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Abstract

We introduce a new paradigm for outsourcing the dura-

bility property of a multi-client transactional database to

an untrusted service provider. Specifically, we enable un-

trusted service providers to support transaction serializa-

tion, backup and recovery for clients, with full data confi-

dentiality and correctness. Moreover, providers learn noth-

ing about transactions (except their size and timing), thus

achieving read and write access pattern privacy.

We build a proof-of-concept implementation of this pro-

tocol for the MySQL database management system, achiev-

ing tens of transactions per second in a two-client scenario

with full transaction privacy and guaranteed correctness.

This shows the method is ready for production use, creating

a novel class of secure database outsourcing models.

1 Introduction
Increasingly, data management is outsourced to third par-

ties. This trend is driven by growth and advances in cheap,

high-speed communication infrastructures as well as by the

fact that the total cost of data management is 5–10 times

higher than the initial acquisition costs [34].

Outsourcing has the potential to minimize client-

side management overheads and benefit from a service

provider’s global expertise consolidation and bulk pricing.

Providers such as Yahoo [21], Amazon [4–6], Google [10],

Sun [20] and others [1–3, 7–9, 11–15, 17–19] – ranging

from corporate-level services such as the IBM Data Center

Outsourcing Services to personal level database hosting –

are rushing to offer increasingly complex storage and com-

putation outsourcing services.

Yet, significant challenges lie in the path of a success-

ful large-scale adoption. In business, health care and gov-
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ernment frameworks, clients are reluctant to place sensitive

data under the control of a remote, third-party provider,

without practical assurances of privacy and confidential-

ity. Yet today’s privacy guarantees of such services are at

best declarative and often subject customers to unreason-

able fine-print clauses – e.g., allowing the server operator

(or malicious attackers gaining access to its systems) to use

customer behavior and content for commercial, profiling,

or governmental surveillance purposes [29, 30]. These ser-

vices are thus fundamentally insecure and vulnerable to il-

licit behavior.

Existing research (discussed in Section 2) addresses sev-

eral important outsourcing aspects, including direct data re-

trieval with access privacy, searches on encrypted data, and

techniques for querying remotely-hosted encrypted struc-

tured data in a unified client model [32, 62]. These efforts

are based on the assumption that, to achieve confidential-

ity, data will need to be encrypted before outsourcing to an

untrusted provider. Once encrypted however, inherent lim-

itations in the types of primitive operations that can be per-

formed on encrypted data by untrusted hosts lead to funda-

mental query expressiveness constraints. Specifically, rea-

sonably practical mechanisms exist only for simple selec-

tion and range queries or variants thereof.

In this paper we introduce an orthogonal thesis spurred

by the advent of cheap and fast disks and CPUs. We believe

that arguably, in many deployments, individual data clients’

systems are in a position to host and access local large data

sets with little difficulty at no additional cost.

This seems to invalidate the case of outsourcing, yet

we argue that there is one essential data management as-

pect that cannot be hosted as such: transaction process-

ing for multiple concurrent clients. In other words, we

posit that in a world where client machines have become

powerful enough to run local databases, data management

outsourcing markets will necessarily converge on supply-

ing the transactional, network intensive services and avail-

ability assurances which are not trivially achievable locally:

distributed transaction processing – specifically transaction

serializability and durability.



In this paper we thus introduce a novel paradigm for

solving the data management outsourcing desiderata: a

mechanism for collaborative transaction processing with

durability guarantees supported by an untrusted service

provider under assurances of confidentiality and access pri-

vacy. In effect we achieve the cost benefits of standard

outsourcing techniques (durability, transaction processing,

availability) while preserving the privacy guarantees of lo-

cal data storage. This is accomplished by enabling data

clients to collaboratively perform runtime transaction pro-

cessing and interact through an untrusted service provider

that offers durability and transaction serializability support.

In this context data outsourcing becomes a setting in

which all permanent data is hosted securely encrypted off-

site, yet clients access it through their locally-run database

effectively acting as a data cache. If local data is lost, it

can be retrieved from the offsite repository. Inter-client in-

teraction and transaction management is intermediated by

the untrusted provider who also ensures durability by main-

taining a client-encrypted and authenticated transaction log

with full confidentiality.

In our model, each client maintains its own cache of

(portions of) the database in client-local storage, allowing

it to perform efficient reads with privacy, while relieving lo-

cal system administrators of backup obligations. They key

benefit thus becomes achieving data and transaction privacy

while (1) avoiding the requirement for persistent client stor-

age (clients are now allowed to fail or be wiped out at any

time), and (2) avoiding the need to keep any single client-

side machine online as a requirement for availability.

2 Related Work
Queries on Encrypted Data. The paradigm of providing

a database as a service recently emerged [42] as a viable

alternative, likely due in no small part to the dramatically

increasing availability of fast, cheap networks. Given the

global, networked, possibly hostile nature of the operation

environments, security assurances are paramount.

Hacigumus et al.[41] propose a method to execute SQL

queries over partly obfuscated outsourced data. The data

is divided into secret partitions and queries over the origi-

nal data can be rewritten in terms of the resulting partition

identifiers; the server then performs queries over the parti-

tions. The information leaked to the server is claimed to

be 1-out-of-s where s is the partition size. This balances a

trade-off between client-side and server-side processing, as

a function of the data segment size. At one extreme, privacy

is completely compromised (small segment sizes) but client

processing is minimal. At the other extreme, a high level

of privacy can be attained at the expense of the client pro-

cessing the queries in their entirety after retrieving the en-

tire dataset. Moreover, in [45] the authors explore optimal

bucket sizes for certain range queries. Similarly, data parti-

tioning is deployed in building “almost”-private indexes on

attributes considered sensitive. An untrusted server is then

able to execute “obfuscated range queries with minimal in-

formation leakage”. An associated privacy-utility trade-off

for the index is discussed. The main drawbacks of these

solutions lies in their computational impracticality and in-

ability to provide strong confidentiality.

Recently, Ge et al.[74] discuss executing aggregation

queries with confidentiality on an untrusted server. Unfor-

tunately, due to the use of extremely expensive homomor-

phisms (Paillier [65, 66]) this scheme leads to impractically

large processing times for any reasonable security parame-

ter choices (e.g., for 1024 bit of security, processing would

take over 12 days per query). Current homomorphisms are

not fast enough to be usable for practical data processing.

Avoiding the tradeoff between processing and computa-

tion time altogether, we allow efficient queries on encrypted

data with full privacy by running queries on a client-side de-

crypted copy of the data. Thus, with no additional network

transfer, and with a computational cost equivalent to run-

ning the query on an unencrypted database, we provide full

query privacy. Since we run the queries on a copy of the

database at the client side, so there is no need for expensive

homomorphisms, either.

Query Correctness. In a publisher-subscriber model, De-

vanbu et al.deployed Merkle trees to authenticate data pub-

lished at a third party’s site [32], and then explored a gen-

eral model for authenticating data structures [57, 58]. Hard-

to-forge verification objects are provided by publishers to

prove the authenticity and provenance of query results. In

[62], mechanisms for efficient integrity and origin authenti-

cation for simple selection predicate query results are intro-

duced. Different signature schemes (DSA, RSA, Merkle

trees [60] and BGLS [25]) are explored as potential al-

ternatives for data authentication primitives. Mykletun et

al.[33] introduce signature immutability for aggregate sig-

nature schemes – the difficulty of computing new valid

aggregated signatures from an existing set. Such a prop-

erty is defeating a frequent querier that could eventually

gather enough signatures data to answer other (un-posed)

queries. The authors explore the applicability of signature-

aggregation schemes for efficient data authentication and

integrity of outsourced data. The considered query types

are simple selection queries. Similarly, in [55], digital sig-

nature and aggregation and chaining mechanisms are de-

ployed to authenticate simple selection and projection op-

erators. While these are important to consider, neverthe-

less, their expressiveness is limited. A more comprehen-

sive, query-independent approach is desirable. Moreover,

the use of strong cryptography renders this approach less

useful. Often simply transferring the data to the client side

will be faster. In [67] verification objects VO are deployed

to authenticate simple data retrieval in “edge computing”
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scenarios, where application logic and data is pushed to

the edge of the network, with the aim of improving avail-

ability and scalability. Lack of trust in edge servers man-

dates validation for their results – achieved through verifica-

tion objects. In [46] Merkle tree and cryptographic hashing

constructs are deployed to authenticate the result of simple

range queries in a publishing scenario in which data owners

delegate the role of satisfying user queries to a third-party

un-trusted publisher. Additionally, in [56] virtually identi-

cal mechanisms are deployed in database outsourcing sce-

narios. [31] proposes an approach for signing XML docu-

ments allowing untrusted servers to answer certain types of

path and selection queries.

Sion has explored query correctness by considering the

query expressiveness problem in [71] where a novel method

for proofs of actual query execution in an outsourced

database framework for arbitrary queries is proposed. The

solution is based on a mechanism of runtime query “proofs”

in a challenge - response protocol built around the ringer

concept first introduced in [39]. For each batch of client

queries, the server is “challenged” to provide a proof of

query execution that offers assurance that the queries were

actually executed with completeness, over their entire target

data set. This proof is verified at the client site as a prereq-

uisite to accepting the actual query results as accurate.

While many of these efforts have produced efficient

query correctness verification mechanisms for specific

kinds of queries, unique approaches are required for dif-

ferent queries. Moreover, it has proven difficult to simul-

taneously provide correctness and privacy with these tech-

niques, since the construction of a query verification object

typically requires knowledge of the query. To simultane-

ously ensure query correctness, query privacy, and database

privacy for fully general queries (on relational or other types

of databases), we instead verify only the updates. We guar-

antee that clients have correct views of the database, thus

ensuring they also obtain correct query results.

Database Integrity and Audit Logs. In a different ad-

versarial and deployment model, researchers have also pro-

posed techniques for protecting critical DBMS structures

against errors [54, 68]. These techniques deal with cor-

ruptions caused by software errors. In work on tamper

proof audit logs by Snodgrass et al.[52, 70] introduces the

idea of hashing transactional data with cryptographically

strong one-way hash functions. This hash is periodically

signed by a trusted external digital notary, and stored within

the DBMS. A separate validator checks the database state

against these signed hashes to detect any compromise of

the audit log. If tampering is detected, a separate forensic

analyzer springs into action, using other hashes that were

computed during previous validation runs to pinpoint when

the tampering occurred and roughly where in the database

the data was tampered. The use of a notary prevents an ad-

versary, even an auditor or a buggy DBMS, from silently

corrupting the database.

This notion of a cryptographically protected log provides

the framework for our solution. Rather than using an au-

dit log to identify errors, however, we use an update log

stored by an untrusted party as the authoritative version of

the database; the cryptographic hash properties are used to

prevent tampering by the untrusted party. Our log does not

protect from software bugs in the DBMS, as audit logs tra-

ditionally do, since our logs store only a list of updates, not

checksums on the contents.

Encrypted Storage. Encryption is one of the most com-

mon techniques used to protect the confidentiality of stored

data. Several existing systems encrypt data before storing it

on potentially vulnerable storage devices or network nodes.

Blaze’s CFS [22], TCFS [27], EFS [61], StegFS [59], and

NCryptfs [76] are file systems that encrypt data before writ-

ing to stable storage. NCryptfs is implemented as a layered

file system [43] and is capable of being used even over net-

work file systems such as NFS. SFS [40] and BestCrypt [47]

are device driver level encryption systems. Encryption file

systems are designed to protect the data at rest, yet only par-

tially solve the outsourcing problem. They do not allow for

complex retrieval queries or client access privacy.

Integrity-Assured Storage. Tripwire [49, 50] is a user

level tool that verifies file integrity at scheduled intervals

of time. File systems such as I3FS [48], GFS [35], and

Checksummed NCryptfs [72] perform online real-time in-

tegrity verification. Venti [69] is an archival storage system

that performs integrity assurance on read-only data. Myk-

letun et al.[63, 64] explore the applicability of signature-

aggregation schemes to provide computation- and commu-

nication efficient data authentication and integrity of out-

sourced data.

In integrity-protected random-access storage, significant

computational overhead is typically required prevent roll-

back attacks, in which an adversary replaces a portion of

the data with an older version. The party intending to detect

such an attack may need a proof of the latest versions iden-

tifier of all stored data, for example. We avoid this overhead

since each client keeps track of this information in a locally

stored copy. We are then left with only the task of ensur-

ing a consistent version sequencing on updates, which we

provide using a hash chain.

Keyword Searches on Encrypted Data. Song et al.[73]

propose a scheme for performing simple keyword search

on encrypted data in a scenario where a mobile, bandwidth-

restricted user wishes to store data on an untrusted server.

The scheme requires the user to split the data into fixed-

size words and perform encryption and other transforma-

tions. Drawbacks of this scheme include fixing the size of

words, the complexities of encryption and search, the in-

ability of this approach to support access pattern privacy,
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or retrieval correctness. Eu-Jin Goh [36] proposes to asso-

ciate indexes with documents stored on a server. A docu-

ment’s index is a Bloom filter [23] containing a codeword

for each unique word in the document. Chang and Mitzen-

macher [28] propose a similar approach, where the index

associated with documents consists of a string of bits of

length equal to the total number of words used (dictionary

size). Boneh et al.[24] proposed an alternative for senders to

encrypt e-mails with recipients’ public keys, and store this

email on untrusted mail servers. Golle et al.[38] extend the

above idea to conjunctive keyword searches on encrypted

data. The scheme requires users to specify the exact posi-

tions where the search matches have to occur, and hence is

impractical. Brinkman et al.[26] deploy secret splitting of

polynomial expressions to search in encrypted XML.

We find we can efficiently (and trivially) achieve the

spirit of this goal – running searches with full privacy on

“outsourced” data – by adjusting the model to redefine “out-

sourced”. Specifically, we provide a model that achieves the

bulk of the cost savings of outsourcing while retaining the

performance benefits of locally managed data.

3 Model
We provide details of the participants in this protocol, the

required transaction semantics, and the cryptographic prim-

itives employed.

Parties

Provider/Server. The provider owns durable storage, and

would like to provide use of this storage for a fee. The

provider, being hosted in a well-managed data center, also

has high availability. We will investigate ways that clients

can make use of these attributes.

Since the provider has different motivations than the

clients, we assume an actively malicious provider. How-

ever, we do not try to prevent denial of service behavior

from the provider. There are techniques beyond the scope

of this paper, that can be employed to help clients detect

denial of service behavior, such as attaching timestamps to

messages to measure server latency.

Clients. In our model, the clients are a set of trusted parties

who must run transactions on a shared database with full

ACID guarantees. Since storage is cheap, each client has a

local hard disk to use as working space; however, due to the

fragile nature of hard disks, we do not assume this storage is

permanent. Additionally, the clients would like to perform

read queries as efficiently as possible without wasting net-

work bandwidth or paying network latency costs. Each of

the trusted parties would also like to be able to continue run-

ning transactions even when the others are offline, possibly

making use of the provider’s high availability.

The clients would like to take advantage of the durability

of the provider’s storage, but they do not trust the provider

with the privacy or integrity of their data. Specifically, the

provider should observe none of the distributed database

contents. We define a notion of consistency between the

clients’ database views to address integrity. It is not imper-

ative that all clients see exactly the same data as the other

clients at exactly the same time, however, they need to agree

on the sequence of updates applied. We define tracec,i to

be the series of the first i transactions applied by client c

to its local database copy. Clients c and d are considered

i-trace consistent if tracec,i = traced,i.

In some scenarios the provider might be able to parti-

tion the set of clients, and maintain separate versions of

the database for each partition. This partitioning attack has

been examined in previous literature; if there are non-inter-

communicating asynchronous clients, the best that can be

guaranteed is fork consistency [53]. Any adopted solution

should guarantee that the data repository is fork consistent;

that is, all clients within a partition agree on the repository

history. This is not as weak of a guarantee as it may ap-

pear to be on the surface, as once the provider has created

a partition, the provider must block all future communica-

tion between partitioned clients, or else the partition will be

immediately detected.

We assume that clients do not leak information through

transaction timing and transaction size. Clients in real life

may vary from this with only minimal loss of privacy, but

we use a timing and size side-channel free model for illus-

tration purposes.

The first part of this paper assumes a potentially mali-

cious provider, but trusted clients. Section 6.1 relaxes this

assumption to provide protection against not only a poten-

tially malicious provider, but against malicious clients at the

same time.

Transaction Semantics

We provide a general protocol that supports nearly any class

of transaction. Transactions can be simple key-value pair

updates, as in a block file system, or they can be full SQL

transactions. Clients can even buffer many local updates

over a long period of time, e.g. when the client is discon-

nected, and then send them as a single transaction. The

only requirements for using this protocol is that the under-

lying transaction-generating system provide the following

interface:

RunAndCommitLocalTransaction(Transaction T )

applies transaction t to the local database and commits

it.

DetectConflict(TransactionHandle h, Transaction

C) returns true if the external (program-visible) out-

come of Transaction Th would have been different had

transactionC been issued before Th. It does not matter

whether the local database contents would be different;
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all that matters is whether the transaction issuer would

care.

Retry(TransactionHandle h) rolls back all changes (in

the local database, and any side-effects external to

the database) for uncommited transaction Th and reat-

tempts the transaction.

RollbackLocal(TransactionHandle h) rolls back local

database changes from uncommited transaction Th.

We provide the following interface to the transaction-

running system:

DistributeTransaction(Transaction T , Transac-

tionHandle h) returns once transaction T has been suc-

cessfully committed to the global database image. Im-

plementations of this command will invoke the call-

backs above.

Conflicts

In the protocols described later, multiple clients will simul-

taneously run transactions that ultimately end up in a dif-

ferent order than the clients see. Therefore, we define the

notion of conflicts to indicate whether this re-ordering af-

fects the client computation.

We say transactions a and b conflict if changing the or-

der of these transactions affects the return value of one of

the operations, or the client state that results from executing

these operations.

For example, if this system represents a block file sys-

tem, clients may abort transactions that read the value of

a block that is written in a prior, pending transaction. If

this system represents a relational database, clients may use

row-based or table-based conflict detection. Alternatively,

some transactions could be implemented as PL/SQL pro-

cedures that avoid sending any values back to the initiator,

avoiding any possibility of conflicts altogether!

For correctness, there must be no false negatives returned

by the DetectConflict command (no client decides

its transaction is safe based on the transaction list, when

it in fact is not). Of course, the definition of safe transac-

tions depends on the particular implementation. For optimal

performance, the number of false positives returned by the

DetectConflict command must also be low.

We require several cryptographic primitives with all the

associated semantic security [37] properties: (i) a secure,

collision-free hash functionwhich builds a distribution from

its input that is indistinguishable from a uniform random

distribution (we use the notation h(x)), (ii) an encryption

function that generates unique ciphertexts over multiple en-

cryptions of the same item, such that a computationally

bounded adversary has no non-negligible advantage at de-

termining whether a pair of encrypted items of the same

length represent the same or unique items, (iii) a pseudo

random number generator whose output is indistinguishable

from a uniform random distribution over the output space,

and (iv) a recursive hash chain construction used to incre-

mentally build a secure hash value over a sequence of items.

The first part of this paper assumes a potentially mali-

cious provider, but trusted clients. All transactions are en-

crypted by a symmetric key shared by the set of clients, and

kept secret from the provider. Message authentication pre-

vents tampering, and the use of a versioning structure guar-

antees database cache consistency. A strawman protocol

begins to reveal the solution by providing the security guar-

antees trivially using a global lock (Section 4). Our main

result is a protocol providing these guarantees using an op-

timistic wait-free protocol (Section 5). We then describe

several extensions to this protocol, including in Section 6.1

protection against not only a potentially malicious provider,

but against malicious clients as well. Finally, our imple-

mentation shows how this protocol can be layered on top of

existing SQL-based relation database management systems

while obtaining practical performance overheads.

4 Strawman: Outsourced serializa-

tion and durability with a global

lock
We start by illustrating the main concepts through a straw-

man protocol that allows multiple clients to serialize their

transactions through an untrusted server – transaction atom-

icity being guaranteed through a single global lock. Natu-

rally, in practice, global locking is not a viable option as it

would constitute a significant bottleneck. Our main result,

described in Section 5, is optimistic and lock-free.

An encrypted transaction log is the central data struc-

ture in all versions of this model. This log is the definitive

representation of the database; the protocols described here

simply allow clients to append to this log in a safe, parallel

manner while preventing the potentially malicious provider

from interfering with operations on the log.

At a high level, in this strawman protocol, clients main-

tain their own copy of the database in local temporary stor-

age. They performs operations on this copy and keeps it

synchronized with other clients. Clients that go offline and

come back online later, obtain a client-signed replay log

from the untrusted server in charge of maintaining the log.

4.1 Transaction Protocol: lock-based

DistributeTransaction’ proce-

dure

Informally, to run a transaction a client (1) “reserves” a slot

in the permanent transaction log, (2) waits for the log to

“solidify” up to its assigned slot, (3) runs the transaction,

(4) “commits” that slot by sending out a description of the

5



transaction to the untrusted server. The untrusted server

then archives and distributes this encrypted transaction.

1. The client issues a “request slot” slot reservation com-

mand to server, along with a number l representing the

last slot the client knows about (has seen updates for).

The server assigns the next available transaction slot s

to the client. The server sends back to the client this

slot number s, with a list of all commits since the last

update Tl received by the client, Tl+1 . . . T j. Note that

j < s − 1 if there are clients reserving slots that have

not yet committed at the instant the server issues this

response.

2. The client blocks until all transactions in slots be-

fore its assigned slot have committed (i.e., until it

has received Ts−1). The client continues to re-

ceive all Tj+1 . . . Ts−1 updates from the server as

they come in. The client verifies certain check-

sums and authentication tokens (hash chain and

signatures, see below) on each commit, then ap-

plies it also to its local database copy (using

RunAndCommitLocalTransaction) in sequen-

tial order.

3. Once the client has received Ts−1, it has in effect ob-

tained a global lock, since all other clients are now

waiting for it to perform a transaction. The client

now runs its own transaction on the local copy of the

database.

4. The client commits (relinquishing the lock) by sending

a complete encrypted description of the transaction up-

dates Ts back to the server (which will relay it back to

the other clients).

Finally, each client c applies transaction Ti (using

RunAndCommitLocalTransaction) to its database

once all the following conditions hold: (i) the contents

of Ti have a valid signature from a valid client (using

client-shared symmetric key K), (ii) the client has ap-

plied transactions T1 . . . Ti−1, and (iii) the hash chain link

Ti−1.hashchain matches the client’s own computation of

link HCi−1.

Each transaction Ti is encrypted and signed using a sym-

metric key K shared by all clients. It contains the following

fields:
desc a transaction description, e.g., a se-

quence of SQL statements

hashchain signed hash chain link HCi−1, ver-

ifying the sequence of transactions

T1 . . . Ti−1

HCi is calculated as Hk(HCi−1||Ti−1), and HC0 =
Hk(∅).

hashchain := Hk(∅)
hashchain pos := 0

k := ClientSharedKey

Global variables

Result: Retrieves and runs the next waiting transaction

t := server getNextTransaction()

if !verifySignature(t) then
return ⊥

end

T := decrypt(t)

if T.hashchain != hashchain then
return ⊥

end

RunAndCommitLocaltransaction(T.desc)

hashchain := Hk(hashchain || T.desc)
hashchain pos ++

Procedure GetIncomingTransaction

Result: Initiates a transaction

s := server requestSlot()

while hashchain pos < s-1 do
GetIncomingTransaction()

end

RunAndCommitLocalTransaction(d)

T := new Transaction

T.desc := d

T.hashchain := hashchain

server commit(Enc(k,T))

Procedure DistributeTransaction’(d)

4.2 Correctness

We now show that this protocol is correct and offers fork

consistency: all clients are trace consistent (their transaction

traces are identical) as long as the server has not partitioned

the clients. If the server has partitioned the clients, then all

clients within a partition will be trace consistent.

Theorem 1. If client c applies an update Ti of client d, then

clients c and d are i-trace consistent.

Proof. Assume that client c has applied Ti from client d,

but suppose that tracec,i differs from traced,i. W.l.o.g.

assume that at position a, tracec,i contains transaction Ta

while traced,i has a different value T ′

a. Client c’s computa-

tion ofHCa therefore differs from client d’s computation of

HCa, since it involves a collision-free hash function. Addi-

tionally, the collision-free property guarantees that any later

link in these hash chains will also differ, and client c’s com-

putation of HCi−1 differs from client d’s computation of

HCi−1. Since client c has applied Ti, it had to have suc-

cessfully verified that Ti did indeed originate from client d.
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However, as a pre-condition to client c applying Ti, the hash

chain link Ti−1.hashchain, which is client d’s computation

of HCi−1, matches client c’s own calculation of HCi−1,

giving us a contradiction.

4.3 Privacy

Without knowledge of the shared symmetric key K , the

server is unable to obtain any information from the en-

crypted transaction descriptions, aside from timing and size.

Transaction slot requests contain no additional information.

5 Lock-free outsourced serialization

and durability
The obvious disadvantage to the above protocol is that it

requires a global lock, restricting transaction processing as

only one client may be active at a time. We now remove

all locking from the protocol described above, and replace

it with an optimistic conflict-detection mechanism. This al-

lows clients to run transactions simultaneously, but adds the

requirement that transactions are rolled back and reissued

in the case of conflicts.

At an overview level, this protocol works as follows.

Clients first issue an (encrypted) notification of their pend-

ing transaction, relayed to the other clients through the un-

trusted server. This contains enough information to allow

other clients to determine whether it will cause a conflict

with their own pending transactions. After this notification

(“pre-commit”), clients then check to see if their pending

transaction conflicts with any transactions scheduled to run

before theirs. If not, they issue the commit; otherwise they

retry with a new request. As in the previous protocol, clients

maintain a transaction hash chain to guarantee consistency

for misbehaving servers.

5.1 Transaction Protocol: lock-free

DistributeTransaction proce-

dure

In this solution, running a transaction entails the following

steps, outlined in figure 1:

1. The client simulates the intended transaction on its lo-

cal database copy, then undoes this transaction on its

own database copy. (Issuing the RollbackLocal

client command defined in the Model section). It will

properly apply the transaction only once it has applied

the pending transactions first.

2. Once ready to commit, the client issues the “Request

slot” command to the server, attaching an encrypted

pre-commit transaction description P of its intended

transaction, and the slot number l which is the latest

the client knows about.

3. The server allocates a slot s, and sends back a list of all

new pre-commit descriptions Pl . . . Ps−1 up to s. The

server may choose to also send any previously com-

mitted transactions that the client hasn’t seen yet at this

point (e.g., this is the case if the client just joined or has

been down for a while).

4. The client verifies the signatures on each pre-commit,

and checks whether its transaction conflicts with these

pre-committed transactions (conflict semantics were

discussed in Section 3). E.g., a conflict occurs with

pre-commit Pj , l < j < s if the external state

would be different depending on which of Pj or Ps

is run first (the DetectConflict command identi-

fies these conflicts). If there are no conflicts, the client

commits by sending a final encrypted transaction com-

mit Cs. If there are conflicts, the client still sends the

commit Cs, but sets its abort flag first (see below). In

the case of a conflict, the client also rolls back the ex-

ternal effects of running the transaction locally (using

the Retry command).

5. The server commits by logging the encrypted transac-

tion to permanent storage. It informs all other clients

about the new transaction by sending the final en-

crypted transaction Cs.

The pre-commit transaction description Pi con-

tains the following information, encrypted and signed

with the symmetric key K shared by all clients:

desc a transaction description, e.g., a se-

quence of SQL statements

The final encrypted, signed transac-

tion Ci contains the following information:

commit a single bit indicating whether this

is a commit or an abort

pre-hashchain hash chain link HCPrei, verify-

ing the sequence of pre-commits

P1 . . . Pi.

Note that when issuing commit i, the client has seen all

pre-commits up through i, because the precommits up to i

are returned when the client is assigned slot i. However,

the client may not have yet seen all commits up to i when

issuing this commit Ci.

Client c applies transaction i (invoking client com-

mand RunAndCommitLocalTransaction, originat-

ing from client d, once the following conditions hold: (i)

the contents of Pi and Ci have a valid signature from a

valid client (using client-shared symmetric key K), (ii)

Ci.commit indicates this is a committed transaction (not

aborted), (iii) the client has applied transactions 1 . . . i − 1,
and (iv) the hash chain link Ci−1.pre-hashchainmatches the

client’s own computation of link HCi−1 A pseudocode ap-

proximation of these steps is included for reference.
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Figure 1. Performing an update: overview of DistributeTransaction execution, providing lock­

free outsourced serialization and durability

prehashchain[] := [Hk(∅)]
links := 0

Global variables

Result: Verifies and runs the transaction, reported by

the server

if !verifySignature(p) or !verifySignature(c) then
return ⊥

end

P := decrypt(p)

C := decrypt(c)

if prehashchain[id] != T.prehashchain then
return ⊥

end

if id == links+1 then
prehashchain.append(Hk(prehashchain[links] ||
T.desc))

links++
end

if C.commit then
RunAndCommitLocaltransaction(T.desc)

end

Procedure IncomingTransaction(p,c,id)

We note that this protocol is wait-free: if a client re-

serves a slot, sends its pre-commit but never completes,

other clients can still perform transactions as long as they

never access uncommitted data.

5.2 Correctness

We can again prove “fork consistency” for clients, as in the

locking version. The difference here is that clients must

agree on both Ci and Pi (the commit/abort status). Fortu-

nately, only the client that issued Ci is allowed to issue Pi,

so the proof follows.

Result: Runs a transaction initiated locally

RollbackLocal(h)

P := new Pretransaction

P.desc := T

s,pending :=

server requestSlot(EncK(P),prehashchain.length)

conflict := false

foreach p,id ∈ pending do

if !verifySignature(p) then
return ⊥

end

pid := decrypt(p)

prehashchain.append(Hk(prehashchain[links] ||
T.desc)

links++

if DetectConflicts(h, pid.desc) then
conflict := true

end

end

c := new Commit

c.commit := !conflict

c.prehashchain := prehashchain

server commit(EncK(c))

if conflict then
return Retry(h)

end

Procedure DistributeTransaction(T, h)

Theorem 2. If client c ever applies an update Ti of client

d, clients c and d are i-trace consistent.

Proof. Assume that client c has applied transaction i from

client d, but suppose that tracec,i differs from traced,i at

position a. There are two possible ways in which tracec,i

could differ from traced,i. Either the transaction descrip-

8



tion Pa.desc differs between clients, or the commit status

Ca.commit differs. If the transaction description differs,

then this reduces to logic in Thereom 1: there is a hash

function collision. Now consider the second case, that the

commit status Ca.commit differs between two clients. The

Ca.commit is obtained in a signed message from the client

originating transaction a; therefore, since we assume clients

follow the protocol, the originating client has signed two

separate commit statements for the same transaction. Thus,

the client has misbehaved, which contradicts our assump-

tion of correct client behavior.

In summary, we guarantee fork consistency in the pres-

ence of a potentially malicious server using a shared hash

chain. If two views of the ordered list of transactions ever

differ between two clients, this will result in the shared hash

chain diverging at the point of the inconsistency. This proof

assumes correct clients. Section 6.1 shows how to prevent

misbehaving clients from causing inconsistencies.

5.3 Privacy

In the absence of timing attacks, content, read/write access

patterns and transaction dependencies are hidden from the

server. This follows by construction as the contents of all

messages are encrypted.

5.4 Forward Progress

Clients running this protocol will never deadlock, as long as

they are not blocking for any external resources, since there

is always the ability to make progress. This is evident since

each transaction depends only on the transactions preceding

it; the serialization numbers ensure there can never be any

circular dependencies. At any point in time, there is always

at least one transaction, at the front of the list, without any

pending transactions to interfere.

For clients that are waiting on external resources, we

can guarantee they will avoid deadlock as long as they only

hold external resources (directly or indirectly) that are not

needed by prior, pending transactions. That is, our serial-

ization technique assigns all transactions an ordering that

makes it easy to prevent external resource deadlock as well.

“Livelock” and starvation are relevant concerns, how-

ever, and their applicability will depend on particular imple-

mentations. If a client detects it is being continually starved

(i.e., there are always pending conflicting transactions), one

solution is to block while waiting for the transaction chain

to solidify up to a particular slot, since forward progress

is guaranteed for the pending transactions. Conversely, a

client must never block for a transaction past its slot. This

forward independence prevents deadlock, and it also gives

flexibility to client implementations; if a client needs a lock

on a set of records, for example, it can request a transaction

slot, then block until all transactions prior to the slot are

committed. The client can then perform reads and writes

with the equivalent of a lock. Meanwhile, other clients can

prepare transactions to run in the future, under the restric-

tion that their transactions do not conflict with the pending

transaction.

Random backoff is an alternate solution. This will let

clients escape from livelock, but since it requires participa-

tion from multiple parties, it will not help starved clients.

Overall, blocking is simpler and more effective at breaking

a cycle.

5.5 Client Initialization

When a new client comes online, there may be a long list of

updates it must apply from the transaction log. To the time

required for client initialization, we recommend clients cre-

ate and sign periodic database snapshots, up to any partic-

ular transaction number. The untrusted server hosts these

database snapshots, which can be used by clients to recover

a particular version of the database. The remaining uncov-

ered portion of the log is then used to get fully up to date.

Database snapshots can similarly be used to reduce the

storage requirements of the untrusted provider. Once a

snapshot of version i exists, the transaction log entries from

0 to i can be discarded. Using database snapshots in com-

bination with the transaction log to allow faster recovery is

a traditional DBSM method in common use.

5.6 Privilege Revocation

Depending on the particular implementation, it may also

be useful for the decision to revoke access from a client to

be made externally, by a trusted party/system administrator,

or internally, by a quorum of clients. Once the remaining

clients agree to revoke access, they choose a new symmet-

ric encryption key. Additionally, clients agree on a slot at

which the client is considered terminated. This termination

point can be determined by a system administrator, or by a

quorum of clients. Modifications to the database after this

slot, by the terminated client, are all rejected (ignored) by

everyone else. Incomplete transactions are easy to discard

once the remaining clients can come to an agreement about

which are incomplete.

After revocation, the only abilities retained by the ter-

minated client from its former access is read access on the

database for transactions before the termination point, and

potentially the ability to cause denial of service. To remove

the advantage the revoked client has in performing a de-

nial of service attack on the database, the service provider

should be notified. This operation is not strictly necessary,

since we still provide correctness even when the revoked

client and the storage provider are colluding.

6 Protocol extensions

We now briefly describe several protocol extensions.
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6.1 Malicious clients

We describe here a simple extension to the lock-free proto-

col that allows us to prevent a malicious client from bring-

ing the rest of the system into an inconsistent state. Pre-

venting data overwriting by a malicious client is a separate

concern, that can be addressed at the database access con-

trol level.

To detect malicious client behavior before the system be-

comes inconsistent, we require two modifications. First,

we extend the transaction integrity checks to include non-

repudiation, so that each message is traced back to the issu-

ing client. Specifically, we can replace the symmetric MAC

function with a public key signing system. This prevents

one client from impersonating another, and is required both

to enforce the access control policy, and to gain account-

ability if incorrect behavior is detected.

The pre-commit hash chain already ensures that all

clients agree on the pending transaction; to additionally pro-

tect from misbehaving clients colluding with the server, we

simply need to ensure that all clients also agree on the com-

mit/abort status of each transaction.

Since our protocol is lock-free and wait-free, clients will

not necessarily know the commit/abort status of every trans-

action prior to their own as they issue a commit. There-

fore, we employ a delayed-verification mechanism: as part

of commit Ci, the client includes the following items: (i)

commit-hashchain-position= the position j < i of the last

element in the chain this client can build (i.e., this client has

received C1 . . . Cj but has not yet received Cj+1), and (ii)

commit-hashchain= The value of hash chain element j.

Clients must also cache some prior hash links in or-

der to verify the link included with commit Ci, since

Ci. commit-hashchain-position might be less than i − 1.
This cache size can be configured, and for most transaction

scenarios it is likely safe to keep only a few entries.

Note this provides a slightly weaker guarantee concern-

ing the status of commit/abort. In the presence of a mali-

cious client colluding with the server, clients c and d will

not necessarily be k-trace consistent. However, after both c

and d have applied the inconsistent transaction j, the next

update issued by client d (which must contain a commit-

hashchain-position ≥ j) will reveal the inconsistency to

client c.

Theorem 3. If clients c and d behave correctly, and client

c has applied transaction j and issued a transaction for slot

k > j, and client d applies the update at k from client c,

then c and d are j-trace consistent.

Proof. Assume that client d has applied update k from

client c. Thus, client d’s computation of HC(k)
agrees with Ck.pre-hashchain, and the contents of the

transactions are consistent; the inconsistency is there-

fore in the commit/abort status of transaction j. Since

client c applied transaction j before issuing update k,

Ck. commit-hashchain-position ≥ j. Similarly, since

client d has applied transaction i, client d verifies that

Ck. commit-hashchain matches their own computation of

that chain link. However, since these two chain links have

different values as inputs (one indicating that transaction j

committed, and one indicating it did not), there is a hash

function collision.

In summary, we prevent malicious clients from causing

inconsistency using an access control policy framework to

limit data damage, non-repudiability of messages to prevent

cross-client impersonation, and an additional hash chain to

ensure clients agree on transaction commit/abort status.

6.2 Lowering transaction latency

We can reduce the number of network round trips required

for a transaction commit from two to one by eliminating

the commit messages Ci, as long as all clients have iden-

tical conflict detection logic. If we add another field to Pi

indicating the last transaction the submitter has applied to

its local database copy before this attempted transaction,

other clients have enough information to determine the con-

flict status of this transaction! Thus, the commit flag in

Ci.commit is redundant, at the expense of performing the

conflict detection across all clients instead of just one.

The hash chain confirmation Ci.pre-hashchain will need

to be placed in Pi, while adding another field Ci.pre-

hashchain-location, since the submitter does not have

enough information to build the entire pre-commit hash

chain at this point. Thus, inconsistency checking is delayed

slightly, and it requires longer to detect malicious behav-

ior. Specifically, an inconsistency introduced to two server

misbehavior will be detected only once a client that has ap-

plied the inconsistent transaction has sent a later update out

to other clients who have seen a different transaction in that

slot. This is guarantee about detecting server misbehavior

in this section is similar to the guarantee about detecting

client misbehavior in 6.1.

In conclusion, a simple modification to this protocol im-

proves transaction latency by eliminating the commit mes-

sage, at the expense of slightly more client computation

time and slightly weaker consistency guarantees.

6.3 Large databases

So far we have not discussed the issue of local space limi-

tations. We assumed up to now that clients can fit the en-

tire database in local (volatile) storage, so that they can run

queries without any help from other parties. If this is not

the case, protocol extensions are necessary to allow clients

to run queries. We discuss several mechanisms below.

On-demand data. Clients can use a separate query

protocol to pull pieces of recent database snapshots from

other clients, or authenticated database snapshots directly
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from the provider. This work-around has two drawbacks:

first, access pattern privacy is forfeited if clients query the

provider directly for only portions of the database. Second,

performance suffers since sections of the database must

travel the network multiple times.

Large object references. If clients can fit the database

except for a set of large objects, the client can fetch these

encrypted objects from the provider using a separate proto-

col. Access pattern privacy to these objects is lost, however

access pattern privacy to the database indexes is preserved.

In practice, privacy to the indexes is the most important part

of privacy, since the indexes are subject to the largest se-

mantic leaks, since positions within the index are correlated

to contents of the database itself. Thus, this technique offers

a useful privacy/storage tradeoff.

Performancewill be mostly unharmed by the large object

references work-around, as long as the bulk of the transac-

tion processing work concerns only index data. The client’s

available storage is well suited for caching some of the most

popular items, so most objects will only traverse the net-

work a small number of times under most usage patterns.

This technique suggest a modification to the transaction

protocol to improve performance, to surpass in some sce-

narios even the performance of the original model: for op-

erations on set of large objects, clients announce the writes

in the transaction log, but include only a hash of the large

object content. This way, since the large object content is

excluded from the transaction log, clients will not download

the large objects at all, unless they are specifically needed

for a query.

The only modification to the transaction protocol nec-

essary to perform this operation is that clients include the

object ID and a hash of the object content, as the content in

the transaction field. Thus, the link (with a checksum and

version) to the object is the stored content in the log and

databases, and the object itself is an external entity. Clients

treat the external object as if the updates occur when the

link occurs in the transaction log, with naturally following

semantics for transaction aborts and so forth.

Large object references with PIR. A Private Informa-

tion Retrieval algorithm can be used to retrieve these large

objects without revealing which objects are being retrieved,

as long as the PIR algorithm does not reveal the size of the

object, or the size of the object is not unique enough to allow

an access pattern privacy-defeating correlation between the

objects. The advantage of the overall scheme in this context

is that access pattern privacy is preserved efficiently for the

bulk of the computation; when large objects are retrieved

(presumably less frequently), the more expensive PIR (such

as [75]) is employed to preserve access pattern privacy.

The key to the practicality of all of these alternatives is

that all the database indexes required to satisfy a particular

query can fit simultaneously on a client, and that the client

has enough working memory to perform the necessary joins

efficiently. In practice we believe many databases are of a

suitable form, with the bulk of the space consumed by large

objects that do not need to be retrieved to compute joins.

6.4 Expiring Slots

There is a potential denial of service behavior if a client re-

serves a transaction slot but never commits; no transactions

past this slot will be applied. A potential solution is using

“mortal locks” that expire.

The following scenario outlines a method by which

clients can safely delete expired locks: a pre-transaction re-

served slot is only useful for a predetermined amount of

time, specified by the client as it reserves its slot (or set as

parameter). Clients timestamp the pre-transaction.

If this time has expired, and the transaction is still in the

pre-transaction phase, any client is now allowed to abort

this transaction. The client desiring to abort the transaction

simply issues to the storage provider an abort entry for this

slot, which is then appended to the transaction log. The

provider ensures that only the abort or the commit are ap-

pended to the log. The provider decides race conditions, and

one of the operations will fail if both the abort and commit

are issued. Clients can guarantee consistent provider be-

havior in filling these new obligations, by using transaction

hash chains as before: if the (untrusted) provider ever ac-

cepts both the abort message and the commit for a particu-

lar transaction, it will be obvious from the conflicting hash

chains once the provider sends updates out (thus maintain-

ing fork consistency).

6.5 Vague Pre-commit

We describe an extension here that allows clients to issue

vague pre-commits, determining the final transaction con-

tents only after their request slot has been reserved. This

technique allows improved performance in certain conflict-

heavy scenarios, by giving clients the flexibility to choose

their transaction after they are informed of current opera-

tions. Clients might choose to modify their transaction to

avoid conflicts, as an example.

In the above described lock-free protocol, clients submit

a pre-commit indicating their pending transaction, then is-

sue a commit or abort on this transaction after checking for

conflicts. With an extension we can allow the commit ver-

sion of the transaction to differ from the pre-commit ver-

sion, adding the following field to the commit message Ci:

description The actual transaction to run (in-

stead of the Pi.description

The only requirement added is that Ci.description be a

“subset” of Pi.description. That is, any conflict that the fi-

nal commit Ci might cause with future transactions would

also be caused by the pre-commit Pi.description. With

this requirement enforced, all client behavior is identical

to what it would have been if the original Pi.description
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was Ci.description, with the exception that there might be

more aborts than otherwise. This requirement ensures con-

sistency.

Additionally, in the malicious client scenario, it is re-

quired that all clients can determine whether any com-

mit Ci.description is indeed a subset of the pre-commit

Pi.description, as they don’t trust the issuer to make that

declaration.

7 Implementation and Experiments
Strawman Implementation (ODP). We built a proof-of-

concept strawman implementation of the Outsourced Dura-

bility Protocol (ODP) using different components in Java,

Python and C. The implementation handles SQL queries

and relational data sets and runs on top of MySQL 5.0

[16], though with minor modifications we can support other

RDBMS’s. The protocol enables parties with low uptime

to keep databases synchronized through a single, untrusted

third party that has high uptime. Thusly we allow safe

outsourcing of both data backups and data synchronization

through an untrusted provider.

In our particular setup we aimed towards simplicity

rather than performance, giving each client application its

own connection to a single database in the client’s cluster.

These connections are filtered through a proxy, which cap-

tures queries for our protocol to ensure proper propagation

and conflict avoidance. Each cluster runs a single process

that communicates with an untrusted service provider con-

duit through symmetric XML-RPC channels.

To filter queries we use MySQL Proxy [51], an open

source scriptable tool built by the creators of MySQL, al-

lowing capture and insertion of SQL queries and database

responses. This simple setup shows that we can deploy

quickly on existing systems while obtaining reasonable per-

formance; a tailored solution would improve overhead by

eliminating the numerous process forks, file writes, and

TCP connections initializations in every transaction in the

simple strawman implementation.

Strawman: Throughput Experiments. We performed

experiments aimed at understanding the throughput behav-

ior of our mechanisms. Given their network-dependent na-

ture we focused on understanding how network characteris-

tics impact performance.

The experimental setup consists of an (untrusted)

“server” and several “clients” connected directly through a

1Gbps router. The server is a Dell PowerEdge 2850 running

Centos 4.1 with 4 Dual core Xeons and 4GB RAM, The

clients were Lenovo Thinkpads with an Intel Pentium Core

2 Duo 1.8GHz CPU running Redhat Fedora 9, and Pentium

4 Redhat Fedora 8 desktop machines. We measured overall

throughput in a setting where the two clients simultaneously

issued transactions to the server running our ODP software,

connecting to a MySQL database through MySQL Proxy
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Figure 2. Query throughput in transactions

per second vs. link latency, with log scale

axes. BothMySQL andODPquickly converge
to a relationship inversely proportional to link

latency.

[51]. As a baseline control setup we ran the same clients

connected directly to the server-hosted MySQL database.

We soon discovered that in this setup the 1GBps network

bandwidth is easily surpassing the processing ability of our

baseline, thus we focused mainly on understanding the be-

havior of ODP vs. baseline MySQL as a function of net-

work latency. To this end we modulated network latency

at the kernel level using the NetEm [44] network emulation

tool, which delays packets in the outgoing network queue1

Figure 2 shows the throughput in queries per second

obtained using a remote MySQL database with no server

guarantees, and the throughput obtained in our strawman

ODP implementation with full privacy and correctness as-

surances. We vary link latency from 0.1ms to 100ms, sam-

pling at decreasingly frequent intervals to suit the log scale

X axis.

From Strawman to Efficient Prototype. The strawman

ODP implementation could support over 30 queries per sec-

ond with full assurances. We believe this throughput can be

increased by at least one order of magnitude by an industry

level prototype which would consider the following bottle-

necks of the strawman solution.

Multiple process forks. We used Java to manage all

the communication aspects, as its pre-existing constructs re-

duce coding and debugging time. Additionally, a C-based

Lex/Yacc parser was the most natural mechanism to detect

1Effective bandwidth was also slightly decreased by the latency, since

the TCP window sizes are fixed.
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conflicts between SQL transactions. To obtain the most

functionality in the shortest amount of time, we decided

to launch a new Lex/Yacc based conflict detection process

from Java for every SQL statement. The result is that we

incur several process forks for each processed transaction,

launching both a shell and the parser once for each state-

ment in each transaction on each client. Additionally, the

conflict detection operates as a separate C-based executable.

While process forks themselves are relatively cheap, incur-

ring several in succession while the client waits for the com-

mit creates a low performance cap. We profiled the time

required to launch a shell and application at approximately

2ms – this accounts for a large portion of our overhead.

Synchronous client. The MySQL command line and

stdin piping was used as our application client. This in-

curs the full latency of each transaction as a transaction

throughput cap. Having two concurrent clients alleviates

this slightly, but issuing multiple simultaneous transactions

from each client would decrease the impact of latency on

throughput. Additionally, part of this benefit can be re-

ceived by continuing each single-threaded client before the

commit has been applied – even at the risk of causing more

conflicts, e.g., by creating the possibility for client conflicts

with itself.

Multiple TCP connection setups. Instead of reusing

client-server TCP connections, the strawman creates a new

connection on each request. Multiple requests are con-

structed per transaction. This design choice is a result of

the Java XMLRPC server we are building on; this slow-

down can be eliminating by choosing a different XMLRPC

implementation.

Java VM overhead. Choosing Java as the implementa-

tion language allowed quick prototyping. The disadvantage

is that the Java VM (even after just-in-time compilation) can

run many (I/O) tasks slower than a streamlined implemen-

tation compiled to machine byte code. MySQL, by compar-

ision, is implemented in C.

Lua scripting overhead. The MySQL Proxy allows the

capture of sessions without re-building a custom MySQL

listener. This allowed fast integration with MySQL-enabled

applications. The interface to MySQL proxy consists of a

Lua [51] script parsed at runtime. Application logic in this

Lua script runs considerably slower than it would if imple-

mented directly.

Also, a set of costs cannot be eliminated due to the core

nature of the protocol, including:

• Symmetric key encryption: two symmetric key en-

cryptions, one approximately the size of the transac-

tion description, and the fixed size commit of around

100 bytes. Additionally, the corresponding decryp-

tions on each client.

• Hash function computations, for MACs and hash

chains: the overall quantity of data hashed per trans-

actions per client is the size of the transaction descrip-

tion, plus a small amount around 100 bytes.

• Two asynchronous TCP round trips: latency will not

affect the throughput of asynchronous (conflict-free)

clients. The network bandwidth consumed per trans-

action is slightly higher than in MySQL, since we send

transactions back out to all clients.

• Proxy costs: organizing hash chains, ordering and

transmitting incoming transactions. This program

overhead however, is likely always smaller then the ac-

tual transaction application times.

• Conflict detection cost: the time required to determine

if the order of two transactions affects the outcome.

This is an application specific cost – a function of the

conflict definition.

• Clients running each individual transaction descrip-

tion: This cost is incurred at the server in a MySQL-

only scenario.

Ultimately, in an industry-level prototype, we estimate

throughputs of roughly the same order of magnitude as an

un-secured MySQL server.

8 Conclusions
In this paper we introduced a novel paradigm for secure out-

sourcing of data management primitives, specifically dura-

bility and availability with assurances of data confidentiality

and access privacy. We designed, implemented and evalu-

ated a strawman implementation that validates the feasibil-

ity of the new paradigm, running at tens of queries per sec-

ond. We identified key efficiency bottlenecks that can be

eliminated in an industry-level prototype to achieve orders

of magnitude higher throughputs.

9 Acknowledgments
We would like to thank our anonymous reviewers, who of-

fered helpful insights.

References
[1] Activehost.com Internet Services. Online at http:

//www.activehost.com.

[2] Adhost.com MySQL Hosting. Online at http://

www.adhost.com.

[3] Alentus.com Database Hosting. Online at http://

www.alentus.com.

[4] Amazon Elastic Compute Cloud. Online at http:

//aws.amazon.com/ec2.

13



[5] Amazon Simple Storage Service. Online at http:

//aws.amazon.com/s3.

[6] Amazon Web Services. Online at http://aws.

amazon.com.

[7] Datapipe.com Managed Hosting Services. Online at

http://www.datapipe.com.

[8] Discountasp.net Microsoft SQL Hosting. Online at

http://www.discountasp.net.

[9] Gate.com Database Hosting Services. Online at

http://www.gate.com.

[10] Google App Engine. Online at http://code.

google.com/.

[11] Hostchart.com Web Hosting Resource Center. Online

at http://www.hostchart.com.

[12] Hostdepartment.com MySQL Database Hosting. On-

line at http://www.hostdepartment.com/

mysqlwebhosting/.

[13] IBM Data Center Outsourcing Services. Online at

http://www-1.ibm.com/services/.

[14] Inetu.net Managed Database Hosting. Online at

http://www.inetu.net.

[15] Mercurytechnology.com Managed Services

for Oracle Systems. Online at http:

//www.mercurytechnology.com.

[16] MySQL. Online at http://www.mysql.com/.

[17] Neospire.net Managed Hosting for Corporate E-

business. Online at http://www.neospire.

net.

[18] Netnation.com Microsoft SQL Hosting. Online at

http://www.netnation.com.

[19] Opendb.com Web Database Hosting. Online at

http://www.opendb.com.

[20] Sun Utility Computing. Online at http://www.

sun.com/service/sungrid/index.jsp.

[21] Yahoo Briefcase. Online at http://briefcase.

yahoo.com.

[22] M. Blaze. A Cryptographic File System for Unix. In

Proceedings of the first ACMConference on Computer

and Communications Security, pages 9–16, Fairfax,

VA, 1993. ACM.

[23] B. H. Bloom. Space/time trade-offs in hash coding

with allowable errors. Commun. ACM, 13(7):422–

426, 1970.

[24] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Per-

siano. Public key encryption with keyword search.

In Proceedings of Eurocrypt 2004, pages 506–522.

LNCS 3027, 2004.

[25] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Ag-

gregate and verifiably encrypted signatures from bilin-

ear maps. In EuroCrypt, 2003.

[26] R. Brinkman, J. Doumen, and W. Jonker. Using se-

cret sharing for searching in encrypted data. In Secure

Data Management, 2004.

[27] G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Per-

siano. The Design and Implementation of a Trans-

parent Cryptographic Filesystem for UNIX. In Pro-

ceedings of the Annual USENIX Technical Confer-

ence, FREENIX Track, pages 245–252, Boston, MA,

June 2001.

[28] Y. Chang and M. Mitzenmacher. Privacy preserving

keyword searches on remote encrypted data. Cryptol-

ogy ePrint Archive, Report 2004/051, 2004. http:

//eprint.iacr.org/.

[29] CNN. Feds seek Google records in porn probe. Online

at http://www.cnn.com, January 2006.

[30] CNN. YouTube ordered to reveal its viewers. Online

at http://www.cnn.com, July 2008.

[31] Premkumar T. Devanbu,Michael Gertz, April Kwong,

Chip Martel, G. Nuckolls, and Stuart G. Stubblebine.

Flexible authentication of XML documents. In ACM

Conference on Computer and Communications Secu-

rity, pages 136–145, 2001.

[32] Premkumar T. Devanbu, Michael Gertz, Chip Martel,

and Stuart G. Stubblebine. Authentic third-party data

publication. In IFIP Workshop on Database Security,

pages 101–112, 2000.

[33] Einar Mykletun and Maithili Narasimha and Gene

Tsudik. Signature Bouquets: Immutability for Aggre-

gated/Condensed Signatures. In Proceedings of the

European Symposium on Research in Computer Secu-

rity ESORICS, pages 160–176, 2004.

[34] Gartner, Inc. Server Storage and RAID World-

wide. Technical report, Gartner Group/Dataquest,

1999. www.gartner.com.

14



[35] S. Ghemawat, H. Gobioff, and S. T. Leung. The

Google File System. In Proceedings of the 19th

ACM Symposium on Operating Systems Principles

(SOSP ’03), pages 29–43, Bolton Landing, NY, Oc-

tober 2003. ACM SIGOPS.

[36] E. Goh. Secure indexes. Cryptology ePrint Archive,

Report 2003/216, 2003. http://eprint.iacr.

org/2003/216/.

[37] O. Goldreich. Foundations of Cryptography. Cam-

bridge University Press, 2001.

[38] P. Golle, J. Staddon, and B. Waters. Secure conjunc-

tive keyword search over encrypted data. In Proceed-

ings of ACNS, pages 31–45. Springer-Verlag; Lecture

Notes in Computer Science 3089, 2004.

[39] Philippe Golle and Ilya Mironov. Uncheatable dis-

tributed computations. In Proceedings of the 2001

Conference on Topics in Cryptology, pages 425–440.

Springer-Verlag, 2001.

[40] P. C. Gutmann. Secure filesystem (SFS) for

DOS/Windows. www.cs.auckland.ac.nz/

˜pgut001/sfs/index.html, 1994.

[41] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Ex-

ecuting SQL over encrypted data in the database-

service-provider model. In Proceedings of the ACM

SIGMOD international conference on Management of

data, pages 216–227. ACM Press, 2002.

[42] H. Hacigumus, B. R. Iyer, and S. Mehrotra. Providing

database as a service. In IEEE International Confer-

ence on Data Engineering (ICDE), 2002.

[43] J. S. Heidemann and G. J. Popek. File system devel-

opment with stackable layers. ACM Transactions on

Computer Systems, 12(1):58–89, February 1994.

[44] Stephen Hemminger. Network emulation

with netem (lca 2005). Online at http:

//developer.osdl.org/shemminger/

netem/LCA2005_paper.pdf, April 2005.

[45] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-

preserving index for range queries. In Proceedings of

ACM SIGMOD, 2004.

[46] HweeHwa Pang and Arpit Jain and Krithi Ramam-

ritham and Kian-Lee Tan. Verifying Completeness of

Relational Query Results in Data Publishing. In Pro-

ceedings of ACM SIGMOD, 2005.

[47] Jetico, Inc. BestCrypt software home page. www.

jetico.com, 2002.

[48] A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok.

I3FS: An In-Kernel Integrity Checker and Intrusion

Detection File System. In Proceedings of the 18th

USENIX Large Installation System Administration

Conference (LISA 2004), pages 69–79, Atlanta, GA,

November 2004. USENIX Association.

[49] G. Kim and E. Spafford. Experiences with Trip-

wire: Using Integrity Checkers for Intrusion Detec-

tion. In Proceedings of the Usenix System Administra-

tion, Networking and Security (SANS III), 1994.

[50] G. Kim and E. Spafford. The Design and Implementa-

tion of Tripwire: A File System Integrity Checker. In

Proceedings of the 2nd ACMConference on Computer

Commuications and Society (CCS), November 1994.

[51] Jan Kneschke, Lenz Grimmer, Martin Brown,

Giuseppe Maxia, and Kay Röpke. Mysql proxy

- mysql forge wiki. Online at http://forge.

mysql.com/wiki/MySQL_Proxy, 2008.

[52] Kyriacos Pavlou and Richard T. Snodgrass. Forensic

Analysis of Database Tampering. In Proceedings of

ACM SIGMOD, 2006.

[53] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure

Untrusted Data Repository (SUNDR). In Proceedings

of the 6th Symposium on Operating Systems Design

and Implementation (OSDI 2004), pages 121–136,

San Francisco, CA, December 2004. ACM SIGOPS.

[54] M. Sullivan and M. Stonebraker. Using Write Pro-

tected Data Structures to Improve Software Fault Tol-

erance in Highly Available Database Management

Systems. In Proceedings of VLDB, 1991.

[55] Maithili Narasimha and Gene Tsudik. DSAC: in-

tegrity for outsourced databases with signature aggre-

gation and chaining. Technical report, 2005.

[56] Maithili Narasimha and Gene Tsudik. Authentication

of Outsourced Databases using Signature Aggregation

and Chaining. In Proceedings of DASFAA, 2006.

[57] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz,

A. Kwong, and S. Stubblebine. A general model for

authenticated data structures. Technical report, 2001.

[58] Charles Martel, Glen Nuckolls, Premkumar Devanbu,

Michael Gertz, April Kwong, and Stuart G. Stub-

blebine. A general model for authenticated data struc-

tures. Algorithmica, 39(1):21–41, 2004.

[59] A. D. McDonald andM. G. Kuhn. StegFS: A Stegano-

graphic File System for Linux. In Information Hiding,

pages 462–477, 1999.

15



[60] R. Merkle. Protocols for public key cryptosystems.

In IEEE Symposium on Research in Security and Pri-

vacy, 1980.

[61] Microsoft Research. Encrypting File System for

Windows 2000. Technical report, Microsoft Cor-

poration, July 1999. www.microsoft.com/

windows2000/techinfo/howitworks/

security/encrypt.asp.

[62] E. Mykletun, M. Narasimha, and G. Tsudik. Authenti-

cation and integrity in outsourced databases. In ISOC

Symposium on Network and Distributed Systems Se-

curity NDSS, 2004.

[63] E. Mykletun, M. Narasimha, and G. Tsudik. Authen-

tication and integrity in outsourced databases. In Pro-

ceedings of Network and Distributed System Security

(NDSS), 2004.

[64] E. Mykletun, M. Narasimha, and G. Tsudik. Signature

bouquets: Immutability for aggregated/condensed sig-

natures. In Computer Security - ESORICS 2004,

volume 3193 of Lecture Notes in Computer Science,

pages 160–176. Springer, 2004.

[65] P. Paillier. Public-key cryptosystems based on com-

posite degree residuosity classes. In Proceedings of

EuroCrypt, 1999.

[66] Pascal Paillier. A trapdoor permutation equivalent to

factoring. In PKC ’99: Proceedings of the Second In-

ternational Workshop on Practice and Theory in Pub-

lic Key Cryptography, pages 219–222, London, UK,

1999. Springer-Verlag.

[67] HweeHwa Pang and Kian-Lee Tan. Authenticating

query results in edge computing. In ICDE ’04: Pro-

ceedings of the 20th International Conference on Data

Engineering, page 560, Washington, DC, USA, 2004.

IEEE Computer Society.

[68] Philip Bohannon and Rajeev Rastogi and S. Seshadri

and Avi Silberschatz and S. Sudarshan. Using Code-

words to Protect Database Data from a Class of Soft-

ware Errors. In Proceedings of ICDE, 1999.

[69] S. Quinlan and S. Dorward. Venti: a new approach to

archival storage. In Proceedings of the First USENIX

Conference on File and Storage Technologies (FAST

2002), pages 89–101, Monterey, CA, January 2002.

USENIX Association.

[70] Richard T. Snodgrass and Stanley Yao and Christian

Collberg. Tamper Detection in Audit Logs. In Pro-

ceedings of VLDB, 2004.

[71] Radu Sion. Query execution assurance for out-

sourced databases. In Proceedings of the Very Large

Databases Conference VLDB, 2005.

[72] G. Sivathanu, C. P. Wright, and E. Zadok. En-

hancing File System Integrity Through Check-

sums. Technical Report FSL-04-04, Computer

Science Department, Stony Brook University, May

2004. www.fsl.cs.sunysb.edu/docs/

nc-checksum-tr/nc-checksum.pdf.

[73] D. Xiaodong Song, D. Wagner, and A. Perrig. Practi-

cal techniques for searches on encrypted data. In SP

’00: Proceedings of the 2000 IEEE Symposium on Se-

curity and Privacy (S&P 2000). IEEE Computer So-

ciety, 2000.

[74] Tingjian Ge and Stan Zdonik. Answering aggregation

queries in a secure system model. In VLDB ’07: Pro-

ceedings of the 33rd international conference on Very

large data bases, pages 519–530. VLDB Endowment,

2007.

[75] Peter Williams and Radu Sion. Usable PIR. In Pro-

ceedings of the 2008 Network and Distributed System

Security (NDSS) Symposium, 2008.

[76] C. P. Wright, M. Martino, and E. Zadok. NCryptfs:

A Secure and Convenient Cryptographic File System.

In Proceedings of the Annual USENIX Technical Con-

ference, pages 197–210, San Antonio, TX, June 2003.

USENIX Association.

16


