).  There, the idea is to solve the 



problem of translating, say, from French to English, not by training a direct 
model for translating a given French sentence into an English sentence (finding 
the English sentence e that maximizes Pr(e|f)).  Instead, Bayes’ law is used as in 
(3)6 to transform the problem into an equivalent combination of different 
subproblems, for which separate models are trained: (i) a translation model for 
determining how likely a French sentence is to be a translation of a given 
English source sentence (note that the assumed direction of translation 
underlying the training is reversed: a model for Pr(f|e) is trained), and (ii) a 
translation-independent language model for determining how likely a sequence 
of words is as an English sentence (Pr(e)).  To apply the two models in an actual 
translation task from French to English (!), a third component, a decoder is 
needed, which searches the space of candidate word sequences e to maximize 
the product of the probabilities Pr(f|e)Pr(e).7 
 
(3) a.    argmaxe Pr(e|f) 

 b. = argmaxe 
Pr(f|e) Pr(e) 

Pr(f)  
c.      = argmaxe Pr(f|e) Pr(e) 

Parsing can be viewed as a translation problem too: a sentence in a natural 
language is given, and the output is a translation of the sentence into some 
structural representation format.  In statistical parsing, it is standard to approach 
this translation problem using direct estimation of the probability 
Pr(tree|sentence).8 In the PTOLEMAIOS project, we apply the noisy channel model 
to the parsing problem. In order to find the right tree for a given sentence, we 
search for the tree that maximizes the product Pr(sentence|tree)Pr(tree). The 
idea can be easily generalized to a scenario dealing with several languages (and 
using a pseudo meaning representation (PMR) m instead of the tree, as the 
common goal for parsing all corresponding sentences sL1… sLn (here we show 
the case for two languages):9 

                                           
6 The denominator can be ignored in the step from (3b) to (3c) since it remains constant when 

we are looking for the best e, given a fixed f. 
7 The split of the translation problem in two subproblems gives much more reliable results. 

Many of the strings receiving a high probability in a Pr(e|f) model barely resemble English 
sentences, but since in the noisy channel model the probability is multiplied with the 
probability assigned by a language model (which in turn doesn’t “know” anything about 
translation), the overall result is quite satisfactory. 

8 Typically, models for the joint probability Pr(tree, sentence) are trained; such a model can 
also be straightforwardly applied to compare different possible trees for a given sentence. 

9 The step from (4c) to (4d) makes the assumption that generating a sentence from a PMR in 
one language is independent from generating from the same PMR in other languages. This 



 
(4) a.    argmaxm Pr(m| sL1, sL2 ) 

 b. = argmaxm Pr(sL1, sL2|m) Pr(m) 
Pr(sL1, sL2)  

c. = argmaxm Pr(sL1, sL2|m) Pr(m) 
d.      = argmaxm Pr(sL1|m) Pr(sL2|m) Pr(m) 

 

The scheme involves our conditional grammar models that assign a 
probability to surface realizations in a particular language, given an underlying 
meaning representation (or PMR), and an additional model for the prior 
probability of PMRs (we can call this a “semantic language model”, following 
Miller et al. (1994)). In section 3.2, we will discuss the advantages of applying a 
noisy channel model in parsing.  The actual search in parsing will be performed 
by a chart-based algorithm for parallel parsing (compare e.g., Wu 1997), but for 
space reasons we cannot include the discussion in this paper. 
 

2.3. Evaluation 
Evaluating grammar induction systems (as opposed to treebank-trained 
grammars) is somewhat problematic; no acknowledged standard methodology 
exists (compare van Zaanen et al. (2004), who come to the same conclusion). 
Since in PTOLEMAIOS I, the structural restrictions enforced by the PMR format 
convention are rather limited, this evaluation problem applies in part to our 
project as well. It is a research question for PTOLEMAIOS to identify adequate 
evaluation techniques. We will perform comparative evaluations for two 
variants of parsing: parallel parsing (with a multilingual input) and simple 
parsing with a monolingual input.  A set of evaluation measures commonly 
employed in work on grammar induction is the comparison of the induced 
grammar’s behavior against an existing treebank. Besides such an evaluation 
against structural gold standard representations, we will work on a more task-
oriented evaluation methodology. In collaboration with other projects, we will 
apply the induced grammars in multilingual information extraction or question 
answering tasks. Finally, a highly adequate application scenario, which at an 
advanced stage we will use for evaluation, is the use of parallel parsing of a 
corpus in order to improve statistical word alignment (and ultimately statistical 
MT). By exploiting the phrase correspondences of the most likely PMR, it can 
be expected that a simple word-based alignment can be improved. 
                                                                                                                                    

reflects the assumption that all relevant information is encoded in the PMR (which is of 
course a simplifying assumption, but an important one to make the approach practical). 



3. Discussion of the PTOLEMAIOS methodology 

The PTOLEMAIOS project will develop a novel technique for building the central 
component for NLP systems—grammars.  The technique requires only small 
amounts of hand-annotated text, hence it will be broadly applicable, even to 
languages for which there is no high commercial interest in language 
technology.  For languages like English, the methodology will be interesting 
too, since it can be applied to special sublanguages, such as scientific English of 
a particular community.  

3.1. Applicability of the PTOLEMAIOS grammars  

Initially, the character of the underlying pseudo meaning representation is 
primarily determined by its function as the common part in a comparison of 
(cross-linguistic and language-internal) generation alternatives. However, its 
language-independent character will be an important factor for the broad 
usability of the PTOLEMAIOS grammars in various NLP tasks. The great 
advantage of the grammars resulting from induction with the PTOLEMAIOS 
system is that they produce parallel tree representations in parsing, i.e., they can 
be used directly in multilingual applications such as multilingual information 
extraction, question-answering, and machine translation (for example to 
improve statistical alignment, or in work on hybrid MT systems). 

3.2. Exploitation of a noisy channel model in parsing 

The use of a noisy channel model in parsing (i.e., using a combination of a 
“semantic language model” Pr(m) and a conditional model Pr(s|m) to determine 
the most likely parse/meaning representation m for a given string s) is largely 
unexplored.10  Most statistical parsing approaches take a more direct approach, 
applying a model of Pr(m|s) (or Pr(m, s)). When fully supervised learning is 
applied, the direct approach is of course very natural. However in a weakly 
supervised scenario building on an unannotated corpus, training has to live with 
meaning representations (m) that are not 100% reliable. In contrast, the actual 
sentence s is always known. Incorrectly labelled training data will thus always 
cause wrong predictions if we estimate and apply Pr(m|s) directly, whereas we 
may be luckier if we estimate Pr(s|m) and use it in a noisy channel model: Pr(m) 
may be low for incorrect meaning representations, so the better alternative may 

                                           
10 But compare (Miller et al., 1994). 



indeed win. This presupposes of course that we have a broader empirical basis 
for estimating the semantic language model Pr(m) (otherwise it would always 
suffer from the same labeling mistakes). The PTOLEMAIOS hypothesis is that 
using a multilingual parallel corpus will provide this additional empirical 
breadth. For training a model Pr(m), there are various ways of extending the 
training data beyond what is usable for training the conditional model for a 
particular language: the consensus requirement may be relaxed, so sentences for 
which no high-confidence PMR can be obtained using, say 11 languages, but for 
which there is a consensus among 4 or 5 languages, could be used in training the 
language-independent model for PMRs. This may expand the empirical basis 
considerably, so we can use more fine-grained learning features, e.g., 
lexicalization features, which may be too sparsely instantiated for the language-
specific grammar models. 

3.3. A (more) realistic model of the interplay of cognitive systems 

The envisaged noisy channel model thus approximates  very basic split of 
cognitive systems and information sources involved in human sentence 
processing: as an input sentence s in language L is parsed, seeking to obtain the 
correct meaning m for it that was intended by the speaker, (i) grammatical 
knowledge (linguistic competence) is applied (i.e., the language-specific 
grammar model Pr(s|m)), and (ii) plausibility of the arising meaning 
representation m is checked, taking into account contextual and encyclopaedic 
knowledge and making inferences as required. Part (ii) is modeled rather 
crudely by a context-independent statistical distribution Pr(m), but note that the 
isolation of this group of knowledge sources is already a considerable 
conceptual advance over classical statistical parsers which indistinguishably 
accumulate grammar-specific knowledge, general world knowledge (reflected 
by certain patterns observed in the corpus) and domain-specific knowledge. 
Besides the advantage of being able to train the semantic language model on 
larger amounts of data, the conceptual split of models for different cognitive 
resources will facilitate error analysis and the improvement of the various 
subparts of the model. 

The combination of knowledge sources (i) and (ii) leads to an infinite search 
space;11  this means that a heuristic search procedure is required: the decoder. 
This is the technological correspondence to (iii) the performance system in 

                                           
11 Any meaning whatsoever is a candidate for the correct m. 



human sentence processing (which also doesn’t cover the full search space of 
the competence grammar). 

4. Conclusion 

In this paper, the system architecture and structural representation format that 
we plan to use in the PTOLEMAIOS project was outlined.  The project will be of 
both theoretical and practical interest, as it addresses computational and 
representational issues in grammar learning and learnability, and it will lead to 
an implemented system for bootstrapping robust grammars for language-
technological applications like Information Extraction, Question Answering and 
Machine Translation. 
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