
Computational Adequacy for Recursive Types

in Models of Intuitionistic Set Theory

Alex Simpson 1

LFCS, School of Informatics, University of Edinburgh, Scotland

Abstract

This paper provides a unifying axiomatic account of the interpretation of recursive
types that incorporates both domain-theoretic and realizability models as concrete
instances. Our approach is to view such models as full subcategories of categorical
models of intuitionistic set theory. It is shown that the existence of solutions to
recursive domain equations depends upon the strength of the set theory. We observe
that the internal set theory of an elementary topos is not strong enough to guarantee
their existence. In contrast, as our first main result, we establish that solutions to
recursive domain equations do exist when the category of sets is a model of full
intuitionistic Zermelo-Fraenkel set theory. We then apply this result to obtain a
denotational interpretation of FPC, a recursively typed lambda-calculus with call-
by-value operational semantics. By exploiting the intuitionistic logic of the ambient
model of intuitionistic set theory, we analyse the relationship between operational
and denotational semantics. We first prove an “internal” computational adequacy
theorem: the model always believes that the operational and denotational notions of
termination agree. This allows us to identify, as our second main result, a necessary
and sufficient condition for genuine “external” computational adequacy to hold,
i.e. for the operational and denotational notions of termination to coincide in the
real world. The condition is formulated as a simple property of the internal logic,
related to the logical notion of 1-consistency. We provide useful sufficient conditions
for establishing that the logical property holds in practice. Finally, we outline how
the methods of the paper may be applied to concrete models of FPC. In doing so,
we obtain computational adequacy results for an extensive range of realizability and
domain-theoretic models.

Key words: Domain theory, Algebraic compactness, FPC
2000 MSC: 03B70, 03C90, 03E70, 03E73, 03D45, 03F55, 18B25, 68Q55

1 Research supported by EPSRC Research Grant no. K06109 (1998–2002), an EP-
SRC Advanced Research Fellowship (2001–), and a visiting professorship at RIMS,
Kyoto University (2002–2003).

Preprint submitted to Elsevier Science 8 December 2003

1 Introduction

In his work on algebraic compactness, Freyd [9,10] identified the categorical
structure required to model recursive types. Many examples of algebraically
compact categories are known. Domain theory provides the classical exam-
ple of the category of ωcpos [3]. More generally, axiomatic domain theory
has successfully abstracted the particularities of domains to provide a host
of “neo-classical” models [3,6]. A very different type of model is given by
game-theoretic semantics [25]. Finally, there are a variety of models based on
realizability [11,28–30,21,22,35]. What has been missing hitherto is a single
unifying treatment accounting for the existence of all these types of model. In
this paper, we provide the axiomatic basis for such a treatment. In a follow-up
paper [44], we shall demonstrate how the various types of model are incorpo-
rated within our axiomatic framework.

Categories that model recursive types have nontrivial fixed-point operators
and thus, by a simple argument using classical logic, cannot be full subcate-
gories of the category of sets. In [38], Dana Scott showed that such categories
can nonetheless live as full subcategories of models of intuitionistic set theory,
an observation that led to the subsequent development of synthetic domain
theory [36,14,28,46,22,40,35,27,7]. In this paper, we exploit this idea to obtain
algebraically compact categories in a uniform way. Roughly speaking, we start
off with a category S of intuitionistic sets that satisfies one simple axiom, Ax-
iom 1 of Section 2. From any such category S, we extract a full subcategory
of predomains, P ⊂ - S, whose associated category of partial maps, pP, is
algebraically compact.

This approach directly follows [40], where it is shown that a model of the
simply-typed language PCF [32] can be similarly extracted from any elemen-
tary topos S, with natural numbers object, satisfying a stronger Axiom N.
The additional goal of the present paper is to show the algebraic compactness
of pP. This is a nontrivial task.

In fact, we immediately encounter a problem. As our first result, Proposi-
tion 2.7, we show that there exists an elementary topos satisfying Axiom N
for which the derived category pP is not algebraically compact. Thus some
modification to the above method of constructing P is necessary in order to
interpret recursive types. This is not, at first sight, surprising. Axiom N is de-
signed merely to guarantee that P models the recursive definition of functions.
Thus there is no a priori reason to expect recursive types to have interpreta-
tions in pP.

However, we identify the difficulty as stemming from a perhaps unexpected
source. The problem is that elementary toposes, although models of intuition-

2

istic higher-order logic, are not, in general, models of a sufficiently powerful set
theory. Thus, instead of working with an arbitrary elementary topos, we shall
require that S have enough structure to model full Intuitionistic Zermelo-
Fraenkel (IZF) set theory, see e.g. [37]. Technically, this is implemented by
asking for S to be given as the full subcategory of small objects in a category
C with class(ic) structure and universal object, in the sense of [41,43] (de-
veloped from [19]). As our first main result, Theorem 1, we prove that, with
such a category S, the derived category pP is algebraically compact whenever
Axiom 1 holds. Thus, with enough set-theoretic power to back it up, Axiom 1
is, after all, sufficient for the solution of recursive domain equations.

As an application of Theorem 1, we give an interpretation of FPC, a recursively-
typed λ-calculus with call-by-value operational semantics, in pP. As our sec-
ond main result, Theorem 2, we obtain necessary and sufficient conditions for
this interpretation to be computationally adequate, i.e. for the denotational
and operational notions of program termination to agree. Our approach to
computational adequacy makes extensive use of the intuitionistic set theory
of the ambient category C. The method of attack is to first prove an “internal”
computational adequacy result: the model always believes itself to be compu-
tationally adequate, Proposition 12.2. Next we identify a logical property that
characterizes the circumstances in which the “internal” belief of computa-
tional adequacy coincides with “external” reality. The logical property is a
simple one, closely related to the proof-theoretic notion of 1-consistency [12,
Def. 1.3.6]. We also provide useful sufficient conditions for verifying that the
logical property holds in models that occur in practice.

Our approach to computational adequacy is based on a similar characteriza-
tion of computational adequacy for the simply-typed language PCF in [40].
However, the present paper extends the results of op. cit. in two significant
ways. Firstly, we assume the weaker Axiom 2 rather than Axiom N, see Sec-
tion 2. This is important in the applications of our results in Section 15.
Second, the extension of the proof of “internal” computational adequacy to
include recursive types involves a substantial amount of nontrivial work.

The paper naturally divides into two halves. The first half entirely concerns
algebraic compactness, and is centred around Theorem 1. In Sections 2 and 3
we present the necessary background material to formulate Theorem 1. The
proof of the theorem then occupies a large chunk of the paper, Sections 4–9.
To help orientate the reader, a detailed outline of the proof structure is given
in Section 3.

In the second half of the paper, we address the question of computational
adequacy for FPC. Section 10 presents a brief overview of the FPC language
and its operational semantics. In Section 11, we apply Theorem 1 to obtain a
denotational interpretation of FPC in pP. The proof of “internal” computa-

3

tional adequacy is given in Sections 12 and 13. Finally, our main computational
adequacy result, Theorem 2, is stated and proved in Section 14.

The main applications of the results of this paper are to establish computa-
tional adequacy for axiomatically given classes of models of FPC, including
domain-theoretic and realizability models. In Section 15, we briefly outline our
results in this direction. Full details will appear in a follow-up paper [44].

The research in the present paper constitutes a development of the techniques
of synthetic domain theory. Nevertheless, our applications to axiomatically
given classes of models demonstrate that our results should be viewed equally
much as a contribution to the field of axiomatic domain theory [9,10,39,4,3,5,6].
It is the author’s view that embedding categories of predomains within models
of intuitionistic set theory is the correct approach to obtaining an axiomatic
account of domain-theoretic constructions that applies uniformly across the
different types of model. At present, it is the only known approach.

2 Classes, sets and predomains

As discussed in the introduction, our work will involve both elementary toposes
and also categorical models of Intuitionistic Zermelo-Fraenkel (IZF) set the-
ory [37]. Both types of model arise as instances of regular categories with
class(ic) structure, as defined in [41,43]. We briefly recount the main fea-
tures of this notion, using, as far as possible, set-theoretic intuition. For the
category-theoretic details see op. cit.

A category is regular if: it has finite limits, every morphism f : X - Y
factorizes as

f = X
e-- I-

m- Y,

where e is regular epi and m is mono, and such factorizations are stable under
pullback. Intuitively, I represents the image of f in Y , the regular epi e is
the surjection onto the image, and the mono m is the inclusion of the image
in Y . Class structure is additional structure on a regular category, designed
to ensure that the objects of the category behave like classes, and that the
morphisms behave like functions between classes. In particular, in any regular
category C with class structure, there is a distinguished full subcategory, S,
of small objects, which is to be thought of as the subcategory of sets. More
generally, there is a distinguished collection of morphisms, the small maps,
where intuitively f : X - Y is small if, for every y in the class Y , its
fibre f−1(y), which is a subclass of the class X, is actually a set. Smallness
interacts with the regular structure on C as follows. If X- - Y is mono and
Y is small then X is small, i.e. every subclass of a set is a set. This expresses
the Separation axiom of set theory. Dually, if X -- Y is regular epi and X is

4

small then Y is small, i.e. the image of a function from a set to a class is itself a
set. This expresses the Replacement axiom of set theory. The other important
structure on C is that, for every class X, there is another class PSX the small
powerobject of X, which is intuitively the class of all subsets of X. The object
PSX comes with an associated membership relation 3X

- - PSX ×X, for
which the composite

γX = 3X
- - PSX ×X

π1- PSX (1)

is a small map. It is also required that if X is small then so is PSX. This
expresses the Powerset axiom of set theory. It follows that the full subcategory
S is an elementary topos. Further, C has finite coproducts and S is closed
under finite limits and coproducts in C. Also, every epi in C is regular.

Importantly, C supports an internal logic, which is intuitionistic first-order
logic. Intuitively, one thinks of the subobjects of an object X as being predi-
cates on X. The lattice of subobjects, Sub(X) is a Heyting algebra. Moreover,
for any f : X - Y , the inverse image map f−1 : Sub(Y) - Sub(X) has
left and right adjoints, giving existential and universal quantification respec-
tively; see [41,43] for details. We shall make liberal use of this internal logic,
writing C |= ϕ to mean that statement ϕ holds internally in C. The object
Ω = PS1 (where 1 is the terminal object in C), which is the subobject classi-
fier in S, is also a subobject classifier in C. Thus Ω can be thought of as the
set of all internal propositions in C.

As we shall make heavy use of indexed families in C, we summarise the le-
gitimate constructions on them in the context of class structure. As usual, we
consider I-indexed families as being given by morphisms X - I, although
we shall often use the convenient notation {Xi}i : I for them. Given such an in-
ternal family X - I, the object X itself provides a dependent sum

∑
i : I Xi.

However, a dependent product
∏

i : I Xi is only guaranteed to exist in the case
that I is a small object. If, in addition to I being small, X - I is a small
map then

∏
i : I Xi is itself a small object. In the case of a constant family

{X}y : Y (given by a projection X ×Y - Y), dependent product specialises
to function space. Thus the above remarks imply that the internal function
space Y X (for which we also write X → Y) exists whenever X is a small
object, and that Y X is itself small if both X and Y are small.

An important fact about the class structure is that it is preserved by slicing, i.e.
for every object I of C, the slice category C/I also has class structure, see [41,
Theorem 2]. In practical terms, this means we can often derive a parametrized
version of a result, with a free parameter in I, from an unparametrized external
result about C.

Henceforth in this paper, let C be a regular category with class structure,
and let S be its full subcategory of small objects. We also assume that C

5

has a small natural numbers object (nno) N. This implements the Infinity
axiom of set theory. Further, we assume that all the assumed structure is
specified, i.e. we have chosen finite limits, chosen image factorizations, etc.
Henceforth whenever we impose additional structure on C we again assume,
without further comment, that the structure is specified.

In spite of the motivating references to set theory, the assumed structure on
C and S does not yet provide the full power of IZF set theory. For example,
given any elementary topos with nno, S, one can obtain class structure by
putting C = S and stipulating that every map be small. At present, the two-
tiered structure serves only to allow the topos S to live within the environs
of a possibly larger surrounding universe of classes. This facility will play a
crucial rôle from Section 3 onwards, but it is introduced at this stage merely
to permit a unified presentation of the material.

Before starting on the technical work proper, we summarize a few stylistic and
notational conventions that we use. The results in the paper include external
results about the category C (and derivatives of it) and internal results derived
within the internal logic of C. We try to be as clear as possible about where
the divisions between external and internal reasoning lie, but at the same
time we try to avoid being overly pedantic. The problem of maintaining a
rigorous, though readable, separation between internal and external reasoning
is a thorny one, especially in a paper of this length. It is to be hoped that
the following conventions are sufficient to help the reader through the paper.
When reasoning internally, we write x : X in order to identify an object X
as the type of an expression x. On the other hand, we write x ∈ X ′ if X ′

is understood as being a subobject X ′- - X where x : X and x lies within
the subobject. We also write x ∈ y if x : X and y : PSX and (y, x) lies in
the subobject 3X

- - PSX × X. We make various notational distinctions
between external structure and internal structure, e.g. L is an external functor
on C, whereas, in Section 9, L is the corresponding internal functor on an
internal category. Similarly, we write f : X - Y for a morphism in the
category C, and we write f : Y X (and f : X → Y) to type f internally as an
element of the object Y X . However, the reader should be warned that, we use
these conventions quite flexibly. In particular, we often, e.g., work with some
assumed i : I and then continue to use the notation for external structure.
Formally, this should be understood as moving to the slice category C/I and
referring to external structure on that category.

The remaining goal of this section is to isolate a full subcategory of S to
act as a category of predomains. This will require imposing further axioms
on C. Many axiomatizations have been suggested for this purpose, see e.g.
[36,14,28,46,22,40,35,27]. Here, we follow [22,40].

As first proposed in [36], the definition of predomain is predicated on a no-

6

tion of partiality. To implement this, we require a distinguished subobject
Σ- - Ω. As Σ is a subobject of Ω, it classifies a collection of subobjects in
C, namely those whose characteristic map to Ω factors through Σ- - Ω. We
call such subobjects Σ-subobjects, and we write (X � p) for the Σ-subobject
(X �p)- - X determined by p : X - Σ.

Intuitively, the object Σ is intended to correspond to the subobject of those
propositions in Ω that express the termination of programs. Because there ex-
ist terminating programs, and because programs can be run under sequential
composition, it makes sense to require that Σ contains the true proposition,
>, and that Σ-subobjects are closed under composition. This implies, in par-
ticular, that Σ is closed under finite conjunction in Ω. Taken together, these
requirements state that Σ is a dominance in the sense of [36].

The dominance Σ determines a lifting functor on C. For an object X, we say
(internally in C) that e :PSX is subterminal if

∀x, x′ : X. x ∈ e ∧ x′ ∈ e → x = x′.

We say that e is Σ-subterminal if it is subterminal and also

(∃x : X. x ∈ e) ∈ Σ,

i.e. the proposition stating that e is inhabited is a Σ-proposition. Using the
internal logic of C, define

LX = {e :PSX | e is Σ-subterminal}.

The L operation extends to a functor L : C → C, where, on f : X - Y ,
the morphism action Lf : LX - LY is defined by

(Lf)(e) = {f(x) | x ∈ e}.

Further, the endofuctor L carries a monad structure. The unit is singleton
{·} : X - LX, and the multiplication is union

⋃
: LLX - LX.

As in [18], the endofunctor L has a final coalgebra, τ : F - LF (necessarily
an isomorphism), defined by:

F = {c : ΣN | ∀n :N. c(n + 1) → c(n)}
τ(c) = {(n 7→ c(n + 1)) | c(0)}.

Because F is small and the L functor preserves subset inclusions, there exists
a smallest subalgebra, σ : LI - I, of τ−1, defined internally in C as the
intersection of all subalgebras of τ−1. It is a consequence of [41, Theorem
5] that σ : LI - I is an initial algebra for the endofunctor L on C. By
construction, the unique algebra homomorphism, ι : I - F, from σ to τ−1

7

is mono. It is not epi (unless C is trivial), because ∞ = (n 7→ >) is a point
in F that is not in the image of ι. Henceforth, we shall ignore the explicit
constructions of I and F given above, and instead work purely with their
universal properties as the initial L-algebra and final L-coalgebra respectively.

Informally, one can view I as the object obtained from the initial object 0 by
freely iterating the L functor. In the sequel, I will play the rôle of a generic
“ω-chain” in C, and I- - F will exhibit F as its “chain-completion”. This
intuition plays a fundamental rôle in developing a basic notion of “chain com-
pleteness” used to define a full subcategory of predomains within S, see [22].
On the other hand, one must be careful with this intuition, as we do not (yet)
have axioms that ensure that I is even inhabited.

Proposition 2.1 For any object X, the following are equivalent.

(1) The map X ι : XF - XI is an isomorphism.
(2) C |= ∀f : XI. ∃!f ′ : XF. ∀i : I. f(i) = f ′(ι(i)).

Definition 2.2 (Complete object) An object X is said to be complete if
either of the equivalent conditions of Proposition 2.1 hold.

Examples in [27] show that complete objects do not themselves form a suit-
able category of predomains as they are not necessarily closed under lifting.
Following [22], we avoid this problem using the property of well-completeness.

Definition 2.3 (Well-complete object) An object X is well-complete if
LX is complete.

The results below, which are standard, state the basic properties of well-
completeness. In them, we write 2 for the object 1 + 1, which we view as
a subobject of Ω via [⊥,>] : 2- - Ω, where ⊥ is falsum. We sometimes
refer to 2 as the object of logically decidable propositions, because for any
proposition p we have p ∈ 2 if and only if C |= p ∨ ¬p.

Proposition 2.4

(1) If 2 is well-complete then so are 1 and 0.
(2) If N is well-complete then so is 2.

The converse implications do not hold in general, see [27].

Proposition 2.5 If 1 is well-complete then:

(1) X is well-complete if and only if

C |= ∀p : ΣF. ∀f : X(I�p◦ι). ∃ !f ′ : X(F�p). ∀i : (I�p ◦ ι). f ′(ι(i)) = f(i).

8

(2) X well-complete implies X complete.
(3) X well-complete implies LX well-complete.
(4) For any internal family {Xi}i : I with I small,

C |= (∀i : I. Xi is well-complete) → (
∏
i : I

Xi) is well-complete.

Two special cases:
If X, Y are well-complete then so is X × Y .
If X is small and Y is well-complete then Y X is well-complete.

(5) Given two morphisms f, g : X - Y with X, Y well-complete then, for
any equalizer e : E- - X of f and g, the object E is well-complete.

(6) For any internal family {Xi
- - X}i : I of subobjects of a well-complete

object X, let (
⋂

i : I Xi)- - X be the intersection. Then:

C |= (∀i : I. Xi well-complete) → (
⋂
i : I

Xi) well-complete.

(7) Given a subobject X ′- - X and f : Y - X where X, X ′ and Y are
all well-complete, then f−1X ′ is well-complete, where

f−1X ′ = {y : Y | f(y) ∈ X ′} .

(8) 0 is well-complete if and only if ⊥ ∈ Σ.
(9) 2 is well-complete if and only if X, Y well-complete implies X + Y well-

complete.
(10) N is well-complete if and only if 2 is well-complete and also

C |= ∀P : 2N. ((∃n :N. P (n)) ∈ Σ) .

The proofs of statements (1)–(5) and (9) are routine, and essentially con-
tained in, e.g., [22,35,7]. Statements (4) and (6) make use of the fact that
well-completeness can be expressed in the internal logic of C, e.g. using (1).
Statements (6) and (7) follow easily from (4) and (5). Proofs of (8) and (10)
are given in [40].

Definition 2.6 (Predomain) A predomain is a small well-complete object.

We write P for the full subcategory of predomains. Thus we have full subcat-
egory inclusions P ⊂ - S ⊂ - C. For P to be well behaved, we need axioms
to ensure that basic objects are predomains. As all the objects we consider
for this purpose are already small, the axioms are formulated in terms of well-
completeness alone. We use a single format for all axioms.

Axiom X The object X is well-complete.

In this paper, we shall instantiate this format in three instances only: Axiom 1,
which, by Proposition 2.5(4), implies that P is cartesian closed; Axiom 2
which, by Proposition 2.5(9), implies that, P has finite coproducts (inherited

9

from C); and Axiom N which implies that P has all the structure required
by a model of PCF, see [40]. The implications between these three axioms are
given by Proposition 2.4.

It is worth remarking that one consequence of Axiom 1 is that the implication
(∀p : Ω. p ∨ ¬p) → Σ = {>} holds in C. Axiom 1 is, in fact, consistent with
C being a model of classical set theory, but only if the dominance is trivial.
Thus, if Axiom 1 holds and ⊥ ∈ Σ then the internal logic of C has to be
non-classical (if it is consistent). Other consequences of Axiom 1 are: Σ is
well-complete, by Proposition 2.5(3) because Σ ∼= L1; and any Σ-subobject of
a well-complete object is well-complete, by Proposition 2.5(5).

Our goal, in this paper, is to address the interpretation of recursive types in
P. This requires that recursive domain equations have solutions up to isomor-
phism in an associated category pP of partial maps, which we now define.

For objects X, Y of C, a Σ-partial map is a partial map from X to Y whose
domain X ′- - X is a Σ-subobject of X. Because Σ is a dominance, Σ-partial
maps are closed under composition. As the only partial maps we are interested
in are Σ-partial, we henceforth drop the Σ. We write pC for the category of
partial maps between objects of C, and we write pP for the full subcateory
of pC on predomains. We write f : X ⇀ Y for a partial map from X to Y .

For later convenience, it is useful to establish notation for dealing with possibly
undefined mathematical expressions resulting from the application of partial
maps. We write e↓ to mean that such an expression is defined. We use equality,
=, between possibly undefined expressions for strict equality, i.e. e = e′ means
that both e and e′ are defined and they are equal. We also write ' for Kleene
equality, i.e. e ' e′ means that whenever either of e or e′ is defined then so is
the other and e = e′. We write X ⇀ Y for the object of partial maps from
X to Y , which is easily defined in the internal logic. The object X ⇀ Y is
isomorphic to the exponential (LY)X . Thus, by Proposition 2.5(4), if Axiom
1 holds then, for X small and Y a predomain, X ⇀ Y is a predomain.

The first new result of this paper shows that, in the context of the assumed
structure on C, Axiom N is not sufficient to allow recursive domain equations
to be solved in pP. The statement makes use of the fact, already discussed,
that any elementary topos S arises as the full subcategory of small objects in
a category with class structure, by taking C = S.

Proposition 2.7 There is an elementary topos satisfying Axiom N in which
there exists a predomain Υ such that no solution X to the isomorphism X ∼=
X ⇀ Υ exists in pP.

PROOF (Outline). Let ω be the set of ordinals ≤ ω, with their usual order-

10

ing endowed with the Scott topology. The Grothendieck topos H, from [7], is
the topos of sheaves over the canonical Grothendieck topology on the monoid
of continuous endofunctions on ω. Let Hiω be the full subcategory of H on
those sheaves A for which the set A(ω) has cardinality strictly less than iω

(where i0 = ℵ0, ii+1 = 2ii and iω = supi<ω ii). This is an elementary topos
with nno. As in [7], the category ωcpoiω

of ω-cpos of cardinality < iω fully
embeds in Hiω by a functor y : ωcpoiω

→ Hiω . Define Σ = y(S), where S is
Sierpinski space. Then, as in [7], Axiom N is satisfied. Moreover, writing Piω

for the full subcategory of predomains in Hiω , we have that y factors through
the inclusion Piω → Hiω (cf. [7]). Finally, define Υ = y(Z) where Z is the
ωcpo (the well-known countably-based L-domain that is not bifinite) drawn
in [47, Example 9.6.15(c)]. The Σ-partial-function space ⇀ coincides with the
ω-continuous partial-function space on objects of ωcpoiω

in Piω . Now sup-
pose that a solution X to X ∼= X ⇀ Υ exists in pPiω

. Let D0 = y(0), where
0 is the empty ω-cpo. Then D0 is a zero object in pPiω

. Define a sequence
of predomains by Di+1 = Di ⇀ Υ. Then, by induction, Di is a retract of
Di+1 in Piω and each Di is also a retract of X (using the iso X ∼= X ⇀ Υ).
However, analogously to [47, Example 9.6.15(c)]), for each Di, the set Di+2(ω)
has cardinality at least ii. As there is a monomorphism from each Di to X,
the set X(ω) must have cardinality at least iω, but this contradicts X being
an object of Hiω . Thus no such object X exists. 2

The above counterexample is not as strong as one would like, as one can in fact
show that every closed FPC type (see Section 10) does have a solution in pPiω

.
Indeed, Piω includes the category of countably-based bifinite domains. What
the example above does show, is that the open type µX. (X ⇀ Y), cannot
be interpreted parametrically in Y , and hence does not give an endofuctor
on pPiω

. This suggests that one might, in general, restrict the notion of
predomain to give a smaller better behaved category. However, this does not
appear to be the way to proceed at the level of generality we are working at.
Indeed, we conjecture that there exist elementary toposes satisfying Axiom N,
for which even closed FPC types have no interpretation in pP.

3 Algebraic compactness

As indicated in the introduction, we address the interpretation of recursive
types by strengthening the assumptions on our ambient category of classes
C. A universal object is an object U such that, for every object X, there
exists a mono X- - U . Thus U can be thought of as an object that collects
the elements of all classes together within one universal class. In set-theoretic
terms, U is simply the class of all sets (and atoms if permitted). In [41,43] it

11

is shown how the existence of a universal object implies that C contains an
internal model of IZF set theory (with Replacement rather than Collection).

Henceforth we require that C have a universal object. For the purposes of this
paper, a vital consequence of the universal object is that the categories S, P
and pP all live as internal categories within C. In fact, the need to obtain S
as an internal category was one of the main motivations for the development
of [41,43]. Technically, this is achieved by constructing a generic small map in
C, see below. Such a generic map need not exist in the categories of classes
axiomatized in [19], where only the weaker property of the “Representability
Axiom (S2)” is generally satisfied; see p.9 of op. cit.

As usual, an internal category, K, in C is given by an object (i.e. a class), |K|, of
K-objects, and an internal family, {K(A, B)}A,B : |K|, of K-morphisms indexed
by domain and codomain, satisfying the expected axioms for identities and
composition, see e.g. [17]. We say that an internal category K in C is locally
small if the internal family

{K(A, B)}A,B : |K| - |K| × |K|

is a small map in C. It is small if, in addition, |K| is small.

As the definitions above suggest, class structure provides a good framework for
addressing size issues in internal categories. For example, we call an internal
category K small-complete if there is a map limK : DiagramsK

- ConesK in
C, where DiagramsK is the class of all small diagrams in K and ConesK is the
class of all small cones, and limK maps each small diagram to a limiting cone
for it. N.b. K is not required to be small.

An internal functor, F , from K to L is given by a morphism

F : |K| - |L|,

expressing the action on objects, together with a family of maps

{FA,B : K(A, B) - L(FA, FB)}A,B : |K|

that preserve identities and composition, again see [17].

We briefly exhibit S as an internal category in C, before turning attention to
P and pP. The internal category S is defined by

|S| = PSU S(A, B) = BA,

where the family {BA}A,B :PSU is formally defined as an exponential of small
objects in the slice category C/(PSU ×PSU). Identities and composition are
defined in the obvious way. By the remarks on smallness and indexed products

12

in Section 2, S is a small-complete locally small internal category in C. N.b.
it is not a small internal category as neither |S| nor

∑
A,B : |S| B

A is small.

We next justify the claim that the internal category S indeed internalizes
the external category S within C. This result is a consequence of dependent
products

∏
i : I Xi existing for small I, together with PSU being the carrier of a

generic small map in C. Specifically, any map g : I - PSU in C is realized
as an internal family f : X - I, with f small, by taking the pullback below,
where γU is as in (1).

X - 3U

I

f

?

g
- PSU

γU

?

(2)

Conversely, it is shown in [41, Theorem 8] that, for any small map f : X - I
in C, there exists a canonical (though not unique) g : I - PSU fitting into
a pullback diagram of the form above. In other words, any I-indexed family
of small sets in C determines a corresponding map I - |S|, and vice versa.

The above correpondence is more properly expressed using the theory of fibra-
tions. Define a fibration Fam(S) → C as follows. The objects of Fam(S) are
the small maps in C. The morphisms between small maps are just those of the
arrow category C→. Then the codomain functor Fam(S) → C is a fibration
(it is the full subfibration of the codomain fibration C→ - C on those ob-
jects of C→ that are small maps). Observe that the fibre over 1 is isomorphic
to S itself. Recall, from [17, §7.3], the definition of the externalization of an
internal category K in C as a split fibration Ext(K) → C. 2 The proposition
below is a consequence of the discussion in the previous paragraph.

Proposition 3.1 The fibration Fam(S) → C is equivalent to the external-
ization, Ext(S) → C, of the internal category S.

We next construe both P and pP as internal categories P and pP respectively.
First we define P by

|P| = {A : PS U | A is well-complete} P(A, B) = BA .

Thus P is an internal full subcategory of S, and hence locally small. The
internal category pP is defined by

|pP| = |P| pP(A, B) = A ⇀ B ,

2 Warning: our notation differs from [17], where Fam(K) is used for the external-
ization of K. In our case, Fam(S) → C is not in general a split fibration.

13

with the obvious identities and composition. Again, pP is locally small (be-
cause A ⇀ B ∼= (LB)A).

Again, we demonstrate that these are reasonable definitions, by exhibiting
the externalizations of P and pP. Define Fam(P) to be the full subcategory
of Fam(S) whose objects are those small maps X - I in C satisfying

C |= ∀i : I. Xi is a predomain.

Define Fam(pP) to have the same objects as Fam(P), but with a morphism
from X - I to Y - J given by a morphism f : I - J together with
an I-indexed family of partial maps {gi : Xi ⇀ Yf(i)}i : I . Identities and compo-
sition are obvious. The codomain functors Fam(P) → C and Fam(pP) → C
are both fibrations. The result below is a consequence of Proposition 3.1.

Proposition 3.2

(1) The fibration Fam(P) → C is equivalent to Ext(P) → C.
(2) The fibration Fam(pP) → C is equivalent to Ext(pP) → C.

By the proposition above, fibred structure on P and pP lifts to internal struc-
ture on the internal categories P and pP. For example, assuming Axiom 1, the
L-monad on P determines an internal monad (L, {·}, ⋃

) on P. Also, Propo-
sition 2.5 can be interpreted as an internal proposition about the internal
category pP. Statements (4) and (5) of the proposition together imply that,
in the presence of Axiom 1, it holds that the internal category P is small-
complete, with limits inherited from S. On the internal category pP, one can
derive internal functors:

pP× pP
×- pP (3)

pPop × pP
⇀- pP (4)

pP× pP
+- pP , (5)

where (4) requires Axiom 1, and (5) requires Axiom 2. N.b. although × ex-
tends product on P, it is a monoidal rather than cartesian product on pP;
whereas + is a genuine binary coproduct functor on pP.

Our goal is to prove the algebraic compactness, in the sense of Freyd [9,10], of
the internal category pP. We recall this notion for ordinary categories. Given
an endofunctor F on an arbitrary category K, a bifree algebra is an initial F -
algebra a : FA - A for which a−1 is also a final F -coalgebra (by Lambek’s
Lemma, an initial algebra is always an isomorphism). A category K is said to
be algebraically compact if every endofunctor on it has a bifree algebra.

The correct formulation of algebraic compactness for an internal category K in
C is slightly subtle because there need not be any object of all K-endofunctors

14

in C to allow an internal universal quantification. Instead, we make an exter-
nal quantification over internal families of internal functors. Technically, this
ensures that the definition is stable under the formation of slice categories
of C. This property is indispensable as it allows one to derive parametrized
algebraic compactness in the sense of [3].

Given internal categories K and L in C, and an object I of C, an I-indexed
family of internal functors from K to L is given by a pair of maps

I × |K| - |L|
I × {K(A, B)}A,B : |K| - {L(A′, B′)}A′,B′ : |L|

satisfying the obvious properties. (Equivalently, an I-indexed family of in-
ternal functors is just an internal functor from K to L when lifted to inter-
nal categories in the slice category C/I.) We use the convenient notation
{Fi : K → L}i : I for an I-indexed family of functors.

Definition 3.3 (Algebraic compactness) An algebraically compact inter-
nal category is given by an internal category K together with, for every internal
family {Fi : K → K}i : I in C of internal endofunctors, an associated morphism
A(−) : I - |K| and family {ai : K(FiAi, Ai)}i : I such that:

C |= ∀i : I. ai is a bifree Fi-algebra.

Moreover, the above data must be preserved by reindexing: i.e., for f : J - I
in C, let B(−) : J - |K| and {bj : K(Ff(j)Bj, Bj)}j : J be associated, as above,
with the J-indexed family {Ff(j) : K → K}j : J ; then it must hold that B(−) =
A(−) ◦ f and b(−) = a(−) ◦ f .

Proposition 3.4 (Parametrized algebraic compactness) Suppose that K
and L are internal categories with K algebraically compact, and suppose that
F : L × K → K is an internal functor. Viewing F as indexed over |L|, let
A(−) : |L| - |K| and {aB : K(F (B, AB), AB)}B : |L| be the data given by al-
gebraic compactness. Then there exists a unique internal functor F † : L → K
such that F †B = AB and aB : F (B, F †B) ∼= F †B is natural in B.

Proposition 3.5 If K, L and L′ are internal categories, with K algebraically
compact, and F : L′ × K → K and G : L → L′ are internal functors, then it
holds that (F ◦ (G× IdK))† = F † ◦G : L → K.

Proposition 3.4 is self proving. Proposition 3.5, which establishes an equality
between functors, follows directly from the construction of F †.

We briefly pause to consider the external meaning of the algebraic compactness
of an internal category. Recall, from [17, Proposition 7.3.8], that the internal
endofunctors on an internal category K are in one-to-one correspondence with

15

fibred endofunctors on its externalization Ext(K) → C. Thus, if the inter-
nal category K is algebraically compact then every fibred endofunctor on the
externalization Ext(K) → C has a fibred bifree algebra (i.e. it has a bifree al-
gebra, and this is preserved by reindexing). However, Definition 3.3 is stronger
than this property. It is equivalent to: every fibred endofunctor on every slice
of the fibration Ext(K) → C has a specified bifree algebra; and specified bifree
algebras are strictly preserved by reindexing. One can imagine possible weaker
definitions with the strictness requirement relaxed. Nonetheless, strictness is
useful in practice (for example, to obtain the equality in Proposition 3.5).
Moreover, we are indeed able to achieve the full requirements of Definition 3.3
in the first main result of the paper, which we now state.

Theorem 1 If Axiom 1 holds then pP is algebraically compact.

By Proposition 3.2 and the remarks above, this theorem implies the fibred
algebraic compactness of every slice fibration of Fam(pP) → C.

The proof of Theorem 1 occupies Sections 4–9. The strategy is to establish
a version of the limit-colimit coincidence of classical domain theory (see, e.g.
[45]), and apply it to pP. However, a major complication arises. In many
models of our setting, the limit-colimit coincidence is false if formulated using
diagrams indexed by the natural numbers N, see [27] for a counterexample. We
solve this problem by developing a nontrivial variant, under which diagrams
are indexed by the carrier I of the initial-algebra structure for L.

First, in Section 4, we develop a theory of strict maps between pointed objects,
using algebras of the L-monad. Crucial to the proof of Theorem 1 is the
identification of a novel notion of (multi)strict dependent family. The major
part of Section 4 is devoted to establishing the basic properties of such families.

Next, in Section 5, we develop two basic operations: a “minimum” map min :
I× I - I, which provides a semilattice structure on I; and a “limit-finding”
map

⊔
: XI - X, for any complete object X. With these at our disposal, we

formulate and prove our version of the limit-colimit coincidence in Section 6.

In Section 7, we apply the limit-colimit coincidence to show that any suitable
internal category K is algebraically compact. An important aspect of suitabil-
ity is that the class of objects |K| and the hom-classes K(A, B) must all be
pointed. This allows I-indexed diagrams, of the form required by the limit-
colimit coincidence, to be constructed, using the initial algebra property of I,
and making essential use of the properties of strict dependent families devel-
oped in Section 4. The required bifree algebras are then obtained as bilimits
of the constructed diagrams. Section 8 establishes various well-behavedness
properties of this method of constructing bifree algebras.

Finally, in Section 9, we show that pP is indeed a suitable category and hence

16

algebraically compact. This concludes the proof of Theorem 1.

It is worth contrasting Theorem 1 and Proposition 2.7. Using Freyd’s reduction
of recursive types to algebraic compactness [9,3], Theorem 1 does guarantee
that, for any predomain Y , a solution X to X ∼= X ⇀ Y exists in pP.
Indeed, one can solve arbitrary recursive domain equations in pP. In the
light of Proposition 2.7, we emphasise the consequences of a universal object
that enable this result to be established. Firstly, the universal object allows
pP be viewed as an internal category. Secondly, and crucially, the initial-
algebra property of I holds in the category of classes, and hence is applicable
to the object |pP|. When carried out in the internal set theory of a category
of classes with universal object, the proof that the initial-algebra property
holds uses the full IZF axioms of Replacement and Separation. These two
principles together are not compatible with the category of sets being an
arbitrary elementary topos. Put in more technical terms, it is not possible to
embed an arbitrary elementary topos as the full subcategory of small objects
in a category of classes with universal object. Indeed, the counterexample used
to prove Proposition 2.7 is one elementary topos that has no such embedding.

Although in this paper we use models of IZF set theory to achieve algebraic
compactness, many other set theories and type theories appear rich enough to
carry out the proofs in this paper. One such theory is the Extended Calculus
of Constructions (ECC) [23], as used, for example, in [35]. However, it appears
that one does not need the full impredicativity of ECC. In fact, it seems likely
that, with appropriate reformulations, the development of this paper could
be carried out in the (predicative) context of Martin-Löf’s Type Theory [26].
Similarly, it appears that a predicative set theory, in which Ω is a proper class,
could be used rather than IZF, for example Aczel’s CZF [1]. Indeed the basic
axiomatization adapts straightforwardly to a predicative setting provided one
assumes to begin with that Σ is a subset of the class Ω. Such possibilities
suggest that it is the conceptual strength of IZF that we are exploiting in this
paper, rather than its proof-theoretic strength.

Nevertheless, there are two reasons for being content with the formulation
in this paper. Firstly, the categorical description of the models, given by the
axioms for class structure [41,43], is very simple. Secondly, and more impor-
tantly, the theory, as presented here, is sufficiently general to incorporate an
extensive range of domain-theoretic and realizability models, see Section 15.

4 Pointed objects and multistrict maps

As crucial preparation for the proof of Theorem 1, we use the lifting monad
to implement a notion of pointed object, and of strict map between pointed

17

objects. For us, a pointed object (X,α) is simply an Eilenberg-Moore algebra
for the monad (L, {·}, ⋃

). In other words, α : LX - X must satisfy the unit
and multiplication laws:

α({x}) = x for all x : X, (6)

α(
⋃

E) = α({α(e) | e ∈ E}) for all E : L2X. (7)

If ⊥ ∈ Σ then one can think of α(∅) as the identified “point” of X, but
the notion of pointed object also makes sense without the assumption that
⊥ ∈ Σ. A strict map h : (X,α) - (Y, β) between pointed objects is simply
an algebra homorphism, i.e. a morphism h : X - Y such that h◦α = β◦Lh,
which is equivalently stated as:

h(α(e)) = β({h(x) | x ∈ e}) for all e : LX.

Thus the category of pointed objects and strict maps is just the Eilenberg-
Moore category for the L monad on C. In the sequel, we make free use of
limits of pointed objects, which are created by the forgetful functor to C.
Sometimes we suppress the pointed structure, writing X instead of (X, α),
when it is clear from the context.

Equation (7) above equivalently says that α is a strict map from (LX,
⋃

),
which is always pointed, to (X, α). The proposition below shows that strict
maps between lifted objects (with pointed structure

⋃
) have a natural char-

acterization, which to some extent justifies the “pointed” and “strict” termi-
nologies. In the statement of this proposition, and henceforth, we write e↓ for
the Σ-property ∃x : X. x ∈ e, for e : LX.

Proposition 4.1 The following are equivalent for any map f : LX - LY .

(1) f is strict.
(2) C |= ∀e : LX. f(e)↓ → e↓.

PROOF. To show (1) implies (2), suppose f is strict, i.e for all E : L2X, we
have f(

⋃
E) =

⋃{f(e) | e ∈ E}. Take any e : LX, and suppose f(e)↓, i.e. that
f(e) = {y} for some y : Y . We must show that e↓. Note that {e} and {e | e↓}
are both elements of L2X, with

⋃{e} =
⋃{e | e↓}. Thus we have:

{y} =
⋃
{f(e)}

= f(
⋃
{e}) as f strict

= f(
⋃
{e | e↓})

=
⋃
{f(e) | e↓} as f strict.

So y ∈ {f(e) | e↓}. Thus indeed e↓.

18

Conversely, suppose that (2) holds, and take any E : L2X. We must show that
f(

⋃
E) =

⋃{f(e) | e ∈ E}. For the left-to-right inclusion, suppose y ∈ f(
⋃

E).
By (2), there exists x ∈ ⋃

E. Thus f(
⋃

E) = {y} and E = {{x}}. So indeed,⋃{f(e) | e ∈ E} = f({x}) = f(
⋃

E). For the converse inclusion, suppose
y ∈ ⋃{f(e) | e ∈ E}. Then E = {e} for some e with f(e) = {y}. By (2),
there exists x such that e = {x}. Thus again,

⋃{f(e) | e ∈ E} = f({x}) =
f(

⋃
E). 2

Definition 4.2 (k-strict map) Given pointed objects (X1, α1), . . . , (Xk, αk)
and (Y, β), a k-strict map is a morphism h : X1 × · · · ×Xk

- Y such that,
for each i with 1 ≤ i ≤ k, it holds in C that

∀x1 : X1, . . . , xi−1 : Xi−1, xi+1 : Xi+1, . . . , xk : Xk.

xi 7→ h(x1, . . . , xk) is a strict map from (Xi, αi) to (Y, β).

We use bistrict for the case k = 2, and multistrict if we leave k implicit.

The above definition, exploits the internal logic of C to formulate k-strictness
in the natural way. Nevertheless, we remark that the definition also has a sim-
ple category-theoretic formulation using the (double-)strength of the L monad,
see, e.g., the definition of bimorphism in [16].

Proposition 4.3 For pointed objects (X1, α1), . . . , (Xk, αk) and (Y, β), where
k ≥ 1, any k-strict map h : X1 × · · · × Xk

- Y is a strict map from
(X1, α1)× · · · × (Xk, αk) to (Y, β).

This result is a special case of Proposition 4.8, which is proved below. In fact,
the above proposition holds, more generally, for all relevant monads in the
sense of [16].

The initial algebra I of the endofunctor L on C carries a pointed structure
φ = σ ◦⋃ ◦Lσ−1 : LI - I. The pointed structure on I interacts nicely with
the initial algebra property. Define a “successor” function s = σ◦{·} : I - I.

Proposition 4.4 Suppose that (X,α) is a pointed object and that f : X - X
is any (not necessarily strict) morphism. Then, for every k ≥ 1, there exists
a unique k-strict map h : Ik - X such that the diagram below commutes.

k︷ ︸︸ ︷
I× · · · × I

h
- X

I× · · · × I

s× · · · × s

? h
- X

f

?

19

The case k = 1 is proved as [19, Theorem A.5], and we henceforth assume this
case. We do not prove the generalization to k ≥ 2 at this point, as it follows
from Proposition 4.9 below.

We now embark on the main technical contribution of this section, the gener-
alization of the notions of strictness and multistrictness to dependent families.
The definitions and results are fundamental to our proof of Theorem 1. How-
ever, the development may also be of independent interest. It exposes a subtle
interplay between dependent types and algebras for the L monad, which ap-
pears to depend heavily on properties of L that are peculiar to lifting monads.
It might be an interesting mathematical project to obtain a more abstract
account of the theory that follows.

Definition 4.5 (Strict family) Given an internal family {(Yx, βx)}x : X of
pointed objects, where (X, α) is pointed, we say that {yx : Yx}x : X is a strict
family if, for all e : LX,

yα(e) = βα(e)({yx | x ∈ e}). (8)

To see that this definition makes sense, we must show that {yx | x ∈ e} is a
Σ-subterminal subset of L(Yα(e)). It is Σ-subterminal because e is. Moreover,
given x ∈ e, we have e = {x}, whence α(e) = x by (6). Thus indeed yx ∈ Yα(e).

Observe that, for a constant family {(Y, β)}x : X , a strict family {yx : Y }x : X is
just a strict map x 7→ yx from X to Y .

Strict families compose in the natural way.

Lemma 4.6 Given families {(Yx, βx)}x : X and {(Zx y, γx y)}x : X, y : Yx of pointed
objects, where (X, α) is pointed, suppose that {yx : Yx}x : X is a strict family
and {zx y : Zx y}y∈Yx is a strict family for every x : X. Then {zx yx : Zx yx}x : X is
a strict family.

PROOF. Suppose {yx : Yx}x : X is a strict family, and {zx y : Zx y}y : Yx is a strict
family for all x : X. For any e : LX, define be = βα(e)({yx | x ∈ e}). Then:

zα(e) yα(e)
= zα(e) be as y(−) is strict

= γα(e) be({zα(e) y | y ∈ {yx | x ∈ e}}) as zα(e) (−) is strict

= γα(e) yα(e)
({zα(e) yx | x ∈ e}) as y(−) is strict

= γα(e) yα(e)
({zx yx | x ∈ e}) as x ∈ e implies x = α(e).

2

20

Definition 4.7 (k-strict family) Given a family of pointed objects,

{(Yx1...xk
, βx1...xk

)}x1 : X1,...,xk : Xk
,

where (X1, α1), . . . , (Xk, αk) are pointed, then {yx1...xk
: Yx1...xk

}x1 : X1,...,xk : Xk
is

a k-strict family if, for each i with 1 ≤ i ≤ k, it holds in C that

∀x1, . . . , xi−1, xi+1, . . . , xk. {yx1...xk
: Yx1...xk

}xi : Xi
is a strict family.

Again, for a constant family {(Y, β)}x1,...,xk
, a k-strict family {yx1...xk

: Y }x1,...,xk

is just a k-strict map (x1, . . . , xk) 7→ yx1...xk
from X1 × · · · ×Xk to Y .

The two propositions below, which are the main results of this section, gener-
alize Propositions 4.3 and 4.4 above to apply to k-strict families.

Proposition 4.8 If {(Yx1...xk
, βx1...xk

)}x1 : X1,...,xk : Xk
and (X1, α1), . . . , (Xk, αk)

are as in Definition 4.7, and {yx1...xk
: Yx1...xk

}x1 : X1, ..., xk : Xk
is a k-strict family

then {yx1...xk
: Yx1...xk

}(x1,...,xk) : X1×···×Xk
is a strict family.

By instantiating {(Yx1...xk
, βx1...xk

)}x1 : X1,...,xk : Xk
as a constant family, Propo-

sition 4.3 is easily seen to follow as a special case.

PROOF. We prove the case k = 2, from which the full result easily follows.
Suppose then that {y(x1, x2) : Yx1 x2}x1,x2 is bistrict. The algebra structure on
X1 ×X2 is γ : L(X1 ×X2) - X1 ×X2 defined by γ(e) = (a1, a2) where

a1 = α1({x1 | (x1, x2) ∈ e})
a2 = α2({x2 | (x1, x2) ∈ e}).

We must show that y(a1, a2) = βa1a2({y(x1, x2) | (x1, x2) ∈ e}). But

y(a1, a2) = y(α1({x1 | (x1, x2) ∈ e}), a2) def. of a1

= βa1a2({y(x1, a2) | (x1, x2) ∈ e}) bistrictness

= βa1a2({y(x1, α2({x′2 | (x′1, x′2) ∈ e})) | (x1, x2) ∈ e}) def. of a2

= βa1a2({βx1a2({y(x1, x
′
2) | (x′1, x′2) ∈ e}) | (x1, x2) ∈ e}) bistrictness.

To see that this is equal to βa1a2({y(x1, x2) | (x1, x2) ∈ e}), it suffices to verify

{βx1a2({y(x1, x
′
2) | (x′1, x′2) ∈ e}) | (x1, x2) ∈ e} = {y(x1, x2) | (x1, x2) ∈ e}.

If (x1, x2) ∈ e then e = {(x1, x2)}, and a2 = x2 by (6). Thus the r.h.s.
above is equal to {y(x1, x2)} and the l.h.s. is equal to {βx1x2({y(x1, x2)})} =
{y(x1, x2)}, by (6). Thus the equation holds if (x1, x2) ∈ e. It follows that each
side is a subset of the other. Hence the equation holds. 2

21

Proposition 4.9 For internal families

{(Yi1...ik , βi1...ik)}i1 : I,...,ik : I,

{fi1...ik : Yi1...ik → Ysi1...sik}i1 : I,...,ik : I,

of pointed objects and arbitrary functions respectively, there exists a unique
k-strict family y(−)...(−) :

∏
i1 : I · · ·

∏
ik : I Yi1...ik satisfying

ysi1...sik = fi1...ik(yi1...ik) . (9)

Again, by taking {(Yi1...ik , βi1...ik)}i1,...,ik and {fi1...ik : Yi1...ik → Ysi1...sik}i1,...,ik

as constant families, Proposition 4.4 follows.

The remainder of the section is devoted to the proof of Proposition 4.9.

Lemma 4.10 Given an internal family {(Yx, βx)}x : X of pointed objects, with
(X,α) pointed, then (

∑
x : X Yx, γ) is pointed, where γ : L(

∑
x : X Yx) -

∑
x : X Yx

is defined by γ(e) = (γ1(e), γ2(e)), where

γ1(e) = α{x | (x, y) ∈ e}
γ2(e) = βγ1(e){y | (γ1(e), y) ∈ e}.

Moreover the projection π1 : (
∑

x : X Yx, γ) - (X, α) is strict.

PROOF. To see that γ is well-defined, one establishes: first, that γ1(e) is well-
defined, because {x | (x, y) ∈ e} is a Σ-subterminal subset of X; and, second,
that γ2(e) is well-defined, because {y | (γ1(e), y) ∈ e} is a Σ-subterminal
subset of Yγ1(e). In each case, the Σ-subterminal property follows from the same
property of e. Note also that the strictness of the projection π1 is immediate
from the definition of γ1(e). Thus it remains only to show that γ satisfies the
unit law, (6), and multiplication law, (7).

For the unit law, γ1({(x, y)}) = x, by (6) for α; whence γ2({(x, y)}) = y,
by (6) for βx. Thus indeed γ({(x, y)}) = (x, y).

For the multiplication law, take any E : L2(
∑

x : X Yx). We must show that
γ(

⋃
E) = γ({γ(e) | e ∈ E}). For the first components, define E1 : L2X by

E1 = {{x | (x, y) ∈ e} | e ∈ E}.

Then we have:

γ1({γ(e) | e ∈ E}) = α({x | (x, y) ∈ {γ(e) | e ∈ E}}) def. of γ1

= α({γ1(e) | e ∈ E}) def. of γ

= α({α({x | (x, y) ∈ e}) | e ∈ E} def. of γ1

22

= α({α(e1) | e1 ∈ E1}) def. of E1

= α(
⋃

E1) by (7) for α

= α{x | (x, y) ∈
⋃

E} def. of E1

= γ1(
⋃

E) def. of γ1.

So the first components agree. Write a for this value, and observe that

e ∈ E implies γ1(e) = a, (10)

(x, y) ∈
⋃

E implies x = a, (11)

where the latter property is by (6) for α.

To show that the second components agree, define E2 : L2(Ya) by

E2 = {{y | (a, y) ∈ e} | e ∈ E},

where the Σ-subterminal property of {y | (a, y) ∈ e} holds by (11). Then:

γ2({γ(e) | e ∈ E}) = βa({y | (a, y) ∈ {γ(e) | e ∈ E}}) def. of γ2

= βa({γ2(e) | e ∈ E}) by (10)

= βa({βa({y | (a, y) ∈ e)}) | e ∈ E) def. of γ2

= βa({βa(e2) | e2 ∈ E2}) def. of E2

= βa(
⋃

E2) by (7) for βa

= βa({y | (a, y) ∈
⋃

E}) def. of E2

= γ2(
⋃

E) def. of γ2.

2

Lemma 4.11 Given {(Yx, βx)}x : X and (X, α) as in Definition 4.5, the fol-
lowing are equivalent for any {yx : Yx}x : X .

(1) y(−) is a strict family.
(2) The map x 7→ (x, yx) : (X, α) - (

∑
x : X Yx, γ) is strict, where γ is as

in Lemma 4.10.

PROOF. For any e : LX, we have, by the definition of γ in Lemma 4.10, that

γ1({(x, yx) | x ∈ e}) = α(e)

and

γ2({(x, yx) | x ∈ e}) = βα(e)({yα(e) | α(e) ∈ e}) def. of γ2

= βα(e)({yx | x ∈ e}) as x ∈ e implies x = α(e).

23

It follows immediately that yα(e) = βα(e)({yx | x ∈ e}) if and only if (α(e), yαe) =
γ({(x, yx) | x ∈ e}); i.e. statements (1) and (2) are equivalent. 2

We remark that Lemma 4.11 does not extend to give a characterisation of k-
strict families in terms of ordinary k-strictness. Indeed, given a k-strict family
{yx1...xk

: Yx1...xk
}x1 : X1,...,xk : Xk

it is not necessarily the case that the map

(x1, . . . , xk) 7→ (x1, . . . , xk, y) : X1 × · · · ×Xk
-

∑
(x1,...,xk) : X1×···×Xk

Yx1...xk

is k-strict. Intuitively, one needs to replace X1 × · · · ×Xk here with a tensor
product X1 ⊗ · · · ⊗ Xk. But such an approach leads to indexing problems,
because Yx1...xk

is indexed over the product X1×· · ·×Xk. Instead, Lemma 4.13
below provides a correct characterization of multistrict families.

Lemma 4.12 Given {(Yx, βx)}x : X and (X, α) as in Definition 4.5 with X
small, define ∏

x : X

◦
Yx = {y(−) :

∏
x : X

Yx | y(−) is a strict family}.

Then (
∏◦

x : X Yx , π◦) is pointed, with π◦ : L(
∏◦

x : X Yx) -
∏◦

x : X Yx defined by:

(π◦(e))x = βx({yx | y(−) ∈ e}) for e :
∏
x : X

◦
Yx and x : X.

PROOF. First we show that (π◦(e))(−) is indeed a strict family, i.e. that
(π◦(e))α(e1) = βα(e1)({(π◦(e))(x) | x ∈ e1}), for e1 : LX. Because x ∈ e1 implies
x = α(e1), we have that

E ′ = {{yx | x ∈ e1} | y(−) ∈ e} E ′′ = {{yx | y(−) ∈ e} | x ∈ e1}

are both in L2(Yα(e1)) . Moreover
⋃

E ′ =
⋃

E ′′. Then:

(π◦(e))α(e1) = βα(e1)({yα(e1) | y(−) ∈ e}) def. of π◦(e)

= βα(e1)({βα(e1)({yx | x ∈ e1}) | y(−) ∈ e}) as y(−) strict

= βα(e1)({βα(e1)(e
′) | e′ ∈ E ′}) def. of E ′

= βα(e1)(
⋃

E ′) by (7) for βα(e1)

= βα(e1)(
⋃

E ′′) as
⋃

E ′ =
⋃

E ′′

= βα(e1)({βα(e1)(e
′′) | e′′ ∈ E ′′}) by (7) for βα(e1)

= βα(e1)({βα(e1)({yx | y(−) ∈ e}) | x ∈ e1}) def. of E ′′

= βα(e1)({βx({yx | y(−) ∈ e}) | x ∈ e1}) as x ∈ e1 implies x = α(e1)

= βα(e1)({(π◦(e))(x) | x ∈ e1}) def. of π◦(e).

24

For the unit law, (6), one must show (π◦({y(−)}))x = yx, which is easy.

For the multiplication law, (7), we must show that (π◦({π◦(e) | e ∈ E}))x =
(π◦(

⋃
E))x for x : X and E : L2(

∏◦
x : Y Yx). Define Ex : L2(Yx) by

Ex = {{yx | y(−) ∈ e} | e ∈ E}.

Then indeed,

(π◦({π◦(e) | e ∈ E}))x = βx({(π◦(e))x | e ∈ E})}) def. of π◦

= βx({βx({yx | y(−) ∈ e}) | e ∈ E})}) def. of π◦

= βx({βx(ex) | ex ∈ Ex})}) def. of Ex

= βx(
⋃

Ex) by (7) for βx

= βx({yx | y(−) ∈
⋃

E}) def. of Ex

= (π◦(
⋃

E))x def. of π◦.

2

Henceforth (e.g. in statements 2 and 3 of the lemma below), the algebra struc-
ture of an object of the form

∏◦
x : X Yx is always taken to be as above. Also,

when {(Y, β)}x : X is a constant family, we write X (Y for
∏◦

x : X Y . Thus
Lemma 4.12 shows that the object X (Y , of all strict functions from X to
Y , is pointed.

Lemma 4.13 Given {(Yx1...xk
, βx1...xk

)}x1 : X1,...,xk : Xk
and (X1, α1), . . . , (Xk, αk)

as in Definition 4.7 with X1, . . . , Xk small, then, for k ≥ 1, the following are
equivalent.

(1) y(−)...(−) :
∏

x1 : X1
· · ·∏xk : Xk

Yx1...xk
, is a k-strict family.

(2) {yx1 ... xk−1 (−)}x1 : X1, ..., xk−1 : Xk−1
:

∏
x1 : X1

· · ·∏xk−1 : Xk−1
(
∏◦

xk : Xk
Yx1...xk

) is a
(k − 1)-strict family.

(3) y(−)...(−) ∈
∏◦

x1 : X1
. . .

∏◦
xk : Xk

Yx1...xk
.

PROOF. Statement (1) holds if and only if, for each i with 1 ≤ i ≤ k,

yxα(ei)x′ = βxα(ei)x′({yxxi x′ | xi ∈ ei}) , (12)

where ei : L(Xi), and x and x′ are vectors of elements x1 . . . xi−1 and xi+1 . . . xk

respectively, with each xj : Xj.

Similarly, statement (2) holds if and only if:

yxα(ek) = βxα(ek)({yxxk
| xk ∈ ek}) , (13)

25

i.e. each yx (−) is a strict family; and also, for each i with 1 ≤ i ≤ k − 1,

yxα(ei)x′′ (−) = π◦xα(ei)x′′
({yxxi x′′ (−) | xi ∈ ei}) , (14)

where x′′ is a vector of elements xi+1 . . . xk−1, and π◦xα(ei)x′′
is the algebra on∏◦

xk : Xk
Yxα(ei)x′′ xk

.

However, equation (13) is exactly the i = k case of equation (12). Further,

(π◦xα(ei)x′′
({yxxi x′′ (−) | xi ∈ ei}))xk

= βxα(ei)x′′ xk
({yxxi x′′ xk

| xi ∈ ei}),

by the definition of π◦. So, for i < k, (14) holds if and only if (12) holds.
Therefore statement (1) is indeed equivalent to statement (2).

The equivalence of statements (1) and (3) is proved by a straightforward k-fold
iterated application of the equivalence between statements (1) and (2). 2

Lemma 4.14 Suppose that (X,α) is pointed, f, g : I - X are strict and
f ◦ s = g ◦ s then f = g.

PROOF. One easily shows that the assumptions imply that σ : LI - I
restricts to a subalgebra σ′ : LI′ - I′ where I′ = {i : I | f(i) = g(i)}. Then,
because σ is the initial L-algebra, I′ = I. 2

PROOF of Proposition 4.9. By induction on k.

When k = 1, consider the map

g =
∑
j : I

Yj
(j,z) 7→(sj, fj(z))-

∑
j : I

Yj .

We establish that strict families y(−) satisfying ysi = fi(yi) are in one-to-one
correspondence with strict h : I -

∑
j : I Yj satisfying g ◦h = h ◦ s. Thus, by

the k = 1 case of Proposition 4.4, there is indeed a unique such family.

Given any strict h : I - ∑
j : I Yj satisfying g ◦ h = h ◦ s, the composite

π1◦h : I - I is strict, by Lemma 4.10, and also π1◦h◦s = π1◦g◦h = s◦π1◦h,
by the definition of g. So, by the k = 1 case of Proposition 4.4, π1 ◦ h = idI.
Hence, any such h is of the form j 7→ (j, yj) where, by Lemma 4.11, y(−) is a
strict family. Moreover, the equation ysi = fi(yi) follows from g ◦h = h ◦ s, by
the definintion of g. Conversely, given a strict family y(−) satisfying ysi = fi(yi),
the map h : j 7→ (j, yj) is strict, by Lemma 4.11, and satisfies g ◦ h = h ◦ s.

When k > 1, applying the induction hypothesis, let

{yi1 ... ik−1 (−)}i1,...,ik−1
:

∏
i1 : I

· · ·
∏

ik−1 : I

(
∏
ik : I

◦
Yi1...ik)

26

be the unique (k − 1)-strict family satisfying

(j 7→ ysi1 ... sik−1 j) = gi1...ik−1
(j 7→ yi1 ... ik−1 j) , (15)

where the familygi1...ik−1
: (

∏
j : I

◦
Yi1...ik−1j) → (

∏
j : I

◦
Ysi1 ... sik−1 j)


i1,...,ik−1

,

is defined as follows.

Given z(−) :
∏◦

j : I Yi1...ik−1j, consider the composite below,

h = I
σ−1

- LI
L(j 7→(sj, fi1...ik−1j(zj)))

- L(
∑
j : I

Ysi1 ... sik−1 j)
γ-

∑
j : I

Ysi1 ... sik−1 j ,

where γ is the pointed structure on
∑

j : I Ysi1 ... sik−1 j from Lemma 4.10. Each
component in the above composite is strict (the first is an isomorphism, the
second is a lifted map, the third is an algebra structure map). Hence h is itself
strict. Consider π1 ◦ h : I - I. We have:

π1 ◦ h = π1 ◦ γ ◦ L(j 7→ (sj, fi1...ikj(zj))) ◦ σ−1

= φ ◦ L(π1) ◦ L(j 7→ (sj, fi1...ikj(zj))) ◦ σ−1 as π1 is strict

= φ ◦ L(s) ◦ σ−1

= (σ ◦
⋃
◦ Lσ−1) ◦ L(σ ◦ {·}) ◦ σ−1 defns. of φ and s

= σ ◦ (
⋃
◦L{·}) ◦ σ−1 = idI as

⋃
◦L{·} = idLI.

Thus, for any j : I, we have h(j) = (j, wz(−) j) where wz(−) j : Ysi1 ... sik−1 j. As h is
strict, we have by Lemma 4.11, that (j 7→ wz(−) j) :

∏
j : I Ysi1 ... sik−1 j is a strict

family. So define gi1...ik−1
(z(−)) = (j 7→ wz(−) j).

Observe that

h ◦ s = γ ◦ L(j 7→ (sj, fi1...ik−1j(zj))) ◦ σ−1 ◦ σ ◦ {·}
= γ ◦ L(j 7→ (sj, fi1...ik−1j(zj))) ◦ {·}
= γ ◦ {·} ◦ (j 7→ (sj, fi1...ik−1j(zj)))

= (j 7→ (sj, fi1...ik−1j(zj))).

Thus

(gi1...ik−1
(z(−)))(sj) = fi1...ik−1j(zj). (16)

We must show that y(−)...(−) is the unique k-strict family satisfying (9). As
{yi1...ik−1(−)}i1,...,ik−1

:
∏

i1 : I · · ·
∏

ik−1 : I (
∏◦

ik : I Yi1...ik) is (k − 1)-strict, we have,
by Lemma 4.13, that y(−)...(−) :

∏
i1 : I · · ·

∏
ik : I Yi1...ik is k-strict. To see that (9)

27

holds, we have

ysi1 ... sik = (gi1...ik(yi1 ... ik−1 (−)))(sik) by (15)

= fi1...ik(yi1...ik) by (16).

It remains to show that y(−)...(−) is unique. Suppose that y′(−)...(−) is any k-
strict family satisfying (9′) (where we write (9′) to mean (9) with y replaced
by y′). By Lemma 4.13, {y′i1...ik−1(−)}i1,...,ik−1

:
∏

i1 : I · · ·
∏

ik−1 : I (
∏◦

ik : I Yi1...ik) is a
(k−1)-strict family. It suffices to show that {y′i1...ik−1(−)}i1,...,ik−1

satisfies (15′).
As both j 7→ y′si1 ... sik−1 j and gi1...ik−1

(j 7→ y′i1 ... ik−1 j) are strict, it suffices, by
Lemma 4.14, to verify that

y′si1 ... sik−1 sik
= (gi1...ik−1

(j 7→ y′i1 ... ik−1 j))(sik) for all ik : I.

But this follows by

y′si1 ... sik−1 sik
= fi1...ik(y

′
i1...ik

) by (9′)

= (gi1...ik−1
(y′i1 ... ik−1 (−)))(sik) by (16).

2

5 The min and
⊔

operations

In this section, we define a binary “minimum” operation, min, on I, and use it
to characterize a “limit-finding” operator,

⊔X , on any complete object. Both
operations will be used extensively in the sequel.

Using Proposition 4.4, define min : I× I - I to be the unique bistrict map
such that min(si, sj) = s(min(i, j)).

Lemma 5.1 min is a binary semilattice structure on I, i.e.

min(i, i) = i (17)

min(i, j) = min(j, i) (18)

min(i, min(j, k)) = min(min(i, j), k). (19)

PROOF. For (17), the map i 7→ min(i, i) is strict, by Proposition 4.3, and
satisfies min(si, si) = s(min(i, i)). Thus (i 7→ min(i, i)) = idI, by the k = 1
case of Proposition 4.4.

For (18), the maps (i, j) 7→ min(i, j) and (i, j) 7→ min(j, i) are bistrict and
satisfy min(si, sj) = s(min(i, j)) and min(sj, si) = s(min(j, i)) respectively.
So, by the k = 2 case of Proposition 4.4, they are equal.

28

For (19), the maps (i, j, k) 7→ min(i, min(j, k)) and (i, j, k) 7→ min(min(i, j), k)
are 3-strict and respectively satisfy min(si, min(sj, sk)) = s(min(i, min(j, k))
and min(min(si, sj), sk) = s(min(min(i, j), k)). So, by the k = 3 case of
Proposition 4.4, they are equal. 2

Our first application of min is to characterize the unique “limit-finding” oper-
ator

⊔X : XI - X, on any complete object X. To manipulate expressions
involving

⊔X , we often omit the superscript X, and we use the convenient
notation

⊔
j xj for

⊔
(j 7→ xj).

Proposition 5.2 If X is complete then:

(1) There exists a unique map
⊔X : XI - X satisfying

xi =
⊔
j

xmin(i,j) for all x(−) : X
I and i : I. (20)

(2)
⊔X satisfies

⊔
i

x = x, for all x : X (21)⊔
i

xi =
⊔
i

xsi, for all x(−) : X
I (22)⊔

i

(
⊔
j

xij) =
⊔
i

xii for all x(−)(−) : X
I×I. (23)

(3) For any f : X - Y , where Y is complete,

f(
⊔
i

X
xi) =

⊔
i

Y
f(xi) for all x(−) : X

I. (24)

(4) A subobject Z- - X is complete if and only if

⊔
i

X
zi ∈ Z for all z(−) : Z

I.

The properties in statement (2) are those of a formal lub operator [6]. State-
ment (3) expresses that all functions between complete sets are “continuous”
in a natural sense. Property (4) will be useful in Section 13.

To prove Proposition 5.2, it is convenient to develop additional properties
of the initial L-algebra (I, σ) and final L-coalgebra (F, τ), relating to the
canonical map ι : I - F. Define ∞ :F to be the point given by the unique
coalgebra homomorphism ∞ : 1 - F from {·} : 1 - L1 to τ (this agrees
with the explicit definition ∞ = (n 7→ >) in Section 2).

29

Lemma 5.3 There exists a morphism s′ : F - F satisfying:

s′(ι(i)) = ι(s(i)) for all i : I (25)

s′(∞) = ∞ (26)

PROOF. Define s′ = τ−1 ◦ {·}. Then, by the definition of ι, we have s′ ◦ ι =
τ−1 ◦ {·} ◦ ι = τ−1 ◦Lι ◦ {·} = ι ◦ σ ◦ {·} = ι ◦ s. Similarly, by the definition of
∞ we have, s′ ◦∞ = τ−1 ◦ {·} ◦∞ = τ−1 ◦ L∞◦ {·} = τ−1 ◦ τ ◦∞ = ∞. 2

Lemma 5.4 There exists a morphism min′ : I× F - I satisfying:

min′(i, ι(j)) = min(i, j) for all i, j : I (27)

min′(i,∞) = i for all i : I (28)

PROOF. Just as σ ◦ ⋃ ◦Lσ−1 is a pointed structure on I, so is τ−1 ◦ ⋃ ◦Lτ
a pointed structure on F. Consider the pointed object F (I of strict func-
tions, defined in the text following Lemma 4.12. For any strict f : F → I,
the composite σ ◦ Lf ◦ τ is strict, as all its components are. Thus we have a
morphism σ ◦L(−) ◦ τ : (F(I) - (F(I). Let min′′ : I - (F(I) be
the unique strict morphism such that min′′(s(i)) = σ ◦L(min′′(i))◦ τ , as given
by Proposition 4.4. Define min′ : I× F - I by min′(i, j′) = min′′(i)(j′). By
Lemma 4.13, min′ is bistrict. Moreover, for any i : I,

min′′(s(i)) ◦ s′ = σ ◦ L(min′′(i)) ◦ {·} = σ ◦ {·} ◦min′′(i) = s ◦min′′(i).

Thus min′(s(i), s′(j′)) = s(min′(i, j′)).

As ι : I - F is strict, we have that (i, j) 7→ min′(i, ι(j)) : I × I - I is
bistrict and satisfies min′(s(i), ι(s(j))) = min′(s(i), s′(ι(j))) = s(min′(i, j′)).
Thus, by the characterizing property of min, indeed min′(i, ι(j)) = min(i, j).

For equation (28), we have that i 7→ min′(i,∞) : I - I is strict, and satisfies
min′(s(i),∞) = min′(s(i), s′(∞)) = s(min′(i,∞)). By Proposition 4.4, the
identity is the only such map. Thus indeed min′(i,∞) = i. 2

PROOF of Proposition 5.2. For statement (1), we first define
⊔X . Given

x(−) : X
I, there exists, by the definition of completeness, a unique x′(−) : X

F

satisfying x′ι(i) = xi, for all x : I. Define
⊔

i xi = x′∞.

To show (20), take any i : I. Consider xmin(i,−) : X
I. Then x′j′ = xmin′(i,j′) defines

x′(−) : X
F satisfying x′ι(j) = xmin(i,j), by (27). Thus indeed⊔

j

xmin(i,j) = x′∞ = xmin′(i,∞) = xi ,

30

with the last equality given by (28).

For uniqueness, suppose that
⊔′ : XI - I satisfies

⊔′
j xmin(i,j) = xi. Define

x′(−) : X
F by x′i′ =

⊔′
j xmin′(j,i′). Then

x′ι(i) =
⊔
j

′
xmin′(j,ι(i)) =

⊔
j

′
xmin(j,i) = xi.

So, by the completeness of X, we have that x′(−) is the unique element of XF

satisfying x′ι(i) = xi. So, by the definitions of
⊔

and x′(−),

⊔
i

xi = x′∞ =
⊔
i

′
xmin′(i,∞) =

⊔
i

′
xi.

For statement (2), equation (21) holds because the constant function kx =
(i 7→ x) : XI extends to k′x = (i′ 7→ x) : XF, so

⊔
i x = k′x(∞) = x.

For (22), given x(−) : XI, let x′(−) : XF be the unique family such that x′ι(i) = xi.

Then x′s′(−) : XF extends xs(−) : XI, because, by (25), we have xs(i) = x′ι(s(i)) =
x′s′(ι(i)). Thus, by (26), we have

⊔
i xs(i) = x′s′(∞) = x′∞ =

⊔
i xi.

For (23), consider x(−)(−) : XI×I. For any i : I, define yi (−) : XF as the unique
family satisfying yi ι(j) = xij. Thus

⊔
j xij = yi∞. Also, for each j′ : F, define

z(−) j′ : X
F as the unique family satisfying zι(i) j′ = yij′ . Then

⊔
i(

⊔
j xij) =⊔

i yi∞ = z∞∞. On the other hand, consider i′ 7→ zi′ i′ : X
F. This satisfies

zι(i) ι(i) = yi ι(i) = xii. So
⊔

i xii = z∞∞. Thus indeed
⊔

i(
⊔

j xij) =
⊔

i xii.

For statement (3), consider any x(−) : XI. By the completeness of X, let
x′(−) : X

F be the unique such that xι(i) = xi. Then, by the completeness of

Y , we have that f(x′(−)) is the unique y′(−) : Y F satisfying yι(i) = f(xi). So by

the definitions of
⊔X and

⊔Y , we have f(
⊔X

i xi) = f(x′∞) =
⊔Y

i f(xi) as
required.

Finally, for statement (4), we have a subobject m : Z- - X. First, suppose⊔X
i zi ∈ Z for all z(−) : Z

I. Consider any z(−) : Z
I. By the assumption, we can

define z′(−) : Z
F by z′i′ =

⊔X
j zmin′(j,i′). This satisfies z′ι(i) = zi for all i. It is the

unique such because, as X is complete and m is mono, z′(−) is determined by

m(z′(−)) : XF being unique such that m(z′ι(i)) = m(zi) for all i. Thus Z is indeed

complete. Conversely, suppose that Z is complete and consider any z(−) : Z
I.

Let z′(−) : Z
F be the unique function such that z′ι(i) = zi for all i. As X is

complete, we have that m(z′(−)) : XF is the unique map satisfying m(z′ι(i)) =

m(zi) for all i. Thus, by the definition of
⊔X , we have

⊔X
i (m(zi)) = m(z′∞),

i.e. indeed
⊔X

i zi ∈ Z. 2

31

6 The limit-colimit coincidence

One of the main tools in the proof of Theorem 1 will be a variant of the limit-
colimit coincidence of domain theory. The standard domain-theoretic version
of this coincidence uses N-indexed diagrams of embedding-projection (e-p)
pairs, see e.g. [45]. In our setting, there is no obvious notion of e-p pair to use.
A similar issue was addressed by Plotkin, who developed a generalized notion
of e-p pair to establish a limit-colimit coincidence in the context of axiomatic
domain theory [34]. However, as motivated in Section 3, we have to depart
from the standard theorem in another significant way: our diagrams must be
indexed by I not N. Miraculously, the use of I as an indexing object enables us
to do away with the notion of e-p pair entirely. Instead we prove a limit-colimit
coincidence for arbitrary diagrams satisfying two simple equational properties.

Let K be an internal category in C. For this entire section, we reason inter-
nally in C about K. As we do not require K to be locally small, we refer to
{K(A, B)}A,B∈|K| as the family of hom-classes.

An I-bichain in K is given by families,

A(−) : |K|I x(−)(−) :
∏
i : I

∏
j : I

K(Ai, Aj),

satisfying the equations

xii = idAi
(29)

xjk ◦ xij = xmin(i,j,k) k ◦ xi min(i,j,k). (30)

Here min(i, j, k) means min(i, min(j, k)) (equivalently min(min(i, j), k), by
Lemma 5.1), using the min operation from Section 4.

Henceforth, we shall use the semilattice properties of min, given by Lemma 5.1,
without further reference, and we shall make free use of evident derived op-
erations such as min(i, j, k) above. We shall also use an internal partial order
on I, derived from the semilattice structure in the standard way:

i v j iff i = min(i, j).

Equations (29) and (30) for an I-bichain have useful consequences relating
x(−)(−) to the partial order v on I.

Lemma 6.1 For any i, j, k : I,

if i v j or k v j then xjk ◦ xij = xik. (31)

In particular, if i v j then xji ◦ xij = idAi
.

32

PROOF. Suppose i v j. Then:

xjk ◦ xij = xmin(i,j,k) k ◦ xi min(i,j,k) by (30)

= xmin(i,k) k ◦ xi min(i,k) as i v j

= xi k ◦ xi i by (30)

= xi k by (29).

The equation xji ◦ xij = idAi
follows, by (29). The argument for k v j is

similar. 2

Thus if i v j then xij and xji form a section-retraction pair. The limit-colimit
coincidence relates the colimit of the diagram of sections to the limit of the
diagram of retractions.

Given an I-bichain, (A(−), x(−)(−)), we write (xij)ivj for the evident partially-
ordered diagram of shape (I,v), consisting entirely of sections. As usual, a co-
cone for (xij)ivj is given by an object B of K together with c(−) :

∏
i : I K(Ai, B)

such that, for all i v j : I, it holds that ci = cj ◦ xij. A mediating morphism
from (B, c(−)) to another cocone (B′, c′(−)) is a morphism b : B - B′ in K
such that, for all i : I, it holds that c′i = b◦ci. The cocone (B, c(−)) is colimiting
if, for any cocone (B′, c′(−)), there exists a unique mediating morphism from
(B, c(−)) to (B′, c′(−)).

Dually, we write (xij)iwj for the evident partially-ordered diagram of shape
(I,w), consisting of retractions. The notion of cone, l(−) :

∏
i : I K(B, Ai), and

limit are defined in the obvious way.

Proposition 6.2 (Limit-colimit coincidence)
If K is an internal category in which all hom-classes are complete then, for
any I-bichain (A(−), x(−)(−)) in K, the following statements are equivalent.

(1) B is a limiting object for (xij)iwj.
(2) There exists a cone l(−) :

∏
i : I K(B, Ai) for (xij)iwj, and also a cocone

c(−) :
∏

i : I K(Ai, B) for (xij)ivj such that:

lj ◦ ci = xij for all i, j : I (32)⊔
i

(ci ◦ li) = idB. (33)

(3) B is a colimiting object for (xij)ivj.

Moreover, if (2) holds then l(−) is a limiting cone and c(−) is a colimiting
cone. Furthermore, (32) and (33) together imply that each of l(−) and c(−)

determines the other.

33

In view of the proposition, we shall henceforth refer to (B, l(−), c(−)) satisfy-
ing (32) and (33) as a bilimit of the I-bichain (A(−), x(−)(−)).

The remainder of the section is devoted to the proof of Proposition 6.2. Ac-
cordingly, assume hom-classes in K are complete and that (A(−), x(−)(−)) is an
I-bichain in K.

Lemma 6.3 If l(−) is any cone for (xij)iwj then lj =
⊔

i(xij ◦ li). Similarly, if
c(−) is a cocone for (xij)ivj then cj =

⊔
i(ci ◦ xji).

PROOF. The proofs of both equalities are similar, so we just show the equal-
ity for lj. As lj is a cone, we have i w j implies lj = xij ◦ li. So:

lj =
⊔
i

lmin(i,j) by (20)

=
⊔
i

(x i min(i,j) ◦ li) as l(−) is a cone

=
⊔
i

⊔
i′

(x i min(i′,j) ◦ li) by (23)

=
⊔
i

(xij ◦ li) by (20).

2

Lemma 6.4 If l(−) and c(−) are a cone and cocone satisfying (32) then, for
any cone l′(−), it holds that

⊔
i(ci ◦ l′i) is a mediating morphism from l′(−) to l(−).

PROOF. We must show that l′j = lj ◦
⊔

i(ci ◦ l′i). But, by (24), (32) and
Lemma 6.3,

lj ◦
⊔
i

(ci ◦ l′i) =
⊔
i

lj ◦ ci ◦ l′i =
⊔
i

xij ◦ l′i = l′j.

2

PROOF of Proposition 6.2. To prove that (1) implies (2), suppose that l(−)

is a limiting cone for (xjk)jwk. For any i : I, consider the family of morphisms
{xij : Ai → Aj}j : I. By (31), this is a cone for (xjk)jwk. Therefore, as l(−) is
limiting, there is a unique morphism ci : Ai → B such that, for all j, it holds
that xij = lj ◦ ci. This establishes (32). We must show that c(−) is a cocone
for (xij)ivj and that (33) holds.

For the cocone, we must show that i v j implies that ci = cj ◦ xij; for which,
by the defining property of ci, it suffices to show that, i v j implies that

34

xik = lk ◦ cj ◦ xij for all k. But this holds because, by (31) and (32),

xik = xjk ◦ xij = lk ◦ cj ◦ xij.

Equation (33) now follows from Lemma 6.4, because the morphism
⊔

i(ci ◦ li)
mediates from the cone l(−) to itself and idB is the unique mediating morphism.
Thus

⊔
i(ci ◦ li) = idB. This proves that 1 implies 2.

To prove that (2) implies (1), consider any cone l(−) and cocone c(−) satisfy-
ing (32) and (33). We show that l(−) is limiting for (xjk)jwk. Accordingly, let
l′(−) be any other cone. By Lemma 6.4, we have that

⊔
i(ci ◦ l′i) mediates from

l′(−) to l(−). We must show that it is the unique mediating morphism. Suppose
then that y also mediates between the two cones, i.e. for all i : I, it holds that
l′i = li ◦ y. Then indeed, using (33) and (24),

y = (
⊔
i

ci ◦ li) ◦ y =
⊔
i

(ci ◦ li ◦ y) =
⊔
i

ci ◦ l′i.

We have thus shown that statement (1) is equivalent to statement (2). The
equivalence of statements (2) and (3) follows by duality.

To complete the proof, we show that (32) and (33) imply that each of l(−) and
c(−) determines the other. To see that l(−) determines c(−), suppose that we
have c(−) and c′(−), both satisfying (32) and (33) with respect to l(−). We have
shown that l(−) is limiting, and that, for i : I, the family {xij : Ai → Aj}j : I

is a cone for (xjk)jwk. Then, by (32), ci and c′i are both the unique morphism
ci : Ai → B from the cone {xij : Ai → Aj}j : I to the limiting cone l(−). Thus
indeed ci = c′i. The argument that c(−) determines l(−) is dual. 2

7 Conditions for algebraic compactness

In this section we define a notion of suitable internal category—one satisfying
conditions that are sufficient for algebraic compactness to hold. These con-
ditions are convenient for establishing the algebraic compactness of specific
internal categories, e.g. pP.

Definition 7.1 (Suitable category) A suitable category is given by an in-
ternal category K together with a pointed structure (|K|, α), on the class of
objects, and a family of pointed structures {(K(A, B), βA,B)}A,B : |K|, on the
hom-classes, satisfying: for all A, B, C : |K|, the hom-class K(A, B) is com-
plete and the composition function K(B, C)× K(A, B) → K(A, C) is bistrict;
{idA : K(A, A)}A : |K| is a strict family; and every I-bichain in K has a specified
bilimit.

35

In this definition, by having a specified bilimit we mean that bilimits are given
by a morphism BichainsK - BiconesK in C, where BichainsK is the class of
I-bichains in K and BiconesK is the class of cone/cocone tuples (B, l(−), c(−))
for I-bichains.

Proposition 7.2 If K and L are suitable then so are Kop and K× L.

PROOF. The result for Kop is straightforward, using the duality inherent
in the notions of I-bichains and I-bilimits. For K × L, the required pointed
structures are the products of those of K and L, and the specified bilimits are
obtained by pairing the specified bilimits in K and L. 2

The next result is the reason for introducing the notion of suitable category.

Proposition 7.3 Every suitable internal category is algebraically compact.

The remainder of the section is devoted to the proof of Proposition 7.3. We first
show how to construct a bifree algebra for a single internal functor, and then,
subsequently, derive the full power of Definition 3.3 for families of internal
functors. Accordingly, let F be an endofunctor on a suitable category K.

Because (|K|, α) is pointed, there is, by Proposition 4.4, a unique strict map
F (−)0 : I - |K| such that F (F i0) = F si0. Here the notation is chosen to
convey the idea that one should think of F i0 as the i-th iterate of F applied
to a zero object 0 in K. However, this intuition is subject to two caveats:
firstly i comes from I rather than from N, so the notion of iterate is non-
standard; secondly, we have not required that K have a zero object (although
the existence of one follows from Proposition 7.3, once proven).

As each (K(A, B), βA,B) is pointed, there exists, by Proposition 4.9, a unique
bistrict family x(−)(−) :

∏
i : I

∏
j : I K(F i0, F j0) satisfying

x si sj = F (xij) . (34)

Lemma 7.4 (F (−)0, x(−)(−)) is an I-bichain.

PROOF. For equation (29), define yi = xii. As x(−)(−) is bistrict, it follows
from Proposition 4.8 that y(−) :

∏
i : I K(F i0, F i0) is a strict family. By the

k = 1 case of Proposition 4.9, y(−) is thus the unique strict family satisfying
ysi = F (yi). As F (−)0 : I - |K| is strict and {idA : K(A, A)}A : |K| is a strict
family, the composite idF (−)0 :

∏
i : I K(F i0, F i0) is also a strict family. Clearly

this satisfies idF s(i)0 = F (idF i0). Thus indeed xii = yi = idF s(i)0.

36

For equation (30), define y(−) (−) (−), z(−) (−) (−) :
∏

i : I

∏
j : I

∏
k : I K(F i0, F k0) by

yijk = xjk◦xij and zijk = xmin(i,j,k) k◦xi min(i,j,k). We show below that y(−) (−) (−)

and z(−) (−) (−) are 3-strict and satisfy ys(i) s(j) s(k) = F (yijk) and zs(i) s(j) s(k) =
F (zijk). Hence, by the k = 3 case of Proposition 4.9, yijk = zijk. Thus indeed
xjk ◦ xij = xmin(i,j,k) k ◦ xi min(i,j,k).

We first show that y(−) (−) (−) is 3-strict. Fix j, k and consider the family
y(−) j k :

∏
i : I K(F i0, F k0). Then x(−) j is a strict family, because x(−) (−) is

bistrict; and {xjk ◦ (−) : K(F i0, F j0) → K(F i0, F k0)}i : I is a family of strict
maps, because composition in K is bistrict. So the composite xjk ◦ x(−) j =
y(−) j k is a strict family. By a similar argument, yi j (−) is a strict family, for
all i, j. Lastly, fix i, k and consider yi (−) k. We have that x(−) k and xi (−) are
strict families, so the pairing (x(−) k, xi (−)) :

∏
j : I(K(F j0, F k0)× K(F i0, F j0))

is a strict family. Also, composition in K gives a family of bistrict functions
{K(F j0, F k0) × K(F i0, F j0) → K(F i0, F k0)}j : I, each of which is strict by
Proposition 4.3. Therefore the composite family x(−) k ◦xi (−) = yi (−) k is strict.
Thus y(−) (−) (−) is indeed 3-strict.

To prove the 3-strictness of z(−) (−) (−), we show that each of xmin(i,j,k) k and
xi min(i,j,k) is 3-strict, whence, by the strictness of composition, the composite
xmin(i,j,k) k ◦ xi min(i,j,k) = zijk is indeed 3-strict. We just give the argument for
xmin(i,j,k) k as that for xi min(i,j,k) is similar. The strictness of xmin(i,j,k) k in i (for
fixed j, k) is obvious by the 3-strictness of min and the bistrictness of x(−) (−).
Strictness in j is by the same argument. For strictness in k, fix i, j. Consider
the family {xmin(i,j,k1) k2}k1 : I, k2 : I. This is obviously bistrict. By Proposition 4.8,
{xmin(i,j,k1) k2}(k1,k2) : I×I is thus a strict family. Hence, by composing with the
strict k 7→ (k, k), the family xmin(i,j,k) k is strict in k.

To show ys(i) s(j) s(k) = F (yijk), we have

ys(i) s(j) s(k) = xs(j) s(k) ◦ xs(i) s(j) def. of y(−) (−) (−)

= F (xjk) ◦ F (xij) by (34)

= F (xjk ◦ xij) F an internal functor

= F (yijk) def. of y(−) (−) (−).

Finally, to show zs(i) s(j) s(k) = F (zijk), we have

zs(i) s(j) s(k) = xmin(s(i),s(j),s(k)) s(k) ◦ xs(i) min(s(i),s(j),s(k)) def. of z(−) (−) (−)

= xs(min(i,j,k)) s(k) ◦ xs(i) s(min(i,j,k)) def. of min

= F (xmin(i,j,k) k) ◦ F (xi min(i,j,k)) by (34)

= F (xmin(i,j,k) k ◦ xi min(i,j,k)) F an internal functor

= F (zijk) def. of z(−) (−) (−).

2

37

Now we are in a position to construct the bifree algebra for F . Accordingly,
let (B, l(−), c(−)) be the specified bilimit of (F (−)0, x(−)(−)). Define morphisms:

FB
b- B and B

b′- FB in K by

b =
⊔
i

(csi ◦ Fli) b′ =
⊔
i

(Fci ◦ lsi) (35)

Lemma 7.5 b is an isomorphism with inverse b′.

PROOF. Using equations (22)–(24), (29), (32) and (33), we have:

b ◦ b′ = (
⊔
i

csi ◦ Fli) ◦ (
⊔
j

Fcj ◦ lsj) =
⊔
i

⊔
j

csi ◦ Fli ◦ Fcj ◦ lsj

=
⊔
i

csi ◦ Fli ◦ Fci ◦ lsi =
⊔
i

csi ◦ F (li ◦ ci) ◦ lsi

=
⊔
i

csi ◦ lsi =
⊔
i

ci ◦ li = idB

b′ ◦ b =
⊔
i

F ci ◦ lsi ◦ csi ◦ Fli =
⊔
i

F (ci ◦ li) = F (
⊔
i

ci ◦ li) = idFB.

2

We next show that b is the desired bifree F -algebra, by showing that it satisfies

a condition equivalent to bifreeness. Suppose that FA
a- A is an isomor-

phism in K. Applying Proposition 4.4, define z(−) : I → K(A, A) to be the
unique strict function such that the diagram below commutes.

I
z(−) - K(A, A)

I

s

?

z(−)

- K(A, A)

a ◦ F (−) ◦ a−1

?

We say that a is special F -invariant if
⊔

i zi = idA.

The notion of special-invariant object was first introduced for cpo-enriched
categories in [8]. A generalisation to an axiomatic setting appears in [39],
from where the following result is taken. For completeness, we include a proof.

Lemma 7.6 For any isomorphism FA
a- A, the following are equivalent:

(1) FA
a- A is special F -invariant.

38

(2) FA
a- A is an initial F -algebra.

(3) A
a−1

- FA is a final F -coalgebra.

PROOF. Given any F -algebra, c : FC - C, define yc
(−) : I - K(A, C)

to be the unique strict map satisfying yc
s(i) = c◦F (yc

i)◦a−1, given by Proposi-
tion 4.4. In particular, ya

i = zi. Then
⊔

i y
c
i is an algebra homomorphism from

(A, a) to (C, c) because, using (22),

(
⊔
i

yc
i) ◦ a = (

⊔
i

yc
s(i)) ◦ a = c ◦ F (

⊔
i

yc
i) ◦ a−1 ◦ a = c ◦ F (

⊔
i

yc
i).

Thus,
⊔

i zi is an algebra homomorphism from a to a. So when a is the initial
algebra,

⊔
i zi = idA. Thus indeed (2) implies (1).

For the converse, we must show that the homomorphism
⊔

i y
c
i constructed

above is unique. Accordingly, let x : A - C in K be any homomorphism,
i.e. c ◦ Fx = x ◦ a. Then, by an easy calculation, the right-hand square below
commutes. The left-hand square commutes by the definition of z(−).

I
z(−) - K(A, A)

x ◦ (−)
- K(A, C)

I

s

?

z(−)

- K(A, A)

a ◦ F (−) ◦ a−1

?

x ◦ (−)
- K(A, C)

c ◦ F (−) ◦ a−1

?

By the bistrictness of composition K(A, C) × K(A, A) → K(A, C), the map
x ◦ (−) is strict. Hence x ◦ z(−) : I - K(A, C) is a strict map satisfying the
defining property of yc

(−), by whose uniqueness yc
i = x ◦ zi. Thus indeed, as a

is special F -invariant, x = x ◦ ⊔
i zi =

⊔
i(x ◦ zi) =

⊔
i y

c
i .

The equivalence of statements (1) and (3) follows by duality. 2

Lemma 7.7 The isomorphism FB
b- B is special F -invariant.

PROOF. Consider the diagram below.

I
c(−) ◦ l(−) - K(B, B)

I

s

? c(−) ◦ l(−) - K(B, B)

b ◦ F (−) ◦ b′

?

39

By (33), we have that
⊔

i ci ◦ li = idB. Thus, for b to be special F -invariant, it
suffices to show that c(−)◦l(−) is strict and makes the diagram above commute.

For strictness, the family {ci : K(Ai, B)}i : I is obtained as the composite of
{idAi

: K(Ai, Ai)}i : I with the family {ci ◦ (−) : K(Ai, Ai) - K(Ai, B)}i : I.
The former is a strict family because K is suitable, the latter is a family
of strict functions because composition in K is bistrict. Thus the composite
{ci : K(Ai, B)}i : I is a strict family. By a similar argument {li : K(B, Ai)}i : I is a
strict family. Thus {(ci, li) : K(Ai, B)× K(B, Ai)}i : I is also a strict family. By
composing this with the family {K(Ai, B) × K(B, Ai) → K(B, B)}i : I of com-
position functions, each of which is strict by Proposition 4.3, we obtain that
{ci◦li : K(B, B)}i : I is a strict family. In other words, c(−)◦l(−) : I - K(B, B)
is a strict map.

For commutativity, we have:

b ◦ F (ci ◦ li) ◦ b′

= (
⊔
j

csj ◦ Flj) ◦ F (ci ◦ li) ◦ (
⊔
j

Fcj ◦ lsj)

=
⊔
j

csj ◦ F (lj ◦ ci) ◦ F (li ◦ cj) ◦ lsj by Proposition 5.2

=
⊔
j

csj ◦ Fxij ◦ Fxji ◦ lsj by (32)

=
⊔
j

csj ◦ xsi sj ◦ xsj si ◦ lsj by (34)

=
⊔
j

(csj ◦ xsi sj) ◦
⊔
j

(xsj si ◦ lsj) by Proposition 5.2

=
⊔
j

(cj ◦ xsi j) ◦
⊔
j

(xj si ◦ lj) by (22)

= csi ◦ lsi by Lemma 6.3.

Thus b is indeed special F -invariant. 2

At this point, we have, by Lemmas 7.6 and 7.7, that b is a bifree algebra. Thus
we have constructed a bifree algebra for the given internal functor F .

To complete the proof of Proposition 7.3, we must construct bifree algebras
for internal families of internal endofunctors, and we must show that these are
preserved by reindexing, as in Definition 3.3. The construction part is given
by a straightforward relativization of the proof above. Let {Fi : K → K}i : I be
an internal family of internal functors on K. Then this gives rise to a single
internal functor on the internal category I∗(K) in the slice C/I, obtained
from K by reindexing. However, the definition of suitable category is plainly
preserved by reindexing, thus I∗(K) is a suitable internal category in C/I.
The construction given above, when carried out in C/I, thus produces a bifree

40

algebra for the endofunctor {Fi : K → K}i : I on I∗(K). This unwinds to give a
family {ai : K(FiAi, Ai)}i : I of bifree algebras in K, as required by Definition 3.3.

It remains to show that the constructed families of bifree algebras are pre-
served by reindexing. For this, we use the following observation. Given a
family {Fi : K → K}i : I , where I is an arbitrary index object, the family
{ai : K(FiAi, Ai)}i : I constructed above has the following internal characteri-
zation. For each i : I, the morphism ai : K(FiAi, Ai) is uniquely determined by

its construction using the specified bilimit of the I-bichain (F
(−)
i 0, xi(−)(−)).

Moreover the I-bichain is determined by Fi. Thus, internally in C, it holds
that, for all i : I, the morphism ai equals a map determined uniquely by Fi

and the suitability structure on K. This characterization is trivially preserved
by reindexing. Thus the constructed families of bifree algebras are preserved
by reindexing. This completes the proof of Proposition 7.3.

8 Properties of suitable categories

In this section we establish useful properties of the process of constructing
bifree algebras in suitable categories, making use of the constructions of Sec-
tion 7. The results in this section will be used heavily in Section 12.

The suitablility of a category K is witnessed by the following data in C:
the pointed structure (|K|, αK), the family {(K(A, B), βK

A,B)}A,B : |K| of pointed

structures, and the bilimit-finding morphism bilimK : BichainsK - BiconesK.
We henceforth consider a suitable categoriy as being given by a 4-tuple spec-
ifying this data, (K, αK, {βK

A,B)}A,B : |K|, bilimK), although we shall normally
elide the additional structure, just writing K.

The data (K, αK, {βK
A,B)}A,B : |K|, bilimK) determines the construction of bifree

algebras in the proof of Proposition 7.3. For any internal functor F : K → K,

we refer to the bifree algebra, FA
a- A, constructed for it as the canonical

bifree algebra for F . Also, given a functor G : L×K → K, where L is any internal
category, we write G† : L → K for the functor, constructed by Proposition 3.4,
that finds canonical bifree algebras parametrically.

Any internal functor F : K → L, between arbitrary internal categories, pre-
serves I-bichains, i.e. if (A(−), x(−)(−)) is an I-bichain in L then (FA(−), Fx(−)(−))
is an I-bichain in L. Similarly, it preserves cones and cocones, hence bicones.
Furthermore, by (32) and (33), when hom-classes in K and L are complete, F
preserves bilimits of bichains: i.e. if (B, l(−), c(−)) is a bilimit for (A(−), x(−)(−))
then (FB, F l(−), F c(−)) is a bilimit for (FA(−), Fx(−)(−)). On the other hand,
when K and L are suitable, there is no reason for F to map specified bilimits
to specified bilimits. It is useful to identify a strict notion of functor between

41

suitable categories that does preserve all specified structure up to equality.

Definition 8.1 (Suitable functor) An internal functor F : K → L, be-
tween suitable categories, is suitable if: F : (|K|, αK) - L(|L|, αL) is strict;
FAB : (K(A, B), βK

AB) - (L(FA, FB), βL
FA FB) is strict, for all A, B : |K|; and

the diagram below commutes in C,

BichainsK F
- BichainsL

BiconesK

bilimK

?

F
- BiconesL ,

bilimL

?

using the preservation of bicones and bichains discussed above.

The benefit of requiring suitable functors to preserve structure up to equality
is that it allows one to avoid coherence conditions that would otherwise arise
when comparing, e.g., bifree algebras, between suitable categories. The lemmas
below develop several such results.

Lemma 8.2 (Uniformity) Suppose K and K′ are suitable internal categories,
and there is a commuting diagram of internal functors,

K
F

- K

K′

H

?

G
- K′ ,

H

?

with H suitable. Let FA
a- A be the canonical bifree algebra of F , and let

GB
b- B be the canonical bifree algebra of G. Then B = HA and b = Ha.

PROOF. By following through the explicit construction of bifree algebras
given in Section 7. Specifically, one verifies easily that G(−)0 : I - |K′| is
given by H ◦F (−)0 and that the associated bichain xG

ij is equal to H(xF
ij). The

canonical bifree algebra of F is given as the bilimit of (F (−)0, xF
(−)(−)), with the

algebra map FA
a- A defined (as b) in (35). The canonical bifree algebra

GB
b- B of G is defined similarly, with B the the bilimit of (G(−)0, xG

(−)(−)).
That B = HA follows from H preserving specified bilimits. That b = Ha
follows from the definition of these maps using (35). 2

42

Lemma 8.3 (Parametrized uniformity) Suppose K and K′ are suitable
internal categories, and there is a commuting diagram of internal functors,

L× K
F

- K

L′ × K′

J ×H

?

G
- K′ ,

H

?

with H suitable. Then G† ◦ J = H ◦ F † : L → K.

PROOF. It is enough to prove the result in the case L′ = L and with J
the identity functor, as the general case then follows by an easy application of
Proposition 3.5. Accordingly, suppose we have internal functors F : L×K → K
and G : L × K′ → K′ and suitable H : K → K′. We must show that G† =
H ◦ F †. For any object C of L, write aC for the canonical bifree algebra of
F (C,−) : K → K, and bC for the canonical bifree algebra of G(C,−) : K′ → K′.
By Lemma 8.3, bC = H(aC). Thus H ◦F † satisfies the characterizing property
of G†, as stated in Proposition 3.4. Thus indeed G† = H ◦ F †. 2

Canonical bifree algebras are also preserved by taking opposite categories.

Lemma 8.4 If F : K → K is an internal endofunctor on a suitable internal

category, with canonical bifree algebra FA
a- A, then the canonical bifree

algebra for F op : Kop → Kop is F opA
a−1

- A.

PROOF. By the construction of bifree algebras in Section 7 and the defini-
tion of the suitability structure on Kop , see Proposition 7.2. 2

Lemma 8.5 Suppose that G : L × K → K is an internal functor where K is
suitable. Write Gop : Lop × Kop → Kop for the evident opposite functor. Then
(G†)op = (Gop)† : Lop → Kop.

PROOF. For any object B of L, let aB : G(B, AB) - AB be the canonical
bifree algebra of G(B,−) : K → K. Thus G† : L → K is the unique functor
with G†(B) = AB such that aB gives the components of a natural trans-
formation from G((−), A(−)) : L → K to G†. By Lemma 8.4, the canonical
bifree algebra of Gop(B,−) : Kop → Kop is a−1

B : Gop(B, AB) - AB in
Kop . Thus (Gop)† : Lop → Kop is the unique functor with (Gop)†(B) = AB

such that a−1
B is a natural transformation from Gop((−), A(−)) : Kop → Kop

43

to (Gop)†. This property is also satisied by (G†)op : Lop → Kop . Thus indeed
(G†)op = (Gop)†. 2

To solve recursive domain equations involving functors of mixed variance, it is
convenient to replace such functors with derived covariant functors on internal
categories of the form Kop×K. For notational convenience, we shall write K̂ as
an abbreviation for Kop×K. If K is suitable category then, by Proposition 7.2,
so is K̂. Given an internal functor F : K → L we write F̂ for the internal functor
(F op × F) : K̂ → L̂. If F is a suitable functor then so is F̂ .

We shall be interested in internal functors F : K̂ × · · · × K̂ → K̂ that satisfy
an important symmetry condition, cf. [3]. Write § : (K̂)op → K̂ for the internal
functor defined by

§(A, B) = (B, A) §(f, g) = (g, f). (36)

Lemma 8.6 The functor § : K̂op → K̂ is suitable.

PROOF. Immediate from the definitions of the suitability structure on op-
posite and product categories. 2

Definition 8.7 (Symmetric functor) An internal functor F : K̂k → K̂ is
said to be symmetric if the diagram below commutes.

(K̂op)k F op
- K̂op

K̂k

§k

?

F
- K̂

§
?

Note that §◦§ is the identity functor of K̂. Thus, if we write F = 〈F−, F+〉 for
the components of a symmetric functor then each of F− and F+ determines
the other, e.g. we have F− = §◦F+ ◦§k. Trivially, for any G : K → K, it holds
that Ĝ : K̂ → K̂ is symmetric.

Suppose that K is suitable and F : K̂k×K̂ → K̂ is a symmetric internal functor.
Then F † : K̂k → K̂ maps any object ~B of K̂k to the canonical bifree algebra of
the internal endofunctor F (~B,−) : K̂ → K̂. Just from the fact that F † para-
metrically finds bifree algebras, it follows that F † is naturally isomorphic to a
symmetric functor, see [3, §6.4]. However, better than this, by the properties
established above, we have:

44

Lemma 8.8 For any symmetric internal functor F : K̂k × K̂ → K̂, where K is
suitable, the bifree-algebra finding functor F † : K̂k → K̂ is symmetric.

PROOF. By the symmetry of F , the left-hand diagram below commutes.

(K̂op)k × K̂op F op
- K̂op (K̂op)k (F op)†

- K̂op

K̂k × K̂

§k × §
?

F
- K̂

§
?

K̂k

§k

?

F †
- K̂

§
?

Also § : K̂op → K̂ is a suitable functor, so the right-hand diagram commutes, by
Lemma 8.3. Moreover, by Lemma 8.5, (F op)† = (F †)op . Thus the right-hand
diagram expresses the symmetry of F †. 2

9 Suitability of pP

We complete the proof of Theorem 1 by establishing the result below.

Proposition 9.1 If Axiom 1 holds then the internal category pP is suitable.

The entire section is devoted to the proof of this proposition.

In this section, for the first time in the proof of Theorem 1, we invoke Axiom 1.
As we use it extensively, we assume Axiom 1 for the entirety of the section.

The lemma below, which gives a surprisingly useful interpolation condition for
establishing well-completeness, is taken from [40].

Lemma 9.2 An object X of C is well-complete if

C |= ∃p : Σ. (X inhabited → p) ∧ (p → X well-complete) ,

where “X inhabited” means ∃x : X.>.

PROOF. Suppose that X satisfies the condition. We use Proposition 2.5(1)
to show that X is well-complete. Reasoning in C, we have p : Σ such that
X inhabited → p and p → X well-complete. Take any functions q : F → Σ and
f : (I�q ◦ ι) → X. We must show that there exists a unique f ′ : (F�q) → X
satisfying f ′(ι(i)) = f(i) for all i : (I�q ◦ ι).

45

Define h : (I � q ◦ ι) → Σ by h(i) = p. Then, given any i : (I � q ◦ ι), we
have f(i) : X, so X is inhabited, whence p holds. Therefore h(i) = >, for
all i : (I � q ◦ ι). By Axiom 1, Σ is well-complete, so there exists a unique
h′ : (F � q) → Σ satisfying h′(ι(i)) = h(i) for all i : (I � q ◦ ι). Clearly this
equation is satisfied by both h′ : i′ 7→ p and h′ : i′ 7→ >. Therefore, given
i′ : (F�q), we have p = h′(i′) = >. This shows that F�q inhabited implies that
p holds.

Consider any i′ : (F�q). Given i′, we have that p holds, so X is well-complete.
Define gi′ : (F�q) → X to be the unique function such that gi′(ι(i)) = f(i).
The notation is chosen to emphasise that the definition of gi′ depends on the
existence of i′.

At last, define f ′ : (F�q) → X by f ′(i′) = gi′(i
′). We must show that this is

the unique function satisfying f ′(ι(i)) = f(i) for all i : (I�q◦ ι). To see that the
equation holds, take any i : (I�q ◦ ι). Then indeed f ′(ι(i)) = gι(i)(ι(i)) = f(i).
For uniqueness, suppose that f ′′ : (F�q) → X satisfies f ′′(ι(i)) = f(i), for all
i : (I�q ◦ ι). Then, for any i′ : (F�q), we have f ′′ = gi′ , by the uniqueness of gi′ .
Thus indeed f ′′(i′) = gi′(i

′) = f ′(i′). 2

By relativizing the above lemma to the slice category C/PSU (where U is
the universal object of C), it can be used internally to establish the well-
completeness of any X :PSU .

Lemma 9.3 The morphism
⋃

: L(PSU) - PSU restricts to a morphism⋃
: L|pP| - |pP|, giving a pointed structure (|pP|, ⋃

).

PROOF. We first show that
⋃

restricts to give a morphism L|pP| - |pP|,
i.e. if e is a Σ-subterminal subset of PSU whose only element, if it exists, is
a predomain then

⋃
e is a predomain. Suppose then that e is Σ-subterminal

and X ∈ e implies X is a predomain.

Trivially
⋃

e is small. We use Lemma 9.2 to show that
⋃

e is well-complete,
taking p to be the proposition “e inhabited”, which is in Σ because e is Σ-
subterminal. The condition “(

⋃
e) inhabited → p” holds trivially. To show

that “p → ⋃
e well-complete” holds, suppose e is inhabited. Then, because e

is subterminal, e = {X} for some predomain X. Thus
⋃

e = X which is a
predomain, hence well-complete.

It remains to show that
⋃

: L|pP| - |pP| satisfies equations (6) and (7)
for being an Eilenberg-Moore algebra. The unit law (6) is trivial. For the
multiplication law, (7), we must show that

⋃
(
⋃

E) =
⋃

({⋃(e) | e ∈ E}) for
any E : L2|pP|. To show

⋃
(
⋃

E) ⊆ ⋃
({⋃(e) | e ∈ E}), suppose x : U is such that

x ∈ ⋃
(
⋃

E). Then there exist X, e such that x ∈ X ∈ e ∈ E. Thus x ∈ ⋃
(e),

46

whence x ∈ ⋃
({⋃(e) | e ∈ E}). Conversely, if x ∈ ⋃

({⋃(e) | e ∈ E}), then
there exists e ∈ E with x ∈ ⋃

(e), whence there exists X such that x ∈ X ∈ e.
Thus indeed x ∈ ⋃

(
⋃

E). 2

Lemma 9.4 For A, B : |pP|, it holds that pP(A, B) is pointed and complete.

PROOF. We have pP(A, B) = A ⇀ B ∼= LBA. The latter object is pointed
because B is and pointed objects are closed under internal powers (as a special
case of internal products). As Axiom 1 holds, we have that LBA is complete
by the cartesian closure of P and its closure under lifting L. 2

It is convenient to have an explicit description of the pointed structure on
A ⇀ B. This is given by βAB : L(A ⇀ B) → (A ⇀ B) defined by

βAB(e)(x) = y iff there exists f ∈ e with f(x) = y .

N.b. here we use = to mean strict equality, see Section 2.

Lemma 9.5 The composition map pP(B, C) × pP(A, B) - pP(A, C) is
bistrict, for all A, B, C : |pP|.

PROOF. To show strictness in the first argument, take any e : L(B ⇀ C)
and f : A ⇀ B. We must show that βBC(e) ◦ f = βAC({g ◦ f | g ∈ e}). But,
for any x : A, we indeed have:

(βBC(e) ◦ f)(x) = z iff there exists g ∈ e such that g(f(x)) = z

iff βAC({g ◦ f | g ∈ e})(x) = z .

For strictness in the second argument, take any g : B ⇀ C and e : L(A ⇀ B). A
similar argument, shows that g◦βAB(e) = βAC({g◦f | f ∈ e}) as required. 2

Lemma 9.6 {idA}A : |pP| is a strict family.

PROOF. Because Axiom 1 holds, (|pP|, ⋃
) is pointed, by Lemma 9.3. We

must show equation (8), i.e. that id⋃
e = β⋃

e
⋃

e({idA | A ∈ e}), for all

e : L|pP|. Take any e : L|pP| and x ∈ ⋃
e. Then e = {A} for some A with

x ∈ A. So β⋃
e

⋃
e({idA | A ∈ e})(x) = idA(x) as required. 2

It remains to establish that standard I-bichains in pP have specified bilimits.
For this, it is convenient to relate pP to the internal category P defined in
Section 3. Recall that Axiom 1 implies that P carries a monad (L, {·}, ⋃

)

47

internalizing L. Moreover, internally in C, the internal Kleisli category PL

is isomorphic to pP. Thus there is an internal full and faithful comparison
functor K : pP → PL, where PL is the internal Eilenberg-Moore category
for the monad. As for any monadic functor, the internal forgetful functor
U : PL → P creates limits. Thus PL is internally small-complete, because P is.

To obtain bilimits for I-bichains in pP, it suffices, by the limit-colimit coin-
cidence, to construct limits for the diagrams (xij)iwj derived from I-bichains.
We show that arbitrary diagrams of shape (I,w) in pP have limits.

Lemma 9.7 The comparison functor K : pP → PL creates (up to isomor-
phism) limits for diagrams of shape (I,w).

PROOF. Suppose we have a diagram (xij : Ai ⇀ Aj)iwj in pP. Its image
under K : pP → PL is a diagram (xij : LAi → LAj)iwj, whose limit in PL has
underlying set:

B = {ã(−) :
∏
i : I

LAi | ∀ i, j : I. i w j implies ãj = xij(ãi)} .

By Axiom 1, the dominance Σ is complete. Thus we can define a subobject

B′ = {ã(−) : B |
⊔
i

Σ
(ãi ↓)},

where we write ãi ↓ for the Σ-property ∃a : Ai. a ∈ ãi, as in Proposition 4.1.

Define f : B → LB′ and g : LB′ → B by:

f(ã(−)) = {ã(−) |
⊔
i

Σ
(ãi ↓)} (g(b̃))i =

⋃
{ãi | ã(−) ∈ b̃}

We show that f and g are mutual inverses.

For the identity g ◦ f = idB, we have (g(f(ã(−))))i =
⋃ {ãi | ⊔Σ

j (ãj ↓)}. So

we must show that ãi =
⋃ {ãi |

⊔Σ
j (ãj ↓)}. We establish subset inclusions in

each direction. Clearly ãi ⊇
⋃ {ãi |

⊔Σ
j (ãj ↓)}. For the converse, it suffices to

show that, for all i : I, if ãi ↓ then
⊔Σ

j (ãj ↓). By the definition of B, we have
that i v j implies ãi = xji(ãj), where xji is strict. Thus, by Proposition 4.1,
if i v j and ãi ↓ then ãj ↓; i.e. i v j implies ãi ↓ = ãi ↓ ∧ ãj ↓ in Σ. Now take
any i : I. Then

ãi ↓ =
⊔
j

Σ
(ãmin(i,j) ↓) by (20)

=
⊔
j

Σ
(ãmin(i,j) ↓ ∧ ãj ↓) as min(i, j) v j

48

=
⊔
j

Σ
(ãmin(i,j) ↓) ∧

⊔
j

Σ
(ãj ↓) by (23) and (24)

= ãi ↓ ∧
⊔
j

Σ
(ãj ↓) by (20).

But this equality states that ãi ↓ implies
⊔Σ

j (ãj ↓), as required.

To show that f ◦ g = idLB′ , for any b̃ : LB′, we have that

f(g(b̃)) = { {
⋃
{ãi | ã(−) ∈ b̃}}i : I |

⊔
i

Σ
((

⋃
{ãi | ã(−) ∈ b̃})↓) }. (37)

Given any b̃ : LB′, suppose that ã(−) ∈ b̃. Then
⋃{ãi | ã(−) ∈ b̃} = ãi and also⊔Σ

i (ãi ↓) because ã(−) : B
′. So, by (37), it is clear that b̃ ⊆ f(g(b̃)).

For the converse inclusion, suppose ã(−) ∈ f(g(b̃)). Then, by (37), we have:

ãi =
⋃{ã′i | ã′(−) ∈ b̃}. It follows that, ãi ↓ implies b̃ ↓, for all i : I. In other

words, ãi ↓ = ãi ↓ ∧ b̃ ↓ in Σ. It also follows that ã′(−) ∈ b̃ implies ã′i = ãi for

all i : I. Thus b̃↓ implies ã(−) ∈ b̃. But indeed b̃↓ because:

b̃↓ = b̃↓ ∧
⊔
i

Σ
(ãi ↓) because ã(−) : B

′

=
⊔
i

Σ
(b̃↓ ∧ ãi ↓) by (24)

=
⊔
i

Σ
(ãi ↓) as ãi ↓= ãi ↓ ∧ b̃↓

= > because ã(−) : B
′.

So indeed f(g(b̃)) ⊆ b̃, and hence f ◦ g = idLB′ .

Next we show that g is strict, i.e. is a morphism in PL. The pointed structure
on B is β : LB → B defined by

β(b̃)i =
⋃
{ãi | ã(−) ∈ b̃} .

Given E : L2B, we show that g(
⋃

E) = β({g(b̃) | b̃ ∈ E}) by:

β({g(b̃) | b̃ ∈ E})i =
⋃
{g(b̃)i | b̃ ∈ E} def. of β

=
⋃
{
⋃
{ãi | ã(−) ∈ b̃} | b̃ ∈ E} def. of g

=
⋃
{ãi | ã(−) ∈

⋃
E}

= g(
⋃

E)i def. of g.

Thus g is indeed strict.

As U : PL → P is a monadic functor, it reflects isomorphisms. Thus g is an
isomorphism in PL (with f , which is therefore strict, its inverse). It follows

49

that the cone (πi ◦ g : LB′ → LAi)i:I is limiting for (xij : LAi → LAj)iwj, in
PL. Because K : pP → PL is full and faithful, the above cone is the image of a
limiting cone q(−) :

∏
i:I B′ ⇀ Ai for the diagram (xij : Ai ⇀ Aj)iwj in pP. 2

Corollary 9.8 The internal category pP has limits for (I,w) diagrams.

PROOF. Immediate from Lemma 9.7, because PL is small-complete. 2

It follows from the proof above that there is a morphism in C mapping I-
opchains in pP to their limiting cones. Indeed, this follows by unwinding the
proof, which constructs the limit-finding morphism from that for PL, which
is, in turn, obtained from that for P, which exists by the internal version of
Proposition 2.5. Moreover, the morphism mapping I-opchains to their limiting
cones determines a morphism mapping I-bichains to their bilimits, because l(−)

determines c(−) in Proposition 6.2. The lemma below summarises this.

Lemma 9.9 Every I-bichain in pP has a bilimit and the operation mapping
I-bichains to bilimits is given by a morphism in C.

Taken together, Lemmas 9.3–9.9 prove Proposition 9.1, and hence Theorem 1.

10 The language FPC

In this section, we give a brief overview of Plotkin’s call-by-value recursively
typed λ-calculus, FPC, introduced in [33]. For full details see [3].

We use X, Y, . . . to range over type variables, and σ, τ, . . . to range over types,
which are given by:

σ ::= X | σ + τ | σ × τ | σ → τ | µX.σ.

Here the prefix µX binds X. We use Θ, . . . to range over finite sequences of
distinct type variables. We write Θ ` σ to mean that all free type variables in
σ appear in Θ.

We use x, y, . . . to range over term variables, and s, t, . . . to range over terms,
which are given by:

t ::= x | inl(t) | inr(t) | case(s) of x1.t1 or x2.t2 | (s, t) | fst(t) | snd(t) |
λx. t | s(t) | intro(t) | elim(t).

50

Γ, x : σ ` x : σ

Γ ` t : σ

Γ ` inl(t) : σ + τ

Γ ` t : τ

Γ ` inr(t) : σ + τ

Γ ` s : σ1 + σ2 Γ, x1 : σ1 ` t1 : τ Γ, x2 : σ2 ` t2 : τ

Γ ` case(s) of x1.t1 or x2.t2 : τ

Γ ` s : σ Γ ` t : τ

Γ ` (s, t) : σ × τ

Γ ` t : σ × τ

Γ ` fst(t) : σ

Γ ` t : σ × τ

Γ ` snd(t) : τ

Γ, x : σ ` t : τ

Γ ` λx. t : σ → τ

Γ ` t : σ → τ Γ ` s : σ

Γ ` t(s) : τ

Γ ` t : σ[µX.σ/X]

Γ ` intro(t) : µX.σ

Γ ` t : µX.σ

Γ ` elim(t) : σ[µX.σ/X]

Fig. 1. Typing rules for FPC.

t v

inl(t) inl(v)

t v

inr(t) inr(v)

s inl(v1) t1[v1/x1] v

case(s) of x1.t1 or x2.t2 v

s inr(v2) t2[v2/x2] v

case(s) of x1.t1 or x2.t2 v

t1 v1 t2 v2

(t1, t2) (v1, v2)

t (v1, v2)

fst(t) v1

t (v1, v2)

snd(t) v2

λx. t λx. t

t λx. t′ s v′ t′[v′/x] v

t(s) v

t v

intro(t) intro(v)

t intro(v)

elim(t) v

Fig. 2. Evaluation rules for FPC.

51

We use Γ, . . . to range over sequences of the form x1 : σ1, . . . , xk : σk with
all xi distinct and all σi closed. For closed types σ, we write Γ ` t : σ to
mean that t is a well-formed term of type σ relative to Γ, where the rules for
deriving such typing assertions are given in Fig. 1. We view a term as uniquely
determining its typing derivation. In order to achieve this formally, one should
properly include type information in the terms inl(t), inr(t), intro(t) and
λx. t, see [3]. We consider such type information as being there implicitly, but
to ease clutter we never write it.

To define a call-by-value operational semantics for FPC, we first specify the
values, closed terms v, . . . of the form:

v ::= inl(v) | inr(v) | (v1, v2) | λx. t | intro(v).

The call-by-value evaluation relation t v between closed terms t and values
v is defined in Fig. 2. Importantly, if ` t : σ and t v then ` v : σ. We
say that a closed term t converges, notation t⇓, if there exists (a necessarily
unique) v such that t v.

In Section 14, we shall need to do some simple programming in FPC. To
facilitate this, we define various useful datatypes and operations upon them.

Basic datatypes, including a type of natural numbers, are encoded by:

empty = µX. X

unit = empty→ empty

bool = unit + unit

nat = µX. unit + X .

The standard operations on such datatypes are easily defined: a canonical
element ∗ of unit; the truth values tt and ff in bool along with an associ-
ated if . . . then . . . else . . . construction; numerals n : nat, for each n ∈ N,
successor and predecessor functions succ, pred : nat → nat, and an equality
predicate of type nat × nat → bool. Crucially, FPC also supports the re-
cursive definition of functions. Given a term Γ, f : σ → τ, x : σ ` t : τ , write
rec f =λx. t for the term δ(intro(δ)), where

δ = λw. (λz. λx. t [z (intro(z)) / f]) (elim(w)) .

Then, by giving w the type µX. (X → (σ → τ)), one derives that

Γ ` rec f =λx. t : σ → τ .

Moreover, rec f =λx. t enjoys the following operational behaviour:

rec f =λx. t λx. t [rec f =λx. t / f] .

Thus rec f =λx. t indeed implements the recursive definition of functions.

52

11 The interpretation of FPC

In this Section, we apply Theorem 1 to obtain an interpretation of FPC, in the
category pP. It is convenient to first define an interpretation in the internal
category pP and then to extract from that the interpretation in pP. Moreover,
although the interpretation in pP could be obtained using Theorem 1 alone,
having developed the technology, it is convenient to make direct use of the
properties of suitable categories established in Sections 7 and 8.

To interpret FPC in pP, we need pP to be closed under +, so henceforth, for
the remainder of the paper, we assume Axiom 2.

To define the interpretation in pP, we first interpret types. To apply alge-
braic compactness it is necessary to interpret open types as internal functors.
Moreover, because of the bivariance of ⇀, they must be interpreted as inter-
nal functors on the internal category pPop×pP, for which we write p̂P, as in
Section 8. The functors will all be symmetric in the sense of Definition 8.7.
Indeed, an open type σ is interpreted, relative to any Θ = X1, . . . , Xk such
that Θ ` σ, as a symmetric internal functor,

([Θ ` σ]) : p̂P
k
→ p̂P .

The interpretation is defined by induction on the structure of σ. To give the

definition, we write ~A for an object ((A−
1 , A+

1), . . . , (A−
k , A+

k)) of p̂P
k
.

([X1, . . . , Xk ` Xi])
+ ~A = A+

i

([Θ ` σ1 + σ2])
+ ~A = ([Θ ` σ1])

+ ~A + ([Θ ` σ2])
+ ~A

([Θ ` σ1 × σ2])
+ ~A = ([Θ ` σ1])

+ ~A × ([Θ ` σ2])
+ ~A

([Θ ` σ1 → σ2])
+ ~A = ([Θ ` σ1])

− ~A ⇀ ([Θ ` σ2])
+ ~A

([Θ ` µX.σ′]) = ([Θ, X ` σ′])† ,

using the internal functors on pP identified in Section 3. Note that, where the
above clauses only define the ([Θ ` σ])+ components, the ([Θ ` σ])− components
are determined by symmetry. Also, where the definition is specified on objects,
it is extended to morphisms in the obvious way, using the action of the internal
functors appearing in the definition. For non-recursive types σ, the symmetry
of ([Θ ` σ]) is immediate by construction. For recursive types, it holds by
Lemma 8.8.

The interpretation of types satisfies a substitution lemma, cf. [3, Lemma 8.4.4].
However, because of the direct interpretation of recursive types using (·)†, we
can strengthen the isomorphism of loc. cit. to an equality.

53

Lemma 11.1 For open types Θ ` τ1 , . . . , Θ ` τk and X1, . . . , Xk ` σ,

([Θ ` σ[~τ/ ~X]]) = ([~X ` σ]) ◦ 〈([Θ ` τ1]), . . . , ([Θ ` τk])〉 .

PROOF. A straightforward induction on types, using Proposition 3.5 in the
case for recursive types. 2

For closed types, the functor ([` σ]) : 1 → p̂P, where 1 is the terminal internal

category, corresponds, by symmetry, to an object in p̂P of the form (A, A).
We write ([σ]) for the corresponding object A of pP.

For a closed recursive type, µX.σ, we have that ([` µX.σ]), i.e. the object
(([µX.σ]), ([µX.σ])), carries the canonical bifree algebra structure for the sym-

metric functor ([X ` σ]) : p̂P → p̂P. The bifree algebra is an isomorphism,

(εµX.σ, ιµX.σ) : ([X ` σ]) (([µX.σ]), ([µX.σ])) - (([µX.σ]), ([µX.σ])) ,

in p̂P. By Lemma 11.1, this gives

(εµX.σ, ιµX.σ) : ([` σ[µX.σ/X]]) - (([µX.σ]), ([µX.σ])) ,

which unpacks to give isomorphisms in pP

ιµX.σ : ([σ[µX.σ/X]]) - ([µX.σ]) (38)

εµX.σ : ([µX.σ]) - ([σ[µX.σ/X]]) . (39)

Moreover, as ([X ` σ]) is symmetric and § is a suitable functor, it follows from
Lemmas 8.2 and 8.4 that ιµX.σ = εµX.σ

−1.

To interpret the terms of FPC in pP, a context Γ = x1 : σ1, . . . , xk : σk is
interpreted as the object ([Γ]) = ([σ1]) × · · · × ([σk]) of pP. A term Γ ` t : σ
is interpreted as a morphism ([t])Γ from ([Γ]) to ([σ]) in pP, i.e. as a point
([t])Γ : 1 - pP(([Γ]), ([σ])) in C, or equivalently as an internal partial function
([t])Γ : ([Γ]) ⇀ ([σ]). As is standard, the definition of ([t])Γ is by induction on the
structure of t. To give the definition, we use evident notation for application
of partial functions, and we use Kleene equality ', see Section 2. Moreover,
we extend the pairing and injection functions to act strictly on possibly un-
defined expressions; i.e. the result is defined (if and) only if all arguments are
defined. Then, internally in C, we understand ([t])Γ : ([Γ]) ⇀ ([σ]) to be the

54

least-defined 3 partial function satisfying, for ~d : ([Γ]):

([xi])Γ(d1, . . . , dk) = di

([inl(t)])Γ(~d) ' inl(([t])Γ(~d))

([inr(t)])Γ(~d) ' inr(([t])Γ(~d))

([case(s) of x1.t1 or x2.t2])Γ(~d) ' [[t1]]Γ,x1 : σ1(
~d, c) if [[s]]Γ(~d) = inl(c)

([case(s) of x1.t1 or x2.t2])Γ(~d) ' [[t2]]Γ,x2 : σ2(
~d, c) if [[s]]Γ(~d) = inr(c)

([(s, t)])Γ(~d) ' (([s])Γ(~d), ([t])Γ(~d))

([fst(t)])Γ(~d) ' π1(([t])Γ(~d))

([snd(t)])Γ(~d) ' π2(([t])Γ(~d))

([λx. t])Γ(~d) = (c 7→ ([t])Γ,x : σ(~d, c))

([s(t)])Γ(~d) ' ([s])Γ(~d)(([t])Γ(~d))

([intro(t)])Γ(~d) ' ιµX.σ(([t])Γ(~d))

([elim(t)])Γ(~d) ' εµX.σ(([t])Γ(~d)).

Here we are assuming that the types of subterms are as in the typing rules of
Fig. 1. Note that the above definition defines ([t])Γ by an external induction
on the structure of t as the internal partial function determined by the above
internal (Kleene) equalities. When Γ is empty (i.e. t is closed), we simply write
([t]) for ([t])Γ.

Having now obtained the internal interpretation of FPC, in the internal cat-
egory pP, we extract an external “real world” interpretation in the category
pP. A closed type σ is interpreted as an object [[σ]] of pP, by defining [[σ]] as
the pullback below.

[[σ]] - 3U

1
?

([σ])
- |pP|- - PSU ,

γU

?

(40)

where γU is as in (1) from Section 2. The object [[σ]] is indeed a predomain
by the definition of |pP| as a subobject of PSU . Similarly, a context Γ is in-
terpreted as an object [[Γ]], by replacing σ with Γ in the diagram above. We
interpret a term Γ ` t : σ as a morphism [[t]]Γ : [[Γ]] ⇀ [[σ]] in pP, by trans-

3 The qualification “least-defined” is inserted to ensure that
([case(s) of x1.t1 or x2.t2])Γ(~d) is defined only if [[s]]Γ(~d) = inl(c) or [[s]]Γ(~d) = inr(c).
This could alternatively be achieved by using a more complex single clause to
define ([case(s) of x1.t1 or x2.t2])Γ(~d).

55

posing ([t])Γ : pP(([Γ]), ([σ])), i.e. ([t])Γ : ([Γ]) ⇀ ([σ]), in the evident way. When Γ
is empty, we write simply [[t]] :1 ⇀ [[σ]].

We remark that there is another way of viewing the above external interpre-
tation of FPC. As for any internal category, the internal structure of pP, used
to define the internal interpretation of FPC, corresponds to external structure
on the fibration Ext(pP) → C, see Section 3. By the definition of external-
ization[17, §7.3], the fibre Ext(pP)1 over the terminal object 1 is given by a
category whose objects are points A : 1 - |pP|. Then, by Proposition 3.2(2),
there is an equivalence of categories I : Ext(pP)1 → pP (essentially defined
using the pullback (40) above) and J : pP → Ext(pP)1. The various internal
functors on pP, e.g. those given in (3)–(5), directly correspond to functors on
Ext(pP)1 and hence, via I and J , determine functors:

pP× pP
×′- pP

pPop × pP
⇀′

- pP

pP× pP
+′
- pP .

Using these functors, one can inductively define an external interpretation of
types

[[Θ ` σ]] : (pPop × pP)k → pPop × pP,

using clauses analogous to those of the internal definition. Importantly, in the
case for recursive types

[[Θ ` µX.σ′]] = [[Θ, X ` σ′]]†
′
,

the operation (·)†′ , defined by transporting (·)† on pP along I and J , finds ex-

ternal bifree algebras for each functor X 7→ [[Θ, X ` σ′]](~A, X) (this follows by
unwinding the external meaning of Proposition 3.4). In an exactly analogous
way, one can also define an interpretation in pP of FPC terms t, by induction
on the structure of t, using the above interpretation of types. Because we have
used the internal structure of pP to determine the external structure on pP
applied in these definitions, the above inductive method of interpreting terms
in pP gives rise to the same interpretation [[t]]Γ : [[Γ]] ⇀ [[σ]] as defined above.
Thus we have shown that [[t]]Γ : [[Γ]] ⇀ [[σ]] can be given a direct inductive
definition in terms of external structure on pP, as long as the external struc-
ture on pP is determined via I and J from the internal structure of pP. This
observation will be important in [44].

The external interpretation of FPC we have given is not as pleasant as one

56

might like. For example, the interpretation of closed types satisfies,

[[σ]] +′ [[τ]] = [[σ + τ]] ∼= [[σ]] + [[τ]]

[[σ]]×′ [[τ]] = [[σ × τ]] ∼= [[σ]]× [[τ]]

[[σ]] ⇀′ [[τ]] = [[σ → τ]] ∼= [[σ]] ⇀ [[τ]] ,

where the operations on the right are the original specified structure on pP.
Because the operations +′,×′, ⇀′ are obtained by externalizing the internal
interpretation, there is no reason at all for the isomorphisms to be equalities.
Similarly, the interpretation of closed recursive types using (·)†′ , need not co-
incide with a given specified external construction of bifree algebras in pP. In
some ways, it would be more natural to use a different external interpretation
under which the isomorphisms and equalities above are swapped (it is not
hard to define such an interpretation). For us, the benefit of working with the
external interpretation given above is that, by its very definition, it is directly
related to the internal interpretation. In a follow-up paper [44], a general co-
herence theorem is proved, which shows that the properties of interpretations
of FPC are anyway independent of such isomorphic choices.

The major remaining goal in this paper is to study a fundamental relationship
between denotational and operational semantics. For a closed term t : σ, we
write [[t]]↓ to mean that the partial map [[t]] : 1 ⇀ [[σ]] is total.

Definition 11.2 (Computational adequacy) We say that the interpreta-
tion of FPC in pP is computationally adequate if, for all closed terms t : σ, it
holds that t⇓ if and only if [[t]]↓.

Computational adequacy is equivalent to the soundness of denotational equal-
ity in pP relative to operational equivalence between terms of FPC.

As our second main result, Theorem 2 below, we shall establish necessary and
sufficient conditions for computational adequacy to hold. In order to achieve
this, it is useful to first consider a notion computational adequacy formulated
within the internal logic of C.

12 Internal computational adequacy

Assuming Axiom 2, we have interpreted FPC in the internal category pP. The
main result of this section, Proposition 12.2, is that computational adequacy
always holds for this interpretation, when expressed internally in C. The proof
of this result is rather long. The main proof structure is given in this section,
but the verification of several details is left to Section 13.

57

First we have to formulate the internal notion of computational adeqacy. As
with Definition 11.2 above, this will relate the denotational and operational
notions of convergence. However, the formulation will use the internal logic
of C. On the denotational side we naturally use the interpretation of FPC in
the internal category pP. On the operational side, it is necessary to formalize
the operational semantics of FPC in the internal logic. To facilitate this, we
use a Gödel numbering of the syntax of FPC and its operational semantics.
The formalization of such a Gödel numbering in the internal logic of C would
ordinarily be straightforward. However, our formulation will have one further
twist. Rather than using the natural numbers object N of C for the encoding,
it turns out to be useful to instead use a natural numbers object in the cate-
gory, P, of predomains. Of course, if Axiom N holds then N is itself a natural
numbers object in P. But, for the sake of applications, see Section 15.2, it is
better not to assume Axiom N in general.

First we have to show that the category P has a natural numbers object.
By Theorem 1, every fibred endofunctor on pP has a bifree algebra. In par-
ticular 1 + (−) : pP → pP has a bifree algebra [0c, sc] : 1 + Nc ⇀ Nc.
But isomorphisms in pP are total, and coproducts in P and pP agree, thus
[0c, sc] : 1 + Nc

- Nc is a map in P.

Proposition 12.1 1
0c- Nc

�sc
Nc is a natural numbers object in P.

PROOF. We show that [0c, sc] : 1 + Nc
- Nc is an initial algebra for

the endofunctor 1 + (−) : P → P. Let f : 1 + X - X be any algebra for
1 + (−). Then f is also an algebra for the functor 1 + (−) : pP → pP. So, by
the initiality of the algebra [0c, sc] in pP, there exists a unique partial map
g : Nc ⇀ X such that g ◦ [0c, sc] = f ◦ (1 + g). It suffices to show that g is
total. Define Z = {n′ : Nc | g(n′)↓}. Then Z is well-complete because it is a Σ-
subobject of the well-complete Nc. As f and [0c, sc] are total, one shows easily
that 0c ∈ Z and also sc(n

′) ∈ Z for all n′ ∈ Z. Thus Z carries a subalgebra
of [0c, sc] : 1 + Nc

- Nc. As [0c, sc] is an initial algebra in pP and Z is a
predomain, it follows that the inclusion Z- - Nc is an isomorphism in pP
and hence in P. Thus Z = Nc, i.e. g is indeed total. 2

We have that P is a cartesian-closed category with natural numbers object
Nc. It follows that we can represent every k-ary primitive recursive function by
a morphism (Nc)

k - Nc, see [20, Part III] for details. Similarly, any k-ary
primitive recursive predicate is represented by a morphism (Nc)

k - 2. We
use such operations and predicates freely, tagging them (e.g. +c, <c, etc.) to
emphasise that they are associated with Nc rather than with N.

We refer to Nc as the object of computational natural numbers in C. One has

58

to take care when reasoning about elements of Nc internally in C as induction
is not always valid. (The validity of full induction is equivalent to Axiom N.)
Nevertheless, as Nc is a natural numbers object in P it holds that, for any
well-complete subobject Z- - Nc we have

C |= 0c ∈ Z ∧ (∀n :Nc. n ∈ Z → sc(n) ∈ Z) → ∀n :Nc. n ∈ Z , (41)

i.e. induction holds for well-complete predicates. By Axiom 2, we have, in par-
ticular, that induction holds for logically decidable predicates. Combined with
the previous discussion on primitive recursive functions, one therefore obtains
that Nc is an internal model of Intuitionistic Primitive Recursive Arithmetic
(IPRA) in C. 4 In what follows, we shall use IPRA very informally, making
only the occasional remark when further justification of an argument seems
useful. The reader is referred to [12] for a rigorous definition of (classical)
primitive recursive arithmetic and a thorough exploration of its properties.

Having IPRA at our disposal, the task of Gödel numbering, using Nc as the
object of natural numbers, is routine. The precise choice of encoding is unim-
portant. What does matter is that types and terms are represented in a natural
way using primitive recursive operations. We write Tσ

- - Nc and Vσ
- - Nc

for the subobjects of (Gödel numbers of) closed terms and values of type σ
respectively. The encoding should be chosen so that these are primitive recur-
sive subobjects. For the operational semantics, we encode the proof system of
Fig. 2 in such a way that the relation “Π is a derivation of t v”, for which we
write Π ` t v, is a primitive recursive ternary relation on Gödel numbers.
In the internal logic of C, we write: t v for ∃Π: Nc. (Π ` t v); and t⇓
for ∃ v :Nc. (t v). For convenience, we are here using the same notation for
the formalized relations, expressed using Gödel numbers, as for the original
external relations on terms. It will always be clear from the context which
relation is meant. E.g. whenever an operational relation is expressed in the
internal logic of C, as in Proposition 12.2(2) below, the formalized relation on
Gödel numbers is the one intended. We remark that the basic properties of
the operational semantics are all provable internally C using only the methods
of IPRA. Such results include: if t : σ and t v then v : σ; and: if t v and
t v′ then v = v′. In both cases these are proved by quantifier-free inductions
over primitive recursive predicates obtained by universally abstracting the ex-
istentially quantified variables in the hypotheses of the implications. We shall
freely use such results about the formalized syntax without further comment.

The main result of this section establishes the equivalence of operational and
denotational notions of convergence, as interpreted within C. For the denota-
tional notion, given a closed term t : σ, we write ([t])↓ for the internal statement
in C that ([t]) : 1 ⇀ ([σ]) is a total function.

4 Actually much stronger properties hold of Nc. But being a model of IPRA is
sufficient for our purposes.

59

Proposition 12.2 (Internal computational adequacy) For closed t : σ:

(1) t⇓ implies C |= ([t])↓.
(2) C |= ([t])↓→ t⇓.

Proposition 12.2(1) is proved by induction on derivations of the evaluation
relation for t. Specifically, one proves that t v implies C |= ([t]) = ([v]). As
it is easily shown that C |= ([v]) ↓, for all values v, the result follows. See [3,
Appendix C], for such an argument in detail. The interesting point concerning
Proposition 12.2(1) is that it is not straightforward to internalize the above
argument to obtain C |= t ⇓ → ([t]) ↓. The fundamental obstacle here is
that ([t]) is defined by an external induction on the structure of terms t, so it
is apparently not possible to formulate an induction hypotheses that can be
established by an internal induction on derivations of t v.

For the proof of Proposition 12.2(2), we adapt the approach of [33,3] to our set-
ting. The strategy is to define binary relations relating closed terms to their in-
ternal denotations. A closed term t : σ has a denotation ([t]) : pP(1, ([σ])). How-
ever, values v : σ enjoy the extra property that ([v])↓, i.e. that ([v]) : P(1, ([σ])),
using the hom-set inclusion given by

P(A, B) = {f : pP(A, B) | f is total}- - pP(A, B) ,

which holds for any A, B : |P| (equivalently A, B : |pP|). For each closed type
σ, we define a binary relation in C,

�σ
- - P(1, ([σ]))× Vσ.

Moreover, given any relation �- - P(1, A)×Vσ, where A : |P|, we define an
associated relation -- - pP(1, A)× Tσ by:

e - t iff e↓ implies ∃v :Vσ. t v and e � v , (42)

making use of the operational semantics as formalized in C. Thus, in partic-
ular, each relation �σ above determines an associated

-σ
- - pP(1, ([σ]))× Tσ .

The relations �σ are defined so that the following equivalences hold in C.

d �σ+τ inl(v) iff d = inl(c) where c �σ v (43)

d �σ+τ inr(v) iff d = inr(c) where c �τ v (44)

(c, d) �σ×τ (u, v) iff c �σ u and d �τ v (45)

f �σ→τ λx. t iff ∀ d : P(1, ([σ])), ∀ v : Tσ. d �σ v → f(d) -τ t[v/x] (46)

d �µX.σ intro(v) iff εµX.σ(d) �σ[µX.σ/X] v (47)

60

Here, the clause for µX.σ involves the isomorphism (39), which, because it is
an isomorphism in pP, is also an isomorphism in P.

Once relations have been defined satisfying the equivalences above, the lemma
below can be established.

Lemma 12.3 If x1 : τ1, . . . , xk : τk ` t : σ then

C |= ∀ d1 : P(1, ([τ1])), . . . , dk : P(1, ([τk])), ∀ v1 :Vτ1 , . . . , vk :Vτk
.

d1 �τ1 v1 ∧ . . . ∧ dk �τk
vk → ([t])Γ(~d) -σ t[~v/~x],

where we write Γ for x1 : τ1, . . . , xk : τk and ~d for the vector d1, . . . , dk, etc.

A similar lemma is proved as [3, Lemma 9.2.18]. The only difference in our
case is that a statement has to be established in the internal logic of C.

PROOF. By induction on the structure of t. We consider a single case.

Suppose t is (case(s) of y1.t1 or y2.t2), where we have Γ ` s : σ1 + σ2 and

Γ, y1 : σ1 ` t1 : σ and Γ, y2 : σ2 ` t2 : σ. Internally in C, consider any ~d and
~v such that di �τi

vi for each i with 1 ≤ i ≤ k. We must show that the

relation ([t])Γ(~d) -σ t[~v/~x] holds. Accordingly, suppose that ([t])Γ(~d) ↓. Then,

by the definition of ([case(s) of x1.t1 or x2.t2])Γ(~d) either: (i), it holds that

([t])Γ(~d) = ([t1])Γ, y1 : σ1(
~d, c), where ([s])Γ(~d) = inl(c); or, (ii), it holds that

([t])Γ(~d) = ([t2])Γ, y2 : σ2(
~d, c), where ([s])Γ(~d) = inr(c).

In case (i), we must show that there exists v : Vσ such that t[~v/~x] v and

([t1])Γ, y1 : σ1(
~d, c) �σ v. However, ([s])Γ(~d) = inl(c), so, by the induction hy-

pothesis for s, we have that inl(c) -σ1+σ2 s[~v/~x]. Thus there exists v′ such
that s[~v/~x] v′ and inl(c) �σ1+σ2 v′. As v′ is a value of type σ1 + σ2, it
is of the form inl(v′′) or inr(v′′). As inl(c) �σ1+σ2 v′, we have, by (43) and
(44), that v′ is inl(v′′) where c �σ1 v′′. Thus, by the induction hypothe-

sis for t1, we have that ([t1])Γ, : y1σ1(
~d, c) -σ t1[~v, v′′ / ~x, y1], i.e. ([t])Γ(~d) -σ

t1[~v, v′′ / ~x, y1]. As ([t])Γ(~d) ↓, there exists v such that t1[~v, v′′ / ~x, y1] v and

([t])Γ(~d) �σ v. Moreover, we have s[~v/~x] inl(v′′) and t1[~v, v′′ / ~x, y1] v,
so (case(s) of y1.t1 or y2.t2)[~v/~x] v, i.e. t[~v/~x] v. Thus v is the required
element of Vσ.

Case (ii) is dealt with in a similar way. 2

Proposition 12.2(2) follows easily from Lemma 12.3. Take any closed term
t : σ. Then, by Lemma 12.3, it holds that C |= ([t]) -σ t. Hence, by (42), we
have C |= ([t])↓→ (∃v :Vσ. t v ∧ ([t]) �σ v). So indeed C |= ([t])↓→ t⇓.

61

It remains to define the �σ relations. Because they are recursively specified,
this takes a considerable amount of work. Although it seems possible to apply
Pitts’ method of defining relations [31], doing so would require the develop-
ment of further machinery. Because we already have the technology of suitable
categories at our disposal, it seems easier to adapt the techniques of [33,3].

For each closed σ, we define an internal category Rσ. Internally in C, objects
are pairs R = (|R|,�R) satisfying:

(1) |R| : PSU is a predomain.
(2) �R is a binary relation between P(1, |R|) and Vσ.
(3) For all v :Vσ, the set {d : P(1, |R|) | d � v} is well-complete.

Thus |Rσ| is easily defined as a subobject of
∑

A : |P| PS (P(1, A)×Vσ) in C. In-
ternally in C, a morphism f : Rσ(R,S) is given by a morphism f : pP(|R|, |S|)
such that

∀v :Vσ. ∀d : P(1, |R|). d �R v → f(d) -S v ,

using (42) to define -S from �S. Thus Rσ(R,S) is defined as a subobject of
pP(|R|, |S|). The identities and composition are inherited from pP. Note that
there is an evident forgetful internal functor Uσ : Rσ → pP.

The purpose of the Rσ categories is that we can use them to obtain a non-
standard interpretation of types under which each closed type σ gets inter-
preted as an object {[σ]} : |Rσ|. Thus {[σ]} will be a pair (A,�). Moreover, the
definition of {[σ]} will ensure that A = ([σ]), and that � is the required relation
�σ. The method of defining the non-standard interpretation of types is similar
to that used to obtain their ordinary (internal) interpretation.

Proposition 12.4 For each closed σ, the internal category Rσ is suitable, and
the forgetful Uσ : Rσ → pP is suitable functor.

The proof of this proposition is postponed until Section 13.

Next we define useful functors on the Rσ categories, the first three of which
act as relational “liftings” of the type constructors on pP. For closed σ, τ and
µX.σ′, we define

+σ,τ : Rσ × Rτ → Rσ+τ

×σ,τ : Rσ × Rτ → Rσ×τ

⇀σ,τ : Rop
σ × Rτ → Rσ→τ ,

IµX.σ′ : Rσ′[µX.σ′/X] → RµX.σ′ ,

62

to have the following actions on objects,

R +σ,τ S	=	R	+	S
R×σ,τ S	=	R	×	S
R ⇀σ,τ S	=	R	⇀	S
IµX.σ′R	=	R		

d � (R +σ,τ S) inl(v) iff d = inl(c) where c �R v

d � (R +σ,τ S) inr(v) iff d = inr(c) where c �S v

(c, d) � (R×σ,τ S) (u, v) iff c �R u and d �S v

f � (R ⇀σ,τ S) λx. t iff ∀ d : P(1, |R|), v : Tσ. d �R v → f(d) -S t[v/x]

d � (IµX.σR) intro(v) iff d �R v .

Lemma 12.5 For objects R, S and R′ of Rσ, Rτ and Rσ′[µX.σ′/X] respectively,
it is indeed the case that R+σ,τ S, R×σ,τ S, R ⇀σ,τ S and IµX.σ′R

′ are objects
of Rσ+τ , Rσ×τ , Rσ→τ and RµX.σ′ respectively.

The proof of this lemma is given in Section 13. Having now obtained the
actions on objects, the corresponding actions on morphisms are easily defined.

To define the non-standard interpretation of types, we again interpret open
types as functors. Moreover, because of the bivariance of ⇀σ,τ , we use the

internal categories R̂σ = Rop
σ ×Rσ. By Propositions 12.4 and 7.2, R̂σ is suitable.

Moreover, the induced forgetful Ûσ : R̂σ → p̂P is a suitable functor.

Given an open type Θ ` σ, where Θ = X1, . . . , Xk, and closed types τ1, . . . , τk,
we interpret σ relative to ~τ = τ1, . . . , τk as a symmetric internal functor

{[Θ ` σ]}~τ : R̂τ1 × · · · × R̂τk
→ R̂σ[~τ/Θ] ,

where we write σ[~τ/Θ] for σ[τ1, . . . , τk/X1, . . . , Xk]. The interpretation is de-

fined by induction on the structure of σ. To give the definition, we write ~R for
an object ((R−

1 , R+
1), . . . , (R−

k , R+
k)) of R̂τ1 × · · · × R̂τk

.

{[Θ ` Xi]}+
~τ

~R = R+
i

{[Θ ` σ1 + σ2]}+
~τ

~R = {[Θ ` σ1]}+
~τ

~R +σ1[~τ/Θ], σ2[~τ/Θ] {[Θ ` σ2]}+
~τ

~R

{[Θ ` σ1 × σ2]}+
~τ

~R = {[Θ ` σ1]}+
~τ

~R ×σ1[~τ/Θ], σ2[~τ/Θ] {[Θ ` σ2]}+
~τ

~R

{[Θ ` σ1 → σ2]}+
~τ

~R = {[Θ ` σ1]}−~τ ~R ⇀σ1[~τ/Θ], σ2[~τ/Θ] {[Θ ` σ2]}+
~τ

~R

{[Θ ` µX.σ′]}~τ = (ÎµX.σ′ ◦ {[Θ, X ` σ′]}~τ, µX.σ′)
† .

The remarks made after the definition of the standard interpretation of types
apply mutatis mutandis to the non-standard interpretation. Again, a substi-
tution lemma holds.

63

Lemma 12.6 For open types Θ ` σ′1 , . . . , Θ ` σ′l and Θ′ ` σ, where Θ =
X1, . . . , Xk and Θ′ = Y1, . . . , Yl, and for closed types τ1, . . . , τk,

{[Θ ` σ[~σ′/~Y]]}~τ = {[Θ′ ` σ]}σ′1[~τ/Θ],...,σ′
l
[~τ/Θ] ◦ ({[Θ ` σ1]}~τ , . . . , ([Θ ` σl])~τ) .

PROOF. As before, a straightforward induction on types, using Proposi-
tion 3.5 for recursive types. 2

The next lemma states the relationship between the non-standard interpreta-
tion of types and the standard interpretation.

Lemma 12.7 For any open type Θ ` σ, where Θ = X1, . . . , Xk, and closed
types τ1, . . . , τk, the diagram below commutes.

R̂τ1 × · · · × R̂τk

{[Θ ` σ]}~τ- R̂σ[~τ/Θ]

p̂P× · · · × p̂P

Ûτ1 × · · · × Ûτk

?

([Θ ` σ])
- p̂P .

Ûσ[~τ/Θ]

?

PROOF. By induction on the structure of σ. For non-recursive types the
property is immediate from the definition of {[Θ ` σ]}~τ in terms of functors
that are relational liftings of the corresponding functors on pP. For a recursive
type, Θ ` µX.σ, the commutativity of the diagram is a direct application of

Lemma 8.3, using the suitability of the functor ̂UµX.σ[~τ/Θ]. 2

For closed types, the symmetric functor {[` σ]} : 1 → Rσ, where 1 is the termi-
nal internal category, corresponds to an object in Rσ of the form ({[σ]}, {[σ]}),
where, by Lemma 12.7, {[σ]} is of the form (([σ]),�σ). This, at last, defines the
required relation �σ.

It remains to show that the �σ relations satisfy the equivalences (43)–(47).
For, (43)–(46), this is immediate from the definition of the {[Θ ` σ]}~τ functors,
as we have

(([σ + τ]),�σ+τ) = (([σ]),�σ) +σ,τ (([τ]),�τ)

(([σ × τ]),�σ×τ) = (([σ]),�σ) ×σ,τ (([τ]),�τ)

(([σ ⇀ τ]),�σ⇀τ) = (([σ]),�σ) ⇀σ,τ (([τ]),�τ) ,

which is just a restatement of (43)–(46). Finally, for (47), we have that the

object ({[µX.σ]}, {[µX.σ]}) of R̂µX.σ carries the canonical bifree algebra for the

64

symmetric functor ÎµX.σ ◦ {[X ` σ]}µX.σ : R̂µX.σ → R̂µX.σ. By Lemma 12.7 and
the definition of IµX.σ, the diagram below commutes.

R̂µX.σ

{[X ` σ]}µX.σ- ̂Rσ[µX.σ/X]

ÎµX.σ- R̂µX.σ

p̂P

ÛµX.σ

?

([X ` σ])
- p̂P

̂Uσ[µX.σ/X]

?

Id
p̂P

- p̂P .

ÛµX.σ

?

Thus, by Lemma 8.2, the canonical bifree algebra for ÎµX.σ ◦ {[X ` σ]}µX.σ is:

(εµX.σ, ιµX.σ) : IµX.σ {[X ` σ]}µX.σ ({[µX.σ]}, {[µX.σ]}) - ({[µX.σ]}, {[µX.σ]}) ,

in RµX.σ. By Lemma 12.6, this is

(εµX.σ, ιµX.σ) : (IµX.σ {[σ[µX.σ/X]]}, IµX.σ {[σ[µX.σ/X]]}) - ({[µX.σ]}, {[µX.σ]}) ,

which unpacks to

ιµX.σ : IµX.σ {[σ[µX.σ/X]]} - {[µX.σ]} (48)

εµX.σ : {[µX.σ]} - IµX.σ {[σ[µX.σ/X]]} . (49)

Take any d : P(1, ([µX.σ])). As ιµX.σ and εµX.σ are mutual inverses, we have
that εµX.σ(d)↓ and ιµX.σ(εµX.σ(d)) = d. Thus, for any v :Vσ[µX.σ/X],

d �µX.σ intro(v) iff εµX.σ(d) � (IµX.σ{[σ[µX.σ/X]]}) intro(v) by (48) and (49)

iff εµX.σ(d) �σ[µX.σ/X] v def. of IµX.σ.

Thus we have established (47). So the �σ relations indeed satisfy all the re-
quired equivalences. This completes the proof of Proposition 12.2, modulo the
proofs postponed to the next section.

13 Properties of Rσ

In this purely technical section, we give the promised proofs of Lemma 12.5
and Proposition 12.4.

First a necessary preliminary lemma, which should be compared to Propo-
sition 2.5(10). The difference is that the lemma below is a consequence of
Axiom 2.

Lemma 13.1 C |= ∀P : 2Nc . (∃n :Nc. P (n)) ∈ Σ.

65

PROOF. Define d : 2Nc - 1 + 2Nc by

d(P) =

 inl(∗) if P (0c)

inr(λn :Nc. P (sc(n))) if ¬(P (0c))

We have that [0c, sc] : 1 + Nc
- Nc is a bifree algebra for the endofunctor

1 + (−) : pP → pP. Using the final coalgebra property of this, there exists a
unique h : 2Nc ⇀ Nc in pP such that the diagram below commutes.

1 + 2Nc
id + h

⇀ 1 + Nc

2Nc

d

6

h
⇀ Nc

[0c, sc]

?

(50)

Our first goal is to establish that

C |= ∀n :Nc. ∀P :2Nc . h(P) = n ↔ (P (n) ∧ ∀m <c n. ¬P (m)) , (51)

where h(P) = n is, of course, strict equality. This will be proved by induction
on n. However, in order for such an induction to be justified, we must first
show that the subobject

{n :Nc | ∀P :2Nc . h(P) = n ↔ (P (n) ∧ ∀m <c n. ¬P (m))}- - Nc (52)

is well-complete, see the remarks around (41).

To establish that (52) is well-complete it suffices, by Proposition 2.5(6), to
show, for each P :2Nc , that the subobjects

{n :Nc | h(P) = n → (P (n) ∧ ∀m <c n. ¬P (m))}- - Nc (53)

{n :Nc | (P (n) ∧ ∀m <c n. ¬P (m)) → h(P) = n}- - Nc (54)

are both well-complete. First, we consider (53). On the assumption that,
h(P)↓, we have h(P) :Nc and so

(h(P) = n → (P (n) ∧ ∀m <c n. ¬P (m))) ∈ 2 ,

whence (53) is a logically decidable subobject of a well-complete object, and
hence well-complete. But

{n :Nc | h(P) = n → (P (n) ∧ ∀m <c n. ¬P (m))}
=

⋂
x∈{∗|h(P)↓}

{n :Nc | h(P) = n → (P (n) ∧ ∀m <c n. ¬P (m))} ,

66

where {∗ | h(P) ↓} is the evident subobject of 1. We have shown that
right-hand side is an intersection of well-complete subobjects of Nc. Thus,
by Proposition 2.5(6), we have that (53) is indeed well-complete. To show
that (54) is well-complete, observe that (P (n) ∧ ∀m <c n. ¬P (m)) ∈ 2 and
(h(P) = n) ∈ Σ. However, given any p : 2 and q : Σ, we have (p → q) ∈ Σ, by
a trivial case analysis on p. Therefore,

((P (n) ∧ ∀m <c n. ¬P (m)) → h(P) = n) ∈ Σ .

Thus (54) is a Σ-subobject of a well-complete object, and hence well-complete.
This completes the proof that (52) is well-complete.

We now prove (51) by induction on n. When n = 0c, we have h(P) = 0c iff
(by (50)) d(P) = inl(∗), iff (by def. d) P (0c), iff P (n) ∧ ∀m <c n.¬P (m). When
n = sc(n

′), we have h(P) = sc(n
′) iff (by (50)) d(P) = inr(P ′), where h(P ′) =

n′, iff (by def. d) ¬(P (0c)) and h(P ′) = n′, where P ′ = λm :Nc. P (sc(m)), iff
(by induction hypothesis) ¬(P (0c)) and P ′(n′) ∧ ∀m <c n′. ¬P ′(m), iff (as
P ′(m) = P (sc(m))) P (n) ∧ ∀m <c n. ¬P (m). This establishes (51).

We now use (51) to show that

C |= (∃n :Nc. P (n)) ↔ h(P)↓ . (55)

For the left-to-right implication, as P is a logically decidable predicate, we can
prove by induction on n :Nc that

C |= P (n) → ∃m <c n. (P (m) ∧ ∀m′ <c m. ¬P (m′)) .

Now, reasoning in C, assume ∃n : Nc. P (n). It follows from the implication
above that ∃n : Nc. (P (n) ∧ ∀m <c n. ¬P (m)). Thus, by the right-to-left
implication of (52), ∃n :Nc. h(P) = n, i.e. h(P)↓. For the converse implication
of (55), suppose h(P) ↓. Then h(P) = n for some n. So, by the left-to-right
implication of (52), P (n). Thus indeed ∃n :Nc. P (n).

We have established (55). The lemma follows, because (h(P)↓) ∈ Σ. 2

For our purposes, the crucial consequence of Lemma 13.1 is that, for t : Tσ and
v :Vσ, we have (t v) ∈ Σ and (t⇓) ∈ Σ. Indeed, the relation Π ` t v is
a primitive recursive ternary relation, thus (Π ` t v) : 2, for all Π, t, v :Nc.
So, by Lemma 13.1, (∃Π:Nc. (Π ` t v)) ∈ Σ, i.e. (t v) ∈ Σ. Also using a
primitive recursive bijection Nc ×Nc

∼= Nc, it follows from Lemma 13.1 that
(∃(Π, v) :Nc. (Π ` t v)) ∈ Σ, i.e. (t⇓) ∈ Σ.

We next introduce some convenient notation. Given an object A : |P|, a relation
�- - P(1, A)× Vσ, and v :Vσ, define

A�� v = {d : P(1, A) | d � v} .

67

Thus, (A,�) is an object of Rσ if and only if A�� v is well-complete for every
v. Analogously, given t : Tσ define

A�- t = {e : pP(1, A) | e - t} .

Lemma 13.2 If (A,�) is an object of Rσ then, for any t : Tσ, the subobject
A�- t of A is well-complete.

PROOF. To show that A �- t is well-complete, we apply Lemma 9.2, using
the statement t⇓ as the interpolant. By the remarks after Lemma 13.1, t⇓ is
indeed a Σ proposition.

To show that A �- t inhabited implies t ⇓, suppose that A �- t is inhabited.
Thus there exists e : pP(1, A) such that e - t. Then, by (42), there exists v
such that t v. Thus indeed t⇓.

To show that t⇓ implies A �- t is well-complete, suppose that t⇓. Then there
exists a unique v such that t v. Therefore

A�- t = {e : pP(1, A) | e↓→ e � v} by (42)
∼= L {d : P(1, A) | d � v}
= L (A�� v).

Thus A�- t is well-complete by the closure of well-complete objects under L.

We have established that the interpolation condition of Lemma 9.2 holds.
Thus, by the lemma, A�- t is indeed well-complete. 2

We now give the postponed proof of Lemma 12.5. Actually, in the case of +σ,τ ,
×σ,τ and IµX.σ′ , the lemma is easily verified, so we just prove the ⇀σ,τ case.

Lemma 13.3 For objects R and S of Rσ and Rτ respectively, it holds that
R ⇀σ,τ S is an object of Rσ→τ .

PROOF. We must show that for λx. t : Vσ→τ the set (|R| ⇀ |S|)��R⇀S λx. t is
well-complete. However,

(|R| ⇀ |S|)��R⇀S λx. t =
⋂

d�R v

{f : P(1, |R| ⇀ |S|) | f(d) -S t[v/x]} .

thus, by Proposition 2.5(6), it is enough to establish, for each d : P(1, |R|) and
v :Vσ with d �R v, that the subobject {f : P(1, |R| ⇀ |S|) | f(d) -S t[v/x]} is

68

well-complete. However, this subobject is obtained as h−1(|S|�-S t[v/x]) where
h is the map

P(1, |R| ⇀ |S|)
f 7→ f(d)

- pP(1, |S|) .

By Lemma 13.2, |S| �-S t[v/x] is also well-complete. Thus indeed, by Proposi-
tion 2.5(7), {f : P(1, |R| ⇀ |S|) | f(d) -S t[v/x]} is well-complete too. 2

Finally, we turn to the proof of Proposition 12.4. We must prove that Rσ is a
suitable category, and that Uσ : Rσ → pP is a suitable functor.

Lemma 13.4 The object |Rσ| carries a pointed structure
∨

: L|Rσ| - |Rσ|
such that the diagram below commutes.

L|Rσ|
L Uσ- L|pP|

|Rσ|

∨
? Uσ - |pP|

⋃
?

(56)

PROOF. Formally |Rσ| =
∑

A : |P| WA where

WA = {� :PS(P(1, A)× Vσ) | for all v :Vσ, A�� v is well-complete} .

Given any A : |P|, we exhibit a pointed structure wA : L(WA) - WA.

For e : L(WA) define �e :PS(P(1, A)× Vσ) by

d �e v iff for all � ∈ e, we have d � v .

Using Proposition 2.5(6), it is easily shown that �e ∈ WA. We show that
wA : e 7→ �e satisfies the unit and multiplication laws, (6) and (7). The former
is straightforward. For the latter, consider any E : L2(WA). We must show that
wA(

⋃
E) = wA({wA(e) | e ∈ E}), i.e. that

d �⋃
E v iff d � {�e | e∈E} v . (57)

Accordingly, suppose that d �⋃
E v. Then, for all � ∈ e ∈ E we have that

d � v. Consider any � ∈ {�e | e ∈ E}. We must show that d � v. But � = �e

for some e ∈ E. We require that d �e v. But indeed, d � v for all � ∈ e.

Conversely, suppose that d � {�e | e∈E} v. To show that d �⋃
E v, consider

any � ∈ e ∈ E. We must show that d � v. As � ∈ e ∈ E, we have e = {�}
and E = {e}. Thus {�e′ | e′ ∈ E} = {�e} = {�}. But d � {�e′ | e′∈E} v, i.e.
d �{�} e. Thus indeed d � v. This establishes (57).

69

We have shown that each A : |P| carries a pointed structure wA : L(WA) - WA.
By Lemma 9.3, |P| = |pP| carries the pointed structure

⋃
: L|pP| - |pP|. So,

Lemma 4.10 now provides the required pointed structure
∨

: L|Rσ| - |Rσ|
making diagram (56) commute. 2

Lemma 13.5 For all R,S : |Rσ|, it holds that Rσ(R,S) is complete.

PROOF. We use Proposition 5.2.4 on Rσ(R,S) as a subobject of pP(|R|, |S|).
Take any f(−) : (Rσ(R,S))I. By proposition 5.2.4, it suffices to show that, for
all d : P(1, |R|) and v :Vσ, it holds that d �R v implies (

⊔
i fi)(d) -S v. Suppose

then that d �R v. As f(−) : (Rσ(R,S))I, we have that fi(d) -S v, for all i : I.
But then f(−)(d) is an I-chain in |S| �-S v, which is, by Lemma 13.2, a com-
plete subobject of pP(1, |S|). Thus, by the other direction of Proposition 5.2.4,⊔

i(fi(d)) ∈ |S| �-S v, i.e.
⊔

i(fi(d)) -S v. However,
⊔

i(fi(d)) = (
⊔

i fi)(d),
by (24). Thus indeed (

⊔
i fi)(d) -S v. 2

Lemma 13.6 For all R,S : |Rσ|, it holds that Rσ(R,S) is pointed, composition
in Rσ is bistrict, and the forgetful URS : Rσ(R,S) → pP(|R|, |S|) is strict.

PROOF. We show that the pointed structure on pP(|R|, |S|), see the explicit
description after Lemma 9.4, restricts to a map β′RS : L (Rσ(R,S)) - Rσ(R, S).

For e : L (Rσ(R,S)) define β′RS(e) to be the unique partial function g : |R| ⇀ |S|
such that g(x) = y if and only if there exists f ∈ e such that f(x) = y. We
must show that g is in Rσ(R,S), i.e. that d �R v implies g(d) -S v. Suppose
then that d �R v and g(d)↓. Then e = {f} with f : Rσ(R,S) and f(d)↓. But
then f(d) �S v, i.e. g(d) �S v as required.

As β′RS is a restriction of an algebra for the L-monad, it is itself an algebra
for the monad. Thus Rσ(R,S) is indeed pointed. Moreover, by construction,
the forgetful URS : Rσ(R,S) → pP(|R|, |S|) is strict. The bistrictness of com-
position is shown exactly as in Lemma 9.5. 2

Lemma 13.7 {idR}R : |Rσ | is a strict family.

PROOF. By Lemma 13.4, |Rσ| has pointed structure
∨

: L|Rσ| - |Rσ|
We must show equation (8), i.e. that id∨

e = β′∨
e

∨
e
({idR | R ∈ e}), for all

e : L|Rσ|. Take any e : L|Rσ| and x : |∨ e|. Then e = {R} for some R with x : |R|.
So

∨
e = R, whence β′∨

e
∨

e
({idR | R ∈ e})(x) = idR(x) as required. 2

Lemma 13.8 The functor Uσ : Rσ → pP creates bilimits of I-bichains.

70

PROOF. Let (R(−), x(−)(−)) be an I-bichain in Rσ. Then, writing (Ai,�i) for
Ri, we have that (A(−), x(−)(−)) is an I-bichain in pP. Let (B, l(−), c(−)) be its
bilimit, and let S be (B,�), where �- - P(1, B)× Vσ is defined by

d � v iff ∀i : I. li(d) -i v .

We show below that (S, l(−), c(−)) is a bilimit for (R(−), x(−)(−)) in Rσ. The
lemma then follows, as, by construction, (S, l(−), c(−)) is created by Uσ.

First we show that S is indeed an object of Rσ. For this we need each B �� v

to be well-complete. However, for each v :Vσ,

B �� v =
⋂
i : I

{d : P(1, B) | li(d) -i v} =
⋂
i : I

l−1
i (Ai �-i v) .

Thus B �� v is indeed a predomain by Lemma 13.2 and Proposition 2.5(6–7).

To show that (S, l(−), c(−)) is a bilimit in Rσ it suffices to show that each
li : pP(B, Ai) indeed gives a morphism li : Rσ(S, Ri), and that each ci : pP(Ai, B)
indeed gives a morphism ci : Rσ(Ri, S), because, if this is so, then the defining
properties, (32) and (33), of a bilimit are inherited from pP. In the case of li, it
is immediate from the definition of � that li : Rσ(S, Ri). To show ci : Rσ(Ri, S),
we must prove that, for any d : P(1, Ai) and v :Vσ, it hold that d �i v implies
ci(d) - v. As li ◦ ci = idAi

, we have that ci(d)↓. So

ci(d) - v iff ci(d) � v

iff ∀j : I. lj(ci(d)) -j v def. of �
iff ∀j : I. xij(d) -j v by (32) for (B, l(−), c(−)).

However, xij : Rσ(Ri, Rj). Therefore d �i v implies that xij(d) -j v, for all
j : I. Thus indeed, d �i v implies ci(d) - v. 2

Taken together, Lemmas 13.4–13.8 provide a complete proof of Proposition 12.4.

14 External computational adequacy

Having proved internal computational adequacy, it is now possible to derive
the second main result of the paper, a complete characterization of computa-
tional adequacy for the external interpretation of FPC, given in Section 11.
Unsurpringly, the characterization depends upon relating properties of the
computational natural numbers Nc in C to properties of the real world natu-
ral numbers N.

71

We have remarked that, using the natural numbers object Nc of P, one can
define a standard encoding of any k-ary primitive recursive function as a mor-
phism Nc

k - Nc, and of every k-ary primitive recursive predicate as a
morphism Nc

k - 2. In this section, it is necessary to be a little more pre-
cise about these encodings. Accordingly, we briefly review the details.

We think of a k-ary primitive recursive function φr : Nk → N, as being speci-
fied by “function letters” r in the term language of IPRA, see [12, §1.4]. This
language simply provides a term structure suitable for generating the primi-
tive recursive functions via projection, composition, primitive recursion, etc.
For example, given terms r1 and r2 determining primitive recursive functions
φr1 : Nk → N and φr2 : Nk+2 → N, we can form a term Rr1r2 representing the
function φRr1r2 : Nk+1 → N, defined from φr1 and φr2 by primitive recursion:

φRr1r2(i1, . . . , ik, 0) = φr1(i1, . . . , ik)

φRr1r2(i1, . . . , ik, j + 1) = φr2(i1, . . . , ik, j, φRr1r2(i1, . . . , ik, j))

The interpretation of primitive recusive functions over Nc is defined by a
straightforward induction on the structure of IPRA terms r. To each term r
representing a k-ary function, we associate a morphism fr : Nc

k - Nc. For
example, the morphisms fr1 : Nc

k - Nc and fr2 : Nc
k+2 - Nc determine

fRr1r2 : Nc
k+1 - Nc as the unique morphism fitting into the diagram below.

Nc
k + Nc

k×Nc

id + (id× id, fRr1r2)- Nc
k + Nc

k×Nc ×Nc

Nc
k ×Nc

[(id, 0c), (id× sc)]

?

fRr1r2

- Nc

[fr1 , fr2]

?

There is indeed a unique such morphism, because Nc is a natural numbers
object in a cartesian closed category. The important property of the represen-
tation is that, for any r, and all (i1, . . . , ik) ∈ Nk,

fr ◦ (i1, . . . , ik) = φr(i1, . . . , ik), (58)

where we write (·) : N → C(1,Nc) for the evident function associating a “nu-
meral” to each natural number.

Any term r representing a k-ary primitive recursive function, represents a
k-ary primitive recursive predicate Φr, defined by Φr(i) iff φr(i) 6= 0. By
composing φr with the map n 7→ (n 6= 0c) : Nc

- 2, we represent Φr as a

72

morphism Pr : Nc
k - 2. This satisfies, for all (i1, . . . , ik) ∈ Nk,

Pr ◦ (i1, . . . , ik, j) =

> if Φr(i1, . . . , ik, j)

⊥ if not Φr(i1, . . . , ik, j)
(59)

Our characterization of computational adequacy involves the logical notion
of 1-consistency, see e.g. [12, Def. 1.3.6], formulated for the computational
natural numbers Nc.

Definition 14.1 (Computational Σ0
1-sentence) A computational Σ0

1-sentence
is a sentence, in the internal logic of C, of the form ∃n : Nc. Pr(n), where r
represents a unary primitive recursive predicate.

The adjective “computational” is included to emphasise that Nc is being used
as the object of quantification rather than N. If Axiom N holds then the
computational Σ0

1-sentences are just the ordinary Σ0
1-sentences.

Definition 14.2 (Computational 1-consistency) We say that C is com-
putationally 1-consistent if, for every computational Σ0

1-sentence ∃n :Nc. Pr(n),
C |= ∃n :Nc. Pr(n) implies there exists i ∈ N such that Φr(i) holds.

In other words, C is computationally 1-consistent if the internal truth of com-
putational Σ0

1-sentences in C coincides with their external truth (n.b. it al-
ways holds, for such sentences, that external truth implies internal truth).
The ordinary notion of 1-consistency, is defined in the same way, but us-
ing Σ0

1-sentences over N in place of computational Σ0
1-sentences. Using the

canonical map N - Nc, it can be shown that, in general, computational 1-
consistency implies ordinary 1-consistency. Thus computational 1-consistency
is a stronger property than ordinary 1-consistency. However, when Axiom N
holds, the two notions agree.

Theorem 2 (External computational adequacy) The following are equiv-
alent.

(1) The interpretation of FPC in pP is computationally adequate.
(2) C is computationally 1-consistent.

PROOF. First we show that computational 1-consistency implies computa-
tional adequacy. By the definition of the external interpretation in terms of
the internal one, it holds that [[t]] ↓ if and only if C |= ([t]) ↓. Therefore, it is
immediate from Proposition 12.2(1) that t ⇓ implies [[t]] ↓ To establish com-
putational adequacy, we must show that also [[t]] ↓ implies t ⇓. Accordingly,
suppose that [[t]] ↓. Then C |= ([t]) ↓. So, by Proposition 12.2(2), C |= t ⇓.

73

However, as in the remarks after Lemma 13.1, we have t ⇓ is of the form
∃(Π, v) :Nc. (Π ` t v), which is a computational Σ0

1-sentence. Thus, if C is
computationally 1-consistent then indeed it holds that t⇓.

To prove that computational adequacy implies computational 1-consistency,
following [40, §6], we encode computational Σ0

1-sentences as termination prop-
erties of FPC programs. First, we encode primitive recursive functions and
predicates as FPC programs. This is routine, but we anyway outline the ap-
proach in order to justify that the relevant properties can be established of
the encoding.

To each term r, representing a k-ary primitive recursive function, we asso-
ciate a closed FPC term tr : natk → nat. The definition of tr is by induction
on the structure of r. For example, given FPC terms tr1 : natk → nat and
tr2 : natk+2 → nat, then one defines a term tRr1r2 : natk+1 → nat by

tRr1r2 = rec f =λ(x1, . . . , xk, y). if y = 0 then tr1(x1, . . . , xk)

else tr2(x1, . . . , xk, pred(y), f(x1, . . . , xk, pred(y))) ,

using obvious abbreviations. The FPC terms tr, defined in this way, repre-
sent the associated primitive recursive functions φr in the sense that, for all
i1, . . . , ik ∈ N,

tr(i1, . . . , ik) φr(i1, . . . , ik) .

Using the evident isomorphism γ : Nc
- P(1, ([nat])), we claim that

C |= ∀(n1, . . . , nk) : Nc
k. ([tr])(γ(n1), . . . , γ(nk)) = γ(fr(n1, . . . , nk)) , (60)

where fr : Nc
k - Nc is as above. Property (60) is proved by induction on the

structure of r. For example, the case for primitive recursion uses the fact that
([rec f =λx. t]) = ([λx. t[rec f =λx. t/x]]), which is easily shown. This implies
that ([tRr1r2]) gives rise to a partial map fitting into the defining diagram for
fRr1r2 (modulo γ). However, the total map fRr1r2 is itself the only partial map
fitting into this diagram. Thus ([tRr1r2]) and fRr1r2 coincide.

Next, consider any primitive recursive (unary) predicate Pr. Using the encod-
ing of primitive recursive functions above, one easily encodes Pr as a closed
term t′r : nat→ bool satisfying:

t′r(i) tt if and only if Φr(i). (61)

Also, by (60), t′r satisfies

C |= ∀n : Nc. (([t′r])(γ(n)) = ([tt])) ↔ Pr(n) . (62)

We now encode the computational Σ0
1-property ∃n :Nc. Pr(n) as a search pro-

74

gram in FPC. Consider the closed term sr : nat→ unit where sr is:

rec f =λx. if t′r(x) then ∗ else f(succ(x)) .

Intuitively, sr(i) searches for a number j ≥ i such that Φr(j), returning the
canonical element ∗ : unit if it finds such a j. By a straightforward induction
on derivations in the operational semantics, it follows from (61) that:

if sr(0)⇓ then there exists i such that Φr(i). (63)

We now show that also:

C |= (∃n : Nc. Pr(n)) → ([sr(0)])↓ . (64)

To prove this, we show by internal induction on n that

C |= ∀n :Nc. ∀m :Nc. Pr(n +c m) → ([sr])(γ(n))↓ , (65)

from which (64) easily follows. By the discussion around (41), to justify the
use of induction, we must show that

{m :Nc | ∀n :Nc. Pr(n +c m) → ([sr])(γ(n))↓}- - Nc (66)

is well-complete. However, for each m,n, we have that (Pr(n)) ∈ 2 and
(([sr])(γ(n)) ↓) ∈ Σ, so (Pr(n) → ([sr])(γ(n)) ↓) ∈ Σ. Thus (66) is an
intersection of well-complete subobjects, hence, by Proposition 2.5(6), well-
complete. It remains to carry out the induction to establish (65). The ar-
gument is lengthy but routine. It uses (62), and also basic semantic equiva-
lences, such as ([rec f = λx. t]) = ([λx. t[rec f = λx. t/x]]), and also, crucially,
([sr(succ(x))])x : nat(γ(n)) ' ([sr])(γ(n +c 1)), which is used in the induction
step in order to apply the induction hypothesis.

Finally, we show that computational adequacy implies 1-consistency. Suppose
that the interpretation is computationally adequate and that C |= ∃n :Nc. Pr(n).
Then, by (64), C |= ([sr(0)])↓, i.e. [[sr(0)]]↓. Thus, by computational adequacy,
sr(0)⇓. Therefore, by (63), there indeed exists i such that Φr(i). 2

We say that C is trivial if any of the following equivalent conditions holds:
C |= ⊥, i.e. the internal logic is inconsistent; 0 ∼= 1; or C is equivalent to
the terminal category. By the results of [41,43], the existence of a nontrivial
C is equivalent to the consistency of IZF. Nontriviality implies many good
properties of C, e.g. all the computational numerals in C(1,Nc) are distinct.

Obviously, computational adequacy is possible only when C is nontrivial. How-
ever, as in [40, Corollary 1], a consequence of Theorem 2 is that there exist
nontrivial C, satisfying Axiom 2 (or even Axiom N), for which the interpre-
tation of FPC in pP is not computationally adequate. Indeed, this follows

75

from the completeness theorem for IZF with respect to categories with class
structure [41,43], together with Gödel’s incompleteness theorem for IZF with
respect to true Π0

1-sentences. Such categories C are pathologies. Instead, the
main force of Theorem 2 is in the converse implication, which reduces com-
putational adequacy to computational 1-consistency, which is a very weak
condition. Indeed, we end the section with two results that are useful for
demonstrating that computational 1-consistency holds for categories C that
arise in practice.

We say that Nc is standard if the numeral map (·) : N → C(1,Nc) is a bijec-
tion. If Nc is standard then C is clearly nontrivial.

Proposition 14.3 If Nc is standard then C is computationally 1-consistent.

PROOF. Suppose that Nc is standard, and suppose that C |= ∃n :Nc. Pr(n).
Using h : 2Nc ⇀ Nc defined in (50), we have, by (55), that C |= h(Pr) ↓.
Therefore the composite

h(Pr) = 1
Pr- 2Nc

h
⇀ Nc

is total. Thus, by the standardness assumption h(Pr) = i : 1 - Nc for some
i ∈ N. Moreover, by (51), it holds that C |= Pr(h(Pr)), i.e. that C |= Pr(i).
Suppose, for contradiction, that Φr(i) is not true. Then, by (58), C |= ¬Pr(i),
contradicting the consistency of C. Thus indeed Φr(i) is true. 2

Proposition 14.4 If a countably infinite copower of 1 exists in P then C is
computationally 1-consistent if it is nontrivial.

PROOF. Suppose that P has a countably infinite copower
∐

i∈N 1. Then,
straightforwardly,

∐
i∈N 1 is a natural numbers object, hence Nc

∼=
∐

i∈N 1.
Thus Nc is a countable copower of 1. For each number i ∈ N, we write
i : 1 - Nc for the associated injection. Morover, we assign these injec-
tions in such a way that 0 = 0c and such that i + 1 = sc(i). (This is pos-
sible, by the proof that

∐
i∈N 1 is a natural numbers object.) Because P is

cartesian closed, finite products distribute over arbitrary coproducts. There-
fore {(i1, . . . , ik) : 1 - Nc

k}(i1,...,ik)∈Nk is a coproduct diagram in P. By the
coproduct property, for every function φ : Nk → N there exists a unique mor-
phism gφ : Nc

k - Nc in P satisfying

gφ ◦ (i1, . . . , ik) = φ(i1, . . . , ik) .

It is therefore immediate from (58) that fr = gφr . Thus φr = φr′ implies
fr = fr′ . Similarly, it follows for (unary) primitive recursive predicates that

76

Pr : Nc
- 2 and Pr′ : Nc

- 2 are equal whenever, for all i ∈ N it holds
that Φr(i) iff Φr′(i).

We now establish computational 1-consistency. Suppose C |= ∃n : Nc. Pr(n).
Assume, for contradiction, that, for all i, it is not the case that Φr(i). Thus,
as shown above, we have that Pr : Nc

- 2 is equal to the morphism x 7→ ⊥.
But trivially C |= ¬∃n : Nc.⊥, i.e. C |= ¬∃n : Nc. Pr(n), which implies the
inconsistency of the internal logic. So, if C is nontrivial then there indeed
exists i such that Φr(i). 2

15 Applications

In this section, we give a brief outline of two applications of the results of this
paper to derive computational adequacy for classes of concrete models of FPC.
In contrast to previous approaches to computational adequacy for recursive
types [33,3,25], the models we consider are not required to be order-enriched.
Full details of the results outlined in this section will appear in [44].

Both applications follow the same general pattern. First, using standard tech-
niques, we fully embed a concrete model of FPC into a topos S. In order to
apply the results of this paper, we further need the topos itself to arise as the
full subcategory of small objects within a category C with class structure and
universal object. The specific toposes we consider will either be Grothendieck
toposes, see e.g. [24], or realizability toposes [13,15]. There are various results
relating such toposes to categories with class structure in [19, Ch. IV], which
can be massaged into an appropriate form to obtain embedding results suf-
ficient for our needs. 5 However, it is cleaner to use a new and more general
embedding theorem, which guarantees directly that every Grothendieck topos
and every realizability topos arises as the full subcategory of small objects
within a category with class structure and universal object. This result will
appear in [2].

15.1 Realizability models

A realizability model is specified by a partial combinatory algebra (A, ·), which
determines a category Mod(A) of modest sets over A, see e.g. [22, §2–3]. In
many such categories, one can find a dominance Σ, often conveniently de-
termined by a divergence D ⊂ A (see [22, Def. 4.1]), such that Axiom 2

5 This requires the application of [41, Theorem 7] to an initial ZF-algebra, in the
sense of [19], constructed using an inaccessible cardinal. See [42] for further expla-
nation.

77

holds. Numerous examples are presented in [21,22]. Furthermore, by [22, The-
orem 7.5], Axiom 2 implies Axiom N in this setting.

As is well-known, there is a full embedding Mod(A) ⊂ - RT(A) of modest
sets into the realizability topos over A [13,15]. By the results of [2], we have,
in turn, a full embedding RT(A) ⊂ - RC(A), exhibiting RT(A) as the cate-
gory of small objects in a category RC(A) with class structure and universal
object. Then Σ is a dominance in RC(A) and RC(A) inherits Axiom N from
Mod(A). Thus the results of this paper can be applied to obtain a category
of predomains P ⊂ - RC(A) in which FPC can be interpreted. Moreover,
it can be shown that the interpretation of FPC lives within the subcategory
Mod(A) ⊂ - RC(A).

If A is nontrivial then the category RC(A) is computationally 1-consistent
(equivalently 1-consistent) by Proposition 14.3, because it holds that the nu-
merals RC(A)(1,N) ∼= Mod(A)(1,N) are standard. Thus, by Theorem 2, the
interpretation of FPC in Mod(A) is computationally adequate. This gives the
first proof of computational adequacy for an interpretation of FPC in the re-
alizability models of [11,28–30,21,22].

15.2 Models of axiomatic domain theory

In [3, Def. 8.3.1], an axiomatization of a general categorical notion of model
for FPC is given. Moreover, as Theorem 9.2.19 of op. cit., computational
adequacy is proved for any nontrivial model satisfying two further conditions:
(i) the model is domain-theoretic, i.e. it has an associated cpo-enrichment;
and (ii) it is absolute, a condition which relates the partiality structure on the
model to the cpo-enrichment. By applying the results of this paper, we obtain
computational adequacy for a much wider class of models.

The class of models we work with is given by models of FPC, as in [3,
Def. 8.3.1], that have an inductive fixed-point object in the sense of [5, Def. 1.11].
This class includes the domain-theoretic models of [4,3], and, more generally,
all KADT models, as in [5, Def. 1.12]. Furthermore, in order to apply the
Yoneda embedding below, we require our models to be small categories. (As
usual, this can be circumvented for non-small categories, by moving to a larger
set-theoretic universe.) Let C be any model in this class.

As C is a model of FPC, it has, in particular, a dominance Σ, an associated
lifting functor L, and finite coproducts. It can be proved that the latter are
disjoint and stable (for disjointness see [3, Prop. 5.3.12]). The Yoneda functor
thus gives a full embedding y : C ⊂ - Sh(C, fc) where Sh(C, fc) is the category
of sheaves for the finite coproduct topology fc on C. Moreover, it holds that
y(Σ) is a dominance. Also, using the inductive fixed-point object in C, it can

78

be proved that every object in the image of C under y is well-complete, cf. [5,
Theorem 3.4.2]. As y preserves finite coproducts, it follows that Axiom 2 holds
in Sh(C, fc). (N.b. Axiom N need not hold in Sh(C, fc), cf. [27, §4].) Also, the
category of well-complete objects is a full reflective subcategory of Sh(C, fc),
cf. [5, Theorem 2.15].

By the results of [2], Sh(C, fc) arises as the full subcategory of small objects in
a category ShC(C, fc) with class structure and universal object. Then y(Σ) is a
dominance in ShC(C, fc) and also ShC(C, fc) inherits Axiom 2 from Sh(C, fc).
Thus the results of this paper can be applied to obtain a category of predo-
mains P ⊂ - ShC(C, fc) in which FPC can be interpreted. Furthermore, it
can be shown that the interpretation of FPC lives within the subcategory
C ⊂ - ShC(C, fc).

Because well-complete objects form a full reflective subcategory of Sh(C, fc),
it holds that there exists a countable copower of 1 in P. Hence, by Propo-
sition 14.4 and Theorem 2, the interpretation of FPC in any nontrivial C is
computationally adequate. As a special case, we obtain that the interpretation
of FPC in any nontrivial domain-theoretic model (in the sense of [3, §8.5.1]) is
computationally adequate. Thus it turns out that the absoluteness condition
for computational adequacy in [4,3] is unnecessary. More generally, we have
a computational adequacy result that applies to the wider classes of enriched
models considered in [6,5], where the enrichment need not be an order en-
richment. In particular, we obtain computational adequacy for all nontrivial
KADT models in the sense of [5, Def. 1.12].

16 Discussion

In this paper we have, in a general axiomatic setting, proved algebraic com-
pactness for the category of partial maps between small well-complete objects.
Well-completeness is, however, just one of several proposed notions of predo-
main that have appeared in the synthetic domain theory literature, see e.g.
[36,14,28,46,27] for other possibilities. It seems likely that our approach to al-
gebraic compactness should easily adapt to such other notions of predomain.
All that is required is to redo Section 9 in each case.

On the other hand, for the purposes of the applications of Section 15.2, it seems
essential to use well-completeness as the notion of predomain. This is because,
in general, models C of axiomatic domain theory do not appear to embed in
any of the other (always smaller) categories of predomains within Sh(C, fc).
In particular, models of axiomatic domain theory are not necessarily order-
enriched, and so cannot, in general, be embedded into any notion of predomain
for which predomains are (either implicitly or explicitly) partially ordered.

79

Previous approaches to modelling recursive types within synthetic domain
theory were either based on specific models [28], or instead restricted to ax-
iomatic settings based on realizability models [40,35]. In the latter references,
it is shown how the remarkable properties of small-complete small internal cat-
egories can be used to establish the algebraic compactness of the (Eilenberg-
Moore) category of strict maps between pointed predomains. Such an approach
does not adapt easily to establish algebraic compactness for the category of
partial maps between predomains, because the category of partial maps is ap-
parently not small-complete. Moreover, the approach is very much restricted
to realizability models. (In sheaf models, for example, Freyd showed that the
only small-complete small internal categories are preorders.) As the Eilenberg-
Moore category is useful for modelling call-by-name and linear languages, it
would be interesting to establish its algebraic compactness, in the general
setting of this paper.

Acknowledgements

This paper derives from my 1993–5 collaboration with John Longley [22].
Throughout the long development of the work, I have benefited, in particular,
from discussions with Marcelo Fiore, Pino Rosolini, Thomas Streicher and
Paul Taylor, the last of whom is also acknowledged for his diagram macros.

References

[1] P. Aczel. The type theoretic interpretation of constructive set theory. In Logic
Colloquium ’77, North Holland, pages 55–66, 1978.

[2] S. Awodey, C. Butz, A.K. Simpson and Th. Streicher. Relating set theory,
toposes and categories of classes. In preparation, 2003.

[3] M.P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps.
Distinguished Dissertation Series, CUP, 1996.

[4] M.P. Fiore and G.D. Plotkin. An Axiomatisation of computationally adequate
domain-theoretic models of FPC. In Proc. 9th IEEE Symposium on Logic in
Computer Science, pages 92-102, 1994.

[5] M.P. Fiore and G.D. Plotkin. An extension of models of axiomatic domain
theory to models of synthetic domain theory. In Proceedings of CSL 96, pages
129–149. Springer LNCS 1258, 1997.

[6] M.P. Fiore, G.D. Plotkin, and A.J. Power. Complete cuboidal sets in axiomatic
domain theory. In Proc. 12th IEEE Symposium on Logic in Computer Science,
pages 268–279, 1997.

80

[7] M.P. Fiore and G. Rosolini. Domains in H. Theoretical Computer Science,
264:171–193, 2001.

[8] P.J. Freyd. Recursive types reduced to inductive types. In Proc. 5th IEEE
Symposium on Logic in Computer Science, pages 498 – 507, 1990.

[9] P.J. Freyd. Algebraically complete categories. In Category Theory, Proc. Como
1990, Springer LNM 1488, pages 95–104, 1991.

[10] P.J. Freyd. Remarks on algebraically compact categories. In Applications of
Categories in Computer Science, pages 95–106. LMS Lecture Notes 177, CUP,
1992.

[11] P.J. Freyd, P. Mulry, G. Rosolini, and D.S. Scott. Extensional PERs.
Information and Computation, 98:211–227, 1992.

[12] J.-Y. Girard. Proof Theory and Logical Complexity. Bibliopolis, 1987.

[13] J.M.E. Hyland. The effective topos. In L.E.J. Brouwer Centenary Symposium,
pages 165–216. North-Holland, 1982.

[14] J.M.E. Hyland. First steps in synthetic domain theory. In Category Theory,
Proc. Como 1990, pages 131–156. Springer LNM 1488, 1991.

[15] J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos theory. Math. Proc.
Camb. Phil. Soc., 88:205–232, 1980.

[16] B. Jacobs. Semantics of weakening and contraction. Ann. Pure Appl. Logic,
69:73–106, 1994.

[17] B. Jacobs. Categorical Logic and Type Theory. North Holland, Amsterdam,
1999.

[18] M. Jibladze. A presentation of the initial lift algebra. Journal of Pure and
Applied Algebra, 116:185–198, 1997.

[19] A. Joyal and I. Moerdijk. Algebraic Set Theory. LMS Lecture Notes 220, CUP,
1995.

[20] J. Lambek and P.J. Scott. Introduction to Higher Order Categorical Logic.
Cambridge University Press, 1986.

[21] J.R. Longley. Realizability Toposes and Language Semantics. Ph.D. thesis,
Department of Computer Science, University of Edinburgh. Available as ECS-
LFCS-95-332, 1995.

[22] J.R. Longley and A.K. Simpson. A uniform account of domain theory in
realizability models. Math. Struct. in Comp. Sci., 7:469–505, 1997.

[23] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science.
Number 11 in International Series of Monographs on Computer Science. OUP,
1994.

[24] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: a First
Introduction to Topos Theory. Universitext. Springer Verlag, 1992.

81

[25] G. McCusker. Games and Full Abstraction for a Functional Metalanguage with
Recursive Types. Distinguished Dissertation Series, Springer-Verlag, 1998.

[26] P. Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory. Bibliopolis,
1984.

[27] J. van Oosten and A.K. Simpson. Axioms and (counter)examples in synthetic
domain theory. Annals of Pure and Applied Logic, 104:233–278, 2000.

[28] W.K.-S. Phoa. Effective domains and intrinsic structure. In Proc. 5th IEEE
Symposium on Logic in Computer Science, pages 366–377, 1990.

[29] W.K.-S. Phoa. Building domains from graph models. Math. Struct. in Comp.
Sci., 2:277–299, 1992.

[30] W.K.-S. Phoa. From term models to domains. Information and Computation,
109:211–255, 1994.

[31] A.M. Pitts. Relational properties of domains. Information and Computation,
127:66–90, 1996.

[32] G.D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977.

[33] G.D. Plotkin. Denotational semantics with partial functions. Lecture notes,
C.S.L.I. Summer School, 1985.

[34] G.D. Plotkin. Algebraic compactness in an enriched stetting. Invited talk,
Workshop on Logic, Domains and Programming Languages, Darmstadt, 1995.

[35] B. Reus and Th. Streicher. General synthetic domain theory — a logical
approach. Math. Struct. in Comp. Sci., 9:177–223, 1999.

[36] G. Rosolini. Continuity and Effectivity in Topoi. PhD thesis, University of
Oxford, 1986.

[37] A. Šc̆edrov. Intuitionistic set theory. In Harvey Friedman’s Research on The
Foundations of Mathematics, pages 257–184. Elsevier Science Publishers, 1985.

[38] D.S. Scott. Relating theories of the λ-calculus. In To H.B. Curry, pages 403–
450. Academic Press, 1980.

[39] A.K. Simpson. Recursive types in Kleisli categories. Unpublished manuscript,
University of Edinburgh, 1992.

[40] A.K. Simpson. Computational adequacy in an elementary topos. In Computer
Science Logic, Proceedings CSL ’98, pages 323–342. Springer LNCS 1584, 1999.

[41] A.K. Simpson. Elementary axioms for categories of classes (extended abstract).
In Proc. 14th IEEE Symposium on Logic in Computer Science, pages 77–85,
1999.

[42] A.K. Simpson. Computational Adequacy for Recursive Types in Models of
Intuitionistic Set Theory. In Proc. 17th IEEE Symposium on Logic in Computer
Science, 2002.

82

[43] A.K. Simpson. Elementary axioms for categories of classes. In preparation,
2003.

[44] A.K. Simpson. Computational adequacy for models of FPC. In preparation,
2003.

[45] M.B. Smyth and G.D. Plotkin. The category-theoretic solution of recursive
domain equations. SIAM Journal of Computing, 11:761–783, 1982.

[46] P. Taylor. The fixed point property in synthetic domain theory. In Proc. 6th
IEEE Symposium on Logic in Computer Science, pages 152–160, 1991.

[47] P. Taylor. Practical Foundations. Cambridge University Press, 1999.

83

