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Abstract

We investigate the task of performance pre-
diction for language models belonging to the
exponential family. First, we attempt to em-
pirically discover a formula for predicting test
set cross-entropy fon-gram language mod-
els. We build models over varying domains,
data set sizes, andgram orders, and perform
linear regression to see whether we can model
test set performance as a simple function of
training set performance and various model
statistics. Remarkably, we find a simple rela-
tionship that predicts test set performance with
a correlation of 0.9997. We analyze why this
relationship holds and show that it holds for
other exponential language models as well, in-
cluding class-based models and minimum dis-
crimination information models. Finally, we
discuss how this relationship can be applied to
improve language model performance.

Introduction

a test setD* and an associated empirical distribu-
tion p*(x,y). We take the performance of a condi-
tional language model(y|x) to be the cross-entropy
H(p*,p) between the empirical test distributig
and the modep(y|x):

H(p*,p) ==Y _p(x,y)logp(y|z) @
z,Y
This is equivalent to the negative mean log-
likelihood per event, as well as to log perplexity.
We only consider models in the exponential fam-
ily. An exponential modep, (y|z) is a model with
a set offeatures{ f1(z,v), ..., fr(x,y)} and equal

number of parameters = {\, ..., Ar} where
F
1 Nifilz,
Pa(yle) = exp(zlzl(x{ W)

and whereZ, (x) is a normalization factor.

One of the seminal methods for performance pre-
diction is the Akaike Information Criterion (AIC)
(Akaike, 1973). For a model, lek be the maxi-
mum likelihood estimate ok on some training data.
Akaike derived the following estimate for the ex-

In this paper, we investigate the following questiompected value of the test set cross-entrafiy*, pi):
for language models belonging to the exponential P

family: given some training data and test data drawn H(p*,pi) = H(p, pi) + D (3)
from the same distribution, can we accurately pre-

dict the test set performance of a model estimateT(—I“p’pA) s the cross—entropy_of the training Siﬁ’
. ) . Is the number of parameters in the model, dhik
from the training data? This problem is known as

. . the number of events in the training data. However,
performance predictioand is relevant fomodel se-

lection the task of selecting the best model from ghaximum likelihood estimates for language mod-

set of candidate models given data. els typically yield infinite cross-entropy on test data,

Let us first define some notation. Events have th%nd thqs AIC be_haves poorly fpr_ these domains.
In this work, instead of deriving a performance

form , where we attempt to predict the cur- - . . .
rent V\(Ig;g) Ven previous woFr)ds: \I/JVe denote the prediction relationship theoretically, we attempt to
v9 P ' empirically discover a formula for predicting test

training data a® = . and de- " :
g (@11), - (2D, yp) | performance. Initially, we consider onlygram lan-

fine p(x,y) = counp(x,y)/D to be the empirica : )
distribution of the training data. Similarly, we haveJ1a9¢ models, ar_ld build models over varying do-
mains, data set sizes, andgram orders. We per-

A long version of this paper can be found at (Chen, 2008)form linear regression to discover whether we can



model test set cross-entropy as a simple function of data  token range training  voc.
training set cross-entropy and other model statistics. source type of sents.  size
For the 200+n-gram models we evaluate, we find RH  letter  2-7 = 100-75k 27

o . . WSJ POS 2-7 100-30k 41
that the empirical relationship WSJ  word 2-5  100-100k 300

WSJ word 2-5 100-100k 3K
WSJ word 2-5 100-100k 21

BN word 2-5 100-100k 84k
SWB word 2-5 100-100k 19k

F
Hp'pp) ~ Hb.o) + 50 1N @)
i=1

OGTMMmMmOO wW>

holds with a correlation of 0.9997 whetes a con-
stantand wherd = {\;} areregularizedparameter Taple 1: Statistics of data sets. RH = Random House
estimates;i.e., rather than estimating performancedictionary; WSJ = Wall Street Journal; BN = Broadcast
for maximum likelihood models as in AIC, we do News; SWB = Switchboard.

this for regularized models. In other words, test set

cross-entropy can be approximated by the sum of thegman, 2004) ané regularization (Lau, 1994;
tralnln_g set cross-entropy and the scaled sum of thenap, and Rosenfeld, 2000; Lebanon and Lafferty,
magnitudes of the model parameters. 2001). While not as popular, another regularization
To maximize the correlation achieved by ed. (4)gcheme that has been shown to be effectizeriorm
we find that it is necessary to use the same regulafeqyalityregularization (Kazama and Tsuijii, 2003)
ization method and regularization hyperparamete(§y,ich is an instance df +¢2 regularization as noted
across models and that the optimal valueyode- by Dudk and Schapire (2006). Undéy + 2 regu-
pends on the values of the hyperparameters. Cofyization, the regularized parameter estimatese

sequently, we first evaluate several types of reguy,osen to optimize the objective function
larization and find which of these (and which hy-

perparameter values) work best across all domains, a & 1 L

and use these values in all subsequent experiment§+(A) = H(Bpa) + 5 > _INil + 5575 DX

While ¢2 regularization gives the best performance =1 =1 ®)

reported in the literature for-gram models, we find Note thatt; regularization can be considered a spe-

here that, + (3 regularization works even better. .5 case of this (by taking = o) as caré2 regu-
The organization of this paper is as follows: N5 ization (by takingn = 0).

Section 2, we evaluate various regularization tech- pore e evaluaté;, (2, and¢; + ¢2 regulariza-

niques forn-gram models and select the method angon for exponential,-gram models. An exponen-
hyperparameter values that give the best overall pgfy) ;,-gram model contains a binary featufe for
formance. In Section 3, we discuss experiments t@achn’-gramw occurring in the training data for
find a formula for predicting:-gram model perfor- » wheref,,(z,y) = 1iff zy ends inw. We
mance, and provide an explanation for why eq. (4),ould like to find the regularization method and as-
works so well. In Section 4, we evaluate how weloiated hyperparameters that work best across dif-
eg. (4) holds for several class-based language mogyent domains, training set sizes, amgyram or-

els and minimum discrimination information mOd'ders. As it is computationally expensive to evalu-
els. Finally, in Se_ctions S5 and 6 we discuss relateghe 5 large number of hyperparameter settings over
work and conclusions. a large collection of models, we divide this search
into two phases. First, we evaluate a large set of hy-
perparameters on a limited set of models to come up
In this section, we address the issue of how to pewith a short list of candidate hyperparameters. We
form regularization in our later experiments. Folthen evaluate these candidates on our full model set
lowing the terminology of Dutk and Schapire to find the best one.

(2006), the most widely-used and effective methods We build n-gram models over data from five dif-
for regularizing exponential models afe regular- ferent sources and consider three different vocabu-
ization (Tibshirani, 1994; Kazama and Tsuijii, 2003]ary sizes for one source, giving us seven “domains”

2 Selecting Regularization Settings



in total. We refer to these domains by the lettars Sta;iStifi RMSE _ coeff.
G, summary statistics for each domain are given in 521 |Ai| | 0.043  0.938
Table 1. The domain€-G consist of regular word 5 2iyo N | 00440939
data, while domain#\ and B consist of letter and 521 Ai | 0.047  0.940
. 1 F N 14
part-of-speech (POS) sequences, respectively. Do- ?Zi:l \{\ilz 0.162  0.755
mainsC—E differ only in vocabulary. 5121:1 [Ail2 | 0.234  0.669
For each domain, we first randomize the order of D 2%‘:1 A7 | 0429 0.443
sentences in that data. We partition off two devel- 1?0 0.709  1.289
- « " o 08 D 0.783  0.129
opment sets and an evaluation set (5000 “sentences D : :
each in domai and 2500 sentences elsewhere) and D 0.910  1.109
o o - FlogD 0.952  0.112
use the remaining data as training data. In this way, 117 1.487 1.698
we assure that our training and test data are drawn F 5239 -0.028
from the same distribution as is assumed in our later DpEt ' '
. > > S—zo | 2236 -0.023
experiments. Training set sizes in sentences are 100, 0

300, 1000, 3000, etc., up to the maximums given i[\r ble 2: R q RMSE) i h
Table 1. Building models for each training set size 22/€ 2 Root mean squared error ( ) in nats when
redicting difference in development set and training set

andn-gram order in Table 1 gives us a total of 218sross-entropy as linear function of a single statistic. The

models over the seven domains. last column is the optimal coefficient for that statistic.
In the first phase of hyperparameter search, we

choose a subset of these models (57 total) and evalu-
ate many different values fgw, o) with ¢, +¢3 reg-
ularization on each. We perform a grid search, tryin

On the development sets, tiie, o2) value with
ﬁ:e lowest squared error is (0.5, 6), and these are

each valuex € {0.0,0.1,0.2,...,1.2} with each e hyperparameter settings we use in all later ex-
valueo? € {1,1.2 15995345678 10 ~o} Periments unless otherwise noted. The RMS error,

wheres = oo corresponds td; regularization and mean error, and maximum error for these hyperpa-
a = 0 corresponds td? regularization. We use rameters on the evaluation sets are 0.011, 0.007, and
a variant of iterative scaling for parameter estima2-033 nats, respectlve?yAn error of 0.011 nats cor-
tion. For each model and ea¢h, o), we denote responds to a 1.1% difference in perplexity which

the cross-entropy of the development datals is generally considered insignificant. Thus, we can
for themth modelyn € {1,...,57}. Then, for eéf:h achieve good performance across domains, data set

m and(a, o), we can compute how much worse thesizes, andi-gram orders using a'sir_lg_le set of hyper-
settings(a, o2) perform with modetn as compared parameters as compared to optimizing hyperparam-

to the best hyperparameter settings for that model€€rs separately for each model.

3 N-Gram Model Performance Prediction

H}y = HY\y — min HY (6)
Now that we have established which regularization
method and hyperparameters to use, we attempt to
empirically discover a simple formula for predict-
ing the test set cross-entropy of regularizegram
models. The basic strategy is as follows: We first
build a large number ofi-gram models over differ-
ent domains, training set sizes, andjram orders.
Then, we come up with a set of candidate statistics,
For each of, 2, and¢; + £3 regularization, we re- e.g, training set cross-entropy, number of features,
tain the 68 best hyperparameter settings. To choosgte., and do linear regression to try to best model test
thg best _smgle hyperparameter setting from W'_th'”mmropy values are reported ats or natural

this candidate set, we repeat the same analysis s, equivalent tdog, e regular bits. This will let us directly
cept over the full set of 218 models. comparey values with average discounts in Section 3.1.

We would like to selecte, o) for which 77, tends
to be small; in particular, we chooger, o) that
minimizes the root mean squared (RMS) error

57
N 1 A
HESS =\ | 52 D (Hi,)? Y]

m=1



test cross-entropy - training cross-entropy (nats)

First, we attempt to model optimism as a lin-
ear function of a single statistic. For each statis-
tic listed previously, we perform linear regression
to minimize root mean squared error when predict-
ing development set optimism. In Table 2, we dis-

| W;ﬁ play the RMSE and best coefficient for each statis-
wrﬁ* tic. We see that three statistics have by far the lowest
| ffw error: Zf:1 Ail, 5 2 i kis0 i and }; Zzel Ai.
L * In practice, mosf,; in n-gram models are positive,
/ so these statistics tend to have similar values. We
0 : 2 s a 5 choose the best ranked of thege >, |\;|, and
L /D

show in Section 3.1 why this statistic is more appeal-
ing than the others. Next, we investigate modeling
Figure 1: Graph of optimism on evaluation data. optimism as a linear function of jgair of statistics.

5 3271 [\ for variousn-gram models undef; + (3 \We find that the best RMSE for two variables (0.042)
regularization,a = 0.5 ando® = 6. The line repre- g only slightly lower than that for one (0.043), so it
sents the predicted optimism according to eq. (9) Witfi1S doubtful that a second variable helps.

7 = 0.938. Thus, our analysis suggests that among our candi-
dates, the best predictor of optimism is simply

set cross-entropy as a linear function of these statis-
tics. We assume that training and test data come
from the same distribution; otherwise, it would be
difficult to predict test performance.

We use the same 2118_gram models as in Sec- Where’)/ = 0938, W|th th|S Value being independent
tion 2. For each model, we compute training se®f domain, training set size, anggram order. In
cross-entropyH (j, p; ) as well as all of the statis- other words, the difference between test and train-
tics listed on the left in Table 2. The statisti€s  ing cross-entropy is a linear function of the sum of

F and 122 are motivated by AIC, AIC parameter magnitudes scaled per event. Substituting

D L)

D—F—1’ ; :
(Hurvich and Tsai, 1989), and the Bayesian InforiNt0 €d. (8) and rearranging, we get eq. (4).

mation Criterion (Schwarz, 1978), respectively. As 10 assess the accuracy of eq. (4), we compute var-
featuresf; with \; = 0 have no effect, instead of I0US statistics on our evaluation sets using the best

F we also consider using, the number of fea- 7 from our development datag., v = 0.938. In

turesf; with X; # 0. The statistic% Zle ‘S\i’ and Figure 1, we graph optimism for the evaluation data

- instL S~ 1\ .
% Zle \? are motivated by eq. (5). The statisticsagamStD 2_i=1 |As| for each of our models; we see

. ) . at the linear correlation is very good. The correla-
with fractional exponents are suggested by Figure 2. ;
. ion between the actual and predicted cross-entropy
The value 1 is present to handle constant offsets.

o o i on the evaluation data is 0.9997; the mean absolute
After some initial investigation, it became clear rediction error is 0.030 nats: the RMSE is 0.043
that train?ng Sét cross-entropy is a very QOOd (pa_lﬁats; and the maximum absolute error is 0.166 nats.
tial) predictor of test set cross-entropy with Coeﬁ"Thus, on average we can predict test performance to

ci(_ant_l. As ther_e_ is ample theoretical suppprt fo(Nithin 3% in perplexity, though in the worst case we
this, instead of fitting test set performance dlrectlymay be off by as much as 18%

we chose to model the difference between test and
training performance as a function of the remaining 3The sampling variation in our test set selection limits the

statistics. This difference is sometimes referred to dgeasured accuracy of our performance prediction. To give
i . idea of the size of this effect, we randomly selected 100
the optimismof a model: Some Ide : ’ .
P test sets in domai® of 2500 sentences each (as in our other
experiments). We evaluated their cross-entropies using mod-
els trained on 100, 1k, 10k, and 100k sentences. The empiri-

optimism~

o=

F ~
>IN ©)
=1

optimisnip; ) = H(p*, px) — H(D, p3) (8)



Ignoring the last term on the right, we see that opti-

2r P 1 mism for exponential models is a linear function of
s PR 4 the)ys with coefficientsE;[f;] — Ep«[fil.
1 § %;@i e ] Then, we can ask what;[f;] — E,«[f;] values
Py o St would let us satisfy eq. (4). Consider the relationship

discount

(E5lfi] — Epe[fi]) x D =~ ysgn; (12)

If we substitute this into eq. (11) and ignore the last
term on the right again, this gives us exactly eq. (4).
‘ ‘ ‘ We refer to the valuéE;[f;| — Ep<[fi]) x D as the

? 0 vl 8 ¢ discountof a feature. It can be thought of as rep-

. _ - resenting how many times less the feature occurs in
Figure 2: Smoothed graph of discount versuor all the test data as opposed to the training data, if the
features in ten different models built on domaksnd ) .

E. Each smoothed point represents the average of at leA&ft data were normalized to be the same size as the
512 raw data points. training data. Discounts for-grams have been stud-
ied extensivelye.g, (Good, 1953; Church and Gale,

. 1991; Chen and Goodman, 1998), and tend not to
If we compute the prediction error of eq. (4) over,

: 9 . vary much across training set sizes.
the same models except usiigor /5 regulariza-

tion (with the best corr ndina hvoerparameter We can check how well eq. (12) holds for actual
on ( € DEsL correspo g fyperpara e.eregularizedn—gram models. We construct a total of

values found in Section 2), the prediction RMSE i nn-gram models on domain& and E. We build

0.054 and_ 0.139 nats, respectively. Thgs, We.fmfgur letter 5-gram models on doma#aon training
that choosing hyperparameters carefully in Section

Sets ranging in size from 100 words to 30k words,

was important in doing well in performance predlc-and six models (either trigram or 5-gram) on do-

thn. While hyperparameters were chos_er_1 to Optlr'nainE on training sets ranging from 100 sentences
mize test performance rather than prediction acc

racy, we find that the chosen hyperparameters z;{ro 30k sentences. We create large development test
' $Bts (45k words for domaifs and 70k sentences for
favorable for the latter task as well. domainE) to better estimat&,« .

3.1 Why Does Prediction Work So Well? Because graphs of discounts as a functionof

The correlation in Figure 1 is remarkably high, an@&e very noisy, we smooth the data before plotting.

thus it begs for an explanation. First, let us expreﬁ%e partition data points into buckets containing at

) . L ast 512 points. We average all of the points in
the difference in test and training cross-entropy fo([:-ach bucket to get a “smoothed” data point. and plot
a model in terms of its parametefis Substituting 9 point, P

eq. (2) into eq. (1), we get this single point for each bucket. In Figure 2, we
' plot smoothed discounts as a function\gfover the
F range)\; € [—1, 4] for all ten models.
H(p",pa) = = > NEp-[fil + Y p* () log Za(x) We see that eq. (12) holds at a very rough level
=t v (10) over the\; range displayed. If we examine how
where E,«[fi] = Y2, »"(x,9)fi(x,y). Then, we much different ranges of; contribute to the over-

F oy ,
can express the difference in test and training pefil value of3_;_, Ai(Es(fi] — Ep-[fi]), we find that
formance as the great majority of the mass (90-95%#+) is concen-

trated in the range,; € [0, 4] for all ten models un-
H(p*,pa) — HB.pa) = S5 N(Eslfi] — By [fi])+ der consideration. Thus, to_afirst apprqximation, the
S (0 (2) — p(x)) log Za(z) (11) reason that eq. (4) holds with= 0.938 is because
z\P P &4A on average, feature expectations have a discount of
cal standard deviation across test sets was found to be 0.012%out this value fOI;\i in this range“.

0.0144, 0.0167, and 0.0174 nats, respectively. This effect can
be mitigated by simply using larger test sets. “This analysis provides some insight as to when eq. (4)




4.1 Class-Based Language Models
We assume a word is always mapped to the same

g 4r T —

£ sl ﬁ'“* | classc(w). For a sentence - - - w;, we have

1) ’ e

§ ey %ﬁ‘ﬁﬂ 1 I+1

| WX ] plws--wy) =TT plejler - ejor,wy - wj_1) x

g ¢ 1

L2y R 1 [T;=) p(wjler -+ cjwr - wji—1)  (13)

g st o 1 .

34l ﬁ“ | wherec; = c(w;) and wherec;;; is an end-of-

4 ,

5 sl ﬁﬁ* | sentence token. Wg use the notaty%(y@) to

= ‘ ‘ ‘ ‘ | denote an exponential-gram model as defined in
0 1 2 3 4 5 Section 2, where we have features for each suffix of

HHIE eachwy occurring in the training set. We use the

notationpng(y|wi, w2) to denote a model containing
Figure 3: Graph of optimism on evaluation data. g|| features in the modelsg(y|wi) andpng(y|w2).

F Y . ')
5 i1 | A for various models. The ‘+' marks corre-  \ye consider three class models, mod&s!, and
spond to model$, M, andL over different training set L defined as

sizes,n-gram orders, and numbers of classes. Tke
marks correspond to MDI models over differergram

orders and in-domain training set sizes. The line and
small points are taken from Figure 1. ps(wjle1--cj,wi-—wj—1)=png(w;jlc;)

ps(cjlercj—1,wiwj—1)=png(cjlcj—2cj—1)

pa(cjler-cj—1,wiwj—1)=png(cjlcj—2¢j—1,wj_2w; 1)
Due to space considerations, we only summarize p,,(w;ei--cj,wi--w;—_1)=png(w;|w;_aw;_1¢;)
our other findings; a longer discussion is provided
in (Chen, 2008). We find that the absolute error in pr(¢jler¢j—1,wi-wj_1)=png(e;lwj—2¢j—2wj-1¢j-1)
cross-entropy tends to be quite small across models p;, (w;|e1--¢j w1 -w;j—1)=png(w;|w;—ac;—ow;—1cj—1c;)
for several reasons. For non-sparse models, there
is significant variation in average discounts, but beModel Sis an exponential version of the class-based
causeL S°F |A,] is low, the overall error is low. "-gram model from (Brown et al., 1992); modd
In contrast, sparse models are dominated by singli & novel model introduced in (Chen, 2009); and
countn-grams with features whose average discourfodelL is an exponential version of the modedi-
is quite close toy = 0.938. Finally, the last term on €xpredictfrom (Goodman, 2001).

the right in eq. (11) also plays a small but significant TO évaluate whether eq. (4) can accurately pre-
role in keeping the prediction error low. dict test performance for these class-based models,

we use the WSJ data and vocabulary from domain
E and consider training set sizes of 1k, 10k, 100k,
and 900k sentences. We create three different word

assings containing 50, 150, and 500 classes using

C
In (Ch?n’ 2009), we show how eq. (4) can be use(gi algorithm of Brown et al. (1992) on the largest
to motivate a novel class-based language model algrtf

a regularized version of minimum discrimination in ining set. For each training set and number of
) . “classes, we build both 3-gram and 4-gram versions
formation (MDI) models (Della Pietra et al., 1992). g g

In thi . | hether in addit tof each of our three class models.
N Ihis section, we analyze Whether in addition o -, Figure 3, we plot optimismi., test minus

gfrgr:gg;zﬁarzogslsé r?]?)' d(ej)s z(s)l\(fvilflor these ot} aining cross-entropy) versys > | ;| for these

P guag ' models (66 in total) on our WSJ evaluation set. The
s . if a feature functigh is doubled, i ‘+' marks correspond to our clags-gram models,
won't hold. For example, It a reature tunctign Is doubleaq, Its . . . .
expectations and discount will also double. Thus, eq. (4) Won’\{vhlle the small points repllcate the points for word

hold in general for models with continuous feature values, a§-gram models from Figure 1. Remarkably, eq. (4)
average discounts may vary widely. appears to accurately predict performance for our

4 Other Exponential Language Models



classn-gram models using the same = 0.938 the MDI models. As expected, eq. (4) appears to
value found for wordh-gram models. The mean ab-work quite well for MDI models using the same
solute prediction error is 0.029 nats, comparable t9 = 0.938 value as before; the mean absolute pre-
that found for wordn-gram models. diction error is 0.077 nats.

It is interesting that eq. (4) works for class-based
models despite their being composed of two sutb Related Work
models, one for word prediction and one for class
prediction. However, taking the log of eq. (13), we'Ve group existing performance prediction methods
note that the cross-entropy of text can be expressé#0 two categoriesnon-data-splittingnethods and
as the sum of the cross-entropy of its word tokendata-splittingmethods. In non-data-splitting meth-
and the cross-entropy of its class tokens. It woul@ds. test performance is directly estimated from
not be surprising if eq. (4) holds separately for thdraining set performance and/or other statistics of a
class prediction model predicting class data and tHBodel. Data-splitting methods involve partitioning
word prediction model predicting word data, sincdraining data into a truncated training set and a surro-
all of these component models are basicallgram ~9ate test set and using surrogate test set performance
models. Summing, this explains why eq. (4) hold$0 estimate true performance.

for the whole class model. The most popular hon-data-splitting methods for
_ S predicting test set cross-entropy (or likelihood) are

Minimum discrimination information models (Della and QAIG. (Akaike, 1973; Hurvich and Tsai, 1989;
Pietra et al., 1992) are exponential models with hebreton et al., 1992). In Section 3, we consid-

prior distributiong(y|x): ered performance prediction formulae with the same
» form as AIC and AIC (except using regularized pa-
pa(ylz) = q(yl) exp(Yi—s Aifi(z,y)) (14) rameter estimates), and neither performed as well as

Za(x) eq. (4);e.g, see Table 2.
The central issue in performance prediction for MDI There are many techniques for bounding test
models is whetheg(y|z) needs to be accounted for.set classification error including the Occam’s Ra-
That is, if we assume is an exponential model, zor bound (Blumer et al., 1987; McAllester, 1999),
should its parameters! be included in the sum in PAC-Bayes bound (McAllester, 1999), and the sam-
eq. (4)? From eq. (11), we note thatiif;[f;] — ple compression bound (Littlestone and Warmuth,
E,+[fi] = 0 for a featuref;, then the feature does 1986; Floyd and Warmuth, 1995). These methods
not affect the difference between test and trainingerive theoretical guarantees that the true error rate
cross-entropy (ignoring its impact on the last term)of a classifier will be below (or above) some value
By assumption, the training and test set forome Wwith a certain probability. Langford (2005) evalu-
from the same distribution while is derived from ates these techniques over many data sets; while the
an independent data set. It follows that we expedtounds can sometimes be fairly tight, in many data
E5(f11— Ep+[f] to be zero for features ip and we  sets the bounds are quite loose.
should ignorey when applying eq. (4). When learning an element from a set of target
To evaluate whether eq. (4) holds for MDI mod-classifiers, the Vapnik-Chervonenkis (VC) dimen-
els, we use the same WSJ training and evaluatiaion of the set can be used to bound the true error rate
sets from domailic as in Section 4.1. We considerrelative to the training error rate with some probabil-
three different training set sizes: 1k, 10k, and 100Ry (Vapnik, 1998); this technique has been used to
sentences. To traip we use the 100k sentence BNcompute error bounds for many types of classifiers.
training set from domairr. We build both trigram For example, Bartlett (1998) shows that for a neural
and 4-gram versions of each model. network with small weights and small training set
In Figure 3, we plot test minus training cross-squared error, the true error depends on the size of
entropy versu% Zle |5\i\ for these models on our its weights rather than the number of weights; this
WSJ evaluation set; thex” marks correspond to finding is similar in spirit to eq. (4).



In practice, the most accurate methods for perfoef model selection; instead, what eq. (4) gives us is
mance prediction in many contexts are data-splittinmsight intomodel designThat is, instead of select-
methods (Guyon et al., 2006). These techniques iimg between candidate modeaiace they have been
clude the hold-out method; leave-one-out aAldld  built as in model selection, it is desirable to be able
cross-validation; and bootstrapping (Allen, 1974to select between models at thdel desigrstage.
Stone, 1974; Geisser, 1975; Craven and WahbBging able to intelligently compare models (with-
1979; Efron, 1983). However, unlike non-data-out implementation) requires that we know which
splitting methods, these methods do not lend thenaspects of a model impact test performance, and this
selves well to providing insight into model design ass exactly what eq. (4) tells us.

discussed in Section 6. Intuitively, simpler models should perform better
_ ) on test data given equivalent training performance,
6 Discussion and model structure (as opposed to parameter val-

We show that for several types of exponential lan€S) iS an important aspect of the complexity of a
guage models, it is possible to accurately predict tH#0del. Accordingly, there have been many meth-

cross-entropy of test data using the simple relatiofpds for model selection that measure the size of a
ship given in eq. (4). When usirfg + ¢2 regulariza- model in terms of the number of features or param-
tion with (a = 0.5,02 = 6), the valuQey _ 0.938 etersin the modele.g, (Akaike, 1973; Rissanen,

works well across varying model types, domains}gm; Schwarz, 1978). Surprisingly, for exponential

vocabulary sizes, training set sizes, andram or- language models, the number of model parameters

ders, yielding a mean absolute error of about 0.0%€€MS to matter not at all; all that matters are the

nats (3% in perplexity). We evaluate300 language magnitut;les of the parameter values._ Consequently,
models in total, including word and classgram ©N€ canimprove such models by adding features (or

models andi-gram models with prior distributions. & Prior model) that reduce parameter values while
While there has been a great deal of work ifnaintaining training performance. _
performance prediction, the vast majority of work !N (Chen, 2009), we show how these ideas can be
on non-data-splitting methods has focused on findised to motl\{at_ce heuristics for improving the perfor-
ing theoretically-motivated approximations or probMance of existing language models, and use these
abilistic bounds on test performance. In contrast, Waeuristics to develop a novel class-based model and
developed eq. (4) on a purely empirical basis, an@ regularized version of MD_I models that qutper-
there has been little, if any, existing work that hador™ comparable methods in both perplexity and
shown comparable performance prediction accuragPeech recognition word-error rate on WSJ data. In
over such a large number of models and data sets. §{dition, we show how the tradeoff between train-
addition, there has been little, if any, previous worknd Set performance and model size impacts aspects
on performance prediction for language modefing. ©f 1anguage modeling as diverse as backefiram
While eq. (4) performs well as compared to Othefgatures, class-based moplels, and domain adapta-
non-data-splitting methods for performance predidion- N sum, eq. (4) provides a new and valuable
tion, the prediction error can be several percent iffamework for characterizing, analyzing, and de-
perplexity, which means we cannot reliably ranii9ning statistical models.
models that are close in quality. In aniti'on, inACknowledgements
speech recognition and many other applications, an
external test set is typically provided, which mean¥Ve thank Bhuvana Ramabhadran and the anony-
we can measure test set performance directly. Thuous reviewers for their comments on this and ear-
in practice, eq. (4) is not terribly useful for the tasKier versions of the paper.
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