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Abstract

The growth of information available to learning systems #malincreasing complexity of learn-
ing tasks determine the need for devising algorithms thaleseell with respect to all learning
parameters. In the context of supervised sequential legyiie Viterbi algorithm plays a funda-
mental role, by allowing the evaluation of the best (mosbpize) sequence of labels with a time
complexity linear in the number of time events, and quadiatthe number of labels.

In this paper we propos@arpeDiem , a novel algorithm allowing the evaluation of the best
possible sequence of labels with a sub-quadratic time axitpl We provide theoretical ground-
ing together with solid empirical results supporting twaetHacts. CarpeDiem always nds the
optimal solution requiring, in most cases, only a small ticat of the time taken by the Viterbi
algorithm; meantimeCarpeDiem is never asymptotically worse than the Viterbi algorithim)g
con rming it as a sound replacement.

Keywords: Viterbi algorithm, sequence labeling, conditional modelassi ers optimization,
exact inference

1. Introduction

In supervised learning systems, classi ers are learnt from sets delhlegamples and then used
to predict the “correct” labeling for new objects. According to how relaibetween objects are
exploited to build and evaluate the classi er, different categories of iegisystems can be individ-
uated. When the learning system deals with examples as isolated individualdjdtegarding any
relation among them, the system is said to work jpr@positionalsetting. In this case classi ers
can optimize the assignment of labels individually. Instead, in the setting ef\dapd sequential
learning (SSL) the objects are assumed to be arranged in a sequéatienships between previous
and subsequent objects exist, and are used to improve the classi catimaeg. SSL classi ers are
then required to nd the globally optimum sequence of labels, rather tharetiigesce of locally
optimal labels. For instance, in the optical character recognition task, tbiingb“learning’ is
probably better thanléarnlng, even though the description of the sixth character taken in isola-
tion might suggest otherwise. A SSL classi er may deal with such ambiguitiesxpioiting the

1. The implementation d®arpeDiem and of several sequence learning algorithms can be downloaded at:

http:/www.di.unito.it/ ~ esposito/Software/seglearning.tar.gz
a working GUI (Mac OS X only) for experimenting with the software can bemoaded at:
http:/fwww.di.unito.it/ ~ esposito/Software/SequenceLearningExperimenterBinar ies.zip
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higher sequential correlation, in the English language, of the bignamith respect td.n. Concep-
tually, given a sequence dfobservations anil possible labelK™ possible combinations of labels
are to be considered by SSL classi ers. Most systems deal with suchlexityby assuming that
relations may span only over nearby objects and use the Viterbi algorittient{ly 1967) to nd the
globally optimal sequence of labels@(T K?) time.

In the last few years it has become increasingly important for supergesgaential learning
algorithms to handle problems with large state spaces (Dietterich et al., 200@)tlhately, even
the drastic reduction in complexity achieved by the Viterbi algorithm may beufatient in such
domains. For instance, this is the case of web-logs related tasks (Feladimst al., 2003), music
analysis (Radicioni and Esposito, 2007), and activity monitoring througly bensors (Siddigi and
Moore, 2005), where the number of possible labels is so large that trse cddi®n time can grow
prohibitively high.

Some recent works propose techniques that under precise assungbibtengaster execution
time of classi ers based on hidden Markov models (HMMs) (Rabiner, 1.98he feature shared
by these approaches is the assumption that the transition matrix has a sjpegi alfowing one
to rule out most transitions. Such approaches are highly valuable whemablem naturally ts
the assumptionyice versathey either lose the optimal solution or cannot be applied at all, when
it does not. Moreover, they assume the transition matrix to be known befwlednd xed over
time. While this is a natural assumption in HMMs, recent algorithms based on tiedocfeatures
framework (McCallum et al., 2000) allow for more general settings whezdrtnsition matrix is
itself a function of the observations around the object to be labelled. meases itis hard to gure
out how the aforementioned approaches apply.

In this paper we introduc€arpeDiem . It is a parameter-free algorithm, sporting best case
sub-quadratic complexity, devised as a replacement for the Viterbi algoriflarpeDiem avoids
considering a transition whenever local observations make it impossilieeforansition to be part
of the optimal path CarpeDiem preserves the optimality of the result, never being asymptotically
worse than the Viterbi algorithm. Moreov€@arpeDiem automatically adapts to the sequence being
evaluated, so that its complexity degrades to the Viterbi algorithm complexitgetba underlying
assumption is not met. Interestingly, in contrast with alternative approattteeassumption made
by CarpeDiem needs not be “always” valid. On the contrary, the algorithm is able to tdkaraage
of the assumption even when it holds for small portions of the sequentziniplies that the worst
case complexity is hit only in the very unlikely situation where the assumption miatelsold for
the entire sequence. FinallyarpeDiem can be directly applied in any sequential learning system
based on the Viterbi algorithm, even in those where the transition matrix changetime.

The present work is structured as follows: we brie y recall the Vitetgbathm and state the
problem (Section 2). After surveying related work (Section 3), we illtst€arpeDiem in full
detail, and an execution example on a toy problem is provided (Section 4)thé&ieshow how
CarpeDiem can be embodied in the voted perceptron algorithm (Section 5) and, in Séctioa
report the experimental results and discuss the results as well aslgelated algorithms, and
elaborate on future directions of research. The soundness of thiélalgas well as its complexity
are formally proved in Appendices A and B, respectively.
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2. Preliminaries

The problem of nding the best sequence of labels is often represastadsearch for the optimal
path in a layered and weighted graph (Figure 1).

De nition 1 Layered graphA layered graph is a connected graph where vertices are partitioned
into a set of “layers” such thati) edges connect only vertices in adjacent layédifsany vertex in
a given layer is connected to all vertices of the successive layer.

We adopt the convention of indicating the layer to which a vertex belongssabscript to the
vertex name, so that denotes a vertex in layér We associate to each vertgxa WeightS)t, and
to each edgéy; 1;y:) a Weightg%t;yt , (Figure 1). In the following we use the term “vertical” in
referring to “per node” properties. For instance, we will use the esgioas “vertical weight” of
y; and “vertical information” to refer tdi/)t and to the information provided by evidence related to
vertices, respectively. Similarly, we use the term “horizontal” in refertontper edge” properties.
For instance, we will use the expression “horizontal weight” in refertiniipe weight associated to
a given transition. The distinction between vertical and horizontal informasiomportant in the
present work, the key idea ParpeDiem is to exploit vertical information to avoid considering the
horizontal one.

Given a layered and weighted graph withayers and vertices per layer, pathis a sequence
of verticesys;y2; ;% (1t T). The reward for a path is the sum of the vertical and horizontal

oyr) = max rewardyi;yz; iV ;W)
Y1 Vo1
We consider the problem of picking the maximal path from the leftmost layer taghemost
layer. Thenaivesolution considers all th&T possible paths, and returns the maximal one. The
Viterbi algorithm (Viterbi, 1967) solves the problem@(T K?) time by exploiting a dynamic pro-
gramming strategy. The main idea stems from noticing that the reward of thpdibsb nodey
can be recursively computed asthe reward of the best path to the predecepéa) on the optimal

path toy;; ii) plus the reward for transitioa}t;p(yl); i) plus the weight of nodg. In formulae:
(

_ S if t=1
= AP(Y) + Sp + St Otherwise @)

We will also make use of the equivalent formulation obtained by noticing ) is the best
predecessor foy;. That is,p(y:) is the vertexy; 1 (in layert 1) that maximizes the quantity

dyt 1)+ Sy , Then:
(

_ S ift=1 ,
o) . _ 2)
max, , oyt )+ Shy, ,+ S,  otherwise
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Figure 1: §) andS), | denote per vertex (vertical) weights, ., , denotes per edge (horizontal)
weights.

The Viterbi algorithm proceeds from left to right storing the valueg wito an arrayG as soon as
such values are computed. Assuming 8yt 1 : G(vt 1) = dy: 1), thenG(y;) is computed as:

G(y)= max G(% 1)+ Sy .+ S

The pseudo code for the algorithm is reported in Algorithm 1. Since the mastionizat the line
marked with label number 1 (henceforth simply “line 1 ") requi€¥) time, the time needed for
processing each layer is in the order@(K?). The total time required by Viterbi is theR(K2T).
The standard formulation of the Viterbi algorithm would also store the optimtl ipformation
as it becomes available. Since this can be done using standard techniqueeriCt al., 1990,
page 520) without affecting the complexity of the algorithm, we do not explioihort that in the
pseudo-code.

Let us now consider how the above de nitions instantiate in the context cdrailey environ-
ment. The symbo@i conveys information about labgl provided by observing the data at tirne
In hidden Markov models terminologﬁ{}t corresponds to probability, (%) of observing symbol
X in statey; (Rabiner, 1989, de nition ob;(k) pag. 261, Eq. 8). More generallﬁ}t is a quantity
that depends on both the lalyepredicted for time (layerf) and the observations at aatbundtime
t. Likewise, in HMMs terminologyss}oyy corresponds to the probabiliy,e of transiting from state
y to statey® (Rabiner, 1989, de nition of; pag. 260, Eq. 7). More in genera}o may depend
on both the label§y® y) andon the observations at and around the current layer. We note that since

SV’y may vary over time (which motivates the notatlajnyt ,), the setup considered here is more
general than the one of HMMs, where the transition matrix does not depetick time instant.
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begin

forall y; do

Gy S

end

fort=2to T do
forall y; do

1 | GO max,, Gk 0+ Sy .+ S
end

end

yr  argmay, G(yr);
return yq;

end

Algorithm 1: The Viterbi algorithm.

3. Related Work

As we illustrated in Section 1, in cases where hundreds or thousand®tsf &ab to be handled, the
guadratic dependence on the number of labels is still a high burden that limagphieability of
sequential learning techniques.

In other elds (e.g., telecommunications) there exidthocsolutions that allow one to tame the
complexity of the Viterbi algorithm by means of hardware implementations (Austh,e1990) or
methods for approximating the optimum path (Fano, 1963). For instance, mnesbarch eld of
speech recognition, the Viterbi algorithm is routinely applied to huge problé@ms is a typical
case where approximate solutions really pay off: suboptimal paths coutddrated (to some ex-
tent) and tight time constraints prevent exhaustive search. A populesagbpin this eld is the
Viterbi beam searclfVBS) (Lowerre and Reddy, 1980; Spohrer et al., 1980; Bridle etlaB?):
essentially, VBS performs a breadth- rst suboptimal search in which thr@ynost promising solu-
tions are retained at each step. Many improvements over this basic strategiden proposed to
re ne either the computational performance or the accuracy of the sol(gign Ney et al., 1992).
In most cases domain-based knowledge (such as language constsaist) to restrict the search
efforts to some relevant regions of the search space (Ney et al.,.1®8d) in recent years, several
algorithms have been proposed that overcome the dif culties inherentiinisie ranking strategies
by learning ranking functions speci cally optimized for the problem at h@faand Fern, 2007).

Although promising, the VBS approach does not come without dif culties.ifgtance, Collins
and Roark (2004) propose Viterbi beam search to improve the penficaaaf the perceptron algo-
rithm on the particular problem of natural language parsing. Interestitigdyauthors note how the
sub-optimality of the beam search can negatively affect the learningrpgfices. The problem
arises when a sub-optimal sequence is used instead of the optimal onete tipgweights of the
features (please refer to Section 5). In order to alleviate this issue, theraustop the search—
during learning—as soon as the beam does not contain the optimal solutisach case only the
partial sequence, up to when the stopping occurred, is used to updateititds. This prevents
from training the perceptron using “bad” predictions, but it still has tlewback of exploiting only
partially the training sequences. In such system, then, the sub-optimality dbiVliieam search
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hastwo drawbacks: at learning time, it hinders the process of nding bettericdasgor at least it
slows the process down); at testing time, it yields sub-optimal classi cations.

In recent years, despite a widespread usage of the Viterbi algorithimihi#hsequential learn-
ing eld, only few works addressed the problem of reducing its time complexity at the same
time retaining the optimal result. In Felzenszwalb et al. (2003), linear (aadlimear) algorithms
are proposed to compute the optimal labels sequence. Their algorithms mekthe assumption
that the reward for the transition between states nurnaed j is a “simple” function ofji  jj.?

In Siddigi and Moore (2005) it is assumed that the transition matrix is welleqpiated by a
particular one where, for each vertex, the probability mass is concahtratthek highest transi-
tions leaving it. Then, the weights associated to the other transitions areapated by a constant,
and the optimal path is evaluated wifi{(kKT) time complexity. Clearly, the smallds; the faster
the algorithm.

Both techniques provide signi cant time savings with respect to the Viterloirdlgn. However,
they are both based on assumptions about the entries in the transition mataisethat guaranteed
to hold in practice. More in particular, the assumption by Felzenszwalb &3] does not seem
to easily t general cases. Also, the investigation needed to devise thectparameter space may
require knowledge and efforts that are not always at disposal cdvbeage practitioner. The as-
sumption underlying the work of Siddigi and Moore (2005) is, in our opingsmpler to be ful lled
in practice. However, the extent to which it holds (which determines the malgnatk) cannot
be easily forecasted. Again, the extra efforts needed to assess ti@bifity of the approach
may be detrimental to its application. Moreover, both approaches reguinegeneousansition
matrices: that is, transition matrices that do not vary over time. This is a comnsompson,
but unfortunately it cannot be guaranteed in some recently develomedamhes, as those based
on the boolean feature framework (McCallum et al., 20@aypeDiem can be safely applied even
in this more complex scenario. In the experimentation, we successfully 8aglgDiem in both
settings, the one where the transition matrix is not constant (Section 6.1llessvthe one where
itis (Sections 6.2 and 6.3).

In a recent paper Mozes et al. (2007) proposexattcompression-based technique to speed up
the Viterbi algorithm. The authors propose to use three well known cosipreschemes achiev-
ing signi cant speed-ups whose magnitude depends on which compnesgiorithm is adopted.
Interestingly the cited approach is not a search scheme, rather it is@@eping step. As such,
it quali es as an orthogonal technique amenable to be used togetheCavgéDiem obtaining the
advantages of both techniques.

In facts, to the best of our knowledge, the algorith@agpeDiem and (Mozes et al., 2007) are
the only exact ones, capable of speeding up the Viterbi algorithm wheasthenption of homo-
geneous matrices is dropped. We would also argue that the other apgpsqaesented above are
not easily adapted to work in this, more complex, scenario. In Siddigi anmté4@2005) the tran-
sition matrix needs to be traversed in advance in order to obtain the highkstgdrequencies. If
those frequencies change over time, this operation needs to be remgatadt, and the algorithm
would requireO(T K?) only to compute this preprocessing step. In Felzenszwalb et al. (2003) it is
necessary to express the weights of the transition from latzelabel j in terms of a function of
ji jj. The effectiveness of the approach depends on particular prapeftilis function. It could
be argued that, in very particular situations, those properties could bengioohold even when

2. One whose maximum can be calculated in (nearly) constant time.
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Vertical weights ‘ SH 100‘ s 50‘ SH 5 ‘ s 100
Horizontal weights‘ S, 20‘ > 20‘ s 30‘ s 40

1:)2 1512 i15]2

Figure 2: Sometimes horizontal weights can be disregarded without loogirugptimal path.

the transition matrix varies with However, it is hard to gure out a general way to enforce this
property without inspecting the whole transition matrix at each time step.

CarpeDiem enjoys the desirable property of smoothly scaling to the Viterbi algorithm comple
ity when the underlying assumptions soften (as argued in Section 4.5). 8htsb consequences:
1) the algorithm adapts to the problemndto the sequence at hand, and 2) the algorithm can be uni-
versally applied (even when one is unsure about whether the probleGargsDiem assumptions
or not). In contrast with other state-of-the-art algorithms, no domain ledye is to be given, nor
any parameter needs to be set. This malageDiem well suited to be used on a regular basis as a
drop-inreplacement of the Viterbi algorithm: in the worst case, with no time saving.

4. TheCarpeDiem Algorithm

In the general case, in order to determine the end point of the best patifiveralayer, one can
avoid inspecting all vertices in that layer. In particular, after sorting tiéces in layett according
to their vertical weight, the search can be stopped when the differenegtiocal weight of the best
node so far and the next vertex in the ordering is big enough to coulardasany advantage that
can be possibly derived from exploiting a better transition and/or a beitestor.

To clarify this point, it is interesting to consider the minimal example reported inr€igulLet
us assume that the reward for the maximal weight for any transition is 6(@l§pective is to nd the
endpoint of the best path to each layer. For layer 1 we have no incomihng, plae best endpoint is
simply the vertex with the maximal vertical weight: in the exampleln our approach, we consider
vertices with highest vertical weight rst. Hence we start by calculatingréveard of the optimal
path to nodg»: in the example, the path; j (with scoreS) + S, + S = 100+ 20+ 100= 220).
We notice that the reward attainable by reachingannot be higher than 165, computed as the sum
of the reward for the best path to layer 1 (i.e., 100), plus the maximal wedgharfy transition
(i.e., 60), plus the vertical weight @% (i.e., 5). Therefore the endpoint of the best path to layer
2 must bej, and it is not necessary to calculate the reward for reachindn the course of the
algorithm (hopefully) many vertices will be left unexplored by means of buva strategy. We note,
however, that this does not prevent from the need of exploring thertiees in the following steps.
When necessity arisgarpeDiem goes back through the previous layers gathering the required
information. This is whyCarpeDiem makes use of two procedures: one that nds the best vertex in
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each layer (Algorithm 3), and one that nds the reward for reachintyangnode by traversing the
graph from right to left (Algorithm 4).

We say that a vertex igpenif the reward of its best incoming path has been computed; otherwise
the vertex is said to belosed CarpeDiem nds the best vertex for each layer by calling Algorithm 3
(also referred to aforward search strategywhich leaves closed as many vertices as possible. The
backward search strategg called to open vertices whenever necessary.

The main procedure d@arpeDiem is presented in Algorithm 2; the forward and the backward
search strategies are presented in Algorithms 3 and 4, respectivetyeRiftailing the algorithm,
we need to introduce several de nitions.

De nition 2 Let us de ne:

St : an upper bound to the maximal transition weight in the current graph

s maxst., 3
VoYt 1%/1,)/1 1 ( )

g : the reward of the best path to any vertex in layer t (including the vertieagiat of the ending
vertex)

G = maxg(vt);
b; : an upper bound to the reward that can be obtained in reaching lay2rt{ T)
be=g 1+S"; (4)

w; : atotal ordering—based on vertical weights—of vertices at layer t.

we £ (Y YIS, > So: 5)
Also, we say that vertex is more promisinghan vertex iff y; wy yP.

During executionCarpeDiem calculates several values that are strictly connected to the def-
initions above. In particulaG is a vector ofK T elements.G(y;) contains the value ad(y;)
as calculated byarpeDiem . Also, B is a vector ofT elements.B; contains the value df; as
calculated byCarpeDiem . To a good extent, provin@arpeDiem correct will involve proving that,
indeed,G(y;) = d(y;) andB; = by.

4.1 Algorithm 2 — Main Procedure

Algorithm 2 initializesG(y;) andB; values and calls Algorithm 3 on all layers:2T. More specif-
ically, G(y1) is set toSf (as required by Equation 1). Al€gy is set to the maximal vertical weight
found plusS' (as required by Equation 4).

4.2 Algorithm 3 — Forward search strategy

The forward strategy searches for the best vertex for lagewpping as soon as this vertex can be
determined unambiguously.

At the beginning of the analysis of each layer all vertices in the layeclased The algorithm
scans vertices in the order given Wy. As mentioned at the beginning of Section 4, in the general
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begin
foreachy; f Initialization Stepg do
2 ‘ G(yr) §,;f Opensvertex: g
end

3 |y, argmay,(G(yu);
B, G(y)+S;

foreachlayert2 2:::T do
‘ y;  result of Algorithm 3 on layet;

end
return path toyy;

end

Algorithm 2: CarpeDiem .

begin
Y  most promising vertex;
yt0 next vertex in thev; ordering;
Open vertey, fcall Algorithm 4g;
while G(y;) < B+ Sg?do
4 Open vertex?f call Algorithm 4g;
Y, argmayoor y, i [GYO);
y? next vertex in thev; ordering;
end
6 | Bu1i G(y)+S;
return y; ;
end

Algorithm 3: Forward search strategy.

case, the algorithm can avoid opening all vertices in every layer. Thehseastopped when the
difference in vertical weight of, andy?is big enough to counterbalance any advantage that can be
possibly derived from exploiting a better transition and/or a better ancdsttormulae, letp(y;)

be the best predecessor fpr the (forward) search is stopped when the currently best vgrtard

the next vertex? in thew, ordering satisfy:

accounts for a possibly bet-
accounts for a better vertical accounts for a possibly bet- ter transition fromyt0 prede-

WeightozfyLﬂ'rit terEredeceﬁ,oroyf)w.r.{.yt cespor ) {
S S a1 APMk) + ST gy (6)

The above formula is a direct consequence of the exit condition ofttile loop of Algorithm 3,
and it can be obtained by substituti® andG with b andg, and then expandingandgusing their
de nitions (we repeat the relevant de nitions in Tablealandb).

3. The soundness of the substitution is guaranteed by Theorems 1 and 2.
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a) De nition of b be=g ;+S
b) De nition of g(see Eq. 1) oy;) = op(y))+ Sslft:p(yt) + S

Table 1: Summary of few useful quantities

In case the stop criterion is not met, the algorithm calls Algorithm 4 (also ezfdo as the
backward strategywhich setsG(y9) = g(y9). If necessary, the “maximal” vertek (the vertex that,
so far, has associated maximal reward) is updated. Before ex@ingjs readied for later use, and
the best vertex is returned.

4.3 Algorithm 4 — Backward search strategy

The backward search strategy opens a vertey nding its best ancestor and settigyy;) accord-
ingly. In much the same spirit as in the forward strategy, the algorithm sawes somputatiom)
by exploitingw; 1 in order to inspect rst the most promising vertices, arjdy taking advantage
of by 1 in order to stop the search as soon as possible.

Data: A vertexy; to be opened
begin
Y; 1 Most promising vertex;
¥, nextvertexin thav; 1 ordering;
while y? , is opendo h i
Yo 1 argmaxoeesyo . g G(yy+ %14;)/00;
Yo, nextvertex in thav; 1 ordering;
end
i 1 1
hile G(y, 1)+ Sy, , < Bt 1+ %),? +S do
Openy, , fcall Algorithm 4g; i

Y1 argmaxeery .y g GOY+ S0
yt0 1 hextvertex in thav; ; ordering;

=

end
7 G(yt) G(yt 1)+ %;yl 1+ S/)[u

end

Algorithm 4 : Backward search strategy to opgn

The rst loop nds the best predecessor among the open vertices eftayl. In the second
loop, we exploit the same idea behind the forward strategy. Let us ingpeekit condition of the
second loop:

G(yt 1)+ %/lt;yt 1< Bt 1+ S/)?l-l- Sl .

With the exception of the symbols in bold font, the formula is the same as the one éxithe
condition of the while loop in Algorithm 3. The bold symbols take into account dmsition to the
target vertex. Namelx&&t;yt _ takes into account the transition from the current best vestex )(

1860



CARPEDIEM: OPTIMIZING THE VITERBI ALGORITHM

to the target vertey; andS! accounts for the maximal reward that a transition frgfhy to y; can
possibly obtain.

Also the internal working of the second loop is very similar to the one in theduhstrategy.
After opening (through a recursive cajlj ;, the current best vertex is set to the besydf, and

Y o1

4.4 Example

In the following we provide a description of an executionCafpeDiem over a toy problem. The
problem consists of labeling a sequence containing four events and tels (aamed andj). The
example is reported in Figure 3. The weight shown on the edge betweds yaheandy; corre-
sponds td%%t;yt .- The boundS' on the maximum horizontal reward is 60. Two further quantities
are reported in the gure, and shown graphically by means of boxe®glan vertices: within
rectangular boxes, we report the vertical weight of the vertex. Withinded boxes, we report:

G(w), if vt is open;
B; + %}l if y; is closed andB; has already been computed;
0, otherwise.
Here we give a detailed description of the algorithm execution over the graph.

step (a) At the beginning of the execution, all vertices are closed. The initializatigrs $steAlgo-
rithm 2 open all vertices in layer 1. Clearly, there is no reward for amgianvertices in layer
0 and no incoming transitions to be taken into account. The best vertex inllag¢nus the
vertex having the maximum vertical weight.

step (b) The analysis of layer 2 starts by opening the most promising vertex in that(laréex j).
Since all vertices at layer 1 are open, the backward strategy alreaadyphwplete information
at disposal, and it does not need to enter the second loop tojep&@nceG(j,) has been
computed, the algorithm compares this value to the bound on the weight ofgshpdibk to
i2. Since&% + B, = 165 cannot outperfor®( j2) = 220, there is no need to open verigx

step (c) To openis, the backward strategy goes back to layer 2 and searches for thpabedb
that vertex. Again, verte can be left closed, since there is no chance that the best piath to
traverses it. In fact,

B+ S+ St =(100+ 60)+ 5+ 60= 225
cannot outperform the reward
G(j2)+ S,j, = 220+ 15= 235

obtained by passing through. ThenG(is) is set to 235 100= 335.

Unfortunately, this does not allow to make a de nitive decision about whelhgis the best
vertex of layer 3, sinc®; + S(j’3 is (220+ 60)+ 70= 350. Next step will thereby settle the
guestion by opening verteps.
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Figure 3:CarpeDiem in action on a toy problem.

step (d) The goal is, at this point, to nd the best path jtp Even thoughj, has a clear advantage
overiy, this does not suf ce to exclude that the latter one is on the optimal pajh (gince
G(j2)+ S}, 8 B2+ S+ S'): the backward strategy is then forced to recursively call itself
to openio.

step (e) By openingi,, the algorithm set&(i,) to 125 (the best path being! i»), thus ruling it
out as a candidate for being on the optimal patisto

step (f) In returning to consider layer 3, we are back to the path j>! i3. To open verticeg,
and j3 has been wasteful, though unavoidable.
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step (g) The rst vertex to be opened in its layer ig. Interestingly, the best path tf is not
through the best vertex in layer 3. In fact, while the highest reward threee steps walk is
on vertexis, it is more convenient to go through vertgxto reach vertex.

step (h) SinceG(j4) = 485 is larger tham, + S‘i the algorithm terminates leavingclosed.

In Section 6 real world problems are considered, and much larger optinmgzatisiained.

4.5 Algorithm Properties

An intuitive way of characterizing the algorithm complexity is to consider Forndulahere the
exit condition of Algorithm 3 is rewritten in order to point out why in some casessafe to stop
inspecting the current layer. Clearly, the sooner the loop exit conditioatis ed, the faster the
algorithm.

Arguably, the worst case happens when vertical rewards, being émueach label, do not
provide any discriminative power. In such a case, the left term in Formidaéro, the inequality
is never satis ed, and Algorithm 3 calls Algorithm 4 over Kllvertices in every layer. In this case,
for each one of th& vertices to be opened in a new layer, the rstloop of Algorithm 4 iterates ove
all K predecessors. However, no recursive call takes place. Overtile worst case hypothesis,
CarpeDiem has order oO(TKK + TKlog(K)) = O(TK?) time complexity? CarpeDiem is never
asymptotically worse than the Viterbi algorithm.

The best case happens when horizontal rewards, being equakfotransition, do not provide
any discriminative power. In such a case the right hand side of the iliggna=ormula 6 is zero
and the inequality is guaranteed to be satis ed immediately. Moreover, beifathkevard strategy
based on a bound similar to the one that leads to Formula 6, it will never opetrear vertex. Then,
a single vertex per layer is opened &@wlpeDiem has order oD(T + TKlog(K)) = O(T Klog(K))
time complexity. A more formal argument abdtdrpeDiem complexity is stated by Theorem 3
and proved in Appendix B.

Theorem 3 CarpeDiem has (T K?) worst case time complexity and DK logK) best case time
complexity.

CarpeDiem nds the optimal sequence of labels. By using standard book-keepihgitgees,
the optimal sequence of labels can be tracked back by starting from the bgtidhaoint. Then, the
optimality of CarpeDiem can be proved by showing that the vertex returned by the forwardgyrate
at the end of the algorithm is the end-point of the optimal path through thégrEpus property,
stated by Theorem 1, is formally proved in Appendix A.

Theorem 1 Let us consider a sequence of calls to Algorithm 3 on lageBs:::;t (t T). When
Algorithm 3 terminates on layer t, the returned vertgxsythe endpoint of the optimal path to layer
t. Formally,

8yt dy;) 9dw):

Beside the theoretical properties of the algorithm, it is important for the prawditiio consider
its actual performances over real world problems. In the generaticasdgorithm will open some,
but not all vertices: the exact number of the vertices that will be inspelepends on the particular

4. TheO(TKIlog(K)) term in the formula accounts for the time needed to sort vertices accdmiing
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application and on how the features have been engineered. EmpiricahegiSection 6) suggests
that many problems are closer to the best case than to the worst. Befoduaitg the experi-
mentation, we show howarpeDiem can be instantiated in the context of a supervised sequential
learning system and, more in particular, in a system based on the voteg{ercalgorithm.

5. Grounding the Voted Perceptron Algorithm on CarpeDiem

The supervised sequential learning problem can be formulated as f¢etterich, 2002).

Letf(aq;yi)g:\il be a set oN training examples. Each example is a pair of sequences
(6;%), wherex; = hxi.1;Xi.2; 110 X.mi andy; = hyi.q;yii i yiri. The goal is to con-
struct a classi eH that can correctly predict a new label sequepeeH (%) given an
input sequence.

The SSL problem has been approached with many different technidumesng others, we recall
Sliding Windows (Dietterich, 2002), hidden Markov models (Rabiner, 1J9B®&ximum Entropy
Markov Models (McCallum et al., 2000), Conditional Random Fields @ryf et al., 2001), Dy-
namic Conditional Random Fields (Sutton et al., 2007), and the voted percatgorithm (Collins,
2002).

The voted perceptron uses the Viterbi algorithm at both learning and citgm time. It is
then particularly appropriate for the application of our technique. Maedwelies on théoolean
features frameworkMcCallum et al., 2000) which is more general than the HMMs model with
respect to representing the graph. In this framework, dependingwifidabures are implemented,
both static (homogeneous) adgnamictransition matrices can be modeled. We use the @ym
namictransition matrix to indicate that weights associated to edges may change fronoimh&op
time point, depending on the observations.

In the boolean features framework the learnt classi er is built in terms oftaoE boolean
features. Each featurfereports about a salient aspect of the sequence to be labelled in a given
time instant. More formally, given a time pointa boolean feature is afi-valued function of the
whole sequence of feature vectarsand of a restricted neighborhoodyef The function is meant
to return 1 if the characteristics of the sequernaeound time stepsupport the classi cations given
at and around;. Under a rst order Markov assumption, eatlilepends only oy andy; ;. Let
us denote withw; the weight associated to feature The classi er learnt by the voted perceptron
algorithm has the form

T
HEo = argmaxd g wr Feayive 1)
t=1f
and is suitable to be evaluated using the Viterbi algorithm.

In practice, not all boolean features depend on hptandy; ;. Let us distinguish features
depending on botly; andy; ; from those depending only op. We denote withF© the set of
features that depends only gnand thus models per vertex (vertical) information. Analogously,
we denote withF! the set of features that depend on bgttandy; 1 modeling, thus, per edge
(horizontal) information. The vertical and horizontal weights can be thaéutated as:

S = a wfeoyt)
f2F0
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and

Sy 1= a wfEeyoy ot):
f2F1

In general, the bound on the maximal transition weightcan be set to the sum of all positive
horizontal weights:
s = & Jw)
f2F1

whereJ(x) isxif x> 0, and 0 otherwise. It is noteworthy that this quantity can be computed without
any extra—domain speci c—knowledge.

Often, however, better bounds can be given based on speci c domaimlédge. An example
of such improvements (one that we exploit throughout our experimenta&iims)sts in partitioning
the horizontal features into sets of mutually exclusive features. Thenotedbcan be computed
as the sum of the maximal weight of each patrtition. In case the partitions eélegeno a single set
(i.e., all horizontal features are mutually exclusive), the maximal horizerdaght can be used. For
instance, in many domains where HMMs are routinely applied, horizontalresaare used only
to check the last two predicted labels. In such domains, if a horizontakéeistasserted, no other
feature can and we can appropriately set

St = maxd(w): 7)
f2F1

6. Experimentation

To gure out whether and hovCarpeDiem can be applied to actual tasks, we tested it on three
different problems: the problem of music harmony analysis (RadicionEspdsito, 2007), the fre-
guently asked questions (FAQs) segmentation problem (McCallum et aD),28@d a text recog-
nition problem built starting from the “letter recognition” data set from the W@lchine learning
repository (Frey and Slate, 1991).

The running time of an execution @arpeDiem depends on how the weights of vertical and
horizontal features compare: the more discriminative are vertical feaititle respect to horizontal
features, the larger is the ed@erpeDiem has over the Viterbi algorithm.

Overall the three experiments cover three situations that are likely to ocqradatice. The
music analys problem represents a situation wirehas been selected by exploiting detailed
domain knowledge: horizontal features have been divided into setsrofrivial partitions and
the bound has been set accordingly (see end of Section 5). Featuhes [FAQs segmentation
problem have been developed by McCallum et al. (2000) on a diffeyextém, and then imported
into ours without modi cations. Features used in the text recognition taskidjdrthrough a real
engineering process; on the contrary, they can be seen as a rsty® extentnaive attempt to
tackle the problem. In these last two cases, we hav8'setsing Formula 7.

6.1 Tonal Harmony Analysis

Given amusical ow, the task of music harmony analysis consists in assaratabel to each time
point (Temperley, 2001; Pardo and Birmingham, 2002). Such labelalrhesunderlying harmony
by indicating a fundamental notept) and amode using chord names such as "C minor'.
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Music analysis task can be naturally represented as a supervisecht&gearning problem.

In fact, by considering only the “vertical” aspects of musical structune, would hardly produce

reasonable analyses. Experimental evidences about human cogrveah tfeat in order to dis-

ambiguate unclear cases, composers and listeners refer to “horizadaltds of music as well:
in these cases, context plays a fundamental role, and contextualaoueg cseful to the analysis
system.

The system relies on 39 features. They have been engineered scethtk into account the
prescriptions from music harmony theory, a eld where vertical and lota features naturally
arise. Vertical features report about simultaneous sounds and their correlation withutfenty
predicted chord.Horizontal features capture metric patterns and chordal successions. This is a
case where not all horizontal features are mutually exclusive §teis not the maximal of pos-
itive horizontal weights) and where horizontal weights may change over tioe instance, the
same transition between two chords can receive different weightsdiicgdo whether it falls on
accented/unaccented beats.

The training set is composed of 30 chorales0@) events) by J.S. Bach (1675-1750). The
classi ers have been tested on 42 separate chorald8T3vents) from the same author.

6.2 FAQs Segmentation

We experimented on the FAQs segmentation problem as introduced by McGeatllam(2000).
It basically consists of segmenting Usenet FAQs into four distinct sectidmsad’, "question’,
“answer', and “tail'.

In this data set, events correspond to text lines and sequences ocoddsFAQs. McCallum
et al. de ne 24 boolean features. Each one is coupled with each posdielefdée a total of 96
features. Additionally, 16 features are used to take into account thégosansitions between
labels.

The data set consists of a learning set containing 26 sequences (29gf6) and a test set
containing 22 sequences (33,091 events).

6.3 Text Recognition

Our third experiment deals with the problem of recognizing printed text. Vifeetlethe classi ers

on the “The Frog King” tale (122 sequences981 events) by Grimm brothers, and tested over
the “Cinderella” tale (240 sequences,; 334 events) by the same authors. The classi er is called
to recognize each letter composing the tale. The data set has been bullbas.fcEach letter
(corresponding to an individual event) in the tales has been encodedkiyg at random one of its
possible descriptions as provided by tattersUCI data set (Frey and Slate, 1991). Each sentence
corresponds to a distinct sequence.

We brie y recall here the characteristics of the letters data set as origipediyosed by the
authors. The data set contains; @00 letters described using 16 integer valued features. Such
attributes capture highly heterogeneous facets of the scanned raw io@gass horizontal and
vertical position, the width and height, the mean number of edges per pwellitee images have
been obtained by randomly distorting 16 fonts taken from the US NationadBuof Standards.
The features used by the learning system are:

5. It can be found dtp://ftp.ics.uci.edu/pub/machine-learning-database slletter-recognition
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Experiment | Viterbi | CarpeDiem | Time Saved (%)
music Analysis 13,582 1,507 88.90%
FAQs segmentatio 537 144 73.15%
letter recognition | 961,969 34,244 96.44%

Table 2: CPU Time (expressed in seconds) and percentage of time sa@agh&Diem .

1. 26 (16 16)= 6;656 vertical features, obtained by the original attributes devised by Frey
and Slate (1991). The reported gure is explained as follows. We cengidch of the 16
values of the 16 attributes in the original data set, thus resulting in 256 possihldnations.
Each such combination is still to be coupled with the 26 letters of the English a&phab

2. the 27 27= 729 horizontal features, obtained by considerfag A, whereA is the set of
letters in the english alphabet, plus a sign for blanks.

6.4 Procedure

We compare the performances@drpeDiem against those provided by the Viterbi algorithm. To
this aim, we embedde@arpeDiem in a SSL system implementing the voted perceptron learning
algorithm (Collins, 2002). The learnt weights have been then used to builatlagsi ers: one
based on the Viterbi algorithm, the other one baseGapeDiem .

For each one of the three problems we divided the data into a learningdsattast set. Each
learning set has been further divided into ten data sets of increasisgthigerst one contains 10%
of the data, the second one 20% of the data, and so forth). Also, epeliragnt has been repeated
by varying the number of learning iterations from 1 to 10, for a grand tdtaDO classi ers per
problem. We tested each learnt classi er on the appropriate test sedimgthe classi cation time
obtained by using rsCarpeDiem and then Viterbi.

In the following we will indicate each one of the 100 classi ers by using twmbars separated
by a colon: the former number corresponds to the size of the training s&r{ding for 10%, 2 for
20%, ..., 10 for 100%), the latter one indicates the number of iteratiomsn$tance, the classi er
8:1 has been acquired by iterating once on 80% of the learning set.

6.5 Results

As earlier mentioned (and implied by Theorem@rpeDiem performs exact inference: classi ers
built on CarpeDiem provide the same answers as those built on the Viterbi algorithm.

We measured the total classi cation time spent by the algorithms as well as tregaviime
savedby CarpeDiem with respect to the Viterbi algorithm. They are provided in Table 2: average
time savings range from about 73% (FAQs segmentation) to over 96% (lettegmition). Fig-
ures 4, 5 and 6 graphically report a detailed account of each expérir@éassi cation times for
each problem were obtained using a xed size test set. By observingdHegreported in the g-
ures, itis apparent that, while the Viterbi algorithm runs in approximatelgteon time CarpeDiem
performances depend on the particular classi er used.

In all trials of all experiment€arpeDiem runs in a small fraction of the time needed by Viterbi.
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Music Analysis
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Figure 4: Results on the music analysis problem. We report on the absitiedaarnt classi ers
indicatingi:j for classi er acquired using10 i)% of the training set andl iterations.
Labels on the abscissas refer only to the rst classi er for each bldcgxperiments;
the following nine bars refer to the remaining ones. For instance, label dsisoned
below the bar corresponding to the classi er trained on the 30% of the tgasehand
using 1 iteration. The following nine bars refer to classi ers 3:2, 3:3,3:10. We report
on the ordinates the CPU seconds needed for the classi cation of thestestestical
bars refer to the time spent @arpeDiem . Triangles refer to the time spent by Viterbi.

One interesting fact is unveiled by the pro le of the classi cation time. Since-each one
of the three experiments—classi cation is performed on a data set of k&) ene would expect
roughly constant classi cation time. By converse, at least in the rst twpegiments (Figures 4
and 5), the emerging patterns are similar to those usually observed at ¢ethmmén We remark that
the hundred runs of each experiment differ only in the set of weights logehe classi er. Then
it is apparent that, as the voted perceptron learns, it somehow modi esdights in a way that
proves to be detrimental to the work @drpeDiem .

To explain the observed patterns, let us consider an informative vedatalkref and examine
the rst iteration of the voted perceptron on a sequence of lefigth100. Also, we assume that
f is asserted 60 times, and that it votes for the correct label 50 times out oE®&n though
this example may seem unrealistic, it is AofThe rst iteration on the rst sequence the voted
perceptron chooses labels at random. Then, the vast majority of themevifiitbrrectly assigned,
thus implying a large number of feature weights updates. If all the labelstimh is asserted
are actually mislabelled, due to the way the update rule acts, the weight asddoifi will be
increased by 40. This large increase occurs all at once at the end of the rstiberan the rst
sequence, and it is likely to overestimate the weight of The voted perceptron will spend the
rest of learning trying to compensate for this overestimation. Howevesesuient updates will be

6. For instance, in the music analysis problem, this could be the case ffeatuee that votes for the chord that has
exactly 3 notes asserted in the current event.
7. Thatis, 50 (60 50)= 40.
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FAQs Segmentation
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Figure 5: Results on the FAQs Segmentation problem. The conventions ddoptde same as for

Figure 4.

Letter Recognition
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Figure 6: Results on the letter recognition problem. In the inner frame we tietdiine spent by
CarpeDiem using the rst fty classi ers. The conventions adopted are the sameoas f
Figure 4.

of smaller magnitude. In fact, the following predicted labeling will not be ramgayuessed, thus
implying a reduced number of updates.

By summarizing, highly predictive features have their weights initially set tg lagge values;
such weights slowly decrease in the following. The behavior describadyckemerges in Figure 7,
where the individual weights of vertical features (for the music analysiblem) are plotted as
the updates occur. Then, sin€arpeDiem is ef cient when vertical features are discriminative
compared to horizontal ones, the algorithm is particularly well-suited to be diseng the early
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Figure 7: Evolution of vertical weights throughout learning. Each lineesgronds to an individual
vertical feature; vertical lines correspond to the beginning of new iterstidhe plot
refers to the music analysis data set.

learning steps of the voted perceptron where the time sav€drpgDiem reaches peaks of 997 %
(music analysis, classi er 1:1) and 8% (FAQs segmentation, classi er 1:1).

Lastly, one might wonder why the observed pattern wasn't seen in thestognition problem.
Notwithstanding that the problem itself is a sequential one, to model only bigpanimbilities
proved—against our expectations—to be not enough to provide sof discrimination power to
horizontal features. In other words, the horizontal features we e@wsntribute to the correct
classi cation only in a marginal way. This is a setting wh&apeDiem can, and actually does,
attain exceptional time savings (Figure 6).

Prompted by such time savings, we re-ran the same experiments using rantedrfeatures:
the accuracy does not drop down as signi cantly as in the other two prebld his fact explains
why the pattern observed in Figures 4 and 5 is not observed in Figunedg: \gertical features re-
main predictive with respect to horizontal ones throughout the learnoaeps the performances of
CarpeDiem do not change over time. Here we note one important propei@amEDiem : Carpe-
Diem time performances re ect the degree of sequentiality inherent to the pnodidvand. Actu-
ally, by tracking the number of vertices opened in each layer, one caimesasure how important
sequential information is in different parts of the same sequence.

6.6 Comparison with Related Algorithms

In the following we present a brief discussion about two technologies ifhadt directly com-
parable withCarpeDiem , are much related to the algorithm. We start by reporting the results of
implementing theCarpeDiem heuristic for theA algorithm. Then, we report about a performance
comparison with non-optimal search algorithms based on the Viterbi beaohsgsproach.
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6.6.1 RELATIONS WITH A

It could be argued that tiearpeDiem algorithm looks interestingly similar to thee algorithm (Hart
et al., 1968). In order to investigate this similarity let us consider the followgiktic, based on
the same ideas underlyif@arpeDiem :

hiy)= & max § +S =(T Hst+3 max §,
-y Ko oy Yo

The heuristic estimates the distance to the goal by summing the best verticat imedgich layer
and the best possible transition between any two layers.

Even though the heuristic is intuitively connected to the strategy implemen@agieDiem , the
differences are indeed remarkable. A rstimportant difference is irctigéce criteria implemented
in Algorithms 3 and 4 (we will focus only on Algorithm 3 for the sake of exposiidrhe criterion
in Algorithm 3 statesdo not consider any further node in this layer if

G(y;) >= B+ %)93

SinceB; = G(y; 1)+ St , the above criterion approximates the reward of the optimal path by means
of St only once rather than tHe t times taken bya(y;). Hence A incurs an high risk of opening
vertices in layers far from the goal only because of the cumulation of tqgs®ximations.

Another important difference between the two algorithms is in the factGraeDiem imple-
ments two different heuristics: one is used by Algorithm 3 and one is usédgoyithm 4. On the
contraryA uses the same criterion throughout the computation. Finally, the data steuctgéed
by CarpeDiem are simpler (and faster) than those needed to imple#ent

In order to empirically assess wheth®rcould be competitive with respect @arpeDiem , we
implemented the above heuristic and paid particular attention to tuning the dataurgtsucThe
resulting algorithm turned out to be even less ef cient than the Viterbi élgor

Of course, this does not mean that the same principles implementeaif®piem could not be
plugged intoA by means of a carefully chosen heuristic. Rather, it shows that the prableot
trivial, and deservead-hocresearch efforts.

6.6.2 VITERBI BEAM SEARCH

To compareCarpeDiem with algorithms based on the Viterbi beam search (VBS) strategy presents
several dif culties. On the one hand, we have an algorithm that guagsisigtimality, but not com-
putational performances; on the other hand, we have VBS approtheiegiarantee computational
performances abdicating optimality.

In VBS approaches the width of the beam (heredfjés particularly important in that it affects
the tradeoff between computational gain and result optimality. For very &meBS would most
probably lead to crude approximations; in this case VBS is likely to run fastaer@arpeDiem just
because it disregards most of the possibly-optimal paths. By converse,were to choose the
beam size almost equal to the number of possible ladkdise., b’ K), then VBS would run in
almost the same time as the Viterbi algorithm. In between there are all other opA¢sts the
quality of the solution found by VBS approaches highly depends on thestieladopted. In the
following we will disregard any accuracy concern, so that the two aggres could be compared in
terms of execution times solely.
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Let x be the ratio between the time spent GsrpeDiem and the time spent by the Viterbi
algorithm for solving a given problem: that is, the time savings reported ile Taire computed as
[(1 x) 100%. Given that the time spent by a Viterbi beam search algorithm is in the ofder
b?T, the time saved by a VBS algorithm w.r.t. the Viterbi algorithm is in the order of:

By equating the time saved I8arpeDiem (i.e., 1 X) and the time saved via the VBS approach, we
have that by setting: p___
b= xK2 (8)

an algorithm based on the VBS approach will run in about the same tiBargeDiem .

We implemented a basic VBS algorithm and measured its running time over the td& se
scribed in Section 6 and experimented with different settings dfhe results show that to obtain
the same running times &srpeDiem , the beam size needs to be set as follows:

b= 25 for the Tonal Harmony Analysis data set. Belag 78, this amounts to consider 32%
of the possible labels;

b= 2 for the FAQ Segmentation data set. Belug 4, this amounts to consider 50% of the
possible labels;

b= 5 for the text recognition data set. BeiKg= 27, this amounts to consider 586 of the
possible labels;

Two aspects are remarkable in the above resiltéie reported gures have been observed empir-
ically rather than determined using the above formula. It is immediate to verifyttbgptare very
close to the ones returned by using Formul&)8ye omitted to implement a heuristic to guide the
VBS search. Since computing the heuristic would require additional effibiéstimings used to
derive such numbers are optimistic approximations of the actual time neededibbyedged VBS
algorithm.

In summaryCarpeDiem runs at least as fast as a VBS approach when a small to medium beam
size is used while providing some additional bene ts. Again, investigatingdhditions that make
appropriate one approach over the other one, deserves furthmrdeg the research.

7. Conclusions

In this paper we have propos€drpeDiem , a replacement of the Viterbi algorithm. On average,
CarpeDiem allows evaluating the best path in a layered and weighted graph in a fradtibe o
time needed by the Viterbi algorithnCarpeDiem is based on a property exhibited by most tasks
commonly tackled by means of sequential learning techniques: the obsesvatiand around a
time instant are very relevant for determining theh label, while information about the succession
of labels is mainly useful in order to disambiguate unclear cases. The éxtehich the property
holds determines the performances of the algorithm. We formally prove@€ahaDiem nds the
best possible sequence of labaigl that the algorithm complexity ranges betwe@{T KlogK) in

the best case, ar@(TK?) in the worst case. The fact that the worst case complexity is the same as
the Viterbi algorithm complexity suggests that, by and la@gepeDiem is suitable for substituting
the Viterbi algorithm.
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In Section 3, we reviewed recently proposed alternatives and pointatentollowing advan-
tages ofCarpeDiem with respect to the competitors:

it is parameter free;
it does not require any prior knowledge or tuning;
it never compromises on optimality.

At the present time, the main strength of other approaches with respectstisahat they have
been devised to improve the forward-backward algorithm as well. We tlefeextension of our
approach in that direction to future work.

In addition to the theoretical grounding G&rpeDiem complexity, we provided an experimen-
tation on three real world problems, and compared its execution time with thas diterbi algo-
rithm. The experiments show that large time savings can be obtained. Théetemures show
time savings ranging from 73% to 96% with respect to the Viterbi algorithm.

A further interesting facet d@arpeDiem is that its execution trace provides clues about the prob-
lems at hand. It can then be used to understand how salient sequewtiaiatibn is. Also, within
the same sequence, it is often interesting to investigate the time steps wheretstdguformation
gets crucial thus implying higher classi cation time. For instance, in RadiciodiEsposito (2007)
we used this fact to nd where musical excerpts get more dif cult.

In a world where the quantity of information as well as its complexity is ever aging, there
is the need for sophisticated tools to analyse it in reasonable time. Our pencispthat, in most
problems, long chains of dependencies are useful to reach top rdsultteir in uence on the
correct labelling decreases with the length of the chain. In a probabilistioggethe length of the
chain of dependencies would be called the “order of the Markov assurhgticsuch a context, it
would be appropriate to say that what we call "vertical' features aratgfeatures making a zero
order Markov assumption (no dependency at all), while horizontal feaitare features making a
rst order Markov assumption. The higher the order of the Markoweagstion we want to plug into
the model, the slower the algorithm that evaluates the sequential classi@ur fuess is correct,
however, the higher the Markov assumption, the less informative aredgheds that use it. Should
this be the caseCarpeDiem strategy could be extended to ef ciently handle higher order Markov
assumptions, thereby allowing to use sequential classi ers to tackle a Eagef problems.
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Appendix A. Soundness

A proof of soundness fo€arpeDiem consists in showing that; is the endpoint of the optimal
path through the graph of interest. Although the whole algorithm is condesith nding out
the optimal path, we presently restrict ourselves to nd the optimal endponte standard book
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symbol | description
S vertical weight of vertex,
11;),1 ., | horizontal weight for transition frong 1 andy;
st maximal transition reward ( xed for the whole graph)
av) the weight of the best path tp

! the weight of the best path to the best vertex in l¢vel
by g .t st

G(yvi) a(y;) as calculated bgarpeDiem

B: b; as calculated bgarpeDiem

Table 3: Summary of the notation adopted.

keeping techniques can be used during the search to store path inforndtmpath can be then
be retrieved irO(T) time.

The proof consists in two Theorems and one Lemma,; in particular, Theoreémedtly im-
plies the soundness @arpeDiem , while Theorem 2 and Lemma 1 are necessary in the proof of
Theorem 1.

Before entering the core of the proof, let us summarize the notation adoyptedlistinguish
between values that are calculated@aypeDiem , and those representing properties of the graph.
We will use blackboard characteiG @ndB) to denote the former ones and greek lettgrandb)
for the latter ones. A summary of important de nitions is reported in Table 3.

We start by stating and proving Lemma 1, which ensures the soundnessméth bound used
by CarpeDiem .

Lemma 1 If B; = b; then the bound exploited by CarpeDiem does not underestimate the refvard
the optimal path to any vertex. Formally,

Bi=bt) Bi+S o)
Proof Let us consider the optimal pathypand denote witlp(y;) the predecessor gf. Then, by

de nition we have:q ; g(p(y)), andSt %;p(yt). It immediately follows that:

g 1+S +S dPO)* Sy + St
By de nition by = g ;+ S" andg(yt) = AP(Y) + Sy + o Which yields:
bt + gi QKYt)

and by assumption, this implies:

Bi+ S dlw):

Theorem 1 Let us consider a sequence of calls to Algorithm 3 on lageBs:::;t (t T). When
Algorithm 3 terminates on layer t, the returned vertexsythe endpoint of the optimal path to layer
t. Formally,

8yt :dly;) 9wn):
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Proof We prove the stronger fact

Bt= b8y :dy) ow):

The proof is by induction oh. The base case for the induction is guaranteed by the initialization
step in Algorithm 2 wher®, andq(y,) are set. We start by showing that

8y1:9lyr) dy1) 9)

as follows:

ay1) = g(argmay, G(y1)) ! by line 3 (Algorithm 2)

= g argmay, % I by line 2 (Algorithm 2)
= g(argmay, gly1)) ! by Equation2
- ma)@l qyl)

+

8y1:dy) dyu):
In order to proveB, = b, we note that Algorithm 2 se®, to G(y;)+ St :
B2= G(y)+ &

= S/)l +S' 1 byline 2 (Algorithm 2)

= oy)+ S ! byEquation?2

= g+ S I by de nition of g; (Table 3) and Equation 9
= b, I by de nition of b, (Table 3)

Let us now assume that for @Jl1 f< t:8

B; = bt
8y aly;)  ovp)

then we proveB; = by as follows:

Bi= G(y, )+ St ! byinstruction 6 (Algorithm 3)
ay; )+ S ! byTheorem2
= g ,+S" ! byEquation 10 and de nition o ;
= o I by de nition of b; (Table 3)
In order to prove8y; : oy;) dy) we start by noting that at the end of the main loop of

Algorithm 3 it holdsG(y;) B+ %0 Also, for anyy; v ; y?we have (by De nition 2—Equation 5):
Bi+ S, B+ % It follows thaty; v YY) G(y,) Bi+ ). Using Lemma 1 we have

vy Gv) o) (10)

8. We note that our de nitions give no meaningBg andb;. We de ne them to be equal regardless their value: this
simpli es the discussion allowing an easier formulation of the propertiesgb&tisted and proved. They are not used
in the algorithm nor in the argument anyway; the de nition is thus safe.
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Moreover, since the algorithm scans the vertices in the order givem bgll verticesyt, y w; y?
have been considered by the main loop. Then by line 4 (Algorithm 3), bynductive hypothesis
(8t < t : By = by) and Theorem 2, we have that for each such ve@éx) = o(y;). Moreover, due
to line 5 (Algorithm 3),G(y;) G(w:). Putting together the two statements, we conclude that

weyy) G(w) o) (11)
Equation 10, Equation 11, and the fact thatis a total order, yield

8yt :G(y) awn):

By noting thaty; is open (and exploiting again Theorem 2), we have:

8yt 1Y) odw):

Theorem 2 Let us assumsf < t : B; = by, then after opening vertex,G(y;) = o).

Proof By line 7 (Algorithm 4),G(y) = G(Y, ,)+ %:yt o ). Then, our main goal is to prove

GV D+ Sy, .+ S = o)
Replacing(y;) with its de nition (Equation 2) yields:
G D+ Sy, * S = MaX oy 1)+ Sy, + G
The above equality is satis ed if the following two properties hold:
Y 1= argmax gy 1)+ S (12)
G(y; 1= d% 1) (13)

The proof, by induction om, proves that the Equations 12 and 13 are satis ed at the moment (and
after)G(y;) is set.CarpeDiem starts by opening the most promising vertex in layer 2, this is the rst
time Algorithm 4 is called and hence the base case of the induction. Let uisleondat happens
when a nodsy, is opened. Since all vertices in layer 1 have been opened by the initializédjon s
the rstloop in Algorithm 4 iterates on all of them and the second loop is nex&red. Then, just
before line 7, it holds

yL= argmax G(y) + Sy,

Since the initialization step guarante®g : G(y1) = oy1), then properties 12 and 13 are satis ed.

Let us now assume by induction that after opening a vestexin layert 1 (t > 2) it holds
G(y: 1)= doy: 1). We focus on the execution of Algorithm 4 on a verjein layert. Let us denote
with O; ; the set of vertices presently open in layer 1, and withC; ; the set of closed ones.
When the rstloop ends, it holds:

=arg max G +s.,
Yt 1 gyt max. vt D+ Sy
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Also, since all vertices for which we have taken the argmax are in laydr and open, we apply
the inductive hypothesis and conclude that:

— 1 .
Yo 1= argyt [Eg-lxl qyt 1)+ %/t;Yt 1" (14)

The second loop moves some vertices floymy to O; 1. At the same time, however, it updatgs,
so that the above equality is preserved. Then, on exit we can condldylar{d (for the particular
y? ; that caused the loop to exit):

G D+ Sy, , B 1+$?1+ st: (15)
Also, by de nition of w; 1 (De nition 2—Equation 5)8y; 1: ytO 1 Wt 1Y 1implies:
B: 1+$}?1+Sl Bt 1+, ,+S: (16)

Since vertices are consideredin ; order and sincg , is the rst vertex that has not been opened,
it follows that all closed vertices follovytO 1 inthewy , order. Using this fact along with (15) and
(16), it follows:

8yt 12Ct 1:G(y; )+ S}t;yt . B+ S ,+ S
By induction,G(y, 1) = oy; ;). Moreover, Lemma 1 implieB; 1+ S}t . dY 1). Using these
facts, along wittBy;;y; 1: S %J’-t;yt , (De nition 2—Equation 3) we obtain:
8t 12Ct 1: 9y 1t %ﬁ;yt L I )t %]’-t;yt 1
Which yields:
qyt 1)+ S}t;yl 1 max qyt 1)+ %J/-t;yt 1 .

Yt 12Ct 1
This and (14) yield:
% 1= argmax oY D+ Sy,

Also, the fact thay, , is open and the inductive hypothesis, yi€@fy, ;)= Ay; 1)-

Appendix B. Complexity
Theorem 3 CarpeDiem has (T K?) worst case time complexity and DK logK) best case time
complexity.

Proof Let us consider the nal step of an executionG#rpeDiem , and assume that for each layer
t, exactlyk; vertices have been opened. In our proof we separately consider thespiené to
process each layer of the graph. We de ne the quarititt) to represent the overall time spent by
Algorithms 3 and 4 to process layerlLet us de ne:

a(y;): the number of steps needed by Algorithm 3 to process vegrtex
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b(y;): the number of steps needed by Algorithm 4 to nd the best parent for pode

We note that(y;) does not include the time spent by Algorithm 4 since such time is accounted for
by b(y;). Similarly, b(y;) does not include neither the time spent by Algorithm 3, nor the time spent
by recursive calls to Algorithm 4. In fact, the time spent in recursive calizkien into account by

b values of vertices in previous layers. Then we can compft¢ as:

T = aaly)+ b(w)
i
The total complexity ofarpeDiem is then:

T
T (CarpeDiem ) = time for initialization+ & (O(1)+ T (t))
t=2
where the “time for initialization” includes th@(K) time spent in the rst loop of Algorithm 2 plus
the O(T KlogK) time needed to sort each layer accordingvto It follows:

T

T (CarpeDiem ) = O(TKlogK)+ § (O(1)+ T (t)): (17)

t=2

Let us now note thaa(y;) is at worstO(k;). In fact, since onlyk; vertices have been opened at
the end of the algorithm, it follows that the steps needed to analyse a werbgx(the loop in)
Algorithm 3 is at mosk;. We notice that we are overestimating the cost to analyze each node since
k: is theoverallnumber of iterations performed by the mentioned loop. However this overgistima
simpli es the following argument without hindering the result.

b(y;) is, at worst,O(k; 1). In fact, since onlyk ; vertices have been opened at the end of
the algorithm, it follows that the two loops in Algorithm 4 iterate altogether at rkosttimes.
Moreover, since the steps performed by recursive calls are not tocheléd inb(y;), it follows
that all operations ar®(1), and the complexity accounted for bgy;) is O(k: 1). In both cases no
computational effort is spent to process closed nodes.

From the above discussion it follows that:

T () a a(y)+ b(y)
Wt

= a O(k) + O(k: 1)

Vt in open vertices

= k (O(k)+ O(k: 1))
= O(K+ kiki 1):

Putting together the above equation and Equation 17 we have:

,
O(TKlogK)+  O(1)+ Ok + kk: 1)
t=2

T
O(TKlogK)+ & O(K+ kik 1):

t=2
The worst case occurs wh€arpeDiem opens every node in every layer. In such cdges K for
eacht and the above formula reduces@¢T K?). In the best cas@arpeDiem opens only one node
per layerk; = 1 for eacht and the complexity i©(T KlogK). |

T (CarpeDiem )
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