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Abstract
Invertible programming occurs in the area of data conversion where
it is required that the conversion in one direction is the inverse of
the other. For that purpose, we introduce bidirectional arrows (bi-
arrows). The bi-arrow class is an extension of Haskell’s arrow class
with an extra combinator that changes the direction of computation.

The advantage of the use of bi-arrows for invertible program-
ming is the preservation of invertibility properties using the bi-
arrow combinators. Programming with bi-arrows in a polytypic or
generic way exploits this the most. Besides bidirectional polytypic
examples, including invertible serialization, we give the definition
of a monadic bi-arrow transformer, which we use to construct a
bidirectional parser/pretty printer.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms Algorithms

Keywords Haskell, Arrows, Invertible program construction,
Polytypic programming.

1. Introduction
Arrows [11] are a generalization of monads [21]. Just as mon-
ads, arrows provide a set of combinators. They make it possible
to combine functions in a very general way. In principle, the com-
binators assume very little about the functions to combine. In fact,
these functions may even comprise side-effects. The main appli-
cation areas of arrows are in the field of interactive programming
and data conversion. More specifically, extensive applications have
been made in the areas of user interfaces [3], reactive programming
[9], and parser combinators [13].

For the general area of data conversion, it may be important
to prove invertibility of a specified algorithm. This is, for instance,
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directly the case in encryption, serialization, marshalling, compres-
sion, and parsing but also more indirectly in the area of data base
transactions where roll-backs may have to be performed.

The goal of our work is to set up an arrow-based framework for
the specification of invertible algorithms. We start with extending
the monotypic unidirectional framework of arrows to a monotypic
bidirectional framework of bidirectional arrows, bi-arrows.

In particular, we represent a pair of conversion functions as a
single arrow, such that we can specify both conversion functions
by one definition. The advantage of such a single definition is that
it reduces the amount of code needed for each conversion pair,
because more code can be reused from the arrow library. Basically,
one specifies the conversion in one direction (usually the more
involved case) and one gets the inverse conversion almost for free.
For instance, by specifying a parser one also specifies the pretty
printer. The price to pay is that specifying the parser becomes a bit
more complicated.

The advantages of programming with arrows and inversion are
exploited best in a polytypic or generic framework. Therefore, we
extend our monotypic bidirectional framework to the polytypic
context. In this context we show how to define several essential
combinators and bi-arrow transformers. We give several smaller
polytypic examples including invertible (de)serialization. We also
discuss how this can be done for the larger example of parsers and
pretty-printers.

More specifically, the contributions of this paper are the follow-
ing.

• We extend the framework of arrows to support bidirectional
arrows.

• Our approach explicitly uses embedding-projection arrows.
• Our approach is suitable for monotypic and polytypic conver-

sion functions.
• We show how to define pairs of conversion functions together in

one single definition. We show that specifying one direction of
conversion also specifies the other direction. We present several
monotypic and polytypic examples of such definitions.

We use the pure lazy functional language Haskell [17] in our ex-
amples. Polytypic examples use Generic Haskell [14], the generic
programming extension for Haskell. The code can be downloaded
from http://www.cs.ru.nl/A.vanWeelden/bi-arrows/. The
work can just as easily be expressed in Clean [18] using its built-in
generics [1]. We assume general knowledge of arrows and poly-
typic programming, and we will only briefly recall relevant defini-
tions and techniques.



The next section (section 2) introduces bidirectional arrow com-
binators. A small monotypic invertible program example is given
in section 3. This is done by using embedding-projection arrows,
which are also introduced in that section.

In section 4 the framework is used in a polytypic context and
we introduce invertible arrows with state. We present polytypic
traversals (mappings) on bi-arrows and state arrows. These state
arrows are used in section 5 to create a somewhat larger example
performing (de)serialization of data, based on the structure of a
type.

Section 6 introduces monadic programming with bi-arrows.
Ways to deal with failure in bi-arrows are introduced and a method
to lift monads to bi-arrows is given. An application of bi-arrows,
consisting of a parser and a pretty-printer, is created in section 7.
The example uses a combination of state, monadic, and embedding-
projection arrows.

Finally, section 8 discusses related work and section 9 concludes
and mentions prospects for future work.

2. From arrows to bidirectional arrows
This section introduces a bidirectional framework that consists of a
set of reversible arrow combinators. These combinators are based
on the arrow combinators defined by Hughes [11].

First, we will recall shortly the standard arrow framework (sec-
tion 2.1). Then we show how these laws have to be adapted for our
dyadic bi-arrows framework (section 2.2). Finally, we give specific
inversion laws for bi-arrows (section 2.4). In section 3 we show
how bidirectional arrows are constructed using a small motivating
example.

2.1 Arrows
We briefly recall Hughes’s definitions expressed in Haskell as a
type constructor class.

class Arrow arr where
arr :: (a → b) → arr a b −−pure
( ≫ ) :: arr a b → arr b c → arr a c −−infixr 1
first :: arr a b → arr (a , c) (b , c)
second :: arr a b → arr (c , a) (c , b)
( ∗∗∗ ) :: arr a c → arr b d →

arr (a , c) (b , d) −−infixr 3

As usual, the definition of ∗∗∗ and second can be expressed in
terms of first (corresponding to Haskell’s default definition of
∗∗∗ and second):

f ∗∗∗ g = first f ≫ second g
second f = arr swap ≫ first f ≫ arr swap

swap = snd ‘split‘ fst
split f g = λt → (f t , g t)

To allow case distinction Hughes shows that a new combinator
is needed. He, therefore, introduces the choice arrow:

class Arrow arr ⇒ ArrowChoice arr where
left :: arr a b → arr (Either a c) (Either b c)
right :: arr b c → arr (Either d b) (Either d c)
(+++ ) :: arr a c → arr b d →

arr (Either a c) (Either b d) −−infixr 2

As with ∗∗∗ and second, +++ and right can be expressed in terms
of left, and Haskell’s prelude function either:

f +++ g = left f ≫ right g
right f = arr mirror ≫ left f ≫ arr mirror

mirror = Right ‘either‘ Left

By instantiating the arrow class for → we can use ordinary
functions as arrows.

instance Arrow (→) where
arr f = f
f ≫ g = g . f
first f = f <*> id

instance ArrowChoice (→) where
left f = f <+> id

Here <*> and <+> are the usual product and sum operations for
functions:

(<*>) :: (a → b) → (c → d) → (a , c) → (b , d)
f <*> g = (f . fst) ‘split‘ (g . snd)

(<+>) :: (a → b) → (c → d) →
Either a c → Either b d

f <+> g = (Left . f) ‘either‘ (Right . g)

In literature [11, 15, 16], one can find several other combinators
and also some derived combinators that make programming with
arrows easier, such as:

( ≪ ) :: Arrow arr ⇒
arr c b → arr b a → arr c a −−infixl 1

f ≪ g = g ≫ f

Here, we refrain from giving an exhaustive overview.

2.2 Bidirectional arrows
To support invertibility, we extend the arrows with two new combi-
nators:↔ (biarr/bipure) and inv (inverse).

The first one, ↔, is similar to the standard arr but instead
of a single function it takes two functions and lifts them into a
bidirectional arrow (bi-arrow) creating a structure that contains
them both. The intention is that these functions are each others
inverse. The second one, inv, reverses the direction of computation,
yielding the inverse of a bi-arrow, which will boil down to swapping
the two comprised functions.

class Arrow arr ⇒ BiArrow arr where
(↔) :: (a → b) → (b → a) → arr a b −−infix 8
inv :: arr a b → arr b a

We define BiArrow on top of the Arrow class because concep-
tually bi-arrows form an extension of the arrow class. Moreover,
it allows us to use bi-arrows as normal arrows. Since the derived
combinators second and right use the arr constructor to build
the adapters swapA and mirrorA we have to redefine them using↔
to make these combinators invertible. Therefore, we introduce:

secondA f = swapA ≫ first f ≫ swapA
where swapA = swap ↔ swap

rightA f = mirrorA ≫ left f ≫ mirrorA
where mirrorA = mirror ↔ mirror

arrA f = f ↔ const (error ”arr has no inverse”)

where swap and mirror are defined as above.

2.3 Arrow laws for bi-arrows
To reason about programs containing arrow combinators we can
use properties that are specific to arrows, the so-called arrow laws.
The collection of arrow laws is not uniquely defined. The laws we
have taken are a subset of the ones postulated by Hughes [11].

We need some adaptation of the laws for our framework. The
occurrences of arr f are replaced with the corresponding dyadic
operator for bi-arrows: f ↔ gwhere g is intended to be the inverse
of f.



Definition 1 (Composition Laws)

f ≫ (g ≫ h) = (f ≫ g) ≫ h
f1 ↔ g2 ≫ g1 ↔ f2 = (f1 ≫ g1) ↔ (f2 ≫ g2)

idA ≫ f = f = f ≫ idA
where

idA = id ↔ id

Definition 2 (Pair Laws)

first (f ≫ g) = first f ≫ first g
first (f ↔ g) = (f ? id) ↔ (g ? id)

first h≫(id ? f)↔(id ? g) = (id ? f)↔(id ? g)≫first h
first (first f) ≫ assocPA = assocPA ≫ first f

where
assocPA = assoc ↔ cossa
assoc ((x, y), z) = (x, (y, z))
cossa (x, (y, z)) = ((x, y), z)

In categorial terms, the product type is the dual of the sum type.
In general, if a property holds for products, the dual property is
valid for sums. The dual is obtained by systematically replacing
split by either, Left/Right by fst/snd, first by left, ≫ by ≪, and
f ◦g by g◦f . For example, taking the dual of the last product law
leads to the following sum law

left (left f) ≪ assocSA = assocSA ≪ left f

To obtain the dual assocSA of assocPA we first express assoc and
cossa in terms of split, fst and snd.

assoc = (fst◦fst) ’split’ ((snd◦fst) ’split’ snd)
cossa = (fst ’split’ (fst◦snd)) ’split’ (snd◦snd)

Now the transformation leads to assocSA = assocS ↔ cossaS,
where

assocS=(Left ◦Left ) ’either’ ((Left ◦Right ) ’either’ Right )
cossaS=(Left ’either’ (Right ◦Left )) ’either’ (Right ◦Right )

Note that right is also the dual of second, since mirror is the dual
of swap.

Using the laws above several properties can be proven easily.
For example, first idA = idA = second idA is proven by substi-
tuting the definitions for first and second taken from section 2.1
and applying the appropriate laws for first and ≫.

2.4 Inversion Laws
Most importantly, implementations of bi-arrows are proper if they
satisfy some additional inversion laws.

Definition 3 (Inversion Laws)

inv (inv f) = f
inv (f ≫ g) = inv g ≫ inv f
inv (f ↔ g) = g ↔ f
inv (first f) = first (inv f)
inv (left f) = left (inv f)

The last two rules are only appropriate for arrows that are pure
functions. In a more general case, where arrows can have side-
effects (e.g., when monads with internal side effects are lifted to
bi-arrows), it is required that, instead of first and left, cofirst and
coleft respectively are used. These ‘inverse combinators’ are the
categorical duals of first and left. They are needed to revert possible
side-effects of first and left. Throughout the rest of this paper all
arrows will be pure. Hence, we will use the rules above since
they are sufficient for this paper. Nevertheless, for the rest of the

framework no assumptions will be made on the absence of side-
effects.

Of course, when introducing a new instance for one of the arrow
classes defined above we have to guarantee that all the correspond-
ing laws hold. We say that f is a bi-arrow if the composition, pair
and inverse laws hold. Let f be an bi-arrow. Then f is invertible if

inv f ≫ f = idA = f ≫ inv f

The essence of our framework is that invertibility is preserved
by our (bi-)arrow combinators. We are working on finishing the
details of the formal proof of this property, using the various bi-
arrow laws. It will be presented in a separate paper. The emphasis
of this paper will be on introducing the framework and on its
applications.

3. Monotypic programming with bi-arrows
The idea of using bi-arrows is that after specifying an operation in
one direction one gets the inverse of this operation (in the opposite
direction).

In this section we first discuss how to create an invertible defini-
tion using the bi-arrow definitions (section 3.1). Then, we discuss
the inherent differences between functions and bi-arrows (section
3.2). This motivates why we introduce a structure that contains both
functions (section 3.3). Finally, we discuss some problems with the
use of Paterson notation for bi-arrows (section 3.4).

3.1 A motivating example
How easy or difficult is it to define functions by means of the
arrow constructors? In this section we will give an example. Of
course, one has to keep in mind that some functions are not easily
invertible. Take, for instance, a simple function like ++ (append),
which concatenates two lists. It is clear that the inverse cannot be a
function with the same type, since in general there are many ways
to split a list into two parts.

An example of a function that does have an (obvious) inverse
is reverse. We take the standard definition as starting point to
get an arrow based version. We could have lifted reverse to a bi-
arrow using reverse ↔ reverse, but this does not illustrate the
concerns of bidirectional programming.

reverse :: [a] → [a]
reverse [ ] = [ ]
reverse (x:xs) = reverse xs ++ [x]

Case distinction, using arrows, is done by using left and
right, which means that we first have to tag the input with Left or
Right, indicating the empty and non-empty list respectively. Tag-
ging and untagging are done by applying the following bi-arrow,
which forms an isomorphic mapping from lists to Eithers.

list2EitherA :: BiArrow arr ⇒
arr [a] (Either ( ) (a , [a ] ) )

list2EitherA = list_either ↔ either_list
where

list_either [ ] = Left ( )
list_either (x:xs) = Right (x , xs)

either_list (Left ( ) ) = [ ]
either_list (Right (x , xs) ) = x:xs

Now we can give the arrow version of reverse: reverseA.

reverseA :: (ArrowChoice arr , BiArrow arr) ⇒
arr [a] [a]

reverseA = list2EitherA
≫ right (second reverseA ≫ appElemA)
≫ inv list2EitherA



Here appElemA is an adjusted version of append that takes one
element and attaches it to the end of a list. If one specifies invertible
arrows it appears to convenient to use ‘symmetrical‘ versions, i.e.,
arrows that handle the argument and the result symmetrically. This
leads to the following definition of appElemA. We will give an
example of its usage later in this section.

appElemA :: (ArrowChoice arr , BiArrow arr) ⇒
arr (a , [a ] ) (a , [a] )

appElemA = second list2EitherA ≫ liftRSA
≫ right (swapXYA ≫ second appElemA)
≫ inv (second list2EitherA ≫ liftRSA)

The auxiliary arrow liftRSA converts a product–of–sum into a
sum–of–product, and swapXYA exchanges the x and y field of a
nested pair. The last one is defined in terms of assocPA and swapA
introduced in section 2.

liftRSA :: BiArrow arr ⇒
arr (a , Either b c) (Either (a , b) (a , c) )

liftRSA = liftr ↔ rtfil
where

liftr (x , Left y) = Left (x , y)
liftr (x , Right y) = Right (x , y)

rtfil (Left (x , y) ) = (x , Left y)
rtfil (Right (x , y) ) = (x , Right y)

swapXYA :: BiArrow arr ⇒ arr (a , (b , c) ) (b , (a , c) )
swapXYA = inv assocPA ≫ first swapA ≫ assocPA

3.2 Functions are not bi-arrows
Although ReverseA is constructed to be invertible, we cannot use
the inverse of reverse using the → instance for arrows. This means
that the following will not work:

(inv reverseA) [1 , 2 , 3] −−this is a compile time error

This is caused by an absence of an instance of BiArrow for →.
Since ReverseA itself depends on the BiArrow class, we even
cannot write

reverseA [1 , 2 , 3] −−this is also a compile time error

There is no sensible way to define an instance of BiArrow
for →. Of course, one could define ↔ for functions by dropping
the second argument, however, this instance only works in one
direction. For the last two examples this would mean that we would
not get a compile-time error anymore. Instead we would get the
correct result for the latter expression, but evaluation of the first
one would result in a run-time error.

3.3 The embedding-projection bi-arrow transformer
We can circumvent this problem by handling inversion explicitly
via embedding-projection (EP) pairs. See, for instance, [8]. We
generalize the embedding-projections from pairs of functions to
be pairs of arrows. This makes EpT an arrow transformer, i.e., it
enables us to construct bi-arrows on top of existing arrows (partic-
ularly functions). Therefore, our type for embedding projections is
parameterized with an arrow:

data EpT arr a b = Ep {toEp :: arr a b ,
fromEp :: arr b a}

The instances of the (bi-)arrow classes can be defined straight-
forwardly.

instance Arrow arr ⇒ Arrow (EpT arr) where
arr = arrA

f ≫ g = Ep (toEp f ≫ toEp g)
(fromEp g ≫ fromEp f)

first f = Ep (first (toEp f ) ) (first (fromEp f ) )
second = secondA

instance ArrowChoice arr ⇒
ArrowChoice (EpT arr) where

left f = Ep (left (toEp f ) ) (left (fromEp f ) )
right = rightA

instance Arrow arr ⇒ BiArrow (EpT arr) where
f ↔ g = Ep (arr f) (arr g)
inv f = Ep (fromEp f) (toEp f)

To ensure the invertibility preserving property of the EpT bi-
arrow transformer, one should not use the arr because an arrow
constructed with arr has no inverse. We still define the arr func-
tion for EpT, in terms of the ↔ and error (using arrA from the
previous section) to give a more informative run-time error and to
support normal arrow operations.

By adding toEp to the example, we can force the use of the
instance for the (EpT →) arrow:

toEp reverseA [1 , 2 , 3] −−yields [3, 2, 1]
toEp (inv reverseA) [1 , 2 , 3] −−yields [3, 2, 1]

In the same way, we can show an example of appElemA.

toEp appElemA (4 , [1 , 2 , 3]) −−yields (1, [2, 3, 4])

3.4 Paterson notation
The example from the previous section clearly shows that, without
any support, programming with arrow combinators can be quite
complicated.

The notation for arrows as proposed by Paterson [15] can be
helpful because it relieves the programmer from defining a lot of
small adaptor arrows. For example, the definition of appElemA
using this arrow notion becomes:

appElemA = proc (e , xs) → case xs of
[ ] → returnA −≺ (x , e)
(x:xs) → do

(h , t) ← appElemA −≺ (e , xs)
returnA −≺ (x , h:t)

where returnA = arr id

Unfortunately, this syntactic sugar for arrows does not support
invertibility. The translation scheme, as described in [15], uses uni-
directional adaptors that cannot easily be made bidirectional. The
(internal) adaptors are unidirectional, since they are defined using
arr instead of ↔. This is similar to the problem we encountered
defining bi-arrows as an extension of the original arrow class (the
default second also uses arr, hence the introduction of secondA
and the like).

4. Polytypic programming with bi-arrows
In the following sections our framework is used in a polytypic con-
text. First, in section 4.1 we present polytypic traversals (general-
ized mappings). We show how to define the right–to–left traversals
in terms of the left–to–right using duality. Secondly (section 4.2),
we introduce a state arrow transformer, i.e., an arrow implementa-
tion with which arbitrary arrows can be lifted to an arrow support-
ing invertible computations on states.

4.1 Polytypic traversals
Polytypic traversals are generalizations of polytypic mappings.
They are introduced in Jansson and Jeuring [13]. Polytypic map-



pings operate on functions, whereas polytypic traversals operate on
abstract arrows. Thus, mapping is just a special case of traversal.

However, unlike for mapping, the order of traversal of a data
structure now becomes important, due to possible side effects
within the arrow.

We specify the traversal operation using the polytypic program-
ming extension of Haskell: Generic Haskell [14]. Every type, ex-
cept certain predefined/basic types as Int, has a generic representa-
tion using only sums, products, and units. The Generic Haskell pre-
processor can derive1 the code for a polytypic function, as long as
we define the polytypic function for the base instances: Sum, Prod,
and Unit.

mapl{|a , b|arr|} :: (ArrowChoice arr , BiArrow arr ,
mapl{|a , b|arr|}) ⇒ arr a b

mapl{|Unit|} = idA
mapl{|Prod a b|} = inv prodA

≫ mapl{|a|} ∗∗∗ mapl{|b|}
≫ prodA

mapl{|Sum a b|} = inv sumA
≫ mapl{|a|} +++ mapl{|b|}
≫ sumA

prodA :: BiArrow arr ⇒ arr (a , b) (Prod a b)
prodA = fst ‘splt‘ snd ↔ exl ‘split‘ exr

sumA :: BiArrow arr ⇒ arr (Either a b) (Sum a b)
sumA = Inl ‘either‘ Inr ↔ Left ‘junc‘ Right

Some remarks about mapl:

• There is a context restriction on the monotypic type variable
arr. Generic Haskell expects such type variables to be declared
after the polytypic type variables, separated by a |.

• Besides the usual context restrictions on arr there is also a
context restriction over mapl itself. This is due to the fact that
the mapl is polytypic. Usually, these are derived automatically
by Generic Haskell2 and can be omitted.

• The adaptors prodA and sumA would be superfluous if the defi-
nitions of Prod and Sum would coincide with ( , ) and Either.
The splt and junc functions are the Prod and Sum counterparts
of split and either for tuples and Eithers, respectively.

• For clarity reasons we have omitted the cases for constructor
information (i.e., instances for Con and Label) as they are not
essential for the examples in this paper.

Generic Haskell can derive a specific traversal function for any
data type using the schematic representation of that type. In the
present paper we will not need derived instances other than for
types of kind ? → ?. Unfortunately, Generic Haskell does not
yet support the use of generic functions in the context restrictions
of type classes and instances. We simulate this by introducing
a dummy class, for which define the necessary instances in the
obvious way. For types of kind ? → ? this leads to the class Gmapl.

1 There is a bug in Generic Haskell 1.42, which makes the preprocessor
generate ill-typed code when deriving generic function instances for arrows
(or other types of kind ? → ? → ?). As a work around, our source contains
generic function instances for all the types that we use. The Clean version
of the source does derive generic function instances correctly. However,
the Clean compiler 2.1 gives false uniqueness errors when using arrows
with generics. As a work around, we provide a copy of StdGeneric without
uniqueness attributes.
2 There is a bug in Generic Haskell 1.42, which makes it generate an
infinite amount of code when omitting these context restrictions on the
polytypic function itself. The Clean compiler does not require such context
restrictions.

class Gmapl t where
gmapl :: (ArrowChoice arr , BiArrow arr) ⇒

arr a b → arr (t a) (t b)

For instance, we can use polytypic traversal to map the incre-
ment function to a tree of integers, using the following data type
definition for Tree, and instance definition of Gmapl

data Tree a = Leaf a | Node (Tree a) (Tree a)

instance Gmapl Tree where
gmapl = mapl{|Tree|}

Now we can write, again forcing the use of the (EpT →) bi-
arrow:

toEp (gmapl ( (λx → x + 1) ↔ (λx → x - 1)))
(Leaf 1 ‘Node‘ Leaf 2 ‘Node‘ Leaf 3)

−−yields Leaf 2 ‘Node‘ Leaf 3 ‘Node‘ Leaf 4

The way the ∗∗∗ and +++ are defined determines the traversal
order. Basically, the order is left–to–right because ∗∗∗ and +++
give preference to first end left respectively. Analogously, one
can define the traversals using right–to–left variants of our basic
combinators.

Jansson and Jeuring [13] show that such left–to–right and right–
to–left traversals (e.g., mapl and mapr) form a pair of data conver-
sion functions, which are each others inverse. We want to show
here that instead of defining both traversals separately, we can de-
fine one of them as the inverse of the other, using bi-arrows. We
define the mapr (the right–to–left traversal) as the dual of the left–
to–right traversal.

mapr :: (Gmapl t , ArrowChoice arr , BiArrow arr) ⇒
arr a b → arr (t a) (t b)

mapr f = inv (gmapl (inv f) )

toEp (gmapr ( (λx → x + 1) ↔ (λx → x - 1)))
(Leaf 1 ‘Node‘ Leaf 2 ‘Node‘ Leaf 3)

−−also yields Leaf 2 ‘Node‘ Leaf 3 ‘Node‘ Leaf 4,
−−because the order does not matter in this example

4.2 The state bi-arrow transformer
Like monads, arrows can be used to specify computations with side
effects on a state. We will show how to define a state arrow in
our bi-arrow framework. This state arrow will be used later in an
example to define an invertible pair of conversion functions that:
separate a functor into its shape and its contents and combine the
shape and the contents back.

Consider the following arrow transformer, which adds a state
to a given arrow:

newtype StT s arr a b = St {unSt :: arr (a ,s) (b ,s)}
The corresponding instances of Arrow and BiArrow are defined be-
low. This arrow transformer also occurs in [11]. The instances be-
low can be obtained directly from [11] by replacing the unidirec-
tional adapters (defined by means of arr) by bidirectional adapters
using ↔.

instance BiArrow arr ⇒ Arrow (StT s arr) where
arr = arrA
f ≫ g = St (unSt f ≫ unSt g)
first f = St (swapYZA ≫

first (unSt f)
≫ swapYZA)

second = secondA



instance (ArrowChoice arr , BiArrow arr) ⇒
ArrowChoice (StT s arr) where

left f = St (liftLSA ≫
left (unSt f)
≫ inv liftLSA)

right = rightA

instance BiArrow arr ⇒ BiArrow (StT s arr) where
f ↔ g = St (first (f ↔ g) )
inv f = St (inv (unSt f ) )

liftLSA :: (ArrowChoice arr , BiArrow arr) ⇒
arr (Either a b , c) (Either (a , c) (b , c) )

liftLSA = swapA ≫ liftRSA ≫ swapA +++ swapA

swapYZA :: BiArrow arr ⇒ arr ( (a , b) , c) ( (a , c) , b)
swapYZA = assocPA ≫ second swapA ≫ inv assocPA

The method ↔ of the state arrow is implemented using first
and ↔ of the underlying arrow. The composition of state arrows
just composes the underlying arrows.

The instance of StT for the choice arrow is defined with help of
distributivity of the product type over the sum type. As usual, such
a property is specified by constructing an appropriate bi-arrow, in
this case liftLSA, a transformation of liftRSA from section 3.
Again, only minor modifications of the instance declarations given
in [11] were necessary.

4.3 Polytypic shape
We use the state arrow of the previous section to define polytypi-
cally an invertible pair of conversion functions that separate a func-
tor into its shape and its contents and combine the shape and the
contents back. Expressed as ordinary functions the type signatures
of these two functions are:

separate :: Functor f ⇒ f a → [a] → (f ( ) , [a ] )
combine :: Functor f ⇒ f ( ) → [a] → (f a , [a ] )

Instead of defining these functions as primitives, we will use the
invertible state arrow. The data stored in/retrieved from the functor
is passed as a state. For list states, we introduce the getputA arrow.
The getputA arrow operates on this state and is used to get an input
element from or to add an element to the state.

getputA :: BiArrow arr ⇒ StT [a] arr ( ) a
getputA = St (get ↔ put)

where
get ( ( ) , x:xs) = (x , xs)
put (x , xs) = ( ( ) , x:xs)

Since our shape operations are each others inverse, we only have
to specify one of them explicitly. We choose to define the combine
function by using the polytypic traversals introduced in section 4.1.

combine :: (Gmapl t , ArrowChoice arr , BiArrow arr) ⇒
StT [a] arr (t ( ) ) (t a)

combine = gmapl getputA

separate :: (Gmapl t , ArrowChoice arr , BiArrow arr)⇒
StT [a] arr (t a) (t ( ) )

separate = inv combine

The following example illustrates how we can use combine to
fill an empty tree structure with integers.

(toEp . unSt) combine
(Leaf ( ) ‘Node‘ Leaf ( ) ‘Node‘ Leaf ( ) , [3 , 4 , 5])

−−yields Leaf 3 ‘Node‘ Leaf 4 ‘Node‘ Leaf 5

(toEp . unSt) separate
(Leaf 3 ‘Node‘ Leaf 4 ‘Node‘ Leaf 5)

−−yields (Leaf () ‘Node‘ Leaf () ‘Node‘ Leaf (),
−−[3, 4, 5])

5. Polytypic (de)serialization
In this section we present an example of encode-decode pair of
functions that implement structure-based encoding and decoding
of data.

The packing function takes data and converts it into a list of bits
(Booleans), whereas the unpacking function recovers data from a
list of bits. The bit representation directly represents the structure
of data using only static information (the type of the data), not
dynamic information (the value stored in a data structure), like
some other compression methods do.

The choice which conversion should be specified is again arbi-
trary. We pick the decoder, which reads the bits from the input, and
produces the original data structure. To obtain such a decoder for
any data type, we will give a polytypic specification.

Basic types, like Char and Int, are encoded with a fixed number
of bits. Although we could specify this primitive operation by
means of arrow combinators, it appears to be easier to define it
as a pure function, and to lift it to an arrow.

int2KBitsA :: BiArrow arr ⇒ Int → arr Int [Bool]
int2KBitsA k = int2bits k ↔ bits2int k

where
int2bits 0 n = [ ]
int2bits k n = odd n:int2bits (k-1)

(n ‘div‘ 2)
bits2int 0 bs = 0
bits2int k (True:bs) = 1+bits2int (k-1) bs*2
bits2int k (False:bs) = bits2int (k-1) bs*2

Now, the decoder for integers can be defined. It expects a list
of bits, which has to be taken from the state. This is done by first
producing the shape of the list and then by filling this list using the
combine arrow of the previous section.

decodeInt :: (ArrowChoice arr , BiArrow arr) ⇒
Int → StT [Bool] arr ( ) Int

decodeInt k = createShapeA k ≫ combine
≫ inv (int2KBitsA k)

createShapeA :: BiArrow arr ⇒ Int → arr ( ) [ ( ) ]
createShapeA size = create ↔ etaerc

where
create ( ) = replicate size ( )
etaerc l | length l == size = ( )

The encoder for integers is the dual of the decoder for integers:

encodeInt :: (ArrowChoice arr , BiArrow arr) ⇒
Int → StT [Bool] arr Int ( )

encodeInt k = inv (decodeInt k)

The decoder defined as a polytypic function is:

decode{|t|arr|} :: (ArrowChoice arr , BiArrow arr ,
decode{|t|arr|}) ⇒ StT [Bool] arr ( ) t

decode{|Unit|} = voidUnitA
decode{|Int|} = decodeInt 32
decode{|Char|} = decodeInt 8 ≫ toEnum ↔ fromEnum
decode{|Bool|} = getputA
decode{|Prod a b|} = dupVoidA

≫ decode{|a|} ∗∗∗ decode{|b|}



≫ prodA
decode{|Sum a b|} = getputA ≫ bool2EitherA

≫ decode{|a|} +++ decode{|b|}
≫ sumA

voidUnitA is the conversion between () and Unit, dupVoidA du-
plicates the input ( ) , and bool2eitherA is the isomorphism be-
tween the boolean type and the co-product of voids.

voidUnitA :: BiArrow arr ⇒ arr ( ) Unit
voidUnitA = (λ( ) → Unit) ↔ (λUnit → ( ) )

dupVoidA :: BiArrow arr ⇒ arr ( ) ( ( ) , ( ) )
dupVoidA = (λ( ) → ( ( ) , ( ) ) ) ↔ (λ( ( ) , ( ) ) → ( ) )

bool2EitherA :: BiArrow arr ⇒
arr Bool (Either ( ) ( ) )

bool2EitherA = bool2either ↔ either2bool
where

bool2either b = i f b then Right ( )
else Left ( )

either2bool (Left ( ) ) = False
either2bool (Right ( ) ) = True

The polytypic decoder is programmed as follows.

• Since Unit can be encoded with zero bits; the case for Unit just
returns Unit.

• The case for Booleans just reads one bit.
• The case for integers reads a 32-bit integer with help of the

integer decoder defined before.
• The case for characters reads an 8-bit integer and converts into

a character.
• The case for pairs first makes two units out of one. Then it

applies the decoding componentwise.
• Finally, the case for the sum type first reads one bit to determine

whether the left of the right branch should be decoded next.

Using duality we get the encoder for free from the definition of
the decoder.

encode{|t|arr|} :: (ArrowChoice arr , BiArrow arr ,
decode{|t|arr|}) ⇒ StT [Bool] arr t ( )

encode{|t|} = inv decode{|t|}
For example, to encode a tree containing the integers 1, 2, and 3 we
simply write:

(toEp . unSt) encode{|Tree Int|}
(Leaf 1 ‘Node‘ Leaf 2 ‘Node‘ Leaf 3 , [ ] )

The output consists of 101 bits: 96 for the integers and 5 bits for
the nodes and leaves of the tree structure.

6. Monadic programming with bi-arrows
Up to now, our examples did not have to deal with failure. Of
course, the decoding algorithm will not terminate properly if the
input data does not correspond to a value, e.g., if some of the bits
are missing. For expressing the algorithm this was not essential, but
in a real application such an decoding function is not acceptable
because it might lead to uncontrolled termination. On the other
hand, it is much harder to preserve invertibility if functions are able
to fail.

In this section we present appropriate techniques to handle
failure without losing invertibility completely. We first introduce
bi-arrow definitions for polytypic zipping/unzipping (section 6.1).
Then, we define the class ArrowZero (section 6.2) and show how

in certain cases it can be used for the zipping example. To obtain a
useful implementation of this new class, section 6.3 adds a monadic
arrow transformer to our arsenal. As a short example, this monadic
bi-arrow is applied to the Maybe monad, which adds support of
graceful failure to the polytypic zip function. In section 7 we will
extend our collection of arrow classes further with a combinator
that, when applied to two arrows, will choose the second one if the
first one fails.

6.1 Partial polytypic zipping
First, we introduce a polytypic function that is closely related to the
polytypic traversals of section 4.1: polytypic zipping/unzipping. It
cannot deal with failure, which we will fix later on.

A binary zipping takes two structures of the same shape and
combines them into a single structure. Unzipping does the opposite.
In our bidirectional framework, we get unzipping for free if we
define zipping as a bi-arrow. This can be done as follows:

zip{|a , b , c|arr|} :: (ArrowChoice arr , BiArrow arr ,
zip{|a , b , c|arr|}) ⇒ arr (a , b) c

zip{|Unit|} = inv dupUnitA
zip{|Prod a b|}= unprod2A ≫ zip{|a|}∗∗∗zip{|b|} ≫ prodA
zip{|Sum a b|} = unsum2A ≫ zip{|a|}+++zip{|b|} ≫ sumA

dupUnitA :: BiArrow arr ⇒ arr Unit (Unit , Unit)
dupUnitA = (λUnit → (Unit , Unit) )

↔ (λ(Unit , Unit) → Unit)

unprod2A :: BiArrow arr ⇒
arr (Prod a b , Prod c d) ( (a , c) , (b , d) )

unprod2A = dorp ↔ prod
where

dorp (x1:∗:x2 , y1:∗:y2) = ( (x1 , y1) , (x2 , y2) )
prod ( (x1 , y1) , (x2 , y2) ) = (x1:∗:x2 , y1:∗:y2)

unsum2A :: BiArrow arr ⇒
arr (Sum a b ,Sum c d) (Either (a ,c) (b ,d) )

unsum2A = mus ↔ sum
where

mus (Inl l1 , Inl l2) = Left (l1 , l2)
mus (Inr r1 , Inr r2) = Right (r1 , r2)

sum (Left (l1 , l2) ) = (Inl l1 , Inl l2)
sum (Right (r1 , r2) ) = (Inr r1 , Inr r2)

Just as encode is the inverse of decode, we define unzip as the
inverse of zip.

unzip{|t|arr|}:: (ArrowChoice arr , BiArrow arr , zip{|t|})
⇒ arr c (a , b) → arr (t c) (t a , t b)

unzip{|t|} f = inv (zip{|t|} (inv f) )

Note that this definition for zip is partial: when two structures
do not have the same shape the result of zipping these structures is
undefined. Obviously, the inverse of zipping is a total function.

toEp (unzip{|Tree|} idA)
(Leaf (1 , ’a’) ‘Node‘ Leaf (2 , ’b’) )

−−yields
−−Leaf 1 ‘Node Leaf 2, Leaf ’a’ ‘Node‘ Leaf ’b’

Sometimes it is necessary that zipping itself is total, i.e., it
should check whether the input structures match and handle it
gracefully if not. This is usually done by returning a Maybe value
in which Nothing indicates that the structures were not of the same
shape/size.



However, in this case the inverse, unzipping, becomes partial: if
zipping returns Nothing it is in general impossible to reconstruct
the non-matching argument structures.

6.2 Bi-arrows with zero
To deal with operations that can fail we use the ArrowZero class.

class Arrow arr ⇒ ArrowZero arr where
zeroArrow :: arr a b

The arrow zeroArrow is the multiplicative zero for composition
with pure (bi-)arrows, i.e.,

f ≫ zeroArrow = zeroArrow = zeroArrow ≫ f

Clearly, this law excludes that zeroArrow has an inverse. How-
ever, this does not imply that we completely lose invertibility when
zeroArrow is used: in many cases the left inverse of a failing op-
eration still exists. More formally, an arrow f if left-invertible if
inv f ≫ f = idA

The following derived combinator ‖> (left-fanin), which is a
bidirectional variant of the ||| (fanin) arrow combinator, appears
to be convenient in combination with zeroA.

(‖>) :: (ArrowChoice arr , BiArrow arr) ⇒ −−infixr 4
arr a c → arr b c → arr (Either a b) c

f ‖> g = f +++ g ≫ untagRA

untagRA :: BiArrow arr ⇒ arr (Either a a) a
untagRA = id ‘either‘ id ↔ Right

From this definition we cannot conclude directly that it is in-
vertible, because id ‘either‘ id is not the inverse of Right and,
therefore, the occurrence of↔ in untagRA is not invertible. We call
this combinator right-biassed because, in the reverse direction, it
always yields Right. Nevertheless, we can show that the‖>combi-
nator preserves left-invertibility. More specifically, it can be shown
that the arrow f ‖> g is left-invertible if g is left-invertible. Anal-
ogously, it follows that left-biassed combinators preserve right-
invertibility.

We can use the new combinator ‖> with zeroA to extend
zip with explicit failure. In fact, the only polytypic instance that
changes is the one for Sum, see below. Additionally, we must add
the ArrowZero class as a context restriction to the type of zip.

zip{|a , b , c|arr|} :: (ArrowZero arr , ArrowChoice arr ,
BiArrow arr , zip{|a , b , c|arr|}) ⇒
arr (a ,b) c

zip{|Sum a b|} = unsum2FA
≫ zeroArrow ‖> (zip{|a|} +++ zip{|b|})
≫ sumA

unsum2FA = mus ↔ sum
where

mus (Inl l1 , Inl l2) = Right (Left (l1 , l2) )
mus (Inr r1 , Inr r2) = Right (Right (r1 , r2) )
mus (s1 , s2) = Left (s1 , s2)

sum (Right (Left (l1 , l2 ) ) ) = (Inl l1 , Inl l2)
sum (Right (Right (r1 , r2 ) ) ) = (Inr r1 , Inr r2)
sum (Left (s1 , s2) ) = (s1 , s2)

Now the adaptor unsum2FA tags the result with an additional
sum constructor to indicate whether the constructors matched. In
particular, it uses Right in case both constructors were identical,
and Left if they were different. In the latter case the zeroArrow
branch of ‖> is chosen, whereas in the first case the ‘normal’
zip{|a|} +++ zip{|b|} is performed.

6.3 Lifting monads to bi-arrows
To be able to apply zip to concrete data structures we need appro-
priate instances for our arrow classes, including ArrowZero.

A convenient and flexible way to manage failures, but also
to implement other concepts such as non-determinism and states,
is obtained by using monads. Monadic arrows are arrows that
represent monadic computations.

The goal of this section is twofold: to show how we deal with
monadic arrows in the bidirectional arrow framework and to pro-
vide the basis for handling failures.

We use the same classes for monads that can be found in Haskell
[10]. The basic monad is defined with the return and bind opera-
tions:

class Monad m
where

return :: a → m a
(>>=) :: m a → (a → m b) → m b

The plus monad will be used to support failures of monadic
arrows, and also to implement choices.

class Monad m ⇒ MonadPlus m where
mzero :: m a
mplus :: m a → m a → m a

Usually, the Kleisli arrow transformer is used to represent
monadic computations [11, 13], which is defined on a monad m
as follows:

newtype K m arr a b = K {unK :: arr a (m b)}
However, this arrow is not suitable for our purposes, because

it is not possible to define an instance of inv on it: it handles the
argument and result asymmetrically. As symmetrical version of the
Kleisli transformer can be obtained by adjusting the argument type
in the definition of K as follows:

newtype MoT m arr a b = Mo {unMo :: arr (m a) (m b)}
The instances of Arrow, BiArrow and ArrowChoice on MoT

require that we are able to traverse the underlying monad. This will
be done by using the polytypic mapping Gmapl from section 4.1.

However, this limits the choice for m to data types, because it is
impossible to instantiate Gmapl for function types. In the instance
definitions we use the auxiliary arrows firstMA and leftMA based
on the monadic join and return operations.

instance (Gmapl m , Monad m , ArrowChoice arr ,
BiArrow arr) ⇒ Arrow (MoT m arr) where

arr = arrA
f ≫ g = Mo (unMo f ≫ unMo g)
first f = Mo (inv firstMA ≫

gmapl (first (unMo f ) )
≫ firstMA)

second = secondA

instance (Monad m , ArrowChoice arr , BiArrow arr ,
Gmapl m) ⇒ ArrowChoice (MoT m arr) where

left f = Mo (inv leftMA ≫
gmapl (left (unMo f) )
≫ leftMA)

right = rightA

instance (Gmapl m , Monad m , ArrowChoice arr ,
BiArrow arr) ⇒ BiArrow (MoT m arr) where

f ↔ g = Mo (liftM f ↔ liftM g)
inv f = Mo (inv (unMo f ) )

with



firstMA :: (Monad m , BiArrow arr) ⇒
arr (m (m a , b) ) (m (a , b) )

firstMA = joinP ↔ splitP
where

joinP = (=<<) (λ(mx , y) → mx >>= λx →
return (x , y) )

splitP = (=<<) (λ(x , y) → return
(return x , y) )

leftMA :: (Monad m , BiArrow arr) ⇒
arr (m (Either (m a) b ) ) (m (Either a b ) )

leftMA = joinS ↔ splitS
where

joinS = (=<<) ( (=<<) (return . Left)
‘either‘ (return . Right) )

splitS = (=<<) ( (return . Left . return)
‘either‘ (return . Right) )

liftM :: Monad m ⇒ (a → b) → m a → m b
liftM f m = m >>= λx → return (f x)

Here we should mention that invertibility of firstMA and
leftMA depends on the underlying monad. E.g. for the Maybe
monad it can be shown that both firstMA and leftMA are invert-
ible; for the list monad this does not hold.

One of the purposes of the monadic arrows is to handle failures.
The zero monadic arrow is defined with help of mzero.

instance (Gmapl m , MonadPlus m , ArrowChoice arr ,
BiArrow arr) ⇒ ArrowZero (MoT m arr) where

zeroArrow = Mo (const mzero ↔ const mzero)

To illustrate the use of the monadic arrow we return to our
generic zipping function. For example, combining the information
of two trees is successful:

(toEp . unM) (zip{|Tree|} idA)
(Just (Leaf 1 ‘Node‘ Leaf 3 , Leaf 2 ‘Node‘ Leaf 4))

−−yields Just (Leaf (1,2) ‘Node‘ Leaf (3,4))

And if we try to combine two trees with different shape, it yields
the mzero:

(toEp . unMo) (zip{|Tree|} idA)
(Just (Leaf 1 ‘Node‘ Leaf 3 , Leaf 2))

−−yields Nothing

7. Parsing and pretty-printing
In this section we show how to define a parser based on our re-
versible arrow combinators. Again, we will get the inverse, a pretty-
printer, for free.

We give an example of a parser for a very simple functional
language, specified by the following grammar in BNF notation.

<Expression> ::= <Expression> <Expression>
| ”(” <Expression> ”)”
| ”λ” <Variable> ”→” <Expression>
| <Variable>
| <Constructor>

<Variable> ::= <String>
<Constructor> ::= <String>

The main difference between the decoder of section 5 and a
parser is that the decoder does not have to choose between alterna-
tives, since its action for the sum type is solely depends on the next
input bit. The parser presented in this section will try alternatives
to see, which of them succeeds.

Another difference is that the parser is not completely deter-
mined by the type of the term it parses. It is because it needs to
parse extra spaces, parentheses etc. Consequently, we cannot ex-
pect that the resulting parser is (left and right) invertible, because
different input sentences, may lead to the same result.

Analogously to encode-decode, we define the parser and derive
the corresponding pretty-printer. So, the programmer does not need
to write the complete pretty-printer code.

7.1 The plus arrow
Failure of parsers is handled by the ArrowZero. What we still need
is a combinator that, when applied to two parsers, will choose the
second in case the first one fails.

We therefore introduce one further arrow class, comparable to
the MonadPlus class of monadic parser combinators.

class ArrowZero arr ⇒ ArrowPlus arr where
(<|>) :: arr a b → arr a c → arr a (Either b c)

In contrast to the Haskell’s arrow plus combinator <+>, our
combinator tags its result so we can still see which parser has been
chosen.

As said before, if possible the <|> chooses a non-failing com-
putation. This is expressed by the law

zeroArrow <|> f = f = f <|> zeroArrow

The implementation of ArrowZero and ArrowPlus for the state
arrow is straightforward (liftLSA has been defined in section 4.2).

instance (ArrowZero arr , BiArrow arr) ⇒
ArrowZero (StT s arr) where

zeroArrow = St (first zeroArrow)

instance (ArrowPlus arr , ArrowChoice arr ,
BiArrow arr) ⇒ ArrowPlus (StT s arr) where

f <|> g = St (unSt f <|> unSt g ≫ inv liftLSA)

Instantiating ArrowPlus for the monadic arrow is much more
complex. We defer its definition until the end of this section.

7.2 A concrete parser
As in the previous sections, we will use a combination of the
state and monadic arrows to build a concrete example parser. The
resulting syntax tree is represented by the data structure.

data Expression = App Expression Expression
| Nested Expression
| Lambda String Expression
| Variable String
| Constructor String

Observe that the syntax tree explicitly stores whether an expression
was enclosed by brackets. This is done to ensure that, when printing
a parsed expression, brackets are displayed correctly.

To abstract from the parsing issues at the lexical level, we
assume a separated scanner/lexer and that the parser will work on a
list of tokens. This leads to:

data Token = Id_T String | Lambda_T | Open_T
| Close_T | Arrow_T | EOF_T deriving Eq

type Parser arr t = StT [Token] arr ( ) t
type Printer arr t = StT [Token] arr t ( )

7.3 Parsing keywords
Before defining a parser for expressions, we introduce two auxiliary
parsers to examine the input tokens.



The first one, parseKeyword, tries to read a given token from
the input stream. If it succeeds, this token is delivered as result; if
not, the parser fails. As with the zip example of section 6.3 we use
‖> in combination with zeroArrow to handle failure.

parseKeyword token = getputA ≫ tagTokenA
≫ zeroArrow ‖> idA

where
tagTokenA = test ↔ id ‘either‘ id
test t = i f t == token then Right t

else Left t

The second one examines the input list to see whether the next
token is an identifier. Moreover, to distinguish variables (starting
with a lower case char) from constructors (starting with a upper
case char) this parser is parameterized with a predicate. The parser
succeeds in case of an identifier token fulfilling the predicate. Then
the identifier itself is returned, otherwise the parser fails.

parseIdentifier p = getputA ≫ tagIDA p
≫ zeroArrow ‖> idA

where
tagIDA p = tagID p ↔ id ‘either‘ Id_T

tagID p (Id_T name) | p name = Right name
tagID token = Left token

7.4 Parsing expressions
The grammar of our input language is left-recursive, and hence can-
not be directly translated into a parser. We introduce an intermedi-
ate function for parsing expressions (called terms) which are no
applications.

parseTerm = parseNested
<|> parseLambda
<|> parseVariable
<|> parseConstructor
≫ toExp ↔ fromExp

where
toExp = Nested ‘either‘ (uncurry Lambda

‘either‘ (Variable ‘either‘ Constructor) )

fromExp (Lambda var exp) =
Right (Left (var , exp) )

fromExp (Variable var) =
Right (Right (Left var) )

fromExp (Constructor c) =
Right (Right (Right c ) )

fromExp (Nested nested) = Left nested

parseTerm combines parsers for all expression kinds by using
the arrow plus combinator. The result, tagged with various Lefts
and Rights, is converted by the adapter to_expr ↔ from_expr
into the corresponding part of the syntax tree.

For parsing consecutive elements, we use an helper combinator
based on ∗∗∗ and the dupVoidA arrow defined in section 5.

(<&>) :: BiArrow arr ⇒ −−infixl 6
arr ( ) a → arr ( ) b → arr ( ) (a , b)

f <&> g = dupVoidA ≫ f ∗∗∗ g

parseLambda = parseKeyword Lambda_T
<&> parseVariable
<&> parseKeyword Arrow_T
<&> parseExpression
≫ toLambda ↔ fromLambda

where

toLambda ( ( ( , v) , ) , e) = (v , e)
fromLambda = const Lambda_T ‘split‘ fst

‘split‘ const Arrow_T ‘split‘ snd

parseNested = parseKeyword Open_T
<&> parseExpression
<&> parseKeyword Close_T
≫ toExp ↔ fromExp

where
toExp ( ( , e) , ) = e
fromExp e = ( (Open_T , e) , Close_T)

parseVariable = parseIdentifier (isLower . head)
parseConstructor = parseIdentifier (isUpper . head)

The parser for applications takes some more doing. It first reads
a list of terms and converts this into a tree of binary applications.

We introduce a function parseOneOrMore to parse a list of
elements that, when applied to a parser p, tries to parse one or more
p-elements.

parseOneOrMore p = p <&> parseOneOrMore p <|> p
≫ untag ↔ tag

where
untag (Left (x , (y , l ) ) ) = (x , y:l)
untag (Right x) = (x , [ ] )

tag (x , y:l) = Left (x , (y , l ) )
tag (x , [ ] ) = Right x

Note that this parseOneOrMore will try to find the longest list.
The parser for expressions can now be expressed easily.

parseExpression = parseOneOrMore parseTerm
≫ uncurry to_apply ↔ from_apply [ ]

where
to_apply app [ ] = app
to_apply app (x:xs) = to_apply (App app x) xs

from_apply l (App f a) = from_apply (a:l) f
from_apply l t = (t , l)

Finally, the pretty-printer for expressions is obtained by taking
the inverse of the parser.

parse :: (ArrowPlus arr , ArrowChoice arr ,
BiArrow arr) ⇒ Parser arr Expression

parse = parseExpression <&> parseKeyword EOF_T≫eofA
where

eofA = fst ↔ (λx → (x , EOF_T) )

print :: (ArrowPlus arr , ArrowChoice arr ,
BiArrow arr) ⇒ Printer arr Expression

print = inv parse

7.5 A monadic plus arrow
Before we can really use our parser we have to provide an appro-
priate implementation of the plus arrow.

More specifically, we need an instance definition of ArrowPlus
for the monadic arrow transformer M. Of course, this instance will
be based on the mplus of the underlying monad.

instance (Gmapl m , MonadPlus m , ArrowChoice arr ,
BiArrow arr) ⇒ ArrowPlus (MoT m arr) where

l <|> r = Mo (dupMA ≫
(unMo l ≫ inlMA) ∗∗∗ (unMo r ≫ inrMA)
≫ inv dupMA)



The adapter arrows dupMA, inlMA and inrMA are defined as
follows.

dupMA :: (MonadPlus m , BiArrow arr) ⇒
arr (m a) (m a , m a)

dupMA = (λx → (x , x) ) ↔ uncurry mplus

inlMA :: (MonadPlus m , BiArrow arr) ⇒
arr (m a) (m (Either a b ) )

inlMA = inlM ↔ uninlM
where

inlM = (=<<) (return . Left)
uninlM = (=<<) (return ‘either‘ const mzero)

inrMA :: (MonadPlus m , BiArrow arr) ⇒
arr (m a) (m (Either b a ) )

inrMA = inrM ↔ uninrM
where

inrM = (=<<) (return . Right)
uninrM = (=<<) (const mzero ‘either‘ return)

The adapter dupMA is in general not invertible, because the
arguments of ↔ are obviously not each others inverse. This means
that the instance of <|> is also not invertible, because it defined in
terms of dupMA and inv dupMA.

Consequently, when defining an operation using this instance
of <|> one does not get invertibility for free, i.e. it is no longer
sufficient to prove that all pairs of pure functions lifted with ↔
are each others inverse. To show correctness, global reasoning is
required.

In practice, this may imply that the inverse of the operation
needs to be fine-tuned in order to produce the expected result. In
particular this holds for our parser example. The Nested construc-
tor was added to the syntax tree to be able to reconstruct the brack-
ets that were used to disambiguate expressions.

7.6 Parser/printer examples
Suppose we have the following list of input tokens:

tokens = [Open_T , Lambda_T , Id_T ”x” , Arrow_T ,
Id_T ”x” , Close_T , Lambda_T , Id_T ”y” ,
Arrow_T , Id_T ”y” , EOF_T]

To parse this and convert it into an expression, we write:

(toEp . unMo . unSt) parse (return ( ( ) , tokens) )
:: Maybe (Expression , [Token] )

And if we want to print the expression:

expr = App (Nested (Lambda ”x” (Variable ”x” ) ) )
(Lambda ”y” (Variable ”y” ) )

we simply write:

(toEp . unMo . unSt) print (return (expr , [ ] ) )
:: Maybe ( ( ) , [Token] )

The Maybe-monad does not reveal that the expression parser is
ambiguous.

Suppose we leave out the Nested constructor in the last example
expression. Printing this expression will lead to a list of tokens
not containing the open and close brackets anymore. Our parser
will still be able to parse this list but it will not produce the same
expression we have started with: the App will occur inside the first
lambda expression. The reason is that our parser only delivers one
successful parse.

However, in our framework it is very easy to change the parser
in such a way that it delvers all successful parses, namely, by using

the list monad instead of the maybe monad. This list monad is a
standard implementation of the monad class. So, the only thing we
have to change for our example is the type!

(toEp . unMo . unSt) parse (return ( ( ) , tokens) )
:: [ (Expression , [Token ] ) ]

Running this expression with the following list of tokens

tokens = [Lambda_T , Id_T ”x” , Arrow_T , Id_T ”x” ,
Lambda_T , Id_T ”y” , Arrow_T , Id_T ”y” ,
EOF_T]

will now yield two expressions:

App (Lambda ”x” (Variable ”x” ) )
(Lambda ”y” (Variable ”y” ) )

and

Lambda ”x” (App (Variable ”x”)
(Lambda ”y” (Variable ”y” ) ) )

8. Related Work
This work is inspired by Jansson and Jeuring [13, 12] who define
polytypic functions for parsing and pretty-printing and then prove
invertibility. They maintain invertibility using pairs of separate def-
initions, leading to many proof obligation for the programmer. In
contrast, we use one single definition for both conversion directions
using invertibility preserving combinators. As a result we only have
to prove invertibility for the primitives that are used. Furthermore,
our approach is not limited to the example of parsing nor to the use
of polytypic functions.

Invertibility is an important practical property used in many
algorithms. For instance, it plays an important role in the database
world where one has to ensure that any change in a view domain
leads to a corresponding change in the underlying data domain.

To ensure this property, Foster et. al. [5] present a domain-
specific programming language in which all expressions denote
bi-directional transformations on trees. They use two functions, a
get function for extracting an abstract view from a concrete one,
and a put function that creates an updated concrete view given the
original concrete view and the updated abstract view. Using the
proper get and put functions, invertibility is guaranteed.

For similar purposes Mu et al. [20] define a programming lan-
guage in which only injective functions can be defined, thus guar-
anteeing invertibility. Again put and get functions are defined, but
the crux here is to do some bookkeeping when doing a get such that
a put can always be made invertible.

A different approach is taken by Robert Glück and Masahiko
Kawabe [6, 7]. They try to construct the inverse function from the
original one automatically. They use a symmetrical representation
for functions such that the inverse function can be constructed by
interpreting the original function backwards. Our arrow combina-
tors have a representation with this same property. The main dif-
ference with our work is we obtain the inverse function by con-
struction while they try to automatically generate an inverse func-
tion from the original one. They use LR-parsing techniques and
administrative bookkeeping to invert choices made by conditional
branches in the original function.

There is a lot of work about inverting existing programs, both
functional and imperative, see for example: Dijkstra [4], Chen [2],
and Ross [19]. Our approach is more hands-on and focusses on
constructing (parts of) programs in an invertible way.

9. Conclusions and Future Work
We feel that we have provided an interesting framework in the area
of invertible programming.



We have extended arrows to bidirectional arrows, bi-arrows, that
preserve invertibility properties. We have presented several invert-
ible bi-arrow transformers. Bi-arrows were used in a monotypic and
in a polytypic context. We introduced ways to deal with state and
with monads. A concrete parser/pretty printer example was pre-
sented with a discussion of its properties.

For future work we want to provide full formal proof that the
framework preserves invertibility properly. Furthermore, we will
investigate whether the approach scales up to real world practical
examples where invertibility properties are a requirement. Among
other things this will require creating a translation scheme similar
to Paterson notation in such a way that the required properties are
preserved, and that programs are easier to read and write.
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