
Practical Implementation of a Dependently Typed Functional
Programming Language

by

Edwin C. Brady

Submitted in conformity with the requirements
for the degree of PhD

Department of Computer Science
University of Durham

Copyright c© 2005 by Edwin C. Brady

Abstract

Practical Implementation of a Dependently Typed Functional Programming

Language

Edwin C. Brady

Types express a program’s meaning, and checking types ensures that a program has the
intended meaning. In a dependently typed programming language types are predicated on
values, leading to the possibility of expressing invariants of a program’s behaviour in its
type. Dependent types allow us to give more detailed meanings to programs, and hence be
more confident of their correctness.

This thesis considers the practical implementation of a dependently typed programming
language, using the Epigram notation defined by McBride and McKinna. Epigram is
a high level notation for dependently typed functional programming elaborating to a core
type theory based on Luo’s UTT, using Dybjer’s inductive families and elimination rules to
implement pattern matching. This gives us a rich framework for reasoning about programs.
However, a näıve implementation introduces several run-time overheads since the type sys-
tem blurs the distinction between types and values; these overheads include the duplication
of values, and the storage of redundant information and explicit proofs.

A practical implementation of any programming language should be as efficient as pos-
sible; in this thesis we see how the apparent efficiency problems of dependently typed pro-
gramming can be overcome and that in many cases the richer type information allows us
to apply optimisations which are not directly available in traditional languages. I introduce
three storage optimisations on inductive families; forcing, detagging and collapsing. I further
introduce a compilation scheme from the core type theory to G-machine code, including a
pattern matching compiler for elimination rules and a compilation scheme for efficient run-
time implementation of Peano’s natural numbers. We also see some low level optimisations
for removal of identity functions, unused arguments and impossible case branches. As a
result, we see that a dependent type theory is an effective base on which to build a feasible
programming language.

ii

Acknowledgements

My thanks to my supervisors, James McKinna and Zhaohui Luo. James made the original
suggestion for a thesis topic and has constantly provided advice and feedback. Zhaohui’s
enthusiasm and knowledge has been an inspiration, and I would like to thank both for their
feedback on previous drafts of this thesis.

I would also like to thank the other members of the Computer Assisted Reasoning Group,
in particular Conor McBride. Conor taught me a lot of what I know about type theory and
introduced several implementation techniques to me. I also owe him thanks for his useful
comments on an earlier draft of this thesis, and a collection of LATEX macros which made
writing it marginally less painful!

My office mates, successively Yong Luo, Paul Townend, Simon Pears, David Johnstone,
Robert Kiessling, and Chris Lindop helped to provide a friendly environment in which to
work, and I thank them. Thank you also to the Computing Society, the Go Club and
Ustinov College Cricket Club for providing distractions when I needed them.

Finally, I would like to thank my family for their love and encouragement, and Jenny for
her support and limitless patience over the last few months.

iii

Contents

1 Introduction 1

1.1 Types in Programming . 2
1.2 Dependent Types in Programming . 3

1.2.1 Cayenne . 3
1.2.2 DML . 4
1.2.3 Inductive Families and Epigram . 5
1.2.4 Benefits of Dependent Types . 7
1.2.5 Strong Normalisation . 10

1.3 Contributions . 11
1.4 Related Work . 12
1.5 Overview . 14

1.5.1 System Overview . 14
1.5.2 Chapter Outline . 16
1.5.3 Implementation Note . 17

2 Epigram and its Core Type Theory 19

2.1 TT — The Core Type Theory . 19
2.1.1 The Core Language . 20
2.1.2 Inductive Datatypes . 23
2.1.3 Elimination Rules . 26
2.1.4 Equality . 28
2.1.5 Properties of TT . 30
2.1.6 Universe Levels and Cumulativity . 31
2.1.7 TT Examples . 32
2.1.8 Labelled Types . 33

2.2 Programming in Epigram . 34
2.2.1 Basic Notation . 34
2.2.2 Programming with Elimination Rules 36
2.2.3 Impossible Cases . 37
2.2.4 Example — Vector lookup . 38

iv

CONTENTS v

2.2.5 Alternative Elimination Rules . 40
2.2.6 Derived Eliminators and Memoisation 42
2.2.7 Matching on Intermediate Values . 44

2.3 Programming Idioms . 45
2.3.1 Dependent Pairs . 45
2.3.2 Induction Over Proofs . 47
2.3.3 Views . 47
2.3.4 Termination . 50

2.4 Summary . 53

3 Compiling ExTT 55

3.1 Execution Environments . 56
3.1.1 Normalisation by Evaluation . 56
3.1.2 Compilation . 57
3.1.3 Program Extraction . 59
3.1.4 Execution of Epigram . 60

3.2 The Run-Time Language RunTT . 61
3.2.1 Supercombinators and Lambda Lifting 61
3.2.2 RunTT Syntax . 61

3.3 Translating Function Definitions to RunTT 63
3.3.1 Grouping λ-abstractions . 63
3.3.2 Lambda Lifting . 64
3.3.3 Tidying up . 65
3.3.4 Arity . 65

3.4 Translating Elimination Rules to RunTT . 66
3.5 The G-machine . 67

3.5.1 Graph Representation . 67
3.5.2 Machine State . 68
3.5.3 Informal Semantics . 69
3.5.4 Operational Semantics . 70
3.5.5 Translation Scheme . 71
3.5.6 Example — plus and N-Elim . 72
3.5.7 Implementing a G-machine Compiler With Dependent Types 72

3.6 Proper Tail Recursion . 75
3.7 Run-time Considerations . 76

3.7.1 Invariants of Inductive Families . 78
3.7.2 Proofs . 79
3.7.3 Number Representation . 80
3.7.4 Dead Code In Impossible Cases . 81
3.7.5 Intermediate Data Structures . 82

CONTENTS vi

3.8 Summary . 82

4 Optimising Inductive Families 83

4.1 Elimination Rules and Their Implementation 84

4.1.1 Form of Elimination Rules . 84

4.1.2 Pattern Syntax and its Run-Time Semantics 86

4.1.3 Standard Implementation . 88

4.1.4 Alternative Implementations . 89

4.2 ExTT and Its Properties . 89

4.2.1 Properties of ExTT . 91

4.2.2 Defining Optimisations . 92

4.2.3 Typechecking via ExTT . 92

4.3 Building Efficient Implementations . 94

4.3.1 Eliding Redundant Constructor Arguments 94

4.3.2 Eliding Redundant Constructor Tags 98

4.3.3 Collapsing Content Free Families . 102

4.3.4 The Collapsing Optimisation . 104

4.3.5 Interaction Between Optimisations . 106

4.3.6 Using the Standard Implementation 107

4.4 Compilation Scheme for ExTT . 108

4.4.1 Extensions to RunTT . 108

4.4.2 Compiling Elimination Rules . 109

4.4.3 Extensions to the G-machine . 116

4.5 Examples . 118

4.5.1 The Finite Sets . 119

4.5.2 Comparison of Natural Numbers . 119

4.5.3 Domain Predicates . 121

4.5.4 Non-repeating Lists . 123

4.5.5 Simply Typed λ-calculus . 124

4.5.6 Results summary . 126

4.6 A larger example — A well-typed interpreter 127

4.6.1 The language . 128

4.6.2 Representation . 129

4.6.3 The interpreter . 130

4.6.4 Optimisation . 132

4.6.5 Results . 132

4.7 Summary . 133

CONTENTS vii

5 Number Representation 136

5.1 Representing Numbers in Type Theory . 137
5.1.1 What is N used for? . 137

5.2 The Word family . 138
5.2.1 Word n . 139
5.2.2 The Split view of Word (s n) . 140
5.2.3 The successor function . 141
5.2.4 Addition . 142
5.2.5 Multiplication . 143
5.2.6 Changing Bases . 145
5.2.7 Building Big Numbers From Word . 146
5.2.8 Discussion . 148

5.3 External Implementation of N . 149
5.3.1 Construction of Ns . 149
5.3.2 Elimination and Pattern Matching . 151
5.3.3 Homomorphisms with N . 154
5.3.4 Typechecking the External Implementation 156
5.3.5 Extensions to the G-machine . 157
5.3.6 Compilation Scheme . 158
5.3.7 Example — Factorial Computation . 159
5.3.8 Extending to Other Primitives . 161

5.4 Correctness of External Implementation . 163
5.4.1 Representing GMP integers . 163
5.4.2 Correctness of Behaviour . 164

5.5 Summary . 165

6 Additional Optimisations 167

6.1 Optimisations in ExTT . 168
6.1.1 β-reduction . 168
6.1.2 Simplifying Non-recursive D-Elim . 168
6.1.3 Rewriting labelled types . 169
6.1.4 Optimising D-Rec . 171

6.2 Optimisations in RunTT . 173
6.2.1 Inlining . 173
6.2.2 Unused Argument Removal . 175
6.2.3 Identifying No-Operations . 179
6.2.4 Rewriting of False-Elim . 180
6.2.5 Distributing Applications of case . 182
6.2.6 Impossible Case Deletion . 183
6.2.7 Interaction Between Optimisations . 185

CONTENTS viii

6.3 More Examples . 186
6.3.1 Collapsing a domain predicate — quicksort 187
6.3.2 Projection from a vector — lookup 187
6.3.3 Projection from an environment — envLookup 189

6.4 Summary . 190

7 Conclusions 192

7.1 Contributions . 192
7.2 Conclusions . 193
7.3 Further Work . 196

A Compiling vTail 200

A.1 vTail elaboration – a first attempt . 200
A.2 vTail elaboration – second attempt . 201
A.3 Building Supercombinators . 203

A.3.1 dMotive and discriminate . 203
A.3.2 emptyCase . 204
A.3.3 consCase . 205
A.3.4 vTailAux . 206
A.3.5 vTail . 207

A.4 G-code . 208

B Typechecking ExTT 209

B.1 Typechecking Algorithms . 209
B.2 The Forcing Optimisation . 212

B.2.1 Equivalence of Reduction . 212
B.2.2 Equivalence of Typechecking for Forcing 213

B.3 The Detagging Optimisation . 220
B.3.1 Equivalence of Typechecking for Detagging 221

C An Implementation of Normalisation By Evaluation 224

C.1 Representation of terms . 224
C.1.1 Representing Well Typed Terms . 224
C.1.2 Representing Normal Forms . 225
C.1.3 Representing Scope . 226

C.2 The evaluation function “eval” . 228
C.3 The quotation function “quote” . 230
C.4 The forgetful map “forget” . 231
C.5 Adding ι-schemes . 232

C.5.1 Constructors . 232
C.5.2 Elimination Rules . 233

CONTENTS ix

C.5.3 Evaluation of Elimination Operators 235
C.5.4 Quotation to η-long normal form . 237
C.5.5 Example — Natural Numbers . 237

C.6 Building Elimination Rules . 239
C.7 Conversion Using Normalisation by Evaluation 241

D G-Machine Implementation Details 242

D.1 Heap Nodes . 242
D.2 Machine State . 244
D.3 Evaluation . 245

Declaration

The material contained within this thesis has not previously been submitted for a degree at
the University of Durham or any other university. The research reported within this thesis
has been conducted by the author unless indicated otherwise.

Large parts of the work presented in the first part of Chapter 4 have previously appeared
in [BMM04], co-authored with Conor McBride and James McKinna.

Copyright Notice

The copyright of this thesis rests with the author. No quotation from it should be
published without their prior written consent and information derived from it should be
acknowledged.

x

Chapter 1

Introduction

Computer programs are ubiquitous. As we rely on computers more and more in all aspects
of daily life, it becomes more important to minimise errors in computer software; it is
particularly important where privacy or safety is concerned. An error-free computer program
is, however, rare — a programmer attempts to minimise the number of errors by using a
combination of techniques including formal specification, careful design, correctness proofs
and extensive testing.

Part of the difficulty in writing a correct computer program lies in the problem of con-
verting the design in the programmer’s head (which one would hope is well understood) to
a program which a computer can execute. Over the last fifty years increasingly powerful
programming languages have been developed to allow the programmer to express a design
as a program in more familiar terms; more modern languages feature more powerful type
systems, which allow the programmer to specify more precisely the intended semantics of
the program and provide more powerful paradigms for modelling.

Dependent type systems [ML71, Luo94] allow types to be predicated on values and have
traditionally been applied to reasoning and program verification. More recent research, how-
ever [Aug98, Xi98, McB00a, MM04b], has led to the use of dependent types in programming
itself. The principle is that the richer type system allows a more precise type to be given to
a program so that more errors can be detected at compile-time which would previously have
remained undetected until run-time, and even then perhaps only in unusual circumstances.
Dependent types also allow us to give types to more programs than traditional simple type
systems.

The use of dependent types in programming leads to several implementation difficulties
on the one hand, and optimisation opportunities on the other hand. One difficulty is that
the distinction between types and values is blurred so it is less clear how to erase types at
run-time. Types can also express relationships between values — such relationships may
mean one value can be computed from another, so we need not store both. With rich type
information, we know more about the possible inputs and outputs of a program and ought

1

Chapter 1. Introduction 2

to be able to use this information to optimise a program. In this thesis, I begin to explore
techniques for removing the run-time overheads of dependent types and gaining run-time
benefits from our richer type information.

1.1 Types in Programming

Following Mitchell [Mit03], we identify three main purposes which types serve in modern
programming languages. These are:

1. Naming and organising concepts. The type of a function or data structure reflects
the way that structure is used in a program. In this way, types provide documentation
to programmers and aid maintainability.

2. Ensuring that the machine interprets data consistently. Types ensure that
operations are applied to objects of the correct form. For example, typechecking
prevents an operation which expects an integer being given a floating point number,
which would then be interpreted incorrectly. An object will always be treated in a
way consistent with its representation.

3. Providing information to the compiler about data. A compiler uses the type
of an object to decide how to lay out that object in memory. Two objects of the same
type will always be represented in the same way.

These purposes assist the programmer, the machine and the compiler respectively. The
importance of data types in programming languages has been acknowledged throughout the
history of programming. Originally, languages attached types to values out of necessity —
different types are laid out in memory in different ways, so the programmer was required
to declare the purpose of a variable. As such, the first of the major computer languages,
FORTRAN [IBM54], included primitive types for describing integers and real numbers and
basic support for data structures with arrays.

Modern functional programming languages such as Haskell [P+02] and the ML fam-
ily [MTHM97, Ler02] take this idea much further, allowing user defined data structures and
function types. Primitive types, which effectively give an interpretation to bit patterns (for
the benefit of the machine), are combined into compound types which give a higher level
understanding of data (for the benefit of the programmer).

The development of more advanced type systems has led to two further purposes for
types; in modern languages types are not only present because they are a necessity for
the compiler, but because they provide documentation for the programmer and consistency
checking for programs — giving a type to a function effectively gives a specification to that
function, which serves as documentation for the programmer, and which the compiler verifies
by typechecking.

Chapter 1. Introduction 3

1.2 Dependent Types in Programming

The characteristic feature of a dependent type system, as opposed to the “simple” type
systems of Haskell and ML, is that types can be predicated on values. This allows the
programmer to give a more precise type to a value, with the effect that more errors can
be caught at compile-time, rather than manifesting themselves only when the right circum-
stances arise at run-time. As an introductory example, we shall consider the following simple
Haskell function which appends two lists:

append :: [a] -> [a] -> [a]

append [] xs = xs

append (x:xs) ys = x:(append xs ys)

We can compute the length of a list as follows:

length :: [a] -> Int

length [] = 0

length (x:xs) = 1+(length xs)

The append function, if written correctly, satisfies the property that the length of the
output is the sum of the lengths of the inputs:

length (append xs ys) = length xs + length ys

This is not checkable directly in Haskell, although we could use a tool such as QuickCheck
[CH00] to generate random test cases, or write a correctness proof externally. With a
dependent type system, we can give this function a more precise type which reflects the
property directly in the type. This helps avoid a common class of error (using the wrong
list) by giving each input list a distinct type. Although such an error is unlikely in a small
function such as this, in a large system it may not be so difficult to confuse one list for
another.

There have been various approaches to implementing dependent types in programming
languages, so the type of the function, and how the list is represented, varies from system to
system. Let us consider now some different implementations of dependent types and discuss
how they might be used to implement list append such that it provably preserves the length
property above.

1.2.1 Cayenne

Cayenne [Aug98] is a dependently typed functional language loosely based on Haskell, and
similar to the language of the Agda theorem prover [Hal01]. Cayenne allows functions to
compute types, which allows more functions to be typeable; examples given are printf,

Chapter 1. Introduction 4

the type of which is computed by examining the format string, and a well-typed inter-
preter [AC99], the return type of which depends on the object level expression to be evalu-
ated.

Without going into too much detail on the syntax, let us consider how to implement
append. We can express lists of a given length (known as vectors) in Cayenne by writing
a function vect to compute an appropriate type via a recursive definition (rather than by
declaring a data structure):

vect :: (a :: #) -> Nat -> #;

vect a (Zero) = Unit;

vect a (Succ x) = (Pair a (vect a x));

An empty vector is represented by the unit type, and a non-empty vector by a pair of
the head and tail. Peano style natural numbers are used here to represent the length of the
vector, Zero and Succ being the constructors of a data type of natural numbers. The type
of the append function now expresses the property that the length of the resulting list is the
sum of the length of the inputs:

append :: (a :: #) |-> (n,m :: Nat) |->

(vect a n) -> (vect a m) -> (vect a (n + m));

append xs ys = ys;

append xs ys = case xs of {

(z,zs) -> (z,append zs ys)

};

Note here that pattern matching is on the length, rather than the vector itself. Pattern
matching on the vector is not allowed, since empty and non-empty vectors are represented
by different concrete types. There is a small notational overhead here (i.e., the additional
arguments a, n and m, which are required as the type of the function depends on them), but
the advantage is that we know from the type that append satisfies the property we want.

The drawback to Cayenne’s powerful type system is that typechecking becomes undecid-
able. This is because typechecking in this type system requires the evaluation of type level
programs at compile-time — if a type level program does not terminate, typechecking will
not terminate. Cayenne deals with the problem by inserting a configurable upper bound
on the number of reduction steps allowed in the typechecker; reaching this upper bound is
treated as a type error. Hence the result of typechecking is “Correct”, “Incorrect” or “Don’t
know”.

1.2.2 DML

DML [Xi98] is an extension to ML allowing a form of dependent types. It is really a family
of languages DML(C) where C is a constraint domain from which we draw the values on

Chapter 1. Introduction 5

which types can be predicated. In DML, we do not write functions which compute types
— instead, we give constraints on the types which are verified by a constraint checker. In
his thesis, Xi implements the domain of natural numbers, and adds a syntax for annotating
ML types with indices. Lists can be annotated as follows:

datatype ’a list = nil | cons of ’a * ’a list

with nil <| ’a list(0)

| cons <| {n:nat} ’a list(n) -> ’a list(n+1)

Using this annotated list type, we can also declare the type of append in terms of anno-
tated lists. The definition is the same as the non-dependently typed version, but the type
expresses the length property which the definition must satisfy:

fun (’a)

append(nil,ys) = ys

| append(cons(x,xs),ys) = Cons x (append xs ys)

where append <| {m:nat,n:nat} List(m) * List(n) -> List(m+n)

Here we have used a standard list type, but added annotations which describe the length.
The advantage is that we can pattern match on the list as usual, however there is not the
full dependency of Cayenne in that only types for which a constraint checker has been
implemented can be used as indices.

The original motivation for this was to catch more errors at compile-time; however,
Xi has also used dependent types to direct optimisations including array bounds check
elimination [XP98] and dead code elimination [Xi99a].

1.2.3 Inductive Families and Epigram

Epigram is a platform for dependently typed functional programming based on inductive

families [Dyb94]. Inductive families are a form of simultaneously defined collections of
algebraic data types (such as Haskell data declarations) which can be parametrised over
values as well as types. For our list append example, we can declare an inductive family for
vectors, parametrised over the element type and indexed over the length. To do this, first
we declare a type of natural numbers, using the natural deduction style notation proposed
in [MM04b]:

data N : ?
where

0 : N
n : N
s n : N

The reason for using the natural deduction style notation, rather than the more standard
Haskell style data declaration is that a constructor of a family is allowed to target a subset of
the family if desired, where the subset is given by a parametrised function which itself may
be a constructor (of another family). In the following declaration of vectors, for example,

Chapter 1. Introduction 6

note that Vnil only targets vectors of length zero, and Vcons only targets vectors of length
greater than zero:

data A : ? n : N
Vect A n : ?

where
Vnil : Vect A 0

x : A xs : Vect A k
Vcons x xs : Vect A sk

To write append, since lists are indexed over their lengths, we first need “append on
lengths”, namely plus. The type of a function is introduced with a let declaration, also
written in a natural deduction style. The function itself is written in a pattern matching
style, with elim n indicating that the function is primitive recursive over n. We will discuss
this notation in detail in Chapter 2 — elim n in particular gives access to an elimination

rule for N which implements primitive recursion over N. Elimination rules, implemented by
pattern matching, are an important feature of Epigram which we will introduce in section
2.1.3. We write plus as follows:

let n,m : N
plus n m : N

plus n m ⇐ elim n
plus 0 m 7→ m
plus (s k) m 7→ s (plus k m)

We are now in a position to write the append function. The type signature of this
function is similar to the equivalent function in Cayenne, but written using the natural
deduction style notation. The two arguments n and m are implicit – since they are used in
the types of xs and ys, and we know the type of Vect, the typechecker infers that they must
also be arguments to append and so there is no need to write them down:

let xs : Vect A n ys : Vect A m
append xs ys : Vect A (plus n m)

append xs ys ⇐ elim xs
append Vnil ys 7→ ys
append (Vcons x xs) ys 7→ Vcons x (append xs ys)

This is similar to the DML definition, and the program itself (ignoring the type) is
similar to the Haskell definition. However we are not limited to indexing only over natural
numbers, as in DML. The disadvantage is that the checking of more complex constraints is
not automated — for example we may have to write extra functions to prove commutativity
or associativity of plus.

The length function is straightforward to write in this setting, as the length is passed
implicitly as an argument with any Vect. Since it is implicit, we subscript it in the definition
(as n):

let xs : Vect A n
length xs : N

lengthn xs 7→ n

Chapter 1. Introduction 7

Even this function is redundant; we know the length is n from the type before we evaluate
this function. We effectively carry the length around with every list, trading time (computing
the length) for space, as with vectors in the C++ STL [MSD01].

Inductive families have been used extensively by theorem provers including Coq [Coq01],
Lego [LP92], Alf [Mag94] and Plastic [CL01]. In this kind of setting dependent types can
be used to prove properties of simply typed programs, for example by declaring an inductive
family to represent the desired property. A trivial example, the less than or equal relation,
can be represented as an inductive family:

data x , y : N
x≤y : ?

where
leO : 0≤y

p : x≤y
leS p : sx≤sy

To construct an instance of a ≤ b is effectively to prove the proposition that a is less
than or equal to b; hence we can prove that a program has this property by constructing
instances of a≤b for appropriate a and b. We will see an example in section 2.3.2, where the
minus function is defined to take a third argument which ensures that the smaller number
is subtracted from the larger number.

The Epigram notation is defined by McBride and McKinna in [MM04b]. This nota-
tion elaborates to a dependent type theory based on Luo’s UTT [Luo94]. The research
documented in this thesis has been carried out in the context of a prototype back-end for
Epigram and so I will discuss the notation briefly introduced here in greater detail in Chap-
ter 2. The main innovative feature of Epigram is to take inductive families seriously as
data structures, rather than as a basis for describing properties of programs.

1.2.4 Benefits of Dependent Types

Types for Specification

We have seen an example, with list append, of how dependent types allow us to give a
more precise type to functions. Functions over the Vect family specify invariant properties,
namely the lengths of the vectors involved. Such invariants allow the typechecker to check
properties which would otherwise need to be verified by the programmer by hand. Another
example, red-black trees [Oka99], must maintain the invariants that a red node does not
have a red child, and all paths from the root to an empty node pass through the same
number of black nodes. Xi shows an implementation of this with dependent types [Xi99b],
so that the invariants are checked by the typechecker.

With dependent types, the programmer and compiler have more information about what
the program is intended to do prior to writing the program. This helps the programmer,
in that it aids understanding of the problem and helps them write a correct program, and
helps the compiler, in that it has more information with which to identify potential errors
and optimisations. By giving more precise types, we are giving a more precise specification.

Chapter 1. Introduction 8

Therefore, implementation errors are more likely to be identified at compile-time rather than
run-time.

We prefer, therefore, to take types as the prior notion to programs, treating them as
specifications of programs. Rather than writing a program without type annotations then
allowing the compiler to infer the type afterwards (if indeed the program is well-typed) we
prefer to write the type first, restricting the number of programs we can write. In this
way, types can drive the process of program development, encouraging the programmer to
understand the problem in advance and guiding the programmer to a correct program by
refinement. With type inference, any well-typed program will do, whatever its type — with
the type as the prior notion, however, only a well-typed program of the given type will do.
Dependent types enable a programmer to say more precisely which programs are acceptable.

Proofs as Programs

Another benefit of using a dependent type system is that proofs of correctness can be
written in the language itself, such is the richness of the type system. Rather than showing
some property of a function externally (an error prone process since it depends on correctly
transcribing the program from one setting to another) a property can be shown in the
language itself. This has the advantage that the proof of a property of a function is based
on the actual implementation, rather than some external model. In this way, dependent
types can also be used to prove properties of simply typed programs. The Curry Howard
isomorphism [CF58, How80] describes the correspondence between proofs and programs.

There are two approaches to showing properties of a program within the language. The
apparently simpler approach is to represent the property as a datatype (for example the less
than or equal type in section 1.2.3). Then we can write functions which build instances of
that type to prove properties of the program. However, it is often preferable to represent
the property as an index of a datatype. For example, Vect is indexed over its length, which
means that any well-typed function which manipulates a Vect is implicitly also a proof of the
length invariant of that function. So by using inductive families with appropriate indices,
we do not need to write proofs after writing the program — the proof is implicit in the fact
that the program is well-typed.

Dependent types are also used to extract simply typed programs from proofs of their
specifications. Program extraction in Coq [PM89, Let02] extracts the computational parts
from the proof of a specification and generates an ML or Haskell program. We can also
consider the use of dependent types for hardware verification. In Chapter 5 we will see a
development of binary arithmetic, representing numbers as an inductive family in order to
ensure consistency of some aspects of the implementation.

Chapter 1. Introduction 9

Articulacy

Aside from improving the safety of programs, dependent type systems give us more articulacy
and subsume many other sophisticated programming techniques and language extensions.
Phantom Types [Hin03] and Generic Haskell [CL02] for example provide extensions which
are also handled in a dependently typed setting. Furthermore, there are programs we can
write in a dependently typed language which would not be typeable in a simply typed
language.

The C function printf takes a format string which determines the form of the rest of
the arguments. This is an obvious example where dependent types would be useful, and a
straightforward implementation is given in Cayenne [Aug98]. Functional unparsing [Dan98]
presents a technique for producing formatted output in a simply typed language, but this
relies on using sophisticated implementation techniques to get around the less sophisticated
type system.

The Haskell standard prelude includes a family of functions for applying a function of n
arguments to corresponding items in n lists. There are 8 functions defined separately for this,
zipWith1. . . zipWith8. Again, techniques have been proposed to allow the implementation
of this more generically [FI00, McB02], but again these rely on sophisticated implementation
tricks (and often clumsy notation) to get around the type system. Dependent types give
a more elegant approach to solving such problems — the hard work is done by the type
system, not the programmer.

With dependent types, we can implement lists with varying element type in a type safe
fashion. The interpreter example in Chapter 4 includes an example of this, where values in
the environment may be any one of several types. This interpreter, based on [AC99], uses
dependent types to avoid the need to “tag” each value with its type — instead types are
determined by the expression being interpreted.

A recent extensions to the Glasgow Haskell Compiler, Generalised Algebraic Data Types
[PWW04], adds some of the power of dependent types to Haskell. For example, well-typed
terms can be given a more precise type as in [AC99]. However, they still do not allow types
to be predicated on values, as with a full implementation of dependent types.

Interactive Development

A potential further benefit of dependent types is that it gives more information to an in-
teractive type-directed programming system. The kind of type-directed editing used in
theorem provers, such as Coq and Lego, is not often seen for programming languages
(CYNTHIA [WBBL99], for ML, is an exception). A possible reason for this is that the type
system does not give enough information for type-directed editing to be worthwhile; with
dependent types, there is both more possibility of the system being able to direct the pro-
grammer to a program, and more need of such a system since the more precise types can
make it harder to find a well-typed program without machine assistance.

Chapter 1. Introduction 10

Efficiency

Dependent types give us more static information about what a program is intended to
do. Altenkirch [Alt93] mentions that this information could potentially be used to make
programs more efficient. However, this potential has been exploited very little until recently.
Xi has used dependent types to aid with array bounds check elimination [XP98] and dead
code elimination [Xi99a] in DML, and Augustsson and Carlsson’s tagless interpreter [AC99]
is an example of how dependent types allow more efficient code. However, there has been
little work on optimisation of programs built on inductive families, largely because inductive
families have not, until now, been taken seriously as an approach to programming.

Unfortunately, in a näıve implementation of a dependently typed language with inductive
families there are several overheads. The separation between types and values is blurred;
types can be computed from values, and values can hold information about types. In par-
ticular, inductive families can store information about their invariants. There seem to be
several sources of overhead here; there are space overheads in storing the indices and time
overheads in the complex manipulations required on types. In a näıve implementation, this
can lead to quite an overhead. However, the opposite ought to be true — the type system
tells us more about what a program is supposed to do, therefore we ought to be able to
produce more efficient code. This thesis investigates techniques for doing so.

1.2.5 Strong Normalisation

A distinctive feature of Epigram is that all (well-typed) terms are strongly normalising.
A term is strongly normalising if all reduction sequences starting from that term terminate
without error at the same normal form; Goguen shows that the strong normalisation property
holds for UTT [Gog94], and as a result Epigram programs (being based on a type theory
similar to UTT) are strongly normalising. This has several implications and advantages.
Firstly, we have a much stronger notion of type safety. In a type safe, but not strongly
normalising language such as Haskell, running a type correct program can have one of three
results:

• The program terminates, giving a result of the appropriate type.

• The program terminates with an error due to an expression not being defined for all
possible inputs. This kind of error means that reduction can not progress.

• The program does not terminate. This kind of error means that reduction will progress
infinitely.

In Epigram, strong normalisation ensures that only the first possibility can apply. To
put it another way, the error value (denoted ⊥) is implicitly an element of all types if
non-termination and partial definitions are allowed, but it is not an element of any type in
Epigram. There is a clear advantage here, in that running a program is guaranteed to yield a

Chapter 1. Introduction 11

result. Strong normalisation also ensures the decidability of typechecking; we no longer have
the difficulty that type level programs may not terminate, as in Cayenne. The undecidability
of the Halting Problem for Turing complete languages means that we cannot tell for any
program whether or not it terminates, and so we write programs for which the machine
can establish termination by checking that recursive calls are on syntactically structurally
smaller values. Turner discusses this in [Tur96]; he observes that in practice most programs
are structurally recursive, and many of those which aren’t (such as quicksort) can be made
so (we will discuss the quicksort example in particular in section 2.3.4). Nevertheless, there
are some programs which it will always be impossible to write, since a strongly normalising
language can not be Turing complete.

We could imagine a hypothetical dependently typed language being on one of three levels:

• All programs terminate (Strongly normalising).

• Type level programs (those run at compile-time) terminate.

• No termination restriction.

Dependent type theory and Epigram sit on the first level, Cayenne on the last. DML, by
having less sophisticated type level programs, sits on the second level. In practice, we might
consider relaxing the strong normalisation restriction in Epigram if given an appropriate
compiler flag, to move to the second and third levels; however in this thesis I will consider
strongly normalising programs only, because we can use the strong normalisation property
to our advantage in optimisation.

1.3 Contributions

Types give us static information about a program; they tell us what a program is supposed to
do. Dependent types allow more accurate typing and hence give us more static information.
We ought to be able to make use of this not only to have more confidence about whether a
program works as planned, but also to optimise more aggressively. This thesis explores the
optimisation of dependently typed programs, the primary contributions being:

• A technique for removing redundant and duplicated information from data structures.
This technique examines type dependencies and removes terms whose values are forced
by other values. Also, it identifies and removes constructor tags which are made redun-
dant by case analysis on other values. The values which are removed are introduced
by the use of dependent types; it is therefore important that such values are identified
and removed in order for dependently typed programs to have comparable run-time
to simply typed programs.

• A compilation scheme for a dependently typed lazy functional language. I extend well-
understood technology for efficient evaluation of lazy functional languages (specifically,

Chapter 1. Introduction 12

Johnsson’s G-machine [Joh84] and Augustsson’s pattern matching compiler [Aug85])
to take advantage of our detailed type information. It is not essential that we use the
G-machine; other methods for executing functional languages (whether lazy or eager)
can be adapted in a similar way.

• An optimised representation of natural numbers using an external implementation. I
consider what is required to provide external implementations of type theoretic data
structures, taking natural numbers as an example.

• Specific techniques for transforming decorated terms in a dependent type theory into
efficiently executable code which leads in particular to the removal of unreachable code
branches, identified by typing.

While this work presents several optimisations for dependently typed programs, it is
important to understand that since dependently typed programs are initially decorated
with much more static information in the program as well as in the type, we are starting at
what seems like a big disadvantage. Perhaps, then, the most significant contribution is the
removal of redundant static information from the program and its data, without affecting
the operational behaviour of the program and the meaning of its data. Having reached this
point (which merely catches up with where we start optimising simply typed programs) we
can begin to apply further optimisations based on our rich type information.

1.4 Related Work

Martin-Löf’s constructive type theory [ML71] has been the basis for much research in the-
orem proving and programming via the Curry Howard isomorphism [CF58, How80]; other
dependent type theories are Luo’s Extended Calculus of Constructions [Luo94] and the Cal-
culus of Inductive Constructions [Coq01]. Interactive theorem provers are often based on
some form of dependent type theory — the logical language of NuPrl [C+86] is similar to
Martin-Löf’s type theory with universes [ML75]; Lego [LP92] is based on Luo’s ECC and
Coq is based on the Calculus of Inductive Constructions. Oleg [McB00a] builds on the
Lego [LP92] theorem prover, introducing tactics geared towards programming with induc-
tive families as well as theorem proving. Further (unpublished) work on Oleg resulted in
tactics for interactive development of pattern matching programs — these tactics led to the
design of Epigram [MM04b].

Recent extensions to the Haskell type system can be used to support some aspects of
programming with dependent types. McBride’s “Faking It” style of programming [McB02]
shows how Haskell type classes with functional dependencies can be used to implement some
vector operations (and some inductive families). Each constructor of the vector, Vnil and
Vcons, is a separate type, and is an instance of a type class Vect. To define a function
over vectors then involves implementing a method as part of the type class. While this

Chapter 1. Introduction 13

gives some of the advantages of dependent types, such as the more precise types of vector
operations, there are some big problems with this approach. Firstly, it does not generalise
to all inductive families. Secondly, the notation required to program in this way is rather
inconvenient — function definitions are distributed among several instance declarations.
Thirdly, there is a potential run-time overhead in that the implementation of type classes
necessitates the passing around of a dictionary of functions representing the methods of a
class (although this can often be inlined).

The majority of this work is concerned with the efficient execution of terms in a dependent
type theory. For this, we consider interpretation and compilation. Interpretation is based
on the normalisation by evaluation technique of Berger and Schwichtenberg [BS91], and
compilation is based on Johnsson’s G-machine [Joh84] and Augustsson’s pattern matching
compilation [Aug85]. We are therefore considering the execution of the type theory itself,
rather than translating to some other setting as is the approach of program extraction [PM89,
Let02] (which translates type theory terms to ML or Haskell) and Cayenne (which translates
Cayenne programs to Lazy ML, and compiles the resulting program with the typechecker
switched off). By compiling directly, rather than via another high level language, we have
the opportunity to take advantage of features of the type theory in implementing compilation
efficiently.

An important aspect of efficient execution is the optimisation of programs. There is
potentially a large amount of redundant information in types, and many of the optimisa-
tions of dependently typed programs we will see involve the removal of computationally
irrelevant or unused parts of code, in a similar manner to Berardi’s pruning of simply typed
λ-terms [Ber96]. We will see methods for removing redundant information from dependently
typed data structures in Chapter 4. Some of the techniques we shall see here, in particu-
lar the removal of content-free data structures, have a similar effect to aspects of program
extraction in Coq which aims to remove the purely logical parts of a proof to retrieve a
program. The advantage to the techniques we use in Chapter 4 over program extraction is
that it is not only the logical parts which are removed, but all parts which can be shown
not to be used at run-time. Nevertheless, the techniques we shall see are equally applicable
to program extraction.

Another optimisation, which we shall see in Chapter 5, involves the transformation of a
high level representation of natural numbers into a low level primitive type. A similar ap-
proach is taken by [MB01, Mag03] for implementing numbers more efficiently in Coq. The
Isabelle theorem prover [NPW02] also implements natural numbers natively, although the
techniques for doing so are not documented1. The low level implementation of natural num-
bers leads to the possibility of a further optimisation, unboxing the representation [PL91a],
in which numbers are represented directly rather than as pointers to their binary represen-
tation.

Many techniques which apply to simply typed languages can also be adapted towards
1Larry Paulson, personal communication

Chapter 1. Introduction 14

optimising dependently typed programs; for example, the Glasgow Haskell Compiler’s com-
pilation by transformation approach [San95, PS98] applies correctness preserving transfor-
mation rules to an intermediate representation. Inlining in particular [PM02] is an important
optimisation for two reasons; firstly, functional programmers use functions in much the same
way as C programmers use macros, and hence a good inliner is vital, and secondly inlining
often exposes further optimisation opportunities. We will examine some program transfor-
mations in Chapter 6.

1.5 Overview

The research documented in this thesis has been carried out in the context of an experimental
implementation of a back end for Epigram. In this section I will give an overview of the
implementation and an outline of the rest of the thesis.

1.5.1 System Overview

EPIGRAM

TT

RunTT

ExTT

RunTT’

ExTT’

G−machine

2a

Execution

Optimised PathNaïve Path 4a 4b 5b

2b

8a 8b

1

9

Extraction/

3

5a

Evaluation

7

6

Figure 1.1: System Overview

Figure 1.1 shows an outline of the system. Between the Epigram program and its
execution there are several stages, and two possible paths through the system. The left path

Chapter 1. Introduction 15

represents a näıve approach to compilation, where no optimisation takes place and all terms
are directly compiled from their elaborated form. An understanding of this path is necessary
to explain the path on the right, which represents an optimising approach to compilation.
Along this path, we remove duplicated and redundant information from data structures and
make use of the rich type information to remove unreachable code. The phases indicated on
the diagram are briefly summarised as follows:

• Step 1 in the diagram is the elaboration phase. This is described by [MM04b]; in this
phase, programs in Epigram notation are typechecked and elaborated into a core type
theory, TT.

• We now either take a näıve approach, or an optimising approach. The näıve path
proceeds as follows:

– Step 2a is a transformation into an execution language for the core type theory,
called ExTT. In fact, in this approach, TT and ExTT are identical, so this is the
identity transformation.

– Step 3 is extraction of ExTT terms into Haskell, which is a simple to implement
method of executing terms, but less efficient than compilation into an abstract
machine language. It is less efficient because, to deal with terms which have an
Epigram type but no Haskell type, we must use an intermediate representation
of values.

– Steps 4a and 5a are two parts of the transformation into a run-time language
of function definitions, RunTT. RunTT programs consist of supercombinator

definitions; these are function definitions with no free variables and no inner
lambdas, a form suitable for compilation to abstract machine code. Step 4a

translates user defined functions by Johnsson’s supercombinator lifting algorithm,
while step 5a translates pattern matching elimination rules into RunTT using an
adapted version of Augustsson’s pattern matching compiler [Aug85].

– Step 8a translates the supercombinator language into G-machine code [Joh84], an
efficient abstract machine language for the execution of lazy functional programs.
Some minor modifications are made to account for compiling dependent types.

The optimising path is the primary contribution of this thesis. The steps are similar to
those in the näıve path, but the transformations between each stage are more involved.
This path proceeds as follows:

– Step 2b translates TT into the execution language ExTT′, which here is a marked
up version of TT. Parts of terms which are unused or duplicated (that is, consid-
ered redundant) are marked for deletion.

– Steps 4b and 5b correspond to 4a and 5a, in that they convert ExTT′ into RunTT′

by lambda lifting and pattern matching compilation. The marking of step 2b

Chapter 1. Introduction 16

means that these processes are not so simple — the lambda lifting process removes
all terms which are marked for deletion; such terms must also be accounted for
by the pattern matching compiler.

– Step 6 is a compilation-by-transformation phase on the execution language ExTT′.
This makes some transformations for efficiency, in particular, making recursive
calls direct rather than via an elimination rule.

– Step 7 is a second compilation-by-transformation phase on the supercombinator
language. In this phase, source to source transformations are applied to RunTT′

which make use of the knowledge we have gained through typechecking — for
example, removal of impossible cases. Also some standard transformations are
made — inlining, and removal of unused arguments.

– Step 8b translates RunTT′ into G-machine code. I introduce some new instruc-
tions to the G-machine for this phase to take advantage of the marking optimi-
sations in ExTT′.

• Finally, step 9 involves the execution of G-machine code. There are several ways to
achieve this — either by the implementation of an interpreter for the abstract machine,
or a compiler from G-code to a more concrete target language such as C, machine code,
or C-- [PNO97]. I give state transition rules for G-machine instructions, many of which
are as originally defined by Johnsson, but some of which I introduce to implement the
optimising features of ExTT′ and RunTT′.

1.5.2 Chapter Outline

The various stages in the compilation of Epigram programs, as shown in figure 1.1 are
presented in this thesis. The structure of the rest of this work is as follows:

Chapter 2 presents a background to the literature and the field of type theory and func-
tional programming, and an introduction to programming with dependent types in
the Epigram notation.

Chapter 3 discusses execution environments and covers the näıve compilation path into
G-machine code, adapting Johnsson’s G-machine for use with TT.

Chapter 4 covers steps 2b, 4b and 5b. In step 2b, terms are marked up for later deletion.
Marking takes place by means of three optimisations. The first of these is the forcing

optimisation, which identifies parts of terms whose value is determined by another part
of a term (and hence are redundant). Secondly, the detagging optimisation identifies
where constructor choice in an elimination is determined by another value, meaning
that the constructor tag need not be stored. The third optimisation is collapsing

which identifies types with no computational meaning, which can be deleted entirely
at run-time.

Chapter 1. Introduction 17

After step 2b marks terms for deletion, these terms really are deleted in the super-
combinator lifting process in step 4b. Marking also affects the pattern matching
compilation process, step 5b — no case selection can take place on deleted terms. In
this chapter we will see a modified pattern matching compiler algorithm which takes
account of this and further takes advantage of the strong normalisation property of
Epigram.

Also in Chapter 4 are several examples, including an extended example of these tech-
niques showing an inductive family based implementation of Augustsson and Carlsson’s
well-typed interpreter [AC99] and its run-time costs.

Chapter 5 considers the introduction of primitive types into the language, and the opti-
misation of the natural number representation N by transformation of ExTT′. This
occurs in step 6 of the compilation process.

Chapter 6 covers additional optimisations. Firstly, a method for removing the abstrac-
tion layer of elimination rules is presented. By this method, recursion at run-time
is implemented directly rather than by an elimination operator, effectively recovering
the declared pattern matching behaviour of functions. As well as removing a layer of
abstraction, this opens up the possibility of further optimisations such as tail recursion
optimisation.

This chapter also considers optimisations which only apply in a dependently typed
language of total functions — specifically, the elimination of impossible cases by typing
rather than by global analysis. These optimisations take place during steps 6 and 7

of the compilation process.

Chapter 7 presents some conclusions. We will see how the features of Epigram’s type
system contribute to a more efficient implementation of programs and consider some
directions for further research.

Appendices A, B and C cover other technical details. Appendix A gives a detailed ac-
count of compiling a simple function, Appendix B presents some proofs of the prop-
erties of ExTT and Appendix C gives an implementation of a normalisation algorithm
for ExTT.

1.5.3 Implementation Note

At the time of writing the Epigram elaborator is still in development, although an early
version has recently been released. In particular, this prototype has not implemented the
with or named with notation described in section 2.2.7. The implementation documented by
this thesis is of a prototype back-end for Epigram. This includes an implementation of TT

(including a simple theorem prover with tactics for building terms in TT), compilation to
G-machine code via ExTT and RunTT, and extraction of Haskell programs from TT. This

Chapter 1. Introduction 18

prototype has served as an environment for experimentation with the implementation and
optimisation techniques described here. Nevertheless, the techniques described will also be
applicable to elaborated Epigram programs, or indeed any language based on dependent
type theory.

Since the front end is still in development, there are no large, real world, examples as yet.
As a result there is no benchmark suite corresponding to Haskell’s nofib suite [Par92], for
example, against which to compare the results of the optimisations presented here. Instead,
the results I present are in the form of comparisons between code generated by the näıve
and optimised compilation paths and analysis of the run-time costs of the RunTT programs
generated. These results themselves are encouraging, and suggest that it is indeed possible
to build a feasible programming language on top of a dependent type theory.

Chapter 2

Epigram and its Core Type

Theory

This chapter gives an introduction to the background of type theory and dependently typed
functional programming and introduces the high level Epigram notation along with the
core type theory to which it elaborates. In the introduction we considered the benefits of
dependent types for programming and some of the approaches taken by various languages
and systems. We saw in the introduction that the characteristic feature of a dependent type
system is the ability to predicate types on values, which leads to a more precise specification
for programs, using list append as a motivating example. In this chapter, we will see in
more detail how dependent types are used in Epigram and its core language and consider
several examples of Epigram programs.

We will look first at the core language of Epigram, which I call TT, since this is the lan-
guage we will be compiling and optimising in later chapters. This core language, introduced
in section 2.1, is a dependent type theory similar to Luo’s ECC [Luo94] with the addition of
definitions and inductive families. Tactics for developing programs in dependent type theory
developed by McBride [McB00a] led to the design of the high level Epigram notation. We
will later see several examples of Epigram programs and so in section 2.2 we introduce the
high level notation and discuss some of the programming idioms this allows in section 2.3.

2.1 TT — The Core Type Theory

The first stage in the compilation of a programming language is translation to a core rep-
resentation; in the case of a functional language this is often a form of the λ-calculus. For
example, the core language of the Glasgow Haskell Compiler [GHC03], Core Haskell [TT01],
is a subset of Haskell resembling the polymorphic λ-calculus. The core language of Epigram

is based on a dependently typed λ-calculus, similar to Luo’s ECC [Luo94] with some minor

19

Chapter 2. Epigram and its Core Type Theory 20

additions for practical programming. In this section, we will examine the details of the core
language and look at some example programs.

2.1.1 The Core Language

The core language of Epigram, which I call TT, is based on Luo’s ECC with definitions,
inductive families and equality. The syntax of TT is shown in figure 2.1. We may also
abbreviate the function space ∀x :S . T by S → T if x is not free in T . There is an infinite
hierarchy of predicative universes, ?i : ?i+1. Universe levels can be left implicit and inferred
by the machine, as in [HP91]. As such, when showing TT terms, we will generally leave out
the universe level; for the majority of the examples in this thesis, ? indicates ?0.

t ::= ?i (type universes) | x (variable)
| ∀x : t . t (function space) | D (inductive family)
| λx : t . t (abstraction) | c (constructor)
| t t (application) | D-Elim (elimination rule)
| let x 7→ t : t in t (let binding)

Figure 2.1: The core language, TT

Remark: Although x , D, c and D-Elim all represent names of some form, it is convenient
in an implementation to make this syntactic distinction as each one is treated differently in
various parts of the system.

Contexts

The core language gives the syntax for both types and terms. In addition, we have a context
Γ which binds names to types and values. A valid context is defined inductively as:

E ` valid
Γ ` S : ?i

Γ; x : S ` valid
Γ ` s : S

Γ; x 7→ s : S ` valid

Where E denotes the empty context, Γ; x : S denotes a context extended by a variable
declaration x with its type S , and Γ; x 7→ s : S denotes a context extended by a variable
definition x with its type S and value s. Computation and typechecking only make sense
relative to a context. We write the typing judgement, which is a relation expressing that a
term t has type T relative to a context Γ as follows:

Γ ` t : T

Where computation or typechecking takes place in the empty context, I shall write the
typing judgement as follows, eliding the E :

` t : T

Chapter 2. Epigram and its Core Type Theory 21

Computation

Conceptually, computation in the core language is defined by contraction rules, given in
figure 2.2. Contraction, relative to a context Γ, is given by one of the following contraction
schemes:

• β-contraction, which substitutes a value applied to a λ-binding for the bound variable
in the scope of that binding. Since we have local definitions, by let bindings, then
β-reduction is given by the scheme Γ ` (λx :S . t) s ; let x 7→ s : S in t .

• η-contraction, which eliminates redundant λ abstractions. η-contraction is given by
the scheme Γ ` λx :S . f x ; f .

• δ-contraction, which replaces a let bound variable by its value. δ-contraction is given
by the scheme Γ; x 7→ s : S ` x ; s.

β−contraction Γ ` (λx :S . t) s ; let x 7→ s : S in t
η−contraction Γ ` λx :S . f x ; f
δ−contraction Γ; x 7→ s : S ; Γ′ ` x ; s

Figure 2.2: Contraction schemes for TT

The terms of the form (λx : S . t) s, λx : S . f x and x are called β-redexes, η-redexes

and δ-redexes respectively. The terms let x : S 7→ s in t , f and s are their contractums,
respectively.

β-contraction is often presented as a substitution, i.e. Γ ` (λx . t) a ; t [x/a]. Here, we
prefer to implement it in terms of let binding as in [MM04b], since this simplifies presentation
of the theory; we use the following contextual closure rule to reduce a let binding by giving
rise to a δ-redex:

Γ; x 7→ s : S ` t ; u
Γ ` let x 7→ s : S in t ; u

Reduction (¤) is the structural closure of contraction, and computation (¤∗) is the
transitive closure of reduction. We also say that if a term x contains an occurrence of a
redex y , and we replace y by its contractum, resulting in the term x ′, then x one-step reduces
to x ′ (Γ ` x ¤1 x ′)

Conversion, denoted ', is the smallest equivalence relation closed under reduction and
is defined in figure 2.3. If Γ ` x ' y , then y can be obtained from x in the context Γ by
a finite (possibly empty) sequence of contractions and reversed contractions. Terms which
are convertible are also said to be computationally equal. The conversion rule makes use of
syntactic equivalence, denoted ≡. If Γ ` x ≡ y , then the terms x and y are are identical

Chapter 2. Epigram and its Core Type Theory 22

up to α-conversion. We avoid name capture problems in practice by referring to bound
names by their de Bruijn indices [dB72] — the de Bruijn index of a variable is the number
of variables bound more recently.

Definition: x is convertible to y relative to Γ (Γ ` x ' y)
if and only if there exist x1, . . . , xn (n ≥ 1) such that Γ ` x ≡ x1,Γ ` y ≡ xn

and Γ ` xi ¤1 xi+1 or Γ ` xi+1 ¤1 xi, for i = 1, . . . ,n − 1

Figure 2.3: Conversion for TT

We say:

• A term is in normal form if and only if it contains no redexes. We denote the normal
form of a term t relative to a context Γ by Γ ` nf(t). A term t is strongly normalising,
denoted Γ ` sn(t), if every reduction sequence t ¤1 t1 ¤1 t2 ¤1 . . . reaches normal form
in a finite number of reductions.

• A term is in weak head-normal form

– If it is not a reducible expression.

– If it is of the form f a and f is a weak head-normal form.

We denote the weak head-normal form of a term relative to a context Γ by Γ ` whnf(t).

Type Inference Rules

The type inference rules for TT are given in figure 2.4. Given the language and the typing
rules, there are two problems for which we would like to have an algorithm (as with any
type system):

• Type Checking (TC) Given a term t , a type T and a context mapping names
to types Γ, can we determine that the term t has type T in the context Γ (written
Γ ` t : T)?

• Type Synthesis (TS) Given a term t and a context Γ, can we infer a type T such
that Γ ` t : T? This is also known as type inference.

A type synthesis algorithm for TT is given in figure 2.5 (TS). We use the following
notation:

• Γ ` t =⇒ T means that t is assigned the type T .

• Γ ` t =⇒ T ³ T ′ means that the type T assigned to term t has a weak head-normal
form of T ′.

Chapter 2. Epigram and its Core Type Theory 23

Using this algorithm, we check a judgment Γ ` a : A by synthesising types and checking
for conversion in the standard way [Hue89, Coq96], as follows:

• Γ ` A =⇒ X ³ ?n (check A is a type)

• Γ ` a =⇒ B (infer a type for a)

• Γ ` A ' B (check that the inferred and declared types are convertible)

Γ ` valid
Γ ` ?n : ?n+1

Type

Γ; x : S ; Γ′ ` valid
Γ; x : S ; Γ′ ` x : S Var

(Similarly for c, D, D-Elim)
Γ; x 7→ s : S ; Γ′ ` valid
Γ; x 7→ s : S ; Γ′ ` x : S Val

Γ ` f : ∀x :S . T Γ ` s : S
Γ ` f s : let x : S 7→ s in T App

Γ; x : S ` e : T Γ ` ∀x :S . T : ?n

Γ ` λx :S .e : ∀x :S .T Lam

Γ; x : S ` T : ?n Γ ` S : ?n

Γ ` ∀x :S .T : ?n
Forall

Γ ` e1 : S Γ; x 7→ e1 : S ` e2 : T Γ ` S : ?n Γ; x 7→ e1 : S ` T : ?n

Γ ` let x : S 7→ e1 in e2 : let x : S 7→ e1 in T Let

Γ ` x : A Γ ` A′ : ?n Γ ` A ' A′
Γ ` x : A′ Conv

Figure 2.4: Typing rules for TT

Remark: The operational semantics of TT requires weak head normalisation — i.e., for
reduction to proceed requires the machine to know whether a term is a λ or constructor
headed. Some aspects of typechecking also require weak head-normal forms (for example
checking if a term has a ∀ form at the head). Other aspects require conversion, which relies
on reduction to normal form or weak head-normal form.

2.1.2 Inductive Datatypes

Datatypes in the core language TT are defined as inductive datatypes in the style of Lego,
Coq and Alf, and as presented by [Dyb94]. An inductive datatype is declared as a disjoint
union of constructors, each with zero or more recursive and non-recursive arguments. An
example of an inductive datatype is the type representing natural numbers, N, which can
be described in a natural deduction style with a type formation rule, and rules for each
constructor, as follows:

Chapter 2. Epigram and its Core Type Theory 24

Γ ` valid
Γ ` ?n =⇒ ?n+1

Γ ` valid x : S ∈ Γ
Γ ` x =⇒ S

(Similarly for c, D, D-Elim)
Γ ` valid x : S 7→ s ∈ Γ

Γ ` x =⇒ S
Γ ` f =⇒ X ³ ∀x :S . T Γ ` s =⇒ S ′ Γ ` S ' S ′

Γ ` f s =⇒ let x : S ′ 7→ s in T

Γ; x : S ` e =⇒ T Γ ` ∀x :S . T =⇒ X ³ ?n

Γ ` λx :S . e =⇒ ∀x :S . T
Γ; x : S ` T =⇒ X ³ ?n Γ ` S =⇒ X ′ ³ ?n

Γ ` ∀x :S . T =⇒ X

Γ ` S =⇒ X ³ ?n Γ ` e1 =⇒ S ′ Γ ` S ' S ′

Γ; x : S 7→ e1 ` e2 =⇒ T Γ; x : S 7→ e1 ` T =⇒ X ′ ³ ?n

Γ ` let x : S 7→ e1 in e2 =⇒ let x : S 7→ e1 in T

Figure 2.5: Type synthesis for TT

data N : ?
where

0 : N
n : N
s n : N

This type introduces three constants to the context Γ, representing the type constructor
(N) and the two data constructors (0 and s).

N : ? ∈ Γ
0 : N ∈ Γ
s : N→ N ∈ Γ

Inductive datatypes can also be parametrised over a value. Lists, for example, are
parametrised over their element type. This can be described as follows:

data A : ?
List A : ?

where ?
nil : List A

x : A xs : List A
cons x xs : List A

Note that we do not declare A : ? in the premises for nil and cons, as its presence
is inferable from the type formation rule. We adopt the convention, as in [MM04b], that
constructor arguments with inferable types such as A need not be declared explicitly, for
the sake of readability. Nevertheless, when the constructors are added to the context, we
keep A as an argument to both nil and cons as it is required to preserve type correctness.
The constants which are added to the context are:

List : ?→ ? ∈ Γ
nil : ∀A :?. List A ∈ Γ
cons : ∀A :?. ∀x :A. ∀xs :List A. List A ∈ Γ

Chapter 2. Epigram and its Core Type Theory 25

In the definition of List, the value of the parameter A does not change across the structure;
however, it is not necessary for each constructor to target the entire family as in List, nor is
it necessary for the parameter to be a type. We could, for example, parametrise lists over
their length as well as their element type. Vect is a datatype for lists parametrised over their
length (vectors), and is described as follows:

data A : ? n : N
Vect A n : ?

where
ε : Vect A 0

x : A xs : Vect A k
x ::xs : Vect A (s k)

Here we use an infix constructor for the non-empty vectors, similar to the infix constructor
: used for Haskell lists. These rules state that empty lists have length zero and non-empty
lists increase the length by one. Hence, as items are added to the vector, the length parameter
increases. We call such parameters, which do change across the structure, indices. We say
that Vect is an inductive family.

Note that each constructor targets a sub-family of Vect — this is the reason for using
natural deduction style to introduce constructors, rather than a Haskell style data declara-
tion. Again, there are implicit arguments to each constructor; the constants added to the
context are as follows:

Vect : ?→ N→ ? ∈ Γ
ε : ∀A :?. Vect A 0 ∈ Γ
:: : ∀A :?. ∀k :N. ∀x :A. ∀xs :Vect A k . Vect A (s k) ∈ Γ

The general scheme for declaration of an inductive family D with constructors ci is given
in figure 2.6. The ~s are the indices, and we split the constructor arguments into ~a (the non-
recursive arguments) and ~y (the recursive arguments). The vector notation ~x [dB91] denotes
the fact that there may be zero or more arguments in the form of x , and correspondingly xi

denotes the ith (zero based) entry in the vector ~x . The constructors ci can not be reduced
further; we say that a term which is a fully applied constructor is in canonical form.

data
~i : ~I
D~i : ?

where ~a1 : ~A1 y11 : D r11 . . . y1j : D r1j

c1 ~a1 ~y1 : D~s1
. . .

~an : ~An yn1 : D rn1 . . . ynk : D rnk

cn ~an ~yn : D~sn

Figure 2.6: Inductive family declaration

A recursive argument may also be higher order, although figure 2.6 does not show this
for the sake of clarity (i.e., it may be a function which computes a recursive argument, rather
than simply a recursive argument), provided that it satisfies a condition which ensures that

Chapter 2. Epigram and its Core Type Theory 26

computation over the datatype will terminate. This condition, known as strict positivity,
states that if an argument to a constructor of a family D has type ~T → D~s, then an instance
of D may not occur in ~T .

Dybjer’s presentation of inductive families [Dyb94] also identifies the parameters of a
datatype; in Epigram we do not require the programmer to identify the parameters ex-
plicitly but rather look for values which cannot change across the structure. The ~s are the
indices and parameters of the datatype; these may be computed from or predicated on the
non-recursive arguments.

2.1.3 Elimination Rules

When we declare an inductive family D, we give the constructors which explain how to build
objects in that family. Along with this, the machine generates an elimination operator

D-Elim (the type of which we call the elimination rule) and corresponding reductions,
which we call ι-schemes. These describe and implement the allowed reduction and recursion
behaviour of terms in the family. The method for constructing elimination operators is well
documented, in particular by [Dyb94, Luo94, McB00a].

Like [McB00a] I will give ι-schemes in pattern matching form. The general form of
an elimination rule and its associated ι-schemes is shown in figure 2.7. Elimination rules
reduce when they are fully applied and the target is in canonical form; we call this ι-

reduction. The arguments to the elimination rule are as follows, using the nomenclature
of [McB00a, MM04b]:

• x is the target, preceded by its parameters and indices, ~i . The target is the object to
be eliminated by the rule, and corresponds to the scrutinee of a case expression in a
traditional functional language.

• P is the motive of the elimination. The motive is a function which computes the
return type of the elimination from the target. The motive allows an elimination to
return a different type depending on the value of the target, and hence distinguishes an
elimination rule from a typical fold operator, where the return type is a polymorphic
type variable.

• mc is a method for the case of the constructor c. The method for c is the reduction
chosen on elimination if the target is headed by the constructor c. The function takes
arguments for each argument to c, and for each recursive argument yi to c it takes an
extra argument representing the value of the recursive call to D-Elim with y as the
target.

Remark: We call an elimination operator applied to a target an eliminator. While in
most presentations the arguments to an elimination operator are ordered motive, methods,
target, we choose to put the target first (preceded by its parameters and indices, as it depends

Chapter 2. Epigram and its Core Type Theory 27

D-Elim : ∀~i :~I . ∀x :D~i . (target)
∀P :∀~i :~I . D~i → ?. (motive)
∀mc : ∀~a : ~A. ∀y1 :D ~r1. . . . ∀yj :D ~rj .

P ~r1 y1 → . . .→ P ~rj yj → P ~s (c ~a ~y).
· · ·

 (methods)

P ~i x
D-Elim~s (c ~a ~y) P ~m ; mc ~a ~y (D-Elim ~r1 y1 P ~m) . . . (D-Elim ~rj yj P ~m)

Figure 2.7: Elimination rule for D, with ι-scheme for c

on them) to support Epigram’s notion of eliminators for pattern matching, which we will
see in section 2.2.2.

As an example, the elimination rule for N is as follows:

N-Elim : ∀n :N. Target
∀P :N→ ?. Motive
∀m0 :P 0. Method for 0

∀ms :∀k :N.∀ih :P k .P (s : k). Method for s

P n Return type (motive instance)

The ι-schemes for N-Elim which implement this elimination rule are given in pattern
matching form as follows:

N-Elim 0 P m0 ms ; m0

N-Elim (s k) P m0 ms ; ms k (N-Elim k P m0 ms)

A simple example of a function which can be implemented in terms of this elimination
rule is plus, defined as follows:

plus : ∀n,m :N. N
plus 7→ λn,m :N. N-Elim n (λn :N. N) m (λk :N. λih :N. s ih)

This is defined by recursion over the first argument n. When n is zero, the return value
is m. When n = s k for some k we get an induction hypothesis ih which tells us the value of
the recursive call (plus k n). In this case, we return the successor of the recursive call, s ih.

For a datatype where a parameter does not change across the whole structure, we can
lift out the parameter from the arguments to the motive and methods. For example, the
elimination rule for List does not pass A as an argument to the methods, since A does not
change:

Chapter 2. Epigram and its Core Type Theory 28

List-Elim : ∀A :?. Parameter
∀l :List A. Target
∀P :List A→ ?. Motive
∀mnil :P (nil A). Method for nil

∀mcons :∀x :A. ∀xs :List A. ∀ih :P xs.P (cons A x xs). Method for cons

P l Return type
List-Elim A (nil A) P mnil mcons ; mnil

List-Elim A (cons A x xs) P mnil mcons ; mcons x xs (List-Elim A xs P mnil mcons)

Recall that all arguments are kept explicit in TT, hence the A appears as an argument
to nil and cons in this elimination rule. The elimination rule for Vect lifts the parameter A
out of the motive and methods, but passes the length index through as it does change across
the structure:

Vect-Elim : ∀A :?. Parameter
∀n :N. Index
∀v :Vect A n. Target
∀P :∀n :N. Vect A n → ?. Motive
∀mε :P 0 (ε A). Method for ε

∀m:: :∀k :N. ∀x :A. ∀xs :Vect A k .

∀ih :P k xs.P (s k) (:: A k x xs).
Method for ::

P n v Return type
Vect-Elim A 0 (ε A) P mε m:: ; mε

Vect-Elim A (s k) (:: A k x xs) P mε m::

; m:: k x xs (Vect-Elim A k xs P mε m::)

Epigram also generates non-recursive eliminators (case analysis rules) for each type.
These are the same as the recursive eliminators except that there are no additional arguments
in the methods for the result of recursive calls. For N, this would be as follows:

N-Case : ∀n :N. Target
∀P :N→ ?. Motive
∀m0 :P 0. Method for 0

∀ms :∀k :N.P (s k). Method for s

P n Return type

It is not difficult to see how to prove this from N-Elim, simply by not using the inductive
hypotheses in the method calls. However, in practice, it is more efficient to define it directly
as it removes a level of indirection. The general scheme for D-Case is shown in figure 2.8.

2.1.4 Equality

Thanks to the Curry Howard isomorphism, inductive families can represent not only data,
but also proofs of propositions. An important such proposition is propositional equality,

Chapter 2. Epigram and its Core Type Theory 29

D-Case : ∀~i :~I . ∀x :D~i . (target)
∀P :∀~i :~I . D~i → ?. (motive)
∀mc : ∀~a : ~A. ∀y1 :D ~r1. . . . ∀yj :D ~rj . P ~s (c ~a ~y).
· · ·

}
(methods)

P ~i x
D-Case~s (c ~a ~y) P ~m ; mc ~a ~y : P ~s (c ~a ~y)

Figure 2.8: Non-recursive Elimination rule for D, with ι-scheme for c

which is defined using Martin-Löf’s identity type declared as in figure 2.9 (using an infix
notation for the type constructor =).

data A : ? a, b : A
a = b : ?

where A : ? a : A
refl a : a = a

= -elim : ∀A :?. ∀a :A. ∀b :A.
∀x :a = b. ∀P :a = b → ?.
∀mrefl :P (refl A a). P x

= -elim A a a (refl A a) P mrefl ; mrefl A a

Figure 2.9: Martin-Löf’s Equality

We can declare an equality between any two values in the same type, but we can only con-
struct a proof of equality between two values which are equal. The constructor application
refl a is a proof that a = a.

This equality relation is sufficient to describe equality between objects of the same type.
However, with inductive families it is often useful to be able to describe equality between
potentially different types. For example, it is impossible to declare an equality between two
Vects with different indices, even if those indices are propositionally equal. It is intuitively
clear that the following proposition (that :: respects equality) holds, however the definition
of propositional equality we have is insufficient to express the theorem; there are type errors
because the vectors involved have different indices.

wrong : ∀A :?. ∀m :N. ∀x :A. ∀xs :Vect A (s m).
∀n :N. ∀y :A. ∀ys :Vect A (s n). (×)
m = n → x = y → xs = ys → (:: A m x xs) = (:: A n y ys)

Instead, we use McBride’s heterogeneous definition of equality1 [McB00a], declared as in
figure 2.10. Using this definition, we can declare an equality between two values in different
types, but we can only construct a proof of an equality between two identical values in the
same type. Note that we do not declare this family with a data declaration but rather
add the type formation and elimination rules to the core type theory as axioms, because

1McBride calls this “John Major” equality.

Chapter 2. Epigram and its Core Type Theory 30

the default elimination rule given by the D-Elim scheme would not be suitable. The rule
generated for a data declaration would be abstracted over both types A and B but we only
want to be able to apply the rule when the types A and B are the same. Henceforth, = is
this heterogeneous equality.

A,B : ? a : A b : B
a = b : ?

A : ? a : A
refl a : a = a

= -elim : ∀A :?. ∀a :A. ∀b :A.
∀x :a = b. ∀P :a = b → ?.
∀mrefl :P (refl A a). P x

= -elim A a a (refl A a) P mrefl ; mrefl A a

Figure 2.10: Heterogeneous Equality for Dependent Types

2.1.5 Properties of TT

There are several metatheoretic properties which hold for UTT as shown by Goguen [Gog94],
and hence we assume to hold for TT. These are:

• Church Rosser. If two terms s and t are convertible, then s and t have a common
reduct, up to syntactic equivalence (≡).

if Γ ` s ' t
then there exists r , r ′ such that
Γ ` s ¤∗ r and Γ ` t ¤∗ r ′ and Γ ` r ≡ r ′

• Strong normalisation. All well-typed terms in TT are strongly normalising.

if Γ ` t : T then sn(t)

• Subject reduction. If s reduces to t , then s and t have the same type.

Γ ` s : T Γ ` s ¤∗ t
Γ ` t : T

• Uniqueness of types. A term only has one type, so if the same term is shown to
have two types with respect to the context, then those two types must be convertible.

Γ ` s : T Γ ` s : T ′
Γ ` T ' T ′

Chapter 2. Epigram and its Core Type Theory 31

• Adequacy. In the empty context (that is, in the absence of any assumptions) the
weak head-normal form of a term t is a constructor form.

if ` t : D~s
then whnf(t) ≡ c~t for some c,~t

Remark: η-contraction can cause problems with the metatheory, particularly with regard
to the Church Rosser property. The counterexample which shows that Church Rosser fails
is as follows (with A 6' B):

λx :A. (λx :B . x)x

This reduces to λx : A. x by β-reduction, and λx : B . x by η-reduction. Of course,
this term is not well-typed, but we still have a problem because Church Rosser is often
shown by erasing types and showing the property for the untyped terms. Nevertheless, we
are only interested in the well-typed terms, and the work of Geuvers [Geu93] and Jay and
Ghani [JG95] leads us to believe that Church Rosser does hold for TT with η.

2.1.6 Universe Levels and Cumulativity

Γ ` x ' y
Γ ` x ¹ y

Γ ` x ¹ y Γ ` y ¹ z
Γ ` x ¹ z

Γ ` ?n ¹ ?n+1

Γ ` S1 ¹ S2 Γ; x : S1 ` T1 ¹ T2

Γ ` ∀x :S1. T1 ¹ ∀x :S2. T2

Figure 2.11: Cumulativity

In TT, we have an infinite hierarchy of predicative universes, i.e ?n : ?n+1 for n ≥ 0.
In [MM04b], the core type theory also has cumulativity (figure 2.11), which allows us to
embed values in higher universes — so if A : ?n , we also have A : ?n+k for k > 0. The
problem with defining cumulativity rules for the type theory, however, is that it breaks the
uniqueness of types property. With cumulativity we can, for example, say the following:

N : ?0

N : ?1

From uniqueness of types, we could then conclude that ?0 = ?1, which is clearly not true.
The uniqueness of types property will be crucial to later parts of this thesis, and so we do
not have cumulativity in the core type theory. Nevertheless, there are programs for which
cumulativity is useful. An example will be given in section 4.6; at that point I will suggest,
in section 4.6.2, a solution to the cumulativity problem based on Tarski style universes, as
implemented in Plastic [CL01].

Chapter 2. Epigram and its Core Type Theory 32

2.1.7 TT Examples

To show how the core type theory is used, let us consider some small example programs.
We have already seen plus, defined by elimination of its first argument:

plus : ∀n,m :N. N
plus 7→ λn,m :N. N-Elim n (λn :N. N) m (λk :N. λih :N. s ih)

A more complex example is the append function on lists; this is similar in structure to
plus. If the first list xs is empty, we simply return the second list ys. Otherwise, if the first
list is of the form cons z zs, we return (cons z (append zs ys)), where the recursive call is
represented by the inductive hypothesis ih.

append : ∀A :?. ∀xs, ys :List A. List A
append 7→ λA :?. λxs, ys :List A.

List-Elim A xs (λxs :List A. List A) ys
(λz :A. λzs :List A. λih :List A. cons A z ih)

In Chapter 1 we considered the type safety of vector append as compared with list
append. The definition of vector append in the core type theory is of the same structure
as list append, although it does raise some issues about typechecking. The definition is as
follows:

vappend : ∀A :?. ∀n,m :N. ∀xs :Vect A n. ∀ys :Vect A m. Vect A (plus n m)
vappend 7→ λA :?. λn,m :N. λxs :Vect A n. λys :Vect A m.

Vect-Elim A n xs (λn :N. λxs :Vect A n. Vect A (plus n m)) ys
(λk :N. λz :A. λzs :Vect A k . λih :Vect A (plus k m).

:: A (plus k m) z ih)

The issues with typechecking are based on the expected return types of the methods of
Vect-Elim. The problems are:

• In the ε case, we expect a return type of Vect A (plus 0 n). However, the return value
ys has type Vect A n.

• In the :: case, we expect a return type of Vect A (plus (s k) n), however the return
value of :: A (plus k n) z ih has type Vect A (s (plus k n)).

So why does the given definition of vappend typecheck? This definition typechecks be-
cause in conversion checking we are comparing normal forms (or weak head-normal forms) of
terms, rather than the syntactic forms. For example, in checking the ε case, the normal form
of plus 0 n is n — this is reducible because the first argument to plus, which is the one we
pass to the elimination rule, is in canonical form (i.e. headed by a constructor). Hence, the ε

case typechecks. The :: case typechecks for similar reasons. This is an important point about
typechecking dependently typed programs — syntactic equality checking is not enough; we
must reduce to normal form (or use some other method of conversion checking based on

Chapter 2. Epigram and its Core Type Theory 33

reduction) before checking equality, hence why without strong normalisation typechecking
becomes undecidable.

2.1.8 Labelled Types

Labelled types, introduced in [MM04b] are an extension to the core type theory which allow
terms to be “labelled” by another term which describes its meaning. We extend the TT

language of section 2.1 with syntax for labelled types as in figure 2.12. The typing and
contraction (called ρ-reduction) rules for these syntax extensions are given in figure 2.13
and figure 2.14.

t ::= . . .
| 〈l : t〉
| call 〈l〉 t
| return t

l ::= n ~t (A name applied to zero or more terms)

Figure 2.12: Extensions to TT for labelled types

Γ ` T : ?n
Γ ` 〈l : T 〉 : ?n

Label

Γ ` t : T
Γ ` return t : 〈l : T 〉 Return

Γ ` t : 〈l : T 〉
Γ ` call 〈l〉 t : T Call

Figure 2.13: Typing and rules for labelled types

ρ-contraction Γ ` call 〈l〉 (return t) ; t

Figure 2.14: Contraction rule for labelled types

Epigram programs are defined interactively, with metavariables (or holes, 2 : T)
standing for parts of programs which have not yet been written, and their type. Labelled
types allows the types of holes to be more informative; the system implicitly inserts a label
into the return type of a function. So, if we are defining plus interactively, the type is

plus : ∀n :N.∀m :N.〈plus n m : N〉

Chapter 2. Epigram and its Core Type Theory 34

Now the types of recursive calls and return values give us some useful information, namely
their meaning as well as their type. An incomplete definition of plus, with metavariables
in place of the cases, is labelled as follows:

plus = λn,m :N.

N-Elim n (λn :N.〈plus n m : N〉)
2 : 〈plus 0 m : N〉
2 : ∀k :N.∀ih :〈plus k m : N〉.〈plus (s k) m : N〉

Labelling the return type in this way tells us that when n is 0, the return value of the
function is the value of plus 0 m, and when n is s k , the recursive call we get is the value of
plus k m and the return value of the function is plus (s k) m.

The purpose of the return keyword is to create a label, rather than a N. Then, since
the inductive hypothesis is now a label rather than a N, the application of the inductive
hypothesis is made with the call keyword.

A more detailed account of labelled types and their use in elaborating Epigram terms is
given in [MM04b]. I will in general leave labels out of terms — it is a simple transformation
to change TT terms with labels to TT terms without labels. Eventually, I will use these
labels to assist in efficient compilation. The details of this optimisation will be described in
Chapter 6.

2.2 Programming in Epigram

This thesis concentrates on the efficient compilation of Epigram programs and we will see
many examples of Epigram programs and their elaborated forms. Rather than writing
programs directly in TT, Epigram is a high level notation for programming which makes
programs more readable and easier to develop. This section gives a tutorial introduction
to programming with inductive families in the high level Epigram notation, building on
the core type theory of TT. For a complete specification of Epigram see [MM04b]; a more
comprehensive tutorial is given in [McB04].

2.2.1 Basic Notation

Data Type Declarations

Inductive datatypes and families are declared using a data declaration, as we have already
seen in section 2.1.2:

Chapter 2. Epigram and its Core Type Theory 35

data ~s : ~S
D~s : ?

where ~a1 : ~A1 ~y11 : D ~r11 . . . ~y1j : D ~r1j

c1 ~a1 ~y1 : D~s1
. . .

~an : ~An ~yn1 : D ~rn1 . . . ~ynk : D ~rnk

cn ~an ~yn : D~sn

The indices of each constructor may differ — such as in the Vect family (see section 2.1.2)
where the constructors for the empty and non-empty vectors target different and disjoint
branches of the family — so a Haskell style data declaration is insufficient to express many
families.

The recursive arguments ~y may be higher order provided that they satisfy the strict
positivity condition (see section 2.1.2). When a structure is strictly positive, we know that
the recursive arguments can only represent smaller structures.

Function Definitions

A function definition takes the form of a type signature followed by the function body.
Functions, like inductive datatypes, are declared in a natural deduction style, with the
premises above the line (i.e., the argument types) and the conclusion below the line (i.e.,
the return type). This gives a convenient notation for dependent types because argument
names can appear in the type of later arguments, and in the return type of the function.

let ~s : ~S
f ~s : T f ~s 7→ {body}

In this declaration, ~S denotes the types of the arguments, and T the return type of
the function. There may also be implicit arguments, as with data type declarations, whose
values can be inferred from the given arguments ~s. The type of elaborated f in the core TT

is:

f : ∀~i :~I . ∀~s :elab(~S). elab(T)

(Where elab(p) denotes the elaboration of a high level program p, and ~i : ~I are the
implicit arguments.) We use the ∀~x : ~S notation, with explicit names for the arguments,
since dependent types allow the ~x to occur in the return type of f , T , in much the same
way as the ~x are allowed to occur in the body of f . Just as λ is a binder for function bodies
in λ-calculus, the ∀ symbol is a binder for function types.

Finally, for function types ∀x :S .T , where x is not free in S we can use the more concise
notation which will be familiar to Haskell or ML programmers:

f : S → T

Chapter 2. Epigram and its Core Type Theory 36

2.2.2 Programming with Elimination Rules

As we saw in section 2.1.2, constructors provide a means for creating objects of an inductive
datatype, and elimination rules provide a means for deconstructing those objects. In TT,
elimination rules are the only means for examining datatypes and so the high level notation
provides a convenient means for applying elimination rules.

Earlier, we saw the plus function on natural numbers defined in TT as follows:

plus : ∀n,m :N. N
plus = λn,m :N. N-Elim n (λn :N. N) m (λk :N. λih :N. (s ih))

Let us consider how the Epigram system allows us to define this function using high
level notation, in an interactive style. We begin by declaring the type of plus:

let n,m : N
plus n m : N

With this, Epigram’s interactive development system gives us a template for a function
definition, with a “hole” for its body, 2, indicating its type:

plus n m 2 : N

We would like to define this function by recursion on the first argument, m, so we tell
Epigram to apply the elimination rule N-Elim to n. The “by” operator (⇐) takes as its
right hand side an eliminator (i.e. an elimination rule applied to its target). As a shorthand,
we can access the appropriate eliminator for a term x with the notation elim x . Applying
the elimination rule gives two possible cases for n:

let n,m : N
plus n m : N

plus n m ⇐ elim n
plus 0 m 7→ 2 : N
plus (s k) m 7→ 2 : N

The details of the elimination rule are hidden from the programmer; however, behind
the scenes the system is building a term in TT, complete with labelled types. The labelled
type of plus is:

plus : ∀n,m :N. 〈plus n m : N〉

The system knows if a recursive call is allowed by searching through the bindings in the
context and checking for a term with a labelled type which matches the recursive call — this
term is an inductive hypothesis. For this function, plus k m is an allowed recursive call in
the s k case, since the type of the inductive hypothesis is 〈plus k m : N〉. We can complete
the definition as follows:

Chapter 2. Epigram and its Core Type Theory 37

let n,m : N
plus n m : N

plus n m ⇐ elim n
plus 0 m 7→ m
plus (s k) m 7→ s (plus k m)

We therefore use elimination rules to generate readable pattern matching style functions.
Epigram programs are tree structured in that a call to an elimination rule breaks the
program down into sub problems; we reflect this by indenting the program where there is
an appeal to an elimination rule.
Remark: Using this approach, pattern matching is not hard-wired. Instead, there is a
pattern matching style interface for programming with eliminators. Also, the interactive
approach to program development means that the programmer does not have to type in
the whole definition; the appropriate patterns are given by the elimination rule. This is
particularly useful where case analysis on one argument tells us something about other
arguments (case analysis on a Vect tells us which constructor was used to build its length
index, for example). We will see some examples of this later, in particular in sections 2.3.2
and 2.3.3.

2.2.3 Impossible Cases

One of the most important features of the elaboration process is the elimination of cases
which can be shown to be impossible through types. For example, consider how we might
write a function which returns the tail of a non-empty vector. We declare the type, and get
a template for the function as follows:

let v : Vect A (s n)
vTail v : Vect A n

vTail v 7→ 2 : Vect A n

Clearly, the empty vector is not a valid input to this function — the type specifies that
the input must have a non-zero length. As a result, when we declare that we wish to write the
function by Vect-Case v (using the notation case v to access the non-recursive elimination
rule), all the system gives us is the case for the non-empty vector:

let v : Vect A (s n)
vTail v : Vect A n

vTail v ⇐ case v
vTail (a::v) 7→ 2 : Vect A n

Completing this definition is straightforward:

let v : Vect A (s n)
vTail v : Vect A n

vTail v ⇐ case v
vTail (a::v) 7→ v

Chapter 2. Epigram and its Core Type Theory 38

By examining the input type VectA (sn) we see that the empty vector ε is an impossible
case, since it has the type Vect A 0 which does not unify with the input type. This much is
clear for us to see, but how does the elaboration mechanism know that vTail (a::v) is the
only case and how does it produce a valid term in TT?

For this we use a technique described in [McB00b], elimination with a motive. To define
a function in this way, the machine inserts equational constraints into the motive expressing
the allowed values of the indices. This requires an empty type and a trivial type. The empty
type is a type with no constructors:

data
False : ?

where

Since this type has no constructors, the elimination rule has no methods. As a result if we
have an element of the empty type we can prove anything by passing any motive to the
elimination rule.

False-Case : ∀f :False.∀P :False→ ?.P f

The trivial type has one constructor:

data
True : ?

where () : True

The technique for eliminating impossible cases revolves around showing that the case is
impossible, thereby producing an element of the empty type and returning a value of the
appropriate type with False-Case. Checking impossible cases like this can be done auto-
matically by elaboration and if a case is shown to be impossible it need not be written down.
The elaboration of vTail is shown in detail in Appendix A. The result of this elaboration
is shown in figure 2.15. Here, I have separated this into several functions for readability; in
practice the system generates this as one definition.

2.2.4 Example — Vector lookup

Suppose we have a list, l , and an index, n, and we wish to retrieve the nth element of the
list l . Traditionally, if we want to do this robustly, we might take the following steps:

1. Check the length of l .

2. Check that n is within the bounds of l .

• If out of bounds, perform some error handling routine. In Haskell, we return ⊥
in the error case, but this is not an option in Epigram because of the strong
normalisation property.

3. Perform the lookup.

The first two steps are potentially expensive, but if we leave them out we run the risk of a
program error. Xi [Xi98] describes the use of constraints with dependent types to eliminate

Chapter 2. Epigram and its Core Type Theory 39

dMotive : ∀n :N. ?
dMotive 7→ λn :N. N-Case n (∀n :N. ?) False (λk :N. True)
discriminate : ∀n :N. ∀p :s n = 0. False
discriminate 7→ λn :N. λp :s n = 0.

= -elim N (s n) p dMotive ()
emptyCase : ∀A :?. ∀n :N. (s n = 0)→ Vect A n
emptyCase 7→ λA :?. λn :N. λp :s n = 0.

False-Elim (discriminate n p) (Vect A n)
consCase : ∀A :?. ∀n :N. ∀k :N. Vect A k → (s n = s k)→ Vect A n
consCase 7→ λA :?. λn :N. λk :N. λv :Vect A k . λp :k = n.

= -elim N k n (S inj k n (eq sym N n k p)) (λn :N. Vect A n) v
vTailAux : ∀n :N. ∀A :?. ∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n
vTailAux 7→ λn :N. λA :?. λk :N. λv :Vect A k .

Vect-Case A k v
(λk :N. λv :Vect A k . (s n = k)→ Vect A n)
(emptyCase A n)
(λk :N. λa :A. λv :Vect A k . consCase A n k v)

vTail 7→ λA :?. λn :N. λv :Vect A (s n).
(λk :N. λv :Vect A k .
λP :∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n.
P (s n) v (refl (s n)))
n v (vTailAux n A)

Figure 2.15: Elaborated vTail

such bounds checks at run-time. Inductive families give us an alternative method. We begin
by defining a family of finite sets. The finite sets, indexed over n, are sets with at most n
elements and a natural use of this is to represent bounded numbers.

data n : N
Fin n : ?

where
f0 : Fin (s n)

i : Fin n
fs i : Fin (s n)

We can see from the indices that it is not possible to create an element of Fin 0. To create
such an object would be meaningless — Fin 0 is a set with no elements, corresponding to a
type with no values.

The dependencies on Fin and Vect give us invariants which must hold in the definition of
the lookup function. These invariants are verified at compile-time by the typechecker rather
than at run-time by the run-time system. We declare the type of the lookup function with
a let declaration:

let i : Fin n v : Vect A n
lookup i v : A

There are two extra arguments, n and A, which are left implicit as they can be inferred

Chapter 2. Epigram and its Core Type Theory 40

from the types of i and v . There are some other constraints which we can infer just from
the type:

• The value of n cannot be 0 in a well-typed application of lookup, in the empty context
(i.e., when n is in canonical form). This is because it is impossible to create a canonical
element of Fin 0. If n were equal to zero, then i would have to be of type Fin 0.

• As a result, the vector v must be non empty. This means that one possible error,
that of looking up an element from an empty list cannot happen at run-time because
attempting to call the function with an empty vector would be a compile-time error.

The function is written by recursion on i . If the value of i is zero then we return the first
element in the list, otherwise we look in the tail of the list. I will again write the program
by refinement, as directed by the Epigram elaborator. The first step is to declare that we
wish to write the program by recursion on i .

lookup i v ⇐ elim i
lookup f0 v 7→ 2 : A
lookup (fs i) v 7→ 2 : A

This gives us the possible patterns for i . The next step, for each subgoal, is case analysis
on v . Here the elaborator establishes that the empty vector would violate the constraints in
the type, as with the vTail function, and so we do not get a pattern for the empty vector.
Note that giving two elimination rules on the right of ⇐ means that the second rule will be
applied immediately in each case generated by the first rule (c.f. the Then tactical in Lego

or sequencing with semicolon (;) in Coq).

lookup i v ⇐ elim i ⇐ case v
lookup f0 (a :: v) 7→ a
lookup (fs i) (a :: v) 7→ lookup i v

We use Vect-Case rather than Vect-Elim because the recursion is on the finite set, rather
than the list, so we do not need the recursive call on Vect.

The definition of lookup is now complete. Impossible cases were eliminated by the
typechecker and constraints given by the invariants on the length of the vector and the
bounds of the finite set mean that it is not possible to have an array bounds check error.

2.2.5 Alternative Elimination Rules

Sometimes the default elimination rule for a data type is not the elimination behaviour we
want. We are not restricted to these default rules, however; any function with a motive and
methods is considered an eliminator and we can therefore write down the pattern matching
behaviour resulting from the methods.

A term e is an eliminator in a context Γ if:

Chapter 2. Epigram and its Core Type Theory 41

• Γ;~t : ~A ` e : ∀P : (∀~a : ~A. ?).∀mc1 : (∀~a1 : ~A1. P ~s1). ∀mcn
: (∀~a1 : ~A1. P ~sn). P ~t

• Γ;~t : ~A ` valid

• Γ;P : (∀~a : ~A. ?);~ai : ~Ai ` P ~si : ?, where 1 ≤ i ≤ n.

This term e is a function which eliminates zero or more targets. The patterns which
are allowed are given by the arguments ~si to the return type of each motive (~mc.) Looking
again at N-Elim, we see how this fits the general scheme:

N-Elim : ∀n :N.

∀P :N→ ?.

∀m0 :P 0.

∀ms :∀k :N.∀ih :P k .P (s k).
P n

The arguments to the motive P in the return type of the methods m0 and ms give the
patterns which are allowed, which are 0 and s k .

There is no reason why there should be only one target, and indeed in the case of indexed
or parametrised families, the indices are effectively additional targets. The elimination rule
for vectors illustrates this:

Vect-Elim : ∀A :?.

∀n :N.∀v :Vect A n. (Targets)
∀P :∀n :N.Vect A n → ?.

∀mε :P 0 ε

∀m:: :∀k :N.∀a :A.∀v :Vect A k .∀ih :P k v .P (s k) (a::v)
P n v

The two arguments to the motive P indicate that this rule eliminates two values together.
This makes sense, since the second value v depends on the first value n.

We can also write user defined elimination rules with this kind of behaviour. For example,
we can write a double recursion rule which eliminates two natural numbers at once.

N-double-elim : ∀n,m :N.

∀m0n :∀n :N. P 0 n.

∀ms0 :∀n :N. P (s n) 0.

∀mss :∀n :N. ∀m :N. P n m → P (s n) (s m).
P n m

User defined rules are implemented in terms of the elimination rules we already have, in this
case by N-Elim:

N-double-elim n m P m0n ms0 mss ⇐ elim n
N-double-elim 0 m P m0n ms0 mss 7→ m0n m
N-double-elim (s n) m P m0n ms0 mss ⇐ elim m
N-double-elim (s n) 0 P m0n ms0 mss 7→ ms0 n
N-double-elim (s n) (s m) P m0n ms0 mss 7→ mss n m (N-double-elim n m)

Chapter 2. Epigram and its Core Type Theory 42

Some functions are naturally recursive over two values, for example max which returns the
larger of two natural numbers. N-double-elim gives us a convenient pattern of recursion
for writing this function:

let n,m : N
max n m : N

max n m ⇐ N-double-elim n m
max 0 m 7→ m
max (s n) 0 7→ s n
max (s n) (s m) 7→ s (max n m)

2.2.6 Derived Eliminators and Memoisation

The elimination rules automatically generated for datatypes give us primitive recursion —
a recursive call is allowed on recursive arguments of datatypes. This does not necessarily
make all structurally recursive functions easy to define, however. Consider the function to
return the nth element of the Fibonacci series; one way to write this in Haskell is as shown
below:

fib :: Nat -> Nat

fib O = S O

fib (S O) = S O

fib (S (S k)) = plus (fib k) (fib (S k))

This is not a very efficient definition; there are two recursive calls, but it does not take
advantage of sharing and some values of recursive calls will be computed repeatedly. Nev-
ertheless, it represents a simple mathematical definition of the Fibonacci function. Unfor-
tunately though, while it is structurally recursive, it is not primitive recursive and therefore
cannot be defined directly using N-Elim.

In Coq, structurally recursive functions can be defined using the primitive Case and
Fix constructs, which separate the concepts of case analysis and recursion. A function
defined using Fix, with a declared decreasing argument, can make recursive calls where the
declared decreasing argument is structurally smaller. Giménez shows that elimination rules
can be defined using Case and Fix and, conversely, all Case/Fix based functions can be
defined using elimination rules [Gim94]. McBride mechanises the latter technique in his
thesis [McB00a], and this is also implemented by Epigram as described in [MM04b].

In Epigram, as in Coq, the concepts of case analysis and recursion are separated.
However, in Epigram, elimination rules are used to implement the separation. Hence, for
a family D, in addition to D-Elim and D-Case, an additional recursion operator is derived,
called D-Rec. This operator carries within its motives a memo structure (D-Memo) which
is a large tuple holding a value for the recursive call to each structurally smaller value:

Chapter 2. Epigram and its Core Type Theory 43

D-Rec : ∀~a : ~A.∀x :D ~a.∀P : (∀~s : ~A.D~s → ?).
(∀~s : ~A.∀y :D~s.D-Memo (P y)→ P y)→ P x

Note that this fits the form of elimination rules given in section 2.2.5. A call to the
operator D-Rec for a term d : D~s does not itself do case analysis, but rather gives access
to recursive calls on values structurally smaller than d . To do the case analysis we require
an additional application of D-Case.

The construction of such elimination operators is rather complex, and described in detail
in [McB00a]. From the programmer’s point of view, what it means is that any recursive
calls on structurally smaller values are accessible via the memo structure. The definition
of fib can therefore now be written by N-Rec and N-Case. We use the notation rec x to
access the appropriate recursion rule.

let n : N
fib n : N

fib n ⇐ rec n ⇐ case n
fib 0 7→ 0

fib (s k) ⇐ case k
fib (s 0) 7→ s 0

fib (s (s k ′)) 7→ plus (fib k ′) (fib (s k ′))

For reference, the construction of N-Rec and its helper functions are shown in figure
2.16, figure 2.17 and figure 2.18. The fully elaborated fib function is shown in figure 2.19.
This definition is large and barely readable, and is clearly a function we are happy to let
the elaborator write for us. Note that the results of the recursive calls to fib are accessed
by projecting them out of the tuple built by N-Memo.

let n : N P : N→ ?
N-Memo n P : ?

N-Memo n P ⇐ elim n
N-Memo 0 P 7→ True
N-Memo (s k) P 7→ (P n × N-Memo k P)

Figure 2.16: N-Memo definition

let n : N P : N→ ? M : ∀n :N. (N-Memo n P)→ (P n)
N-MemoGen n P M : N-Memo n P

N-MemoGen n P M ⇐ elim n
N-MemoGen 0 P M 7→ ()
N-MemoGen (s k) P M 7→ let rec : (N-Memo k P)→ (P k) 7→

N-MemoGen k in (M rec, rec)

Figure 2.17: N-MemoGen definition

Chapter 2. Epigram and its Core Type Theory 44

let n : N P : N→ ? M : ∀n :N. N-Memo (P n)→ (P n)
N-Rec n P M : P n

N-Rec n P M 7→ M n (N-MemoGen P M n)

Figure 2.18: N-Rec definition

fib 7→ λn :N. N-Rec n (λx :N. N)
(λn ′ :N. N-Case n ′ (λx :N. (N-Memo (λy :N. N) x)→ N)

(λu :True. s0)
(λk :N. N-Case k (λx :N. (N-Memo (λy :N. N) (s x))→ N)

((λx :N-Memo (λy :N. N) s0. s0))
(λk :N. λM : (N, (N,N-Memo (λx :N. N) k)).

plus (fst M) (fst (snd M)))))

Figure 2.19: Elaborated fib

2.2.7 Matching on Intermediate Values

The examples we have seen so far have performed pattern matching only on the arguments
passed directly to the function. In practice though, we often create intermediate values
in the process of computation. We could match on these by passing all of the pattern
variables to a helper function, but [MM04b] also describes a more compact notation for
this, the “with” construct (lhs | expr {program}). This construct adds expr to the values
we are allowed to match on. Here we extend this notation to the “named with” construct
(lhs | var ← expr {program}), which gives a name var for later case analysis.

An example of a function where such behaviour is useful is the filter function from the
Haskell standard prelude. Filter removes any items from a list to which a given predicate
does not apply. In Haskell, it is defined with guards to check the intermediate computation:

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x:(filter p xs)

| otherwise = filter p xs

In Epigram we take p x as an intermediate computation and match on its result with
Bool-Case (figure 2.20). Pattern matching is on the result of the intermediate computation
in a similar style to the pattern guards proposed for Haskell [EP00]. We will see several
examples where this notation is useful; either making definitions more concise or removing
the need for auxiliary functions.

Chapter 2. Epigram and its Core Type Theory 45

let f : A→ Bool xs : List A
filter f xs : List A

filter f xs ⇐ elim xs
filter f nil 7→ nil
filter f (cons x xs) | b ← f x ⇐ case b|| true 7→ cons x (filter f xs)|| false 7→ filter f xs

Figure 2.20: filter definition

2.3 Programming Idioms

We have so far seen the basic syntax of Epigram and some small example programs. These
have been very similar in structure (if not in their typing) to the sort of programs we might
write in a traditional functional language. However, with the stronger type system come
new programming idioms. In this section, I will discuss some of these and the additional
syntax Epigram provides to support them. We will start by looking at two of the simpler
idioms, dependent pairs and writing programs by induction over proofs, and move on to
more complex and powerful idioms, views and techniques for showing termination.

2.3.1 Dependent Pairs

It is often the case in dependently typed programming that we do not know in advance of
running a function which builds an instance of a family what the indices of that family will
be. For example, if we write the filter function of the previous section over Vect rather than
List (correspondingly calling it vfilter), what is its return type?

let p : A→ Bool xs : Vect A n
vfilter p xs : Vect A ?

In some cases, we can write a function which computes the required index in advance.
If we are converting a List to a Vect, for example, we can calculate the length of the List,
length, and build the index from that:

let l : List A
length l : N length l ⇐ elim l

length nil 7→ 0

length (cons x xs) 7→ s(length xs)

let l : List A
listToVect l : Vect A (length l)

listToVect l ⇐ elim l
listToVect nil 7→ ε

listToVect (cons x xs) 7→ x ::(listToVect xs)

Chapter 2. Epigram and its Core Type Theory 46

For vfilter however, we can only compute the index by running the function itself. In
this case, we prefer to return a dependent pair of values. A dependent pair is a pair in
which the type of the second item is predicated on the first value. This can be built into
the core type theory as a primitive, as in Luo’s ECC [Luo94], but inductive families mean
that this is not necessary. In Epigram we declare dependent pairs as an inductive family
with the declaration in figure 2.21.

data A : ? F : A→ ?
Σ A F : ?

where a : A f : F a
(a, f) : Σ A F

Figure 2.21: Dependent pair

Using a dependent pair, we can write vfilter as in figure 2.22. Note that there are
additional matches on the results of recursive calls to vfilter, and that the first element of
the pair can be inferred by the typechecker from the type of the second element. Using a
dependent pair like this can provide a convenient layer of abstraction for an inductive family
which hides the indices — the user of functions over the family need not know what the
indices of the family are. The use of ? in the return values indicates that we expect the
elaborator to be able to infer the values of these terms, as in each case there is only one
value which would be well-typed.

let f : A→ Bool xs : Vect A n
vfilter f xs : Σ N (Vect A)

vfilter f xs ⇐ elim xs
vfilter f ε 7→ (?, nil)
vfilter f (x ::xs) | b ← f x ⇐ case b|| true | p ← vfilter f xs ⇐ case p|| (, xs ′) 7→ (?, x ::xs ′)|| false | p ← vfilter f xs ⇐ case p|| (, xs ′) 7→ (?, xs ′)

Figure 2.22: vfilter definition

Pairing like this is similar to the approach taken to vectors in the C++ standard template
library [MSD01], in that the internal representation pairs the length with the list data itself,
and operations on the vector class preserve length invariants. In C++, however, the length
invariants are maintained by hand, rather than by the type system.

Chapter 2. Epigram and its Core Type Theory 47

2.3.2 Induction Over Proofs

Properties can be expressed as inductive relations in Epigram, which allows us to impose
more constraints on the definition and use of functions. Sometimes it is difficult or impossible
to express constraints using the indices of an inductive family alone. An example of where
this is difficult is in defining the minus function on N. It does not make sense to subtract a
number from a smaller number since N does not represent negative numbers. We end up with
either a mathematically incorrect definition of minus (by returning 0 if the result should be
negative), or a function which is not defined for all of its inputs, which is impossible. The
solution is to define a relation to express the constraint that a number must be subtracted
from a larger or equal number. This is the less than or equal relation.

data x , y : N
x≤y : ?

where
leO : 0≤y

p : x≤y
leS p : (s x)≤(s y)

The minus function now takes three arguments; the two numbers n and m along with a
proof that m is less than or equal to n. Then rather than defining the function by elimination
of m or n, we define the function by elimination of p. By doing the recursion on the proof,
we get patterns for m and n since they are the indices of the proof relation. This proof
ensures that no invalid arguments can be passed to minus.

let n,m : N p : m ≤ n
minus n m p : N

minus n m p ⇐ elim p
minus n 0 (leO n) 7→ n
minus (s n) (s m) (leS m n p) 7→ minus n m p

Remark: The main point here is that the patterns are generated not from the data directly,
but from a proof of a property which must hold for that data. There is therefore only one
case analysis required — on the proof — rather than case analysis on each of the numbers.
Which case applies when we do case analysis on the proof affects the possible values of the
numbers, an effect which we only begin to see when using dependent types.

2.3.3 Views

We have looked at alternative elimination rules in section 2.2.5, in order to give alterna-
tive pattern matching behaviour. Another method, once we know the alternative pattern
matching behaviour we would like, is to write down an inductive family whose generated
elimination rule has the behaviour we are looking for. Such an inductive family gives an
alternative view of data; a family D~s is a view of its indices ~s if there is a covering function
d : ∀~s :~S . D~s. Views were originally proposed by Wadler [Wad87] as a means of furnishing
abstract types with pattern matching behaviour. The presentation here is as in [MM04b].

An example of the use of views is to give an informative comparison operation. Tradi-
tionally, we might have an if b then t else e construct, where b : Bool and t , e : T for some

Chapter 2. Epigram and its Core Type Theory 48

T , which is equivalent to Bool-Case. There are however two shortcomings of the typing of
an if expression:

• There is no distinction between the types of the then and else branches, so there is no
protection against accidentally writing the branches the wrong way round.

• We do not retain any information about the test in the type, either its result or any
other information generated while performing the test.

For example, how might we compare two Ns? The conventional way would be to define
an ordering function, returning an element of an Ordering type with constructors lt, eq and
gt.

let n,m : N
Nord n m : Ordering

Nord n m ⇐ elim n, elim m
Nord 0 0 7→ eq

Nord (s n) 0 7→ gt

Nord 0 (s m) 7→ lt

Nord (s n) (s m) 7→ Nord n m

However, this function is doing some extra work which is not reflected in the return
value; it is effectively performing a subtraction of the smaller from the larger number and
throwing the result away. If we later want to know the difference between the two numbers,
this information has been lost, so we have to recalculate it. With a dependent type system,
we can do better than this by making an elimination rule which eliminates numbers based
on their difference:

Ncompare : ∀m,n :N.

∀P :N→ N→ ?.

∀mlt :∀x , y :N. P x (plus x (s y)).
∀meq :∀x :N. P x x .

∀mgt :∀x , y :N. P (plus y (s x)) y .

P m n

This elimination rule, defined by recursion over m and n, finds which is the larger number
and applies the appropriate method, but also each method type records which number is
greater and by how much. Using this elimination rule, it is straightforward to write functions
such as the following, absDiff , which finds the difference between two numbers:

let m,n : N
absDiff m n : N absDiff m n ⇐ Ncompare m n

absDiff x (plus x (s y)) 7→ s y
absDiff x x 7→ 0

absDiff (plus y (s x)) y 7→ s x

Chapter 2. Epigram and its Core Type Theory 49

The patterns we get for the arguments of absDiff allow us to pick out directly what the
difference between the arguments is, without doing any subtraction, since the subtraction
has already been effectively performed by the elimination rule. Writing elimination rules
such as Ncompare by hand is, however, cumbersome. Instead, Epigram supports the use
of views; the idea behind views is that the easiest way to get an elimination rule with the
behaviour we want is to define a family whose default elimination rule has that behaviour.
For example, the behaviour we want for Ncompare is given by the elimination rule for the
Compare family in figure 2.23.

data m : N n : N
Compare m n : ?

where y : N
lt y : Compare x (plus x (s y))

eq : Compare x x

x : N
gt x : Compare (plus y (s x)) y

Figure 2.23: The Compare view of N

When a family D is declared, as well as generating D-Elim, D-Rec, and D-Case as we
have seen, Epigram generates D-View as shown in figure 2.24. This is an elimination rule
which generates patterns for the indices of D, but not D itself — it is easy to see how to
build the definition of this from D-Elim, simply by dropping the target argument from the
methods and motives. This rule is the non-dependent elimination rule for D.

D-View : ∀~i :~I . ∀x :D~i . (target)
∀P :∀~i :~I . ? . (motive)
∀mc : ∀~a : ~A. ∀y1 :D ~r1. . . . ∀yj :D ~rj .

P ~r1 → . . .→ P yj → P ~s.
· · ·

 (methods)

P ~i

Figure 2.24: View rule for D

We can access the appropriate view rule for x by the notation view x . Hence, if we have
a view D~s with a covering function d, we can write a function by D-View with the following
notation:

lhs ⇐ view d~s

To show that any two numbers are comparable by this view, we build a covering function
compare as in figure 2.25. Note that in the recursive cases, we use the view notation for
pattern matching.

Chapter 2. Epigram and its Core Type Theory 50

let n,m : N
compare n m : Compare n m

compare n m ⇐ elim n, elim m
compare 0 0 7→ eq
compare (s n) 0 7→ gt n
compare 0 (s m) 7→ lt m
compare (s n) (s m) ⇐ view compare n m
compare (s x) (s(plus (sy) x)) 7→ lt y
compare (s x) (s x) 7→ eq
compare (s(plus (s x) y)) (s y) 7→ gt x

Figure 2.25: The covering function for Compare

Using the view notation notation, we can use the Compare view rather than Ncompare

and get the appropriate patterns for the numbers in the definition of absDiff .

let m,n : N
absDiff m n : N absDiff m n ⇐ view compare m n

absDiff x (plus x (s y)) 7→ s y
absDiff x x 7→ 0

absDiff (plus y (s x)) y 7→ s x

Note that the view notation suppresses the intermediate values created by the covering
function comparem n, so we can concentrate on the patterns the elimination rule gives us.
Applying view compare m n has the same effect as would applying Ncompare, with the
advantage that the definition of the new pattern matching rule is by first order programming.

2.3.4 Termination

We have seen that one of the requirements of being a well defined Epigram function is that
the function must terminate. This raises an important question, since it is impossible to
decide in general if a general recursive function terminates — how big a restriction is this,
and when can we show that a function which is not structurally recursive does nevertheless
terminate?

Consider the quicksort function. For simplicity we will make this a monomorphic func-
tion and sort natural numbers in increasing order. In Haskell we might write the function
as follows:

quicksort [] = []

quicksort (x:xs) = quicksort l ++ (x:quicksort r)

where l = [y | y <- xs, y < x]

r = [y | y <- xs, y >= x]

This is a nice concise definition with two auxiliary functions to partition the list into
two halves, and a main function which reconstructs the sorted list from the sorted parts.

Chapter 2. Epigram and its Core Type Theory 51

However, the recursion is not structural, so such a definition would not be accepted by
Epigram.

We do know that this function terminates (it can be shown by noting that the recursive
calls are always on obviously smaller lists) — but how do we prove this to the language?
I will briefly explain two possibilities for overcoming this sort of problem by defining the
quicksort function in Epigram, declared as follows:

let l : List N
quicksort l : List N

Domain Predicates

General recursion in type theory can be achieved by means of a general accessibility pred-
icate [Acz77]. A value a is accessible by a relation ≺ if there is no infinite decreasing
sequence starting from a. A set A is well-founded with respect to ≺ if all of its elements
are accessible by ≺. The accessibility predicate is defined in Epigram as below:

data A : ? ≺ : A→ A→ ? a : A
Acc A ≺ a : ?

where p : ∀x :A.(x ≺ a)→ Acc A ≺ x
acc p : Acc A ≺ a

The elimination rule for this predicate is known as the rule of well-founded recursion.
Then, to guarantee that a general recursive algorithm terminates, we prove that it has a
decreasing argument type which is well-founded and that the arguments to the recursive
calls are smaller than the input.

Bove [Bov02a] and Capretta [Cap02, BC03] note that one general accessibility predicate
gives no information that can help in a specific case. This often results in long and com-
plicated proofs. Instead, they propose defining special purpose domain predicates for each
general recursive function, and define the function by recursion over the domain predicate.

For the quicksort example, the function always terminates on the input nil, and termi-
nates on the input consxxs if it also terminates on the inputs filter(< x)xs and filter(≥ x)xs.
This is expressed by the qsAcc predicate (figure 2.26).

data xs : List N
qsAcc xs : ?

where
qsNil : qsAcc nil

qsl : qsAcc (filter (< x) xs) qsr : qsAcc (filter (≥ x) xs)
qsCons qsl qsr : qsAcc (cons x xs)

Figure 2.26: Domain predicate for quicksort

A quicksort helper function, quicksort′ is defined by induction over this predicate

Chapter 2. Epigram and its Core Type Theory 52

(figure 2.27). If we ignore the references to the predicate and concentrate simply on the
lists, we see that this helper function is identical in structure to the Haskell definition.

quicksort′ xs acc ⇐ elim acc
quicksort′ nil qsNil 7→ nil
quicksort′ (cons x xs) (qsCons qsl qsr)
7→ quicksort′ (filter (< x) xs) qsl ++ cons x (quicksort′ (filter (≥ x) xs) qsr)

Figure 2.27: Helper function for quicksort

To use this predicate and the helper function to define quicksort, we prove that all lists
are accessible by the predicate, and hence that the domain of quicksort is the whole of List:

let zs : ListN
allQsAcc zs : qsAcc zs

Given this function to build the predicate, the top level definition of quicksort is
straightforward:

quicksort xs 7→ quicksort′ xs (allQsAcc xs)

The difficulty with this method is in the definition of allQsAcc, which is where the
details of the termination proof lie; this function is non-trivial to define. However, Bove
and Capretta’s method can be applied systematically to any terminating recursive function,
including nested recursive calls and mutual recursive calls [BC01, Bov02b] leaving the user
only to write a function to construct the accessibility predicate.

We could also consider qsAcc to be a view of lists, with allQsAcc as the covering function.
This gives a clearer definition of quicksort, hiding away the domain predicate while still
giving access to the same recursive calls. We have previously seen views used for alternative
pattern matching — here we use views to generate different allowed recursive calls. The
view based definition is shown in figure 2.28.

quicksort xs ⇐ view allQsAcc xs
quicksort nil 7→ nil
quicksort (cons x xs)
7→ quicksort (filter (< x) xs) ++ cons x (quicksort (filter (≥ x) xs))

Figure 2.28: Using qsAcc as a view of lists for recursion

Making the Function Structural

It would be preferable to avoid having to give a proof with every function which does not
terminate through structural recursion, as with domain predicates. quicksort as defined in
Haskell above had the drawback that it was relying on clever code, rather than an informative

Chapter 2. Epigram and its Core Type Theory 53

data structure. The question to ask, therefore, is what is the data structure which gives the
recursion behaviour we would like for quicksort?

There are two cases in the quicksort definition. There is the case of the empty list, and
the case where we take out the head of the list, all items smaller than the head, and all
items greater than the head. The corresponding data structure for this recursive behaviour,
QuickSort, is shown in figure 2.29.

data
QuickSort : ?

where
empty : QuickSort

l : QuickSort x : N r : QuickSort
partition l x r : QuickSort

Figure 2.29: quicksort intermediate structure

We notice that the intermediate structure we have defined is nothing more than a binary
tree. This should not be a surprise — tree-sort is merely quicksort with the recursive
structure made explicit as intermediate data2. We can build a function which behaves like
quicksort by composing a conversion function from lists to binary trees (listToTree) with
a function converting back again (flatten).

quicksort x 7→ flatten (listToTree x)

Is this function really quicksort? In one sense, no; it is tree sort, which is a slightly
different algorithm in that it involves building an intermediate structure. However, the
original Haskell function does not implement quicksort precisely either — Hoare’s original
imperative definition of quicksort [Hoa62] relied on a clever technique for in place sorting of
lists, which we do not get in this definition. Turner notes in [Tur96] that for each version
of quicksort there is a tree sort which performs exactly the same comparisons and has the
same complexity. We also note that the tree data structure being built is the same as the
structure which is built internally by the evaluation of the Haskell quicksort. It may not be
the same definition or even exactly the same algorithm, but we have not lost anything in
terms of complexity or behaviour from the Haskell definition.
Remark: Since we have dependent types, we could even refine the intermediate structure
further, by including order invariants. Then we would be sure that listToTree constructs
a binary search tree, and that flattening produces a sorted list.

2.4 Summary

In this chapter, we have seen the background to functional programming with dependent
types using Epigram and the underlying type theory. The Epigram high level notation
elaborates to a dependent type theory TT based on Luo’s UTT with inductive families,

2In fact tree-sort was the first program proven correct by structural recursion in [Bur69]

Chapter 2. Epigram and its Core Type Theory 54

heterogeneous equality and labelled types. We have seen examples of programs in TT — in
particular, we should note that programming directly in TT leads to large and unreadable
terms even for some very simple programs; vTail is a prime example.

The Epigram elaborator exists to write these large and unreadable terms so that the
programmer need not think about low level details such as how to prove certain cases are
impossible and which variables (the inductive hypotheses) give the allowed recursive calls.
Programming in the high level notation is based on using elimination rules to give pattern
matching behaviour to functions. To support this, Epigram generates several elimination
rules for a family:

• D-Elim is the basic elimination rule which gives primitive recursion on D. All other
elimination rules can be defined in terms of D-Elim. This rule is accessed by the
notation elim x . (See section 2.1.3).

• D-Case gives case analysis on D, but no recursion. Although this can be defined in
terms of D-Elim by ignoring the inductive hypotheses, it is more efficient to implement
the reductions directly. This rule is accessed by the notation casex . (See section 2.1.3).

• D-Rec generates a memo structure which gives access to recursive calls on structurally
smaller values. This rule is accessed by the notation rec x . (See section 2.2.6).

• D-View generates an elimination rule which gives recursion on the indices of D. This
allows us to create new pattern matching behaviour for a family which is not necessarily
based on constructor patterns. This rule is accessed by the notation viewx . (See section
2.3.3).

Coquand notes that one of the drawbacks of programming with elimination rules is
readability [Coq92], and proposes a pattern matching notation for dependent types. Epi-

gram’s high level notation solves this readability problem by recovering the elimination rule
based definitions from pattern matching definitions; this is possible because programming by
pattern matching and programming by elimination rules are equivalent [Gim94, McB00a].
There is an additional benefit to the elimination rule based approach taken by Epigram,
which is that user defined elimination rules can be written by using views (or even directly)
which gives more powerful pattern matching behaviour. The remaining drawback is that
elimination rules, unlike direct pattern matching, impose an extra level of abstraction on
programs. However, in Chapter 6, we will propose a method for overcoming this drawback.

Chapter 3

Compiling ExTT

In the last chapter I presented the core language of Epigram and the high level notation.
The core language is executed through a translation to an execution language, ExTT, and
so in this chapter I will show a compilation scheme for ExTT. To begin with, we consider
only the näıve path (see figure 1.1 on page 14), where the transformation from TT to ExTT

is the identity transformation; in later chapters we will see how the compilation techniques
can be modified in order to optimise evaluation via an optimising transformation to ExTT.

Compilation of any language involves translation to a machine language (or abstract
machine language). Doing this directly for Epigram is difficult, in particular because a
typical machine does not have the same execution model as a functional language. In-
stead we translate via an intermediate representation which still has a functional flavour,
yet is more amenable to translation to an abstract machine language. In this chapter we
introduce an intermediate language which I call RunTT, and give a compilation scheme for
translating RunTT into abstract machine code. The abstract machine we use is based on
the G-machine [Joh84, Aug84], a well understood graph reduction machine.

Compilation of ExTT to G-machine code therefore consists of two high level steps; first
we translate to the intermediate representation RunTT, then from RunTT to G-code. RunTT

is a language of supercombinators, which are higher order functions with no free variables;
removing free variables eliminates one difficulty from the compilation process. Each super-
combinator sequence is then compiled to a G-code sequence which, when executed, builds
the supercombinator body.

At the end of the chapter, we will look at some of the issues in designing a run-time
system for a dependently typed language, specifically the overheads which are present when
taking a näıve approach to compilation.

55

Chapter 3. Compiling ExTT 56

3.1 Execution Environments

Before we look at the details of the compilation of ExTT, let us consider the possible ap-
proaches we may take. The method used for evaluating an expression in a functional lan-
guage depends on several things:

• Different techniques are used for interpretation and compilation. Compilation pro-
duces faster code, but interpretation is sometimes desirable, for example for fast pro-
totyping and testing of individual functions.

• We should consider whether we want to reduce to a normal form, a head-normal form
or a weak head-normal form.

• We should also make a choice between lazy evaluation, eager evaluation, or some hybrid
approach as compilation techniques can differ substantially in each case.

With a dependently typed language, there is a new problem — we need some kind of
evaluation mechanism at compile-time in order to implement the conversion check. We
will therefore consider two environments for evaluation of terms, these being compile-time
evaluation, where we reduce to the normal forms required by the conversion check, and run-
time evaluation where we reduce in the empty context (with no free variables) and reduce to
weak head-normal forms, doing only as much evaluation as is required by the programmer.

3.1.1 Normalisation by Evaluation

Normalisation by evaluation [BS91, BES98, Fil01], also known as reduction-free normal-
isation [AHS95] is a straightforward method for producing normal forms which relies on
the meta-language’s implementation of substitution. An implementation in Haskell, for ex-
ample, pushes substitution through to the Haskell level. The basic technique is to build
a meta-level representation of the term to be evaluated (eval), evaluate that term in the
meta-language then reify the term back to an object level representation of normal forms
(quote). Finally, we revert to the representation of ExTT (forget). Figure 3.1 shows an
overview of the process of normalisation by evaluation for ExTT.

There are two main applications of normalisation by evaluation; firstly to provide a
straightforward normalisation algorithm for the conversion check, and secondly for partial
evaluation. The goal of partial evaluation is to simplify a function of multiple arguments
where some arguments are known at compile-time; normalisation by evaluation is used to
push the argument values through the body of the function. The main advantage of us-
ing normalisation by evaluation over other techniques such as compiled strong reduction
[GL02] or the Krivine Machine [HMP96, WF03] is the ease of implementation; rather than
implementing substitution by hand, we use the meta-language’s implementation of substi-
tution. It is not clear that normalisation by evaluation is more efficient than other methods,
however.

Chapter 3. Compiling ExTT 57

ExTT Term

ExTT Term

Normal Form Haskell Value

Haskell Value
eval

quote

forget

Meta level evaluation

Meta LevelObject Level

Figure 3.1: Normalisation By Evaluation

Normalisation by evaluation has not yet been proved correct for dependent type the-
ory; however its correctness for simple type systems suggests we have no reason to think
otherwise. Ultimately, however, if a dependently typed programming system is to use nor-
malisation by evaluation and claim it is a safe system, then it must be shown to be correct.

In Appendix C, we will see an implementation in Haskell of normalisation by evaluation
for ExTT.

3.1.2 Compilation

Compilation into machine language (whether a CPU’s machine code or an abstract machine
language) is a more efficient way of producing a normal form of a λ-term than interpreting
or normalising directly, simply because analysis of the syntactic structure of the term is done
in advance. As a result, decisions such as evaluation order are taken only once for each term
and the choice encoded in machine language. Several different compilation methods have
been developed, differing in particular in whether they perform lazy or eager evaluation.

Continuation Passing Style

Continuation passing style [App92], or CPS, is a method for evaluation in which functions
return no value, but rather make tail calls which pass a continuation function explaining
what to do with the result. This approach lends itself nicely to generating imperative

Chapter 3. Compiling ExTT 58

code since it makes sequencing explicit. [MWCG99], for example, describes the phases of
compiling System-F to a typed assembly language via an intermediate CPS representation.

CPS is often used in the implementation of eager (call by value) languages, as it addresses
problems such as repeated evaluation of an argument and ordering of side-effects. Lazy
languages do not generally use CPS as an intermediate notation, partly due to tradition,
but also because the explicit ordering makes it difficult to implement full laziness — i.e.,
avoiding evaluating a subterm more than once.

Abstract Machines

Compilation of lazy languages generally involves the implementation of an abstract machine
which identifies an appropriate set of instructions for building graph representations of λ-
terms and their weak head-normal forms.

Landin’s SECD machine [Lan64] was the first abstract machine for reducing λ-terms.
SECD stands for Stack, Environment, Control, Dump, which are the machine’s internal
registers. The memory of the SECD machine contains lists and integers, and the instruction
set contains instructions for building lists and closures. A closure is a pair of the term
and an environment containing representations of the free variables in the term; effectively
this represents a suspended computation. This machine was originally used to implement
Iswim [Lan66], and a lazy version was developed for LispKit [HJJ82].

The Krivine machine is a well known method for normalisation of λ-terms [HMP96,
WF03]. It is an evaluation machine which simulates weak-head reduction. In the Krivine
machine, closed λ-terms are represented as closures. A closed term is a term containing no
free variables. Representing terms this way avoids repeated substitution; the machine takes a
closure and a stack, and returns a closure. At the end of the computation, there is a simple
transformation (unloading) from closures to closed λ-terms which performs substitutions
across the whole term in one pass.

Johnsson’s G-machine [Joh84] shares several characteristics with the SECD machine. It
too has stack, environment, control and dump registers; its novel features are the updating
and sharing of graphs within the abstract machine and the inclusion of an output stream
(although this is not an essential feature). A compiler based on the G-machine transforms
function definitions into a set of supercombinators, which are functions with no free variables.
G-code, the language executed by the G-machine, consists of instructions which build a
graph representation of these supercombinators; a supercombinator is compiled into code
which builds a graph and updates the root of the current reducible expression with that
graph. The G-machine is a standard technique for implementing lazy functional languages,
including Lazy ML, the Haskell B compiler and the nhc Haskell compiler [Röj95]. It is
described further in [Pey87, PL92], and later in this chapter where it is used to implement
ExTT.

Several variants and developments of the G-machine idea exist, such as the 〈ν,G〉-

Chapter 3. Compiling ExTT 59

machine [AJ89] which is a modification geared towards parallel execution. Another abstract
machine which takes several ideas from the G-machine is the ABC machine [SNvP91], used
for the execution of Concurrent Clean. The design is very similar, but is focused on how
the abstract machine code will ultimately be executed on a concrete machine. The Three
Instruction Machine (TIM) [FW87] takes a different approach to representing function ap-
plication nodes in the graph, preferring a spineless approach in which application nodes are
represented as pairs of a code pointer and a tuple of arguments.

GHC is based on the Spineless Tagless G-machine (STG) [Pey92], which takes ideas from
both the G-machine approach and the TIM approach. This machine deals with free variables
internally, which eliminates the need for building supercombinators. Also, there is a uniform
representation of closures which avoids the need for a distinction between constructor nodes
and application nodes on the heap (hence the name tagless) — each closure is associated
with a code pointer which evaluates and updates the closure; in the case of constructors,
the closure is already evaluated so the code pointer points to a function which does nothing
(in the simplest case) or returns a pointer to code for the appropriate case (in optimised
cases). The STG machine has a more abstract code resembling a functional language, rather
than an imperative instruction sequence like the G-machine. Nevertheless, STG code has
an operational semantics which is translated into an internal representation called Abstract
C, then finally into C or machine code.

A more recent development is GRIN (Graph Reduction Intermediate Notation, [BJ96,
Boq99]) GRIN is a more low level highly optimisable notation for graph reduction. Its
principal advantage is the ability to use heap analysis to eliminate unknown control flow
due to evaluations and higher order functions, while still maintaining a functional style
suitable for program transformations.

Strong Reduction

Grégoire and Leroy have developed a compiled implementation of strong reduction (using
call by value semantics) within the Coq system [GL02]. Abstract machines are generally
geared towards producing weak head-normal forms, not reducing under binders. However,
when checking types in a dependent type theory such as the CIC implemented in Coq, we
need to reduce under binders and deal with free variables. Grégoire and Leroy’s abstract
machine is a modification of the OCaml run-time machine, ZAM, extended with the ability
to manipulate free variables. We could imagine this technique being used to implement
strong reduction of TT using lazy evaluation by extending the G-machine in a similar way.

3.1.3 Program Extraction

Another possibility for producing executable code, rather than compiling to an abstract
machine language, is to output code in another functional language by program extrac-
tion [PM89, Let02]. Extraction generally refers to the derivation of a simply typed program

Chapter 3. Compiling ExTT 60

from a proof of its specification — this involves stripping type expressions and proof irrele-
vant structures from code and could equally well apply to the translation of a dependently
typed program into a simply typed form.

This method reduces the problem of compilation to a simpler problem, that of expressing
a dependently typed term with a simple type. As a result, we get all the advantages of using
the well tested, efficient and optimised run-time system of an already existing language.
Unfortunately, it is not always possible to extract a term with an appropriate type (consider
a function whose return type differs depending on its input, for example) and furthermore,
we do not get the possibility of applying any low level optimisations based on dependent
type information.

3.1.4 Execution of Epigram

Phase Distinction

The nature of a dependently typed programming language leads to there being some blurring
of the distinction between compile-time and run-time, in that it is not immediately obvious
which functions will be executed at compile-time and which functions will only be executed
at run-time. Cardelli claimed in [Car88] that as a result types cannot be erased at run-time,
although Augustsson showed for Cayenne that this was not the case [Aug98], since Cayenne
has no means to analyse types at run-time (i.e., a casetype construct). Similarly, Epigram

has no way to examine types at run-time.

What happens is that there are two settings in which a function may be evaluated. In the
first setting, during typechecking, functions are evaluated in order to check convertibility of
terms. We will refer to this as “compile-time evaluation”. In this phase, strong normalisation
is important, as we may need to reduce terms containing free variables. In the second setting,
“run-time evaluation”, evaluation of functions is an end in itself; we only consider reduction
to weak-head normal form and can safely assume that there are no free variables.

Evaluation Strategy

The evaluation strategy we have chosen for Epigram is lazy evaluation. There are several
reasons in favour of both strict and lazy evaluation, but we chose lazy evaluation initially
because of the number of arguments to both functions and constructors which exist only for
the purpose of ensuring type correctness; lazy evaluation ensures that these will never be
evaluated at run-time. We will also take a lazy evaluation strategy at compile-time, for two
reasons; firstly, for consistency with the run-time system and secondly since it allows us to
take advantage of the substitution mechanism of the meta-language, Haskell, which itself is
a lazy language. However, it is worth noting that for Epigram the distinction is not crucial
— since terms are strongly normalising, reduction will terminate at the same normal form
whichever strategy we choose.

Chapter 3. Compiling ExTT 61

3.2 The Run-Time Language RunTT

3.2.1 Supercombinators and Lambda Lifting

RunTT is an intermediate language of supercombinators used to facilitate the compilation
to abstract machine code. A supercombinator s is a λ-abstraction of the form:

s 7→ λ~x .E

where ~x is a series of zero or more arguments and E contains no λ-abstractions, such
that s has no free variables. Having no free variables is a big advantage at compile-time
— we can compile a fixed code sequence for each supercombinator without having to worry
about external effects.

Supercombinators are an extension of combinators, which are λ-abstractions containing
no occurrences of a free variable [Bar84]; the extension is that supercombinators can also be
constants (that is, have no arguments). Only three combinators are required to represent
any function1, given appropriate base types and primitives. These are:

S 7→ λf ; g ; x . f x (g x)
K 7→ λx ; y . x
I 7→ λx . x

Early implementations of lazy functional languages such as Turner’s SASL [Tur79] used
a transformation into S, K and I as the basis of compilation, along with some other combi-
nators for optimisation purposes. The advantages of using this fixed set of combinators are
that such a small set can easily be implemented in hardware and the reduction machine is
fairly simple to implement. This simplicity comes at a cost, however — since the granularity
of execution is so small, the translation to SKI combinators can result in large programs. So
instead of using a fixed set, we choose an appropriate set of supercombinators for each user
defined function by a process known as lambda lifting [Hug84, Joh85]. The first step of
compilation from ExTT is to lambda lift the ExTT terms into a run-time language, RunTT.

3.2.2 RunTT Syntax

The syntax of RunTT is presented in figure 3.2. The main features which distinguish RunTT

from the execution language ExTT are:

• λ bindings appear only at the top level of terms; there are no inner λs and no free
variables.

• All constructor applications (including type constructors) are fully applied.

• There is a case construct — in ExTT case analysis is performed by pattern matching the
ι-schemes of elimination rules and implemented by ι-reduction; definition of elimination

1It is even possible with two, since I 7→ S K K

Chapter 3. Compiling ExTT 62

rules in RunTT is via this case construct, which arise by compilation of the pattern
matching ι-schemes. We call the term which is analysed by the case expression the
scrutinee.

Type information, although it is not executable, is retained as a potential aid to op-
timisation; I will generally suppress the type label on λs since at this stage it serves no
computational purpose.

s ::= λ~a : ~e. e (supercombinator)
e ::= x (bound variable) | f (global name)
| ∀x :e. e (function space) | ?i (type of types)
| e e (function application) | c〈~e〉 (constructor application)
| let a : e 7→ e in e (let binding) | D〈~e〉 (type constructor application)
| case e of ~alt (case expression)

alt ::= c 〈~x 〉 ; e (case alternative)

Figure 3.2: The supercombinator language, RunTT

For simplicity of run-time representation, we ensure that all constructors are fully ap-
plied. This is straightforward to achieve, by η-expansion of all constructors which are not
fully applied. The advantage of doing this is that at run-time we will always know, from
the arity of a constructor, how much space to allocate for it. In a higher order language, it
is not possible to do the same thing for function applications, and especially not in ExTT

where the arity of a function may differ according to its input.

Constructor applications are given a separate syntax, c〈~e〉 to indicate that they are
always fully applied. c itself is the tag of the constructor; I will present these as constructor
names for readability, but in practice they are represented by integers. This integer can be
used as an index into the jump table representing the alternatives in a case expression for
which the constructor is the scrutinee.

RunTT is not strongly normalising, nor is it necessary or beneficial for it to be so.
Since RunTT terms arise from programs in a strongly normalising language, we can be
sure that programs in RunTT terminate (provided, of course, that the transformation to
supercombinators is correct). In a näıve setting, we can also show termination by checking
that case expressions make recursive calls on structurally smaller values. However, to require
RunTT programs to be structurally recursive in general would give a lot less freedom for
optimisation — in particular, we would not be able to remove the level of abstraction
introduced by having to show termination for non-structurally recursive functions such as
quicksort. Another consideration is that RunTT could potentially also be used as the
run-time language for a language other than ExTT which may not be strongly normalising.

Chapter 3. Compiling ExTT 63

3.3 Translating Function Definitions to RunTT

We begin with a mapping from names to TT terms, Defs. A name maps to either a user
defined function, a data or type constructor, or an elimination rule:

infix 1 :::

data thing ::: type = thing ::: type

data NameDef = Fun Term

| Con Int

| TyCon Int

| Elim Patterns

type Defs = [(Name,(NameDef ::: Term))]

The type Defs describes the global context Γ. Pairing of terms with their types is
implemented by the infix constructor ::: rather than simply a tuple, for clarity. The
type NameDef describes each possible entry in the context, taking function definitions, data
constructors, type constructors and pattern matching elimination rule definitions separately.

For each name which maps to a term (i.e., implemented with the Fun constructor of
NameDef), that term is either a CAF (a constant applicative form) taking no arguments, or
a λ-binding. How do we translate these definitions to RunTT? There are some intermediate
steps and representations involved; let us now consider these steps.

3.3.1 Grouping λ-abstractions

Before we start, we ensure that all data and type constructors are fully applied. This is
simple to achieve, by η-expansion, if any are not fully applied. Since RunTT expects all
constructors to be fully applied, it is wise to apply this step while we are still allowed inner
λ-abstractions, rather than complicating lambda lifting further.

The first stage in translating a function definition into RunTT is to allow λ-bindings
of more than one argument. In TT, all λ-abstractions are of arity 1. So, for example, in
a binding λx : X . λy : Y . e, if x appears in e then x is free in e. It is more convenient
if λ-bindings of more than one argument are allowed — here this results in the binding
λx : X ; y : Y . e, where x and y are both bound in e.

We achieve this by repeatedly applying a grouping transformation J·KG to the term:

Jλ~x : ~X . λy :Y . eKG =⇒ Jλ~x : ~X ; y : Y . eKG
Jλ~x : ~X . eKG =⇒ λ~x : ~X . e

The default case of J·KG traverses the term looking for λ-bindings. This transformation
identifies where the scope of a λ-binding is itself a λ-binding, and merges them into one
λ-binding. Naturally, terms here fit neither into the syntax of TT (since λ binds multiple ar-
guments) nor RunTT (since there may be inner λs) so we use an intermediate representation

Chapter 3. Compiling ExTT 64

in which the only difference from TT is to allow binding of multiple arguments.
The notation λx : X ; y : Y , with the arguments separated by a semicolon, denotes that

x and y are both bound by the same λ. In this setting, we use de Bruijn levels rather than
de Bruijn indices to represent variable names, as we can then think of the index i as the ith
argument to a function. (e.g. in λx : X ; y : Y , x is represented by 0 and y by 1).

As an example of the grouping step, consider the plus function, defined in TT as follows:

plus : ∀n :N.∀m :N.N
plus 7→ λn,m :N. N-Elim n (λn :N. N) m (λk :N.λih :N.s ih)

Grouping the arguments results in the following definition:

plus 7→ λn;m : N. N-Elim n (λn :N. N) m (λk ; ih :N. s ih)

3.3.2 Lambda Lifting

The second stage is to lift out all remaining inner λ-abstractions and let bindings to the top
level, removing free variables. We do this by giving each inner abstraction and binding a
unique new name and replacing their occurrence with their name. In the case of the plus

function, this results in the following (assuming the names plus1 and plus2 are not defined
elsewhere:

plus 7→ λn;m : N. N-Elim n plus1 m plus2

plus1 7→ λn :N. N
plus2 7→ λk ; ih :N. s ih

In this case, the resulting function definitions contain no free variables. However, this is
not always the case. Consider the following (uncurried) definition:

f 7→ λx ; y : N. let z : N 7→ plus x y in plus z z

Lifting out the inner let binding results in the following set of top level definitions:

f 7→ λx ; y : N. plus f1 f1

f1 7→ plus x y

There is clearly a problem here — x and y are free in f1; the function has no hope of
accessing the appropriate x and y unless it is given more information. The solution is to add
x and y as arguments to f1, and change the application in f to pass through appropriate x
and y :

f 7→ λx ; y : N. plus (f1 x y) (f1 x y)
f1 7→ λx ; y : N. plus x y

Johnsson describes an effective algorithm for determining the free variables in a set of
function definitions by solving set equations in [Joh85]. Although in this example, it was
clear which arguments were to be abstracted out, the optimal solution is not always so
obvious, especially where there are nested let bindings or mutually recursive functions.

Chapter 3. Compiling ExTT 65

We should note that in this example, we have lost full laziness (i.e., avoiding executing
any subterm more than once) by lifting z out — evaluating f will involve evaluating f1 x y
twice! This kind of problem can be solved by a separate full laziness pass [PL91b] which
identifies maximal free expressions prior to lambda lifting.

The purpose of lambda lifting is to remove free variables in order to make compilation
easier. In the STG machine, however, free variables are kept; Santos notes in [San95]
that there is a performance penalty in the resulting code where free variables are removed.
Conversely, GRIN [BJ96] does compile from supercombinators generated by the hbcc Haskell
compiler and gets encouraging results, yielding code several times faster than that produced
by the STG machine in many cases. GRIN’s performance comes largely from the ability to
eliminate unknown control flow from programs (due in part to higher order functions) and
therefore allowing a more sophisticated heap analysis.

3.3.3 Tidying up

The final step, now that we have top level functions with no inner λ-abstractions and no
free variables, is to translate the definition into RunTT syntax. The only difference now is
the constructor syntax which represents fully applied constructors only — we have already
ensured that all constructors are fully applied, so there is a simple mapping to RunTT. In
the case of plus, we get the following RunTT supercombinators:

plus 7→ λn;m : N〈〉. N-Elim n plus1 m plus2

plus1 7→ λn :N〈〉. N〈〉
plus2 7→ λk ; ih :N〈〉. s〈ih〉

3.3.4 Arity

What is the arity of the function adder in the following Epigram declaration?

let n : N
adderType n : ?

adderType n ⇐ elim n
adderType 0 7→ N
adderType (s k) 7→ N→ adderType k

let n, a : N
adder n a : adderType n adder n a ⇐ elim n

adder 0 a 7→ a
adder (s k) a 7→ λn :N. adder k (plus a n)

The arity depends on the input n; the number of arguments expected is n + 1. At
run-time it is often helpful to know the arity of a supercombinator to check whether it is
fully applied. Do dependent types cause some difficulty here? The lambda lifted version of
adder in RunTT is as follows (eliding the argument types):

Chapter 3. Compiling ExTT 66

adder 7→ λn. N-Elim n adder1 adder2 adder3

adder1 7→ λm. N〈〉 → adderType m
adder2 7→ λa. a
adder3 7→ λk ; ih; a;n. ih (plus a n)

Conveniently, due to lambda lifting, each of these supercombinators are of known arity,
as is N-Elim which is called by adder. What happens is that adder returns a function if
given s k , or a constructor if given 0. We can get the arity of a supercombinator simply by
counting the variables bound by the λ.

3.4 Translating Elimination Rules to RunTT

In addition to translating TT functions into compilable supercombinators, we need a way to
translate pattern matching elimination rules into a compilable form. For this, we translate
into Augustsson style case expressions [Aug85]. For elimination rules, the algorithm for
doing so is rather simpler than Augustsson’s algorithm since we know in advance that we
can make the necessary case distinction on the target of the elimination rule; for each ι-
scheme, the pattern in the target argument’s position is a different constructor form. We
know this must be the case, because ι-schemes are machine generated and built only from
data declarations. Given a set of ι-schemes for a family D~s:

D-Elim~s (c1 ~a1 ~y1) P ~m ; mc1 . . .

. . .

D-Elim~s (cn ~an ~yn) P ~m ; mcn . . .

Case distinction is made on the constructors of the target, ci, and we know that the right
hand side refers only to the arguments of these constructors and the names of the other
arguments. Thus, we take the target of the elimination rule as the scrutinee of the case
expression, and translate into RunTT as follows:

D-Elim 7→ λ~s; c; P ; ~m. case c of
c1〈~a1, ~y1〉 ; mc1 . . .

. . .

cn〈~an, ~yn〉 ; mcn . . .

D-Elim in this form is a lambda lifted supercombinator, since there are no inner lambda
abstractions. For example, elimination on natural numbers, N-Elim, is translated to the
following case expression:

N-Elim 7→ λn; P ;m0;ms. case n of
0〈〉 ; m0

s〈k〉 ; ms k (N-Elim k P m0 ms)

Chapter 3. Compiling ExTT 67

3.5 The G-machine

Later in this thesis I will be discussing optimisations and transformations at the ExTT and
RunTT levels rather than at the lower level of abstract machine. Nevertheless, let us consider
the design of an abstract machine for RunTT in order that we may see what effect the design
decisions we make at the RunTT level have on the abstract machine. Further implementation
details of the G-machine are given in Appendix D.

The principle behind the G-machine [Joh84, Aug84] is to build graph bodies from a
series of sequentially executed abstract machine instructions, called G-code. Each super-
combinator is compiled to a sequence of instructions which instantiates the body of the
supercombinator in the machine’s memory; this results in several optimisations. The deci-
sion of which subexpression to reduce is made at compile-time rather than run-time. Also,
the abstract language is finally in an imperative form which allows a more direct mapping
into a real machine code or programming language.

Choice of Abstract Machine

We use the G-machine here since it is a standard, well-understood and well-documented
approach for implementing run-time systems for lazy languages. This is not the fastest or
most modern abstract machine (GRIN [Boq99] and STG code [Pey92] are more efficient),
but is relatively straightforward to implement for experimentation with higher level optimi-
sations based on the type system of TT. It is not an essential feature of Epigram, ExTT

or even RunTT that the G-machine is used as a back end, nor is it essential to any of the
optimisations we will present later.

One problem in particular with the G-machine is that it is not abstract enough; G-code
is fairly low level and therefore does not necessarily map well onto any specific CPU (e.g.,
it is stack based whereas many CPUs are register based). This problem is addressed by the
STG machine whose language has a more functional flavour. An interesting topic of further
research would be to examine how dependent type systems might affect the implementation
of an abstract machine. We will later be making some modifications to the G-machine,
in particular to deal with elimination rules efficiently, and will identify some things which
ought to be taken into consideration in the design of an abstract machine for a dependently
typed language.

3.5.1 Graph Representation

Each supercombinator is compiled to a series of abstract machine instructions which, when
executed, construct an instance of the supercombinator body. To this end, we need to
consider how a supercombinator body is represented at run-time. A supercombinator can
build any of the following:

• A closure representing an unevaluated (suspended) function application.

Chapter 3. Compiling ExTT 68

• A function applied to no arguments.

• A fully applied constructor.

• A constant (in RunTT as it stands, these are only the type universes ?i).

A graph node can therefore be one of:

• APP f a, where f and a are graphs representing a function body and its argument

• FUN n, where n is the name of a function.

• CON t xs, where t is the constructor tag, and xs is a list of known length.

• TYPE, which stands for any type. As there is no casetype construct or equivalent form
of universe elimination, there is no way to eliminate on types so distinguishing between
them in the evaluation graph would serve no purpose. There is only one such node;
all references to it are shared. We could, however, imagine extending the machine so
that it did allow elimination over types, by adding heap nodes for representing type
constructors; doing so may help with the implementation of polymorphic functions as
in [HM95].

These graphs are stored on the heap, which is a garbage collected global store.

3.5.2 Machine State

The G-machine state is a tuple, 〈C ,S ,G ,E ,D〉 where

• C is the code sequence currently being executed. This is a list of G-machine instruc-
tions.

• S is a stack of node names pointing into the graph.

• G is the graph, which maps node names to heap nodes.

• E is the global environment mapping function names to a pair of their arity and their
code.

• D is a dump for recursive evaluations, effectively a call stack. This is a stack of pairs,
where each pair holds a stack of node names (S before the evaluation) and a G-code
sequence (C before the evaluation).

Johnsson’s original G-machine was a 7-tuple, the extra elements being o, an output
stream to which the result of evaluation is printed and V , a stack of basic (primitive) values
for storing the results of intermediate computations. I have left out the output stream to
concentrate on the evaluation of graphs. Our language of supercombinators (at the moment)
has only constructors of inductive families as canonical forms so I omit V . I will discuss

Chapter 3. Compiling ExTT 69

the addition of primitive types into the language in Chapter 5 — we can generate suitable
forms for output by introducing strings as a primitive and writing a show function for each
type.

3.5.3 Informal Semantics

G-machine instructions can be divided into several groups. There are instructions for man-
aging the stack, instructions for building and deconstructing graphs and instructions for
controlling evaluation and execution. The basic form of any G-machine program is to build
a graph and evaluate it.
The stack management instructions include:

• PUSH i , which pushes the value at the offset i from the top of the stack onto the top
of the stack. This results in two copies of the value on the stack.

• PUSHFUN f , which pushes the value FUN f onto the top of the stack.

• MOVE i , which moves the value at the top of the stack to the offset i from the top of
the stack, which has the effect of reordering the stack.

• DISCARD n, which discards the top n stack items, which may be garbage collected
later.

• SLIDE i , which discards the i stack items below the top item (that is, leaving the top
item intact, it discards from item 1 to item i + 1).

Graph construction and deconstruction instructions include:

• MKAP, which builds an application node applying the second item on the stack (the
function) to the first item on the stack (the argument), placing the application node
on the stack.

• MKCON i c, which builds a constructor application node applying the constructor c to
the top i items on the stack.

• MKTYPE, which creates a reference to the graph TYPE.

• SPLITn, which, assuming the graph at the top of the stack is of the form CON〈x1, . . . , xn〉,
pushes ~x onto the top of the stack, with xn pushed last.

The presence of MKTYPE may be surprising, since Epigram and ExTT have no means of
examining types, which suggests that all types can be erased. It is not completely clear that
this is the case however; whether it is possible depends to some extent on the implementation
of universes, for example. In the näıve compilation path, therefore, we do not remove types.
Later, in the optimised compilation path, we will see some methods for removing types
which can be shown never to be examined.
Evaluation and execution control instructions include:

Chapter 3. Compiling ExTT 70

• EVAL, which evaluates the item at the top of the stack to canonical form (that is,
head-normal form).

• JUMP l , which jumps to the label l .

• CASEJUMP (c1, l1), . . . , (cn, ln), which examines the top stack item (which is assumed
to be in canonical form) and jumps to the label appropriate to the constructor at the
head of the graph.

• LABEL l , which defines the target of a JUMP or CASEJUMP instruction.

• UPDATE i , which updates the item at offset i from the top of the stack with the item
at the top of the stack.

• RET n, which discards n stack items and continues execution from the point where
the previous EVAL was made.

The instructions give the basic evaluation behaviour of the G-machine, on which the
translation scheme I will present next is based. I will shortly add further instructions to
cover proper tail recursion, and later extend the G-machine with instructions to implement
elimination rules efficiently.

3.5.4 Operational Semantics

Since the G-machine is a state machine, its formal semantics are defined by state transition
rules, presented in figure 3.3. I use the following notational conventions:

• The code sequence, C , is presented as a sequence of instructions separated by semi-
colons, as in the translation scheme, and terminated by a pair of brackets, e.g. i0; i1; . . . ; ().

• The stack, S , is presented as a sequence of names which are pointers into the graph
G , e.g. n0.n1.().

• The graph G is the memory of the G-machine; G [n = v] indicates that the name n
refers to the value v in G . An empty graph is represented as {}, and update of a node
n in the graph with a value v is denoted by G{n = v}.

• The environment E is a mapping from names to pairs of arity and code. E [f = (a, c)]
indicates that the supercombinator f has arity a and is built by the code sequence c.

• The dump D is effectively a call stack, presented as a sequence of pairs of code and a
stack (i.e. closures).

Note that there is an additional instruction accounted for in this presentation, UNWIND.
The machine is put into the UNWIND state by both EVAL and RET to unwind the spine of
an application onto the stack.

Chapter 3. Compiling ExTT 71

〈PUSH i ; c,n0 . . .ni.S ,G ,E ,D〉 =⇒ 〈c,ni.n0 . . .ni.S ,G ,E ,D〉
〈PUSHFUN f ; c,S ,G ,E ,D〉 =⇒ 〈c,n.S ,G{n = FUN f },E ,D〉
〈MOVE i ; c,n0 . . .ni.S ,G ,E ,D〉 =⇒ 〈c,n1 . . .ni−1.n0.S ,G ,E ,D〉
〈SLIDE i ; c,n0 . . .ni.S ,G ,E ,D〉 =⇒ 〈c,n0.S ,G ,E ,D〉
〈DISCARD i ; c,n0 . . .ni−1.S ,G ,E ,D〉 =⇒ 〈c,S ,G ,E ,D〉
〈MKAP; c, a.f .S ,G ,E ,D〉 =⇒ 〈c,n.S ,G{n = APP f a},E ,D〉
〈MKCON i t ; c,n0 . . .ni−1.S ,G ,E ,D〉 =⇒ 〈c,n ′.S ,G{n ′ = CON t (n0 . . .ni−1)},E ,D〉
〈MKTYPE; c,S ,G ,E ,D〉 =⇒ 〈c,n.S ,G [n = TYPE],E ,D〉
〈SPLIT i ; c,n.S ,G [n = CON t (n0 . . .ni−1)],E ,D〉

=⇒ 〈c,ni−1 . . .n0.n.S ,G ,E ,D〉
〈EVAL; c,n.S ,G [n = APP f a],E ,D〉 =⇒ 〈UNWIND; (),n.(),G ,E , (c,S).D〉
〈EVAL; c,n.S ,G [n = FUN f],E ,D〉 =⇒ 〈UNWIND; (),n.(),G ,E , (c,S).D〉
〈EVAL; c,n.S ,G [n = CON t ~a],E ,D〉 =⇒ 〈c,n.S ,G ,E ,D〉
〈EVAL; c,n.S ,G [n = TYPE],E ,D〉 =⇒ 〈c,n.S ,G ,E ,D〉
〈CASEJUMP (t1, l1), . . . , (tn, ln);

LABEL l1; c1 . . . LABEL ln; cn,
n.S ,G [n = CON ti ~a],E ,D〉 =⇒ 〈ci,n.S ,G ,E ,D〉

〈JUMP l ; . . . LABEL l ; c,S ,G ,E ,D〉 =⇒ 〈c,S ,G ,E ,D〉
〈LABEL l ; c,S ,G ,E ,D〉 =⇒ 〈c,S ,G ,E ,D〉
〈UPDATE i ; c,n0 . . .ni.S ,G [n0 = N0],E ,D〉 =⇒ 〈c,n1 . . .ni.S ,G{ni = N0},E ,D〉
〈RET i ; c,n0 . . .ni−1.n.S ,G [n = APP f a],E ,D〉 =⇒ 〈UNWIND; (),n.S ,G ,E ,D〉
〈RET i ; c,n0 . . .ni−1.n.S ,G [n = FUN f],E ,D〉 =⇒ 〈UNWIND; (),n.S ,G ,E ,D〉
〈RET i ; c,n0 . . .ni−1.n.S ,G [n = CON t a],E , (c′,S ′).D〉 =⇒ 〈c′,n.S ′,G ,E ,D〉
〈RET i ; c,n0 . . .ni−1.n.S ,G [n = TYPE],E , (c′,S ′).D〉 =⇒ 〈c′,n.S ′,G ,E ,D〉
〈UNWIND; (),n.S ,G [n = APP f a],E ,D〉 =⇒ 〈UNWIND; (), f .n.S ,G [n = APP f a],E ,D〉
〈UNWIND; (),n0 . . .ni.S ,

G [n0 = FUN f ,n1 = APP n ′1 n ′′1 , . . . ,ni = APP n ′i n ′′i],
E [f = (i , c)],D〉

=⇒ 〈c,n ′′1 . . .n ′′i .ni.S ,G ,E ,D〉
〈UNWIND; (),n0 . . .ni.(),G [n0 = FUN f],E [f = (a, c′)], (c,S).D〉 where i < a

=⇒ 〈c,ni.S ,G ,E ,D〉

Figure 3.3: State transitions for the G-machine

3.5.5 Translation Scheme

The translation scheme from RunTT to G-code is rather smaller than the translation scheme
given in the original G-machine papers [Joh84, Aug84, Aug85] primarily because of the lack
of primitive types in TT (however, see Chapter 5 for extensions in ExTT which implement
low-level behaviour arising from high level Epigram declarations). Canonical forms in TT

consist only of constructor forms and basic types.
The top level translation scheme SJ·K, given in figure 3.4 gives code which reduces the

body of a top level supercombinator to canonical form.
The EJ·K translation scheme, given in figure 3.5, gives code to compute the canonical

form of an expression and leaves the value on the top of the stack. This is the scheme which
translates the body of function definitions.

Chapter 3. Compiling ExTT 72

The CJ·K translation scheme, given in figure 3.6 gives code to construct the graph of
an expression and leaves a pointer to the graph on the top of the stack. This scheme is
called by the EJ·K scheme for constructing graphs which are to be evaluated later, giving
lazy semantics.

Given an environment of supercombinators E , and a RunTT supercombinator e to evalu-
ate, the initial state of a G-machine to evaluate the supercombinator e is 〈SJeK, (), {},E , ()〉.

3.5.6 Example — plus and N-Elim

For the plus function compilation proceeds as follows:

plus 7→ λn;m. N-Elim n plus1 m plus2

SJλn;m. N-Elim n plus1 m plus2K
=⇒ EJN-Elim n plus1 m plus2K r 3; UPDATE 3; RET 2
=⇒ CJN-Elim n plus1 m plus2K r 3;UPDATE 3; RET 2
=⇒ CJN-ElimK r 3; CJnK r 4; MKAP; CJplus1K r 4; MKAP;

CJmK r 4; MKAP; CJplus2K r 4; MKAP; UPDATE 3; RET 2
=⇒ PUSHFUN N-Elim; PUSH 2; MKAP; PUSHFUN plus1; MKAP;

PUSH 1; MKAP; PUSHFUN plus2; MKAP; UPDATE 3; RET 2

The function r is defined such that r(n) = 3 and r(m) = 2. Compilation of plus1 and
plus2 is rather simpler; the compilation to G-code of plus, plus1 and plus2 are shown in
figure 3.7

The compilation of N-Elim requires dealing with a case expression. The G-machine code
for N-Elim is given in figure 3.8.

3.5.7 Implementing a G-machine Compiler With Dependent Types

The G-machine compiler we have seen here has been implemented as a simply typed trans-
lation, since its implementation is in Haskell. What benefit would we get from implementing
this program in a dependently typed language? Let us consider the invariants which need
to be maintained in the compiler and look at the sort of errors which could occur. In the
course of developing the G-machine compiler, the main sources of errors were:

• Incorrect stack manipulation (for example, stack overflows due to incorrect variable
indexing).

• Attempting case analysis on a value which is not yet in canonical form (due to a
missing EVAL).

Instances of this kind of error can be reduced by giving a dependently typed representa-
tion to G-code. Here, we will briefly consider how this might be achieved. Given the main
sources of error, occurring in stack manipulation and in analysing non-canonical values, we

Chapter 3. Compiling ExTT 73

SJλ~a : ~E . eK =⇒ EJeK r (m + 1); UPDATE m + 1; RET m
where m =⇒ length(~a)

r(ai) =⇒ (m + 2)− i

Figure 3.4: The SJ·K translation scheme

EJxK r n =⇒ PUSH n − r(x); EVAL
EJcase e of c1〈~a1〉 ; e1 . . . cn〈~an〉 ; enK r n =⇒
EJeK r n; CASEJUMP (c1, l1) (c2, l2) . . . (cn, ln);

LABEL l1; SPLIT n1; EJe1K d1 n + n1; MOVE n1 + 1; DISCARD n1 + 1; JUMP l
. . .

LABEL l
where dn(aij) =⇒ n + j

dn(x) =⇒ r(x)
nk = length(~ak)

EJlet a 7→ e1 in e2K r n =⇒ CJe1K r n; EJe2K r ′ (n + 1); SLIDE 1
where r ′(a) =⇒ n + 1

r ′(x) =⇒ r(x)
EJeK r n =⇒ CJeK r n

Figure 3.5: The EJ·K translation scheme

CJf K r n =⇒ PUSHFUN f
CJxK r n =⇒ PUSH n − r(x)
CJ?iK r n =⇒ MKTYPE
CJ∀x :e1. e2K =⇒ MKTYPE
CJc〈e1, e2, . . . , ei〉K r n =⇒ CJe1K r n; CJe2K r (n + 1); . . . ;

CJeiK r (n + i − 1); MKCON c i
CJD〈~e〉K =⇒ MKTYPE
CJe1 e2K r n =⇒ CJe1K r n; CJe2K r n + 1; MKAP
CJlet a 7→ e1 in e2K r n =⇒ CJe1K r n; CJe2K r ′ (n + 1); SLIDE 1

where r ′(a) =⇒ n + 1
r ′(x) =⇒ r(x)

Figure 3.6: The CJ·K translation scheme

Chapter 3. Compiling ExTT 74

plus 7→ λn;m. N-Elim m plus1 n plus2
SJλn;m. N-Elim m plus1 n plus2K

=⇒ PUSHFUN N-Elim; PUSH 2; MKAP; PUSHFUN plus1; MKAP;
PUSH 1; MKAP; PUSHFUN plus2; MKAP; UPDATE 3; RET 2

plus1 7→ λn. N〈〉
SJλn. N〈〉K =⇒ MKTYPE; UPDATE 2; RET 1

plus2 7→ λk ; ih. s〈ih〉
SJλk ; ih. s〈ih〉K =⇒ PUSH 0; MKCON s 1;UPDATE 3; RET 2

Figure 3.7: Compilation of plus to G-machine code

N-Elim 7→ λn; P ;m0;ms. case n of
0 ; m0

s〈k〉 ; ms k (N-Elim k P m0 ms)
SJλn; P ;m0;ms. case n of

0 ; m0

s〈k〉 ; ms k (N-Elim k P m0 ms)K
=⇒ PUSH 3; EVAL; CASEJUMP (0, l0) (s, ls);

LABEL l0; SPLIT 0; PUSH 2; MOVE 1; DISCARD 1; JUMP l
LABEL ls; SPLIT 1; PUSH 2; PUSH 1; MKAP;

PUSHFUN N-Elim; PUSH 2; MKAP;
PUSH 6; MKAP; PUSH 5; MKAP;
PUSH 4; MKAP; MKAP;
MOVE 2;DISCARD 2; JUMP l

LABEL l ; UPDATE 5; RET 4

Figure 3.8: Compilation of N-Elim to G-machine code

implement a datatype representing G-code sequences indexed over the canonicity of contents
of the stack. A value can either be in canonical form or a redex, and we represent the stack
contents as a vector which explains the canonicity of each item in the stack.

data
Canonicity : ?

where
Canonical : Canonicity Redex : Canonicity

Stack = λn :N. Vect Canonicity n

Now we define a datatype Gcode which represents G-code sequences and is indexed over
the stack. As a result, the index on each instruction describes how that function affects the
stack.

Chapter 3. Compiling ExTT 75

data s : Stack n
Gcode s : ?

where i : Fin n g : Gcode s
g ; PUSH i : Gcode (lookup i s)::s

g : Gcode (a::f ::s)
g ; MKAP : Gcode Redex::s

g : Gcode (x ::s)
g ; EVAL : Gcode Canonical::s

. . .

Note how, of the instructions given here, the indices describe some detail of the oper-
ational semantics of each instruction, with respect to the stack. These indices ensure the
following properties:

• With PUSH, the index must be within the bounds of the stack, since the lookup

operation requires its argument to be a Fin bounded by the vector size.

• With MKAP, there must be two arguments on the stack so there can be no stack
overflow.

• With EVAL, we are guaranteed to end up with a canonical value on the stack. There
is also a potential optimisation here, of removing unnecessary EVALs when we know a
value is already in canonical form due to the stack contents.

For the moment, however, we have implemented the compilation schemes in Haskell,
using a list to represent the byte-code. Further work which will be possible when the
Epigram front end is stable will be to implement this translation scheme using dependent
types and therefore showing several correctness properties in a straightforward way,

3.6 Proper Tail Recursion

A problem with the G-machine in its current presentation is that many functions build
closures which are immediately evaluated when the function returns. This has two principal
disadvantages — it creates garbage unnecessarily, and it creates an extra stack frame. A tail

call helps to avoid this problem. If the last thing a function does is return a fully applied
function, there is no need to build the closure; the code for that function can be executed
immediately with a tail call. Assuming arity(g) = 2, this definition of f makes a tail call:

f 7→ λx . g 0 x

The SJ·K compilation scheme builds the following G-code for f :

SJλx .g 0 xK =⇒ PUSHNAMEg; MKCON0 0; MKAP; PUSH 1; MKAP; UPDATE 3; RET 2

On reaching the RET instruction, the closure built by f is entered. If g is fully applied,
however, it would clearly make more sense to jump to g directly and avoid building the
intermediate closure.

Chapter 3. Compiling ExTT 76

Where a function is fully applied, we can simply squeeze out the i stack elements which
refer to the current function’s local variables, keeping the m elements which are passed
the tail call. This introduces a new G-code instruction, SQUEEZE m i , also introduced by
Johnsson [Joh84]. Tail calls are made by the JFUN f instruction, which jumps directly to
the code for the function name f . The operational semantics of these instructions are shown
in figure 3.9.

〈SQUEEZE m i ; c,n0 . . .nm−1 . . .nm+i−1.S ,G ,E ,D〉 =⇒ 〈c,n0 . . .nm−1.S ,G ,E ,D〉
〈JFUN f ; c,n0 . . .ni−1.S ,G ,E [f = (i , c′)],D〉 =⇒ 〈c′,n0 . . .ni−1.S ,G ,E ,D〉

Figure 3.9: State transitions for SQUEEZE and JFUN

f can now be compiled more efficiently to the following G-code:

SJλx . g 0 xK =⇒ CON 0 0; PUSH 1; SQUEEZE 2 1; JFUN g

Dealing with tail calls efficiently requires some modifications to the EJ·K compilation
scheme. I introduce a separate compilation scheme, RJ·K which returns a value and is
presented in figure 3.10. If the value returned is a fully applied function it can be made into
a tail call, otherwise the EJ·K scheme is used.

RJf a1 a2 . . . amK r n =⇒ CJa1K r n; CJa2K r (n + 1); . . . ; CJamK r (n + m − 1);
SQUEEZE m (n − 1); JFUN f

if arity(f) = m
RJeK r n =⇒ EJeK r n; UPDATE n; RET (n − 1)

Figure 3.10: The RJ·K compilation scheme

The top level SJ·K compilation scheme (figure 3.11) now returns a value, rather than evalu-
ating its body.

SJλ~a : ~E . eK =⇒ RJeK r (m + 1)
where m =⇒ length(~a)

r(ai) =⇒ (m + 2)− i

Figure 3.11: The SJ·K compilation scheme, with tail calls

3.7 Run-time Considerations

In this chapter we have seen a näıve method for compiling ExTT to an abstract machine
code; ExTT arises from the identity transformation from TT terms in their raw form, without
considering particular features of TT which make the resulting code potentially large and

Chapter 3. Compiling ExTT 77

inefficient. The type safety, totality and provability of terms in Epigram relies on adding
extra information to terms in the language which would not be present in a simply typed
language; particularly worrying is the machinery required to eliminate impossible cases, as
we saw in the vTail example in Chapter 2 (repeated here in figure 3.12).

let v : Vect A (s n)
vTail v : Vect A n

vTail (a:: v) 7→ v

dMotive : ∀n :N. ?
dMotive 7→ λn :N. N-Case n (∀n :N. ?) False (λk :N. True)
discriminate : ∀n :N. ∀p :s n = 0. False
discriminate 7→ λn :N. λp :s n = 0.

= -elim N (s n) p dMotive ()
emptyCase : ∀A :?. ∀n :N. (s n = 0)→ Vect A n
emptyCase 7→ λA :?. λn :N. λp :s n = 0.

False-Elim (discriminate n p) (Vect A n)
consCase : ∀A :?. ∀n :N. ∀k :N. Vect A k → (s n = s k)→ Vect A n
consCase 7→ λA :?. λn :N. λk :N. λv :Vect A k . λp :k = n.

= -elim N k n (S inj k n (eq sym N n k p)) (λn :N. Vect A n) v
vTailAux : ∀n :N. ∀A :?. ∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n
vTailAux 7→ λn :N. λA :?. λk :N. λv :Vect A k .

Vect-Case A k v
(λk :N. λv :Vect A k . (s n = k)→ Vect A n)
(emptyCase A n)
(λk :N. λa :A. λv :Vect A k . consCase A n k v)

vTail 7→ λA :?. λn :N. λv :Vect A (s n).
(λk :N. λv :Vect A k .
λP :∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n.
P (s n) v (refl (s n)))
n v (vTailAux n A)

Figure 3.12: vTail and its elaboration

There are several efficiency problems which we might note in developing the run-time
system for the language. Consider the version of vTail as written by the programmer (at
the top of figure 3.12), and the fully elaborated term. The programmer’s version suggests
that a target machine might proceed along these lines:

• Get a pointer to v , the argument. v consists of a pointer to the head of the vector h
and a pointer to the tail of the vector t .

• Return the pointer to t .

There is only one possible case here; we know from type checking that the vector must
be non-empty so there should be no need to examine v to check whether it even has a head

Chapter 3. Compiling ExTT 78

or tail. However, the fully elaborated vTail tells a rather different story. There is a proof
of equality constructed, an appeal to the elimination operator of vectors and the element
type and length of the vector are passed implicitly although never used. How can we get the
target machine to compile to the simple two step procedure above from this code? Problems
such as this which arise in the execution of dependently typed terms will be addressed in
the rest of this thesis.

There are several overheads which we can immediately identify which we ought to pay
close attention to in the design of an optimised run-time system for TT.

3.7.1 Invariants of Inductive Families

The indices of inductive families express the properties of elements of that family. The
indices of Vect, for example, express the fact that all elements must be the same type and
that the length increases by one every time we add an item. These indices are left implicit
in the declaration of Vect since they can be inferred by the type checker, but what happens
to them at run-time? Figure 3.13 shows the optimal (that is, with perfect sharing) storage
of a vector a::b::c::ε, on the heap (the instances of A are also shared, but I have omitted the
pointers for clarity).

This is with perfect sharing; it is possible (and indeed likely) for the numbers representing
vector length to be separate instances. Although the programmer writes down only two
arguments to the :: constructor, the typechecker has inferred that it is a vector of element
type A and that the inner vector has length s (s 0). These values are stored on the heap
along with the vector. To make matters worse, when the vector grows a length argument is
stored with each :: node, even though the type tells us that the length must be one more
than the length of the inner vector. There are 25 cells here used to represent the vector,
its length and its element type. Just removing the extra pointers to the length and element
type reduces this to 18 cells.

A näıve representation of inductive families would store all of the values in the structure,
simply because they are part of the structure whether implicit or not. A practical imple-
mentation must consider methods for removing implicit information, whether it be inferable
at run-time (like the length of the Vect) or simply not used (like the element type). Since
implicit information is implicit exactly because it is duplicated in some other part of the
term this amounts to removing subterms whose values are already known. We would like to
be able to remove these duplicated terms at run-time, but we must take some care, for the
following reasons:

• If duplicated values are removed from the representation of families, the compilation
of elimination rules to RunTT as in section 3.4 is not so straightforward. We will
no longer find all variables used on the right hand side of the reduction simply by
examining the target — we might also need to look at the indices.

Chapter 3. Compiling ExTT 79

c

b

a

::

ε

A

A

A

A::

::

Α

Stack:

S

O

S

S

Figure 3.13: Storage of a::b::c::ε

• We need to bear in mind the difference between compile-time evaluation for type
checking, and run-time evaluation. Are there any terms which can be removed in one
setting but not the other?

• We need to be sure that the transformed program has the same operational behaviour
as the original program. A transformation which is not guaranteed to preserve the
behaviour of a program is of no practical use.

3.7.2 Proofs

Dependently typed functional programs can include proofs of equations both as additional
checks on invariants and in order to assist the type checker. In fact, elimination with a
motive [McB00b], which is used in the definition of vTail to help remove impossible cases,
relies on inserting equality proofs into the motive of an elimination rule.

These proofs assist the type checker and help assert properties of a program. At run-
time, however, they have served their purpose and have no computational meaning so can
safely be removed. This does not just apply to equality proofs but to any inductive relation
which shows some computationally irrelevant property. The difficulty here is in identifying

Chapter 3. Compiling ExTT 80

which inductive families are computationally irrelevant and which may serve a purpose at
run-time.

The Coq system approaches this problem by making a distinction between computa-
tional families and logical families. Set is an element of Type and is a universe of compu-
tational structures, and Prop, also an element of Type, is a universe of logical structures.
It is not possible within Coq to move from the Prop universe to the Set universe by in-
duction over a type in Prop, but we are allowed to generate a Prop by induction over a
type in Set. The practical result of this is that no Prop (with the exception of singleton
types, such as equality, since they have informative content) can produce a computational
structure and so it is guaranteed that a Prop will not be used at run-time. The extraction
mechanism [PM89, Let02], which creates ML or Haskell programs from Coq terms, exploits
this by removing all (non-singleton) instances of Prop from the extracted code.

let n,m : N p : m ≤ n
minus n m p : N

minus n m p ⇐ elim p
minus n 0 (leO n) 7→ n
minus (s n) (s m) (leS m n p) 7→ minus n m p

Figure 3.14: Programming by induction over a proof

In section 2.3.2 I gave an example of programming by induction over a proof (See figure
3.14). In Coq, it would not be possible to write such a program using the default ≤ relation
since it inhabits the Prop universe. To write this program would require adding a separate ≤
relation as a member of Set, which would result in the relation being present in the extracted
code. Since we get patterns for the arguments n and m from the induction rule, however,
it would seem intuitively obvious that the proof is not needed at run-time. We would like
to find a way to be able to program by induction over a proof, but still remove that proof
at run-time if the resulting patterns allow us to do so. The domain predicates used to show
termination (see section 2.3.4) are an important example of a situation where we would like
to write programs by induction over a proof, but we would still like to be able to remove
such termination proofs at run-time.

3.7.3 Number Representation

So far, we have been using a unary representation of natural numbers:

data N : ?
where

0 : N
n : N
s n : N

With this declaration, we write functions plus and mult and are able to prove charac-
teristic properties of these functions in a straightforward manner.

Chapter 3. Compiling ExTT 81

An experienced programmer, or anyone thinking about the internal representation of
programs, might wonder whether this does not cause significant overheads, and of course it
does. After all, computers have arithmetic operations built in and we can, we would hope,
be reasonably confident of their correctness! So why do we use this representation, and can
we do better?

Although operationally disastrous, the unary representation of N is conceptually useful.
The benefits of N are that:

• It is naturally structurally recursive, which machine integers are not. This allows
us to relate other structures (such as Vect) to natural numbers. Also, it allows us
to implement a kind of bounded representation corresponding to a for loop in an
imperative language.

• It is, at least in theory, unbounded, unlike machine integers which have some upper
and lower bound.

• As a result proving properties of N, functions over it, and families indexed over it, is
more straightforward.

Leaving primitive types such as integers, characters, strings and arrays out of the core
language gives us a small, clean, theoretically sound core. While this facilitates checking
program correctness, it fails to take advantage of the architecture of the underlying machine.
What we would like is a compilation scheme which changes the theoretically sound imple-
mentation of N into an unbounded big number type based on machine integers along with a
justification of the correctness of this compilation scheme. Then we keep the compile time
advantages of the N structure (by continuing to program with N in the high level notation),
while still taking advantage of the underlying machine (by translating to an appropriate low
level representation).

3.7.4 Dead Code In Impossible Cases

In section 2.2.3 I showed the elaboration of the vTail function which takes the tail of a
non-empty vector, where the empty vector case is impossible. The machinery required to
prove this is quite complex and leaves a lot of computationally redundant information in the
vTail term. Some of the problems here are due to equality proofs, as described in section
3.7.2, but even if we overcome this problem there is still some redundant information:

• The whole term is wrapped in an outer λ-abstraction in order to introduce an equality
into the motive.

• One of the cases in the helper function vTailAux, performs elimination on the empty
type. Since it is not possible to have an element of the empty type we can be sure this
case will never be executed.

Chapter 3. Compiling ExTT 82

• Having one impossible case leaves only one case which can apply. This suggests that
it might be nice to shortcut the application to Vect-Case somehow so that no check
is made at run-time.

Finding a way to overcome these three problems would lead to a target machine version
of vTail close to that suggested at the beginning of this section.

3.7.5 Intermediate Data Structures

We saw intermediate data structures used to assist computation by the use of views in section
2.3.3, where list reversal and N comparison were both implemented as data structures. Also,
an intermediate data structure was used in section 2.3.4 to represent the computational
behaviour of the quicksort function. While these structures give us the relevant patterns
on the left hand side of a function definition, there is a small overhead in creating and
matching on the intermediate structures.

A possible approach to removing these intermediate values is Wadler’s deforestation
technique [Wad84, Wad90]. In general such structures will not cause a large performance
hit, particularly since using a lazy evaluation strategy means that the structures need not
be computed in their entirety before pattern matching. It may even be preferable not
to remove these structures; where the same structure is examined more than once, lazy
evaluation caches the intermediate result.

3.8 Summary

In this chapter, we have seen how ExTT terms can be compiled to an abstract machine
code (G-machine code), which gives code for run-time only evaluation of a term. We have
looked at the compilation process via an intermediate language of run-time supercombina-
tors, RunTT and shown how to translate these supercombinators into G-code. This is a
standard technique which has been applied in lazy functional languages for many years, and
adapts to dependently typed programming with only minor modifications. Other virtual
machines, such as the ABC machine and the 〈ν,G〉-machine, are built on similar concepts
and so such machines should adapt easily to dependently typed programming languages.

The approach to evaluation we have taken in this chapter has largely been näıvely
adapted from techniques for implementing simply typed lazy functional languages — but
we have also briefly looked at some of the run-time considerations of dependently typed
programming. The näıve approaches we have taken in this chapter, both to normalisation
of terms for typechecking and to compilation, clearly have several overheads which are not
a problem in simply typed functional languages. In the following chapters, we shall look at
ways of optimising the näıve compilation scheme to take account of these considerations.

Chapter 4

Optimising Inductive Families

(Much of the material in this chapter, except sections 4.4 and 4.6, has previously appeared
as [BMM04]).

Machine generated elimination rules are the basic method by which Epigram programs
make decisions, perform recursion and compute results and therefore their efficient imple-
mentation, and the efficient storage of the data they examine, is very important to the effi-
ciency of Epigram programs. The building of elimination rules from inductive definitions is
well understood and described in [Dyb94, Luo94, McB00a] among others. The computation
behaviour of the rules is often presented directly as pattern matching ι-schemes similar to
those we might find in Haskell, but with the possibility of repeated arguments and arbitrary
terms on the left hand side where type dependency dictates the form of these terms. We can
think of these elimination rules as a particularly special kind of pattern matching function
whose behaviour and definition we know more about than we might reasonably know about
pattern matching functions in general. For example, we know that functions are total, so we
need not perform any run-time checks for incomplete function definitions — if some patterns
are not covered, it is because the type dictates that those patterns are impossible.

In this chapter I will talk about how to take advantage of these special features of elimi-
nation rules to optimise their implementation. First, we will look again at the general form
of elimination rules and examine an important property — namely that in a well-typed ap-
plication, repeated arguments must be convertible. Given this, we go on to look at methods
for implementing elimination rules, taking advantage of their properties in order to stream-
line their definition and hence programs which elaborate in terms of them. In particular, we
observe that since an elimination rule for a family D is the only function allowed to examine
the internal structure of D, we are free to choose any internal representation for D provided
that it gives enough information to implement the elimination rule. We will use this obser-
vation to remove redundant data from the representation of families in several ways, and
show several examples of data structures which can be optimised by these techniques.

83

Chapter 4. Optimising Inductive Families 84

In the näıve compilation path presented in the previous chapter, we used the identity
transformation to translate from TT to ExTT. In this chapter, however, we will add annota-
tions to ExTT which mark terms for optimisation, and specify optimisations by translation
rules from TT to ExTT. The marking up of terms in this way leads to the need for a more
sophisticated translation from ExTT to RunTT, especially regarding the compilation of elim-
ination rules to simple case expressions. A compilation scheme for this is presented, along
with associated modifications to the G-machine. Finally, we will see a larger example of the
use of dependent types — a well-typed interpreter in the style of [AC99] — and how the
optimisations presented in this chapter apply to this example.

4.1 Elimination Rules and Their Implementation

4.1.1 Form of Elimination Rules

Recall that an inductive family D, with constructors ci is declared as below:

data
~i : ~I
D~i : ?

where ~a1 : ~A1 ~y1 : D ~r1
c1 ~a1 ~y1 : D~s1

. . .
~an : ~An ~yn : D ~rn

cn ~an ~yn : D~sn

When a family D is declared, Epigram generates a basic elimination rule D-Elim and
three other rules derived from it, D-Case, D-View and D-Rec, which together are used to
implement functions defined with the high level pattern matching notation. The elimination
operators (i.e., the implementations of these rules) are the only functions which are allowed
to examine an instance of D directly.

We have already seen elimination operators used for programming in Chapter 2 and built
a compilation scheme for programs written in this way in Chapter 3. However, such a näıve
compilation scheme has its disadvantages, as noted at the end of Chapter 3. How can we
take advantage of the properties of elimination operators so that the compiler produces a
more efficient implementation?

I will take Vect as a running example. Recall that elaborating the declaration of Vect

results in a type declaration Vect : ∀A :?. ∀n :N. ?, and constructors:

ε : ∀A :?. Vect A 0

:: : ∀A :?. ∀k :N. ∀a :A. ∀v :Vect A k . Vect A (s k)

The variables left implicit in the data declaration have become explicitly quantified
arguments. In näıve implementations these take up space, as shown at the end of the
previous chapter — every Vect A n stores the sequence 0, . . . ,n − 1, and n references to A.
The space implications for families with more complex invariants are quite drastic if this
problem is left unchecked.

The ι-schemes generated for Vect are as follows:

Chapter 4. Optimising Inductive Families 85

Vect-Elim A 0 (ε A) P mε m:: ; mε

Vect-Elim A (s k) (:: A k a v) P mε m:: ; m:: k a v (Vect-Elim A k v P mε m::)

The most important thing to observe here about this pattern matching definition is that
there are repeated arguments on the left hand side. That is, A appears twice in the first
ι-scheme, and A and k appear twice in the second scheme. What are the semantics of such
definitions? This appears to require non-linear pattern matching — in Haskell this would
be illegal; here we might expect to have to do a run-time conversion check to make sure that
arguments with the same name really are convertible. Even then, what should happen if
the conversion check fails, since there is no possibility of failure (i.e., ⊥ is not a value) in a
language of total functions? The important property of elimination operators is that if the
application is well-typed, such a conversion check cannot fail at run-time. This property is
applied in the Plastic proof assistant to avoid checking of repeated arguments [CL99].

The type of an application of an elimination operator (eliding the method types for
clarity) is:

D-Elim~s : ∀z :D~s. ∀P : (∀~i :~I . D~i → ?). . . . → P ~s z

The type of a typical constructor, to which this operator will be applied, is:

c ~a ~y : D~t

If an application Γ ` D-Elim ~s (c ~a ~y) is well typed, Γ ` D ~s ' D ~t must hold, since
D-Elim ~s expects an argument whose type is convertible with D ~s. Hence ~s ' ~t must also
hold (by the Church Rosser property and the definition of the conversion relation) so there
is no need to repeat the conversion check at run-time — duplicated pattern variables are
guaranteed to be matched by convertible terms in a well-typed application. This property
has important consequences; effectively it tells us that the näıve implementation is passed
duplicate information — surely we can erase all but one instance of each repeated argument?

Another important observation, of which we can take advantage in the implementation
of an elimination rule, is that the form of one argument can tell us something about other
arguments. In the case of Vect-Elim, for example, if the target is headed by ε, we know
that the length index must be 0 — no other value would be well-typed, so there is no need
to deal with those cases.

The elimination rule D-Elim is the basic means TT provides for inspecting data in the
inductive family D, and the other elimination rules can be implemented in terms of it. There-
fore if we optimise D-Elim’s reduction behaviour, we optimise the programs which elaborate
in terms of it. Moreover, if any data in the representation of D’s elements is not needed by
D-Elim, then it is never needed at run-time and can be erased from the representation —
only the elimination rule has direct access to the arguments of D’s constructors.

Chapter 4. Optimising Inductive Families 86

4.1.2 Pattern Syntax and its Run-Time Semantics

In Chapter 2 we saw that Epigram generates an elimination rule for each inductive datatype
which implements ι-reduction for that datatype in terms of ι-schemes. Let us now examine
in more detail how ι-schemes are implemented in order to establish how to erase data from
structures.

We write a set of ι-schemes in pattern matching style with a fixed arity,

D-Elim ~pi ; ei

where each ~pi has the given arity, pij is a pattern and ei is a term over ~pi’s pattern

variables. The rule set is then compiled into an efficient case-expression. In the näıve
implementation of Chapter 3, we compiled ι-schemes in a fixed manner by case analysis on
the target. Now, however, we take a more general approach, annotating the patterns to
direct the compilation, with parts of patterns which are presupposed to match marked by
[·]. This pattern syntax is presented in figure 4.1.

p ::= x (pattern variable) | c ~p (constructor pattern)
| [t] (presupposed term) | [c] ~p (presupposed constructor pattern)

Figure 4.1: Pattern syntax

The marking of a pattern [x] indicates that in a well typed pattern, x may be presupposed
to match, without checking. Such markings are made using the observations from section
4.1.1, that only one occurrence of a repeated argument need be matched, and that we can
tell the form of some terms by matching on other arguments. We also mark terms which are
not in constructor form, since it is not possible to determine x from f x for arbitrary f . Such
terms can also be presupposed to match by the fact that the application of the elimination
rule must be well typed. We define an operation |p| which strips these presupposition marks
from a pattern, as in figure 4.2.

|x | =⇒ x
|c ~p| =⇒ c |~p|
|[t]| =⇒ t
|[c]| ~p =⇒ c |~p|
|p ~p| =⇒ |p| |~p|

Figure 4.2: |p|; removing presupposition marks from a pattern

The partial function match (figure 4.3) specifies when a pattern and term yield a match-

ing substitution (matches lifts match to argument sequences by composing the sub-
stitution built from the first argument with the substitutions built from the rest of the
arguments). match is a meta-operation, i.e. it is an operation on syntax.

Chapter 4. Optimising Inductive Families 87

match(x , t) =⇒ t/x
match(c ~p , t) =⇒ matches(~p,~t) if whnf(t) =⇒ c′ ~t and c = c′

match([t ′] , t) =⇒ id

match([c] ~p, t) =⇒ matches(~p,~t) if whnf(t) =⇒ c′ ~t
matches(nil , nil) =⇒ id

matches(p ~p, t ~t) =⇒ match(p, t) ◦matches(~p,~t)

Figure 4.3: Pattern matching semantics

The first two lines of match test constructors and bind pattern variables as is usual in
implementations of pattern matching. The remaining two lines, however, presuppose the
successful outcome of testing. To justify these presuppositions, we shall require that each
ι-scheme is respectful of well typed instances, as defined in figure 4.4. The respectfulness
condition states that if a set of patterns with presupposition marks matches an argument
sequence ~t , yielding substitutions σ, then applying those substitutions to the unmarked
patterns, |~pi|, yields the original argument sequence ~t .

if Γ ` D-Elim~t : T
and matches(~pi,~t) =⇒ σ

then Γ ` D-Elim σ|~pi| ≡ D-Elim~t : T

Figure 4.4: The respectfulness condition for ι-schemes

Remark: Respectfulness is not an issue in simply typed programming, because no analysis
of arguments can be left out — i.e., it is not possible to learn the form of any argument
by looking at other arguments. With dependent types, on the other hand, examining one
argument can restrict the possible forms of other arguments.

A set of ι-schemes, D-Elim ~pi ; ei is well-defined according to the criterion in figure
4.5. An application of a well-defined set of schemes yields ι-reduction D-Elim ~t ; σei,
which is the matching substitution σ applied to the right hand side of the appropriate ι-
scheme, ei. In a well-defined set of ι-schemes, there is exactly one scheme which matches
when the rule is fully applied and the target is constructor headed; the elimination rule is
implemented by a total function with non-overlapping patterns.

if Γ ` D-Elim~t : T , where D-Elim is fully applied with a constructor headed target
then matches(~pi,~t) =⇒ σ for exactly one i

Figure 4.5: The well-definedness condition for ι-schemes

The implementation of an elimination rule must be both respectful and well-defined to be
acceptable, since these conditions ensure that the implementation has the desired behaviour;

Chapter 4. Optimising Inductive Families 88

well-definedness preserves totality, and respectfulness ensures that reduction correctly im-
plements the ι-schemes. Respectfulness also preserves subject reduction.

4.1.3 Standard Implementation

The standard implementation of a rule D-Elim corresponds to the scheme given in
section 3.4; that is, evaluation proceeds by inspecting the target of the elimination and
ignoring the indices — the indices are presupposed given the target, since the indices are
computed by the arguments of the constructor. For D : ∀~i :~I . ?, with typical constructor

c : ∀~a : ~A. D ~r1 → . . .→ D ~rj → D~s,

our typical ι-scheme has a standard implementation as shown in figure 4.6.

For typical c : ∀~a : ~A. D ~r1 → . . .→ D ~rj → D~s
D-Elim [~s] (c ~a ~y) P ~m ; mc ~a ~y (D-Elim ~r1 y1 P ~m) . . . (D-Elim ~rj yj P ~m)

Figure 4.6: Standard implementation of D-Elim

Theorem 4.1. The standard implementation of D-Elim is well-defined and respectful.

Proof. For any Γ, if Γ ` D-Elim~s ′ (c ~a ′ ~y ′) P ′ ~m ′ : T then

matches([~s] (c ~a ~y) P ~m,~s ′ (c ~a ′ ~y ′) P ′ ~m ′) =⇒ σ,

where σ is ~a ′/~a ◦ ~y ′/~y ◦ P ′/P ◦ ~m ′/~m

but matching the other ι-schemes fails, so these schemes are well-defined. Typechecking,
we get c ~a ′ ~y ′ : D (~a ′/~a ◦ ~y ′/~y)~s = D σ~s. Hence σ~s = ~s ′ as D-Elim~s ′ (c ~a ′ ~y ′) is well-typed.
Hence our typical scheme is respectful.

The standard implementation is well-defined — we have exactly one scheme explicitly
matching each of D’s constructors — and respectful, by inversion of the typing rules. This is
just as well, because there is no guarantee that the indices ~s will take the constructor form
which explicit matching requires.

For example, the standard implementation of Vect-Elim is given in figure 4.7.

Vect-Elim [A] [0] (ε A) P mε m:: ; mε

Vect-Elim [A] [s k] (:: A k a v) P mε m:: ; m:: k a v (Vect-Elim A k v P mε m::)

Figure 4.7: Standard implementation of Vect-Elim

Chapter 4. Optimising Inductive Families 89

4.1.4 Alternative Implementations

In the standard implementation, we do not examine the indices at all; they are presupposed
as they are computed from the arguments to the constructor. However, where these indices
are themselves constructor or variable patterns we can examine them in the reduction rule
and so we are free to consider alternative implementations of the corresponding ι-schemes.
We may certainly presuppose a pattern variable in the target if we can recover it by matching
an index. For example, this implementation of Vect-Elim is also respectful and well-defined:

Vect-Elim A 0 (ε [A]) P mε m:: ; mε

Vect-Elim A (s k) (:: [A] [k] a v) P mε m:: ; m:: k a v (Vect-Elim A k v P mε m::)

But this implementation still does more work than is necessary; there is no need to check
the constructor tags on both the length and the target — one check will do. If, for example,
the target is ε, we already know that the second argument must be 0, since the declaration
of the ε constructor tells us that this index can only take the value 0 for constructor ε.
Likewise, if the target is ::, the second argument must be headed by s.

We may either examine the constructor of the vector, as in the first implementation in
figure 4.8 or instead privilege index length over vector contents, as in the second implemen-
tation.

1. Vect-Elim A [0] (ε [A]) P mε m:: ; mε

Vect-Elim A ([s] k) (:: [A] [k] a v) P mε m:: ; m:: k a v (Vect-Elim A k v P mε m::)

2. Vect-Elim A 0 ([ε] [A]) P mε m:: ; mε

Vect-Elim A (s k) ([::] [A] [k] a v) P mε m:: ; m:: k a v (Vect-Elim A k v P mε m::)

Figure 4.8: Alternative implementations of Vect-Elim

In the following sections, we show how to choose alternative implementations for elimi-
nation operators by systematically exploiting the presence of constructor symbols in indices.
The implementation of an elimination rule is chosen so that it examines as little of the tar-
get as possible. Since only the elimination rule has direct access to the target, this leads
naturally to space optimisations, where we do not merely “comment out” unnecessary data
from patterns — we delete them entirely from the representation of datatypes.

4.2 ExTT and Its Properties

Previously, in the näıve compilation path, the mapping from TT to ExTT was the identity
transformation. For the optimising path, we augment ExTT’s syntax with deleted terms {t}
and its operational semantics with corresponding deleted patterns (figure 4.9). The intention
of deleted terms and patterns is to exploit the fact that, as shown in the previous section, we

Chapter 4. Optimising Inductive Families 90

do not need to examine all of the left hand side of an elimination rule in order to ι-reduce.
Deleted patterns match only deleted arguments, and yield the identity substitution:

match({t}, {t ′}) =⇒ id

p ::= x (pattern variable) | c ~p (constructor pattern)
| [t] (presupposed term) | [c] ~p (presupposed constructor pattern)
| {t} (deleted term) | {c} ~p (deleted constructor pattern)

t ::= . . .
{t} (deleted term) | ∀{x : t}. t (deleted function)

match({p}, {t}) =⇒ id

Figure 4.9: Extensions in ExTT

ExTT terms arise only by mappings from TT, so we think of ExTT as a family of languages
ExTT(S), parametrised over a set of mappings S from TT. In the näıve compilation path,
therefore, we compiled ExTT(∅).

We define a forgetful mapping operation |·| which removes the deletion marks from ExTT

terms, giving a TT term. |p| removes the deletion marks from patterns, as defined in figure
4.10. Correspondingly, we define an operation |t | which removes deletion marks from terms,
defined in figure 4.11.

|x | =⇒ x
|c ~p| =⇒ c |~p|
|{t}| =⇒ t
|{c} ~p| =⇒ c |~p|
|[t]| =⇒ t
|[c] ~p| =⇒ c |~p|

Figure 4.10: |p|; removing deletion marks from a pattern

|?n| =⇒ ?n

|x | =⇒ x
∀x :S . T	=⇒ ∀x :	S	.	T
λx :S . e	=⇒ λx :	S	.	e
let x 7→ v in e	=⇒ let x 7→	v	in	e
{t}	=⇒	t		
∀{x :S}. T	=⇒ ∀x :	S	.	T
f a	=⇒	f		a

Figure 4.11: |t |; removing deletion marks from a term.

Chapter 4. Optimising Inductive Families 91

4.2.1 Properties of ExTT

With the additions to ExTT come additional equality, conversion and computation rules. To
distinguish these from the rules for TT, we annotate the turnstile as follows:

• Syntactic equality for ExTT is denoted by Γ
Ex

` x
Ex≡ y .

• Conversion for ExTT is denoted by Γ
Ex

` x
Ex' y .

• Reduction for ExTT is denoted by Γ
Ex

` x
Ex

¤∗ y .

Likewise, we annotate the turnstile on TT judgments as Γ
TT

` J . Where there is no
ambiguity, we will omit the annotation.

Contraction is as for TT, except that deleted terms {·} do not reduce (i.e., {·} is not a

reducible expression, and so {t} is a normal form for all t). We also say that Γ
Ex

` {x} Ex≡ {y}
for all x , y . Strong normalisation holds trivially for ExTT, since {t} is a normal form for all
t and all ExTT reductions have a corresponding TT reduction (see Lemma B.3 in Appendix
B).

We extend the definition of contexts to annotate variables which are expected to be
deleted. Contexts are defined as in figure 4.12.

E ` valid
Γ ` S : ?i

Γ; x : S ` valid
Γ ` s : S

Γ; x 7→ s : S ` valid

Γ ` D~s : ?n

Γ; {x} : ∀~a : ~A. D~s ` valid
if Γ; {y} : ∀~b : ~B . D~t ; Γ′ ` valid then ∃i . disjoint(si , ti)

Figure 4.12: Contexts in ExTT

The side condition on the last rule ensures that a name can only be added with deletion
marks if the indices of its type are disjoint with all other deleted names in the context. We
will postpone discussion of the disjoint operation and the purpose of this rule until section
4.3.2. Again, we use |Γ| to remove deletion marks from entries in Γ, as defined in figure 4.13.

|E| =⇒ E
Γ; x : S	=⇒	Γ	; x :	S		
Γ; x 7→ s : S	=⇒	Γ	; x 7→	s	:	S
Γ; {x} : S	=⇒	Γ	; x :	S		

Figure 4.13: |Γ|; removing deletion marks from all entries in the context

We also have a conversion rule corresponding to that for TT (figure 4.14).

Chapter 4. Optimising Inductive Families 92

Definition: x is convertible to y relative to Γ (Γ
Ex

` x
Ex' y)

if and only if there exist x1, . . . , xn (n ≥ 1) such that Γ
Ex

` x
Ex≡ x1,Γ

Ex

` y
Ex≡ xn

and Γ
Ex

` xi

Ex
¤1 xi+1 or Γ

Ex

` xi+1

Ex
¤1 xi, for i = 1, . . . ,n − 1

Figure 4.14: Conversion for ExTT

4.2.2 Defining Optimisations

We will consider a variety of optimisations of inductive families and their elimination rules.
Optimisations are defined by mappings from TT to ExTT — an optimisation for a family D

is given by:

• A substitution J·K from each constructor of the family to an ExTT term.

• An optimised ι-scheme for each constructor of the family.

• An updated entry in Γ for each constructor of the family.

For original ι-scheme Γ ` D-Elim ~ti ; ei, the optimised ι-scheme has the form
D-Elim ~pi ; di, where |~pi| = ~ti, |di| = ei and every undeleted free variable in di is a
pattern variable in ~pi. That is, unmarking the optimised scheme yields the original scheme.
The optimised schemes must be well-defined in that exactly one scheme must match when
D-Elim is fully applied with a constructor headed target, and respectful in that

if Γ ` D-Elim~t : T and matches(~pi, J~tK) =⇒ σ

then there exists a substitution τ such that Γ ` τ |σ(D-Elim ~pi)| = D-Elim~t : T

That is, applying the optimised elimination rule and unmarking the result yields the same
result as applying the original rule. The rôle of τ is to instantiate the variables free in ei,
but deleted in di — these are deleted since they are not needed when executing ExTT terms,
hence they need not be matched.

4.2.3 Typechecking via ExTT

There are two settings in which evaluation takes place in Epigram (namely, compile-time
and run-time, as described in section 3.1.4), and hence there are two settings to consider
for optimisations. While ExTT is primarily designed as a language for efficient run-time
evaluation of TT programs, we can also get some benefit at compile-time, by using ExTT

for typechecking.
Figure 4.15 gives a type synthesis algorithm for ExTT. The intention is to use this type

synthesis algorithm to check TT judgements, bypassing the TT type synthesis algorithm
entirely. Since typechecking relies to some extent on reduction (in the conversion check), we
can optimise typechecking by avoiding the reduction of marked terms in ExTT.

Chapter 4. Optimising Inductive Families 93

Γ ` valid
Γ ` ?n =⇒ ?n+1

Γ ` valid x : S ∈ Γ
Γ ` x =⇒ S

(Similarly for c, D, D-Elim)
Γ ` valid x : S 7→ s ∈ Γ

Γ ` x =⇒ S
Γ ` f =⇒ X ³ ∀x :S . T Γ ` s =⇒ S ′ Γ ` S ' S ′

Γ ` f s =⇒ let x : S ′ 7→ s in T

Γ ` f =⇒ X ³ ∀{x :S}. T Γ ` s =⇒ S ′ Γ ` S ' S ′
Γ ` f {s} =⇒ let x : S ′ 7→ s in T

Γ ` valid {f} : ∀x :S . T ∈ Γ Γ ` s =⇒ S ′ Γ ` S ' S ′
Γ ` {f} s =⇒ let x : S ′ 7→ s in T

Γ ` valid {f} : ∀{x :S}. T ∈ Γ Γ ` s =⇒ S ′ Γ ` S ' S ′
Γ ` {f} {s} =⇒ let x : S ′ 7→ s in T

Γ; x : S ` e =⇒ T Γ ` ∀x :S . T =⇒ ?n

Γ ` λx :S . e =⇒ ∀x :S . T
Γ; x : S ` T =⇒ X ³ ?n Γ ` S =⇒ X ′ ³ ?n

Γ ` ∀x :S . T =⇒ ?n

Γ ` S =⇒ X ³ ?n Γ ` e1 =⇒ S ′ Γ ` S ' S ′

Γ; x : S 7→ e1 ` e2 =⇒ T Γ; x : S 7→ e1 ` T =⇒ X ′ ³ ?n

Γ ` let x : S 7→ e1 in e2 =⇒ let x : S 7→ e1 in T

Figure 4.15: Type synthesis for ExTT

If we want to check a judgement Γ
TT

` a : A using the ExTT type synthesis algorithm, we
must ensure that the translation from TT to ExTT satisfies certain properties. In particular,
for an optimisation to be valid at compile-time we require the following three properties to
hold:

Property 1. If JΓK
Ex

` JaK Ex=⇒ B then ∃A. Γ
TT

` a TT=⇒ A and Γ
TT

` A
TT' |B |

Property 2. If Γ
TT

` a TT=⇒ A then ∃B .

JΓK
Ex

` JaK Ex=⇒ B and

JΓK
Ex

` B
Ex' JAK and

JΓK
Ex

` B Ex=⇒ X ³ ?n

Property 3. If JΓK
Ex

` JAK Ex' B then Γ
TT

` A ' |B |

These properties ensure that we can check a judgement Γ
TT

` a : A by checking the
following:

Chapter 4. Optimising Inductive Families 94

• JΓK
Ex

` JAK Ex=⇒ X
Ex³ ?n

• JΓK
Ex

` JaK Ex=⇒ B

• JΓK
Ex

` JAK Ex' B

Properties 1, 2 and 3 ensure the soundness and completeness of this algorithm. This is
demonstrated by Theorems B.1 and B.2 in Appendix B which show that type synthesis in
ExTT is equivalent to type synthesis in TT.

4.3 Building Efficient Implementations

The generation of alternative implementations of elimination rules relies on three optimising
transformations, which are called forcing, detagging and collapsing, from [BMM04].

• Forcing implements the commenting out of constructor arguments which are also
retrievable from the indices by pattern matching. This relies on the injectivity property
of constructors, and the respectfulness and well-definedness of elimination rules.

• Detagging implements the commenting out of constructor tags of the target where
the choice of ι-scheme can be determined by the indices alone. This relies on the
disjointness property of constructors, and the respectfulness and well-definedness of
elimination rules.

• Collapsing is a run-time only optimisation which implements the commenting out of
entire data structures. This applies when forcing and detagging comment out all but
the recursive arguments of a structure. As we will see, collapsing applies only when
evaluation takes place in the empty context.

4.3.1 Eliding Redundant Constructor Arguments

The first alternative implementation of Vect-Elim in figure 4.8 above matches A and k in
the indices rather than the target:

Vect-Elim A [0] (ε [A]) P mε m:: ; mε

Vect-Elim A ([s] k) (:: [A] [k] a v) P mε m:: ; m:: k a v (Vect-Elim A k v P mε m::)

In general, when can we comment out an argument of a constructor?
If we have two constructor headed terms, c ~a, c ~b in the same type D~s and the value of

the ith argument of c is determined only by (or forced by) the indices ~s, such that ai ' bi,
we say that the ith argument of c is forceable (figure 4.16). For example, the A argument
to ε is forceable since if ε a, ε b : Vect A 0 then clearly a ' b ' A; no other value would be
well typed. For ::, A and k are forceable in the same way.

Chapter 4. Optimising Inductive Families 95

The ith argument of a constructor c is forceable
if Γ ` c ~a, c ~b : D~s implies Γ ` ai ' bi

Figure 4.16: Forceable arguments

To say whether an argument is forceable is, in general, difficult, and likely to be undecid-
able since it relies on the injectivity of a function, and knowing the inverse of that function.
However, it is possible to identify some forceable arguments. In particular, constructor
arguments which are repeated in an ι-scheme are forceable. This is to be expected; such
repeated arguments arise from the patterns describing constructor indices. Constructors are
injective, and since they cannot be reduced it is trivial to compute what the arguments must
have been given a constructor application in normal form.

Consider a typical constructor, fully applied to variables, c ~a ~y : D ~s. If we express ~s
as |~p|, where ~p arises by marking the presupposed terms in patterns built from ~s, then any
ai appearing as a pattern variable in ~p is forceable, by injectivity of constructors. We call
these arguments concretely forceable (figure 4.17) since they can be retrieved in constant
time by pattern matching on the indices.

For fully applied c ~a ~y : D~s, where~s = |~p|
if ai appears in ~p as a pattern variable then ai is concretely forceable

Figure 4.17: Concretely forceable arguments

Lemma 4.2. If ai is concretely forceable in c ~a ~y, then the ith argument of c is forceable.

Proof. We need to show that substitution instances of concretely forceable variables in pat-
terns are convertible.

For c ~a ~y : D~s, ai is concretely forceable if it appears as a pattern variable in ~p where
|~p| = ~s. ai is determined by a pattern variable appearing in pj . So if two terms matching pj

are convertible, then the two terms matching ai must also be convertible, by respectfulness
of elimination rules. Therefore the substitution instances (determined by match) must also
be convertible.

To express ~s as |~p|, we write a program pat to extract from a term a linear pattern
with its variable set and pats, which lifts pat across argument sequences, shown in figure
4.18. V is an accumulator containing the variable set built so far (which is initialised to the
empty set ∅); the second argument is the index in ~s.

The helper operation lazy exploits the fact that we need not examine the constructors
at the head of the indices to implement the reduction, given that it can be implemented by
examining the constructors at the head of the target.

Chapter 4. Optimising Inductive Families 96

pat (V , x) =⇒ (x ∪V , x) if x 6∈ V
pat (V , c~t) =⇒ (V ′, lazy(c, ~p)) if pats (V ,~t) =⇒ (V ′, ~p)
pat (V , t) =⇒ (V , [t])
pats(V , nil) =⇒ (V , nil)
pats(V , t ~t) =⇒ (V ′′, p ~p)

if pat (V , t) =⇒ (V ′, p) and pats (V ′,~t) =⇒ (V ′′, ~p)
lazy(c, [~p]) =⇒ [c ~p]
lazy(c, ~p) =⇒ [c] ~p otherwise

Figure 4.18: Extracting patterns from a constructor’s indices

For our typical constructor c, pats (∅,~s) gives us (V , ~p) where V is the set of arguments
of c which are forced by ~s, and ~p are the patterns which D-Elim will match. If an argument
xi ∈ V then xi is concretely forceable. Then we may create an alternative implementation
for the ι-scheme which matches c as follows:

D-Elim ~p (c ~a [V] ~y) P ~m ; mc · · · where a [V] =⇒ [a] if a ∈ V
a [V] =⇒ a otherwise

The helper operation a [V] comments out the variable a in the patterns if it appears in
the set of concretely forceable arguments V .

Lemma 4.3. If c ~a ~y : D ~s, and pats (∅,~s) = (V , ~p) then ∀a ∈ V , a is a concretely
forceable argument of c.

Proof. pats traverses patterns inserting pattern variables into V . By definition, these are
concretely forceable arguments of c.

The Forcing Optimisation

The forcing optimisation on a constructor c marks the concretely forceable arguments of
c for deletion; it generates a substitution on the identifier c, which gives a term in ExTT.
Also, we get an optimised ι-scheme in ExTT for c. To be meaningful, this optimisation is
applied to all constructors of a family D. The general scheme is given in figure 4.19, and the
instance for Vect in figure 4.20. Note that types are elided in the λ-bindings; this is to avoid
distracting attention from the optimisation itself — λa; b; e is used here as a shorthand
for λa :A. λb :B e.

When forcing, we also update the context by JΓK, so that the type of the constructor c

in the optimised context binds deleted arguments. Since we change all applications of c so
that the appropriate arguments are deleted, the optimised code is well-typed in ExTT. The
types of the constructors in the Vect example are as follows:

ε : ∀{A :?}. Vect A 0

:: : ∀{A :?}. ∀{k :N}. ∀a :A. ∀v :Vect A k . Vect A (s k)

Chapter 4. Optimising Inductive Families 97

For each c : ∀~a : ~A. D ~r1 → . . .→ D ~rj → D~s where pats (∅,~s) =⇒ (V , ~p)

take JcK =⇒ λ~a;~y . c ~a{V} ~y

D-Elim ~p (c ~a{V} ~y) P ~m 7→ mc ~a ~y (D-Elim ~r1 y1 P ~m) . . . (D-Elim ~rj yj P ~m)

where a{V} =⇒ {a} if a ∈ V
a{V} =⇒ a otherwise

and c : ∀~a : ~A{V}. ∀~y :J~Y K. D J~sK ∈ JΓK
where ∀a :A{V} =⇒ ∀{a :JAK} if a ∈ V

∀a :A{V} =⇒ ∀a :JAK otherwise

Figure 4.19: The Forcing Optimisation

JεK =⇒ λA. ε {A}
J::K =⇒ λA; k ; a; v . :: {A} {k} a v

Vect-Elim A [0] (ε {A}) P mε m:: ; mε

Vect-Elim A ([s] k) (:: {A} {k} a v) P mε m:: ; m:: k a v (Vect-Elim A k v P mε m::)

Figure 4.20: Forcing for Vect

So rather than merely commenting out concretely forceable arguments using a [V], the
forcing optimisation marks such arguments for deletion with a{V}. Note in the Vect-Elim

rule that the constructor tags 0 and s are commented out (but not marked for deletion) to
indicate that they are not inspected; these tags are commented out by the lazy operation
in figure 4.18.

In the transformation from ExTT to RunTT, the deleted arguments really are removed
from the fully applied constructors. This is safe because these terms are only decomposed
by Vect-Elim, the new implementation of which does not expect the deleted arguments.

Properties of Forcing

Forcing satisfies the required properties of a compile-time optimisation. The elimination rule
is respectful and well-defined, and typechecking the resulting terms in ExTT is equivalent
to typechecking in TT.

Theorem 4.4. The forcing implementation of D-Elim is respectful and well-defined.

Proof. Clearly, |~p| = ~s and
∣∣c ~a{V} ~y

∣∣ = c ~a ~y , so if Γ ` D-Elim ~s ′ (c ~a ′ ~y ′) P ′ ~m ′ : T then,
as before, ~s ′ = (~a ′/~a ◦ ~y ′/~y)~s. Now,

matches(~p, (~a ′/~a ◦ ~y ′/~y)~s) =⇒ ◦ai∈V (a ′i/ai)
matches(c ~a{V} ~y , c ~a ′ ~y ′) =⇒ ◦ai 6∈V (a ′i/ai) ◦ ~y ′/~y

Hence any matching substitution σ for the left-hand side satisfies

id
∣∣σ(D-Elim ~p (c ~a{V} ~y) P ~m)

∣∣ = D-Elim~s ′ (c ~a ′ ~y ′) P ′ ~m ′

Chapter 4. Optimising Inductive Families 98

So these schemes are respectful. They are clearly well-defined, as they discriminate on the
target’s constructor.

Theorem 4.5. Forcing satisfies Properties 1, 2 and 3.

Proof. See Theorems B.7, B.8 and B.9 in Appendix B.

Remark: How can we display elements of D accurately if we erase parts of the structure?
Information which is dropped by the forcing optimisation can always be retrieved by writing
a function in terms of the elimination rule, and so displaying a term does not need direct
access to the term’s representation; display (or at least conversion to a textual representa-
tion) can be implemented in terms of the elimination rule, writing a function similar to the
show function in Haskell. Assuming the existence of a String type, we might write a show

function for D by the following scheme:

let d : D~i
show d : String

show~i d ⇐ elim d
show~s (c1 ~a1 ~y1) 7→ "c1" ++ (show ~a1) ++ (show~r1 ~y1)
. . .

show~s (cn ~an ~yn) 7→ "cn" ++ (show ~an) ++ (show~rn
~yn)

This assumes appropriate show functions for each of the ~a, but in principle we see that
displaying structures, including their erased elements, is straightforward.

4.3.2 Eliding Redundant Constructor Tags

In the second alternative implementation of Vect-Elim in figure 4.8, case selection is by
analysis of the length index rather than the target itself:

Vect-Elim A 0 ([ε] [A]) P mε m:: ; mε

Vect-Elim A (s k) ([::] [A] [k] a v) P mε m:: ; m:: k a v (Vect-Elim A k v P mε m::)

For which types can we do case selection on an argument other than the target?
If we have two constructor headed terms c~a, c′~b in a type D~s, and the constructor choice

is determined only by (or forced by) the indices ~s, such that c ≡ c′ we say that the family
D is detaggable (figure 4.21). i.e. the constructor tag is determined only by ~s; given ~s,
we can tell what the constructor tag must be. Vect is detaggable because the length index
determines whether the constructor is ε (if the length index is 0) or :: (if the length index is
s k).

Again, there is no method in general to tell whether a family is detaggable, but we
can use properties of constructors to identify some families as detaggable. For any set of
ι-schemes, if the index patterns are already mutually exclusive, we can decide which scheme
applies without checking the target’s constructor tag. The disjoint operation (figure 4.22)
checks if two patterns are guaranteed to match disjoint sets of terms.

Chapter 4. Optimising Inductive Families 99

A family D is detaggable
if Γ ` c ~a, c′ ~b : D~s implies c ≡ c′

Figure 4.21: Detaggable families

disjoint(c ~p , c′ ~q) =⇒ true if c 6= c′

disjoint(c ~p , c ~q) =⇒ ∃i .disjoint(pi, qi)
disjoint([c] ~p, [c′] ~q) =⇒ ∃i .disjoint(pi, qi)
disjoint(p , q) =⇒ false otherwise

Figure 4.22: The disjoint meta-operation

Of course if we are to match on the indices then we must actually examine their con-
structors, so the previous lazy definition of pats is not sufficient. We compute the patterns
we need for this optimisation with epats (figure 4.23) — the same as pats but with lazy

replaced by eager. eager generates patterns without commented out constructors, to
indicate to the pattern matching compiler that it may inspect these tags.

epat (V , x) =⇒ (x ∪V , x) if x 6∈ V
epat (V , c~t) =⇒ (V ′,eager(c, ~p)) if epats (V ,~t) =⇒ (V ′, ~p)
epat (V , t) =⇒ (V , [t])
epats(V , nil) =⇒ (V , nil)
epats(V , t ~t) =⇒ (V ′′, p ~p)

if epat (V , t) =⇒ (V ′, p) and epats (V ′,~t) =⇒ (V ′′, ~p)
eager(c, ~p) =⇒ c ~p

Figure 4.23: Extracting eager patterns

For each constructor ci : ∀~x : ~Xi. D~si of a family D, epats (∅,~si) gives us (Vi, ~pi),
where Vi is the set of arguments of ci forced by ~si and ~pi are the patterns which D-Elim

will match. If the patterns ~pi generated from the indices are mutually exclusive, we say D

is concretely detaggable (figure 4.24).

The pattern sets are mutually exclusive if the following property holds:

∀ i 6= j. ∃k . disjoint(pik, pjk) =⇒ true

That is, for every pair of ι-schemes, one of the indices is matched in each scheme by
disjoint patterns; this ensures that by examining all of the indices we have reduced the
number of possible ι-schemes to one. In order to implement detagging, we extend ExTT’s
operational semantics with deleted constructor patterns {c}~p. A deleted constructor pattern
{c} ~p matches a term t if the canonical form of t is a deleted constructor application {c}~t

Chapter 4. Optimising Inductive Families 100

For a family D with i constructors of the form
ci : ∀~x : ~Xi. D~si

Where for each i , epats (∅,~si) =⇒ (Vi, ~pi)
if ∀ i 6= j. ∃k . disjoint(pik, pjk) then D is concretely detaggable

Figure 4.24: Concretely detaggable families

and ~p also matches ~t .

match({c} ~p, t) =⇒ matches(~p,~t) if whnf(t) =⇒ ({c}~t)
We are careful to distinguish ({c}{~t}), which is a trivial canonical form with its constructor

and all of its arguments deleted, from {c~t}, which is deleted altogether.

Lemma 4.6. If D is concretely detaggable then D is detaggable.

Proof. For two constructors of D, ci and cj , the patterns ~pi and ~pj are generated by epats.
No set of terms can match both sets of patterns unless i = j , by the definition of concretely
detaggable.

If we have Γ ` c ~a, c′ ~b : D~s, then we have epats (∅,~s) =⇒ (V , ~p). Since no term can
match patterns for more than one constructor, ~p determines the constructor, so Γ ` c ≡ c′.

The Detagging Optimisation

The detagging optimisation scheme is given in figure 4.25. Note that this optimisation
subsumes the forcing optimisation by marking ~x with a{V}. Detagging for vectors is given
in figure 4.26. The types of the constructors in ExTT are as for the forcing optimisation;
however, they are added to the context with deletion marks:

{ε} : ∀{A :?}. Vect A 0

{::} : ∀{A :?}. ∀{k :N}. ∀a :A. ∀v :Vect A k . Vect A (s k)

Recall that the definition of contexts only allows us to add constructors of a family with
deletion marks to the context if the indices of the type are pairwise disjoint with previously
added constructors of the same family. This side condition holds for detaggable families,
since detaggability is decided by pairwise disjointness of indices.

We achieve this space optimisation at the cost of using eager rather than lazy patterns.
The number of constructor tests required increases by a constant factor (possibly zero if, as
in the case of Vect, there is another index with disjoint patterns across all ι-schemes) and
indices may sometimes be computed where they would previously be ignored. In practice,
we take a greedy approach to minimising the number of eager patterns required to make the
distinction, by checking the index with the most disjoint constructor tags first.

The number of constructor tests required is a factor in deciding whether to apply this
optimisation, the balance being between speed and storage requirements. If we are more

Chapter 4. Optimising Inductive Families 101

JciK =⇒ λ~x . {ci} ~x{V}

D-Elim ~pi ({ci} ~x{V}) P ~m ; ei

where ei is the right hand side from the standard implementation of D-Elim.
and {ci} : ∀~a : ~A{V}. ∀~y :J~Y K. D J~sK ∈ JΓK

where ∀a :A{V} =⇒ ∀{a :JAK} if a ∈ V
∀a :A{V} =⇒ ∀a :JAK otherwise

Figure 4.25: The detagging optimisation

JεK =⇒ λA. {ε} {A}
J::K =⇒ λA; k ; a; v . {::} {A} {k} a v

Vect-Elim A 0 ({ε} {A}) P mε m:: ; mε

Vect-Elim A (s k) ({::} {A} {k} a v) P mε m:: ; m:: k a v (Vect-Elim A k v P mε m::)

Figure 4.26: Detagging for Vect

concerned with speed, we might prefer to limit the number of constructor tests on the indices
to one, or even not allow detagging at all to avoid the overhead of eager pattern matching.
However, if we are more concerned with space, we might not want a limit on the number of
constructor tests at all.

As with many optimisations, it is difficult to decide on a single best approach for all
cases and it may even be preferable to leave the maximum acceptable number of constructor
tests as an option for the programmer.

Properties of Detagging

Detagging, like forcing, satisfies the required properties of a compile-time optimisation. The
elimination rule is respectful and well-defined, and typechecking the resulting terms in ExTT

is equivalent to typechecking in TT.

Theorem 4.7. The detagging implementation of D-Elim is respectful and well-defined

Proof. These schemes are respectful for all Γ by the same argument as for forcing—the
switch to eager patterns does not affect the set of variables matched from the indices, nor
the success of matching well-typed values. Deleting the constructor in the target can only
improve the possibility of a match, but the disjointness condition directly ensures that the
schemes remain well-defined.

Theorem 4.8. Detagging satisfies Properties 1, 2 and 3.

Proof. See Theorems B.12, B.13 and B.14 in Appendix B.

Chapter 4. Optimising Inductive Families 102

4.3.3 Collapsing Content Free Families

Consider the less than or equal relation, declared and elaborated as follows:

data x , y : N
x≤y : ?

where
leO : 0≤y

p : x≤y
leS p : s x≤s y

≤ : N→ N→ ?

leO : ∀y :N.≤ 0 y
leS : ∀x , y :N.≤ x y → ≤ (s x) (s y)

Note that we use prefix notation for ≤ when it is in elaborated form, and infix for the
higher level notation. The ≤ family describes a property of its indices and stores no other
data. It is not surprising therefore to find that much of its content can be deleted. The
detagging optimisation on ≤ (with concretely forced arguments also deleted) is given in
figure 4.27.

JleOK =⇒ λy . ({leO} {y})
JleSK =⇒ λx ; y ; p. ({leS} {x} {y} p)
≤-Elim 0 y ({leO} {y}) P mleO mleS ; mleO y
≤-Elim (s x) (s y) ({leS} {x} {y} p) P mleO mleS

; mleS x y p (≤-Elim x y p P mleO mleS)

Figure 4.27: Optimisation of ≤

Now we are left with only one undeleted argument, the recursive p in leS. This argument
serves two purposes — firstly it is the target of the recursive call and secondly it is passed
to the method mleS. We might think that p can also be elided — ultimately it can only
by examined directly by ≤-Elim which, by induction, can be shown never to examine it
(since the target is not examined at all in the base case, and the recursive argument is
passed as the target to each recursive call). In compile-time evaluation, however, where we
may reduce under binders, we must at least check that the target is canonical for reduction
to be possible. If not, we run the risk of reducing a proof of something which cannot be
constructed, such as 5≤4!

Compile-Time vs. Run-Time Implementation

In our Vect-Elim example, we deleted both ε and its argument. We might be tempted to go
a step further, and comment out that entire target, since the A and 0 indices tell us exactly
what the canonical form of the target must be.

Vect-Elim A 0 [{ε} {A}] P mε m:: ; mε

However, this ι-scheme is not respectful and breaks subject reduction thus:

. . . ; x : Vect A 0 ` Vect-Elim A 0 x P mε m:: : P 0 x
; mε : P 0 ε

Chapter 4. Optimising Inductive Families 103

The pattern ({ε}{A}) may not test tags or extract arguments, but it still only matches targets
whose weak head-normal forms are constructor applications. The forcing and detagging
optimisations are safe to use in any context, and we need to reduce under binders (that is,
in a non-empty context) when performing the conversion checks which ensure that Epigram

programs elaborate to well typed terms.
However, at run-time, we can employ a much more restricted notion of computation,

reducing only in the empty context. The nature of run-time evaluation is that we produce
only as much of a normal form as the programmer requires. While we can produce a
strongly normalised term due to the termination property of TT, we only reduce the scope
of a binding if it is applied (i.e. bound) to a canonical form.

In the run-time scenario, we can exploit the adequacy property of TT (figure 4.28) to
gain further optimisations, not available in a general context; in the empty context, t must
reduce to some constructor form.

if ` t : D~s
then whnf(t) = c~t for some~t

Figure 4.28: Adequacy of TT

The adequacy property ensures that in the empty context, there is no non-canonical
normal form to which t can reduce; the only normal forms available are canonical forms. In
effect, we may employ weaker criteria for alternative implementations of elimination oper-
ators in run-time execution, since such execution always takes place in the empty context.
The respectfulness condition at run-time (figure 4.29) is the same as respectfulness, with
the additional constraint that it holds only in the empty context.

if ` D-Elim~t : T
and matches(~pi,~t) =⇒ σ

then ` D-Elim σ|~pi| ≡ D-Elim~t : T

Figure 4.29: The run-time respectfulness condition for ι-schemes

We also have a weaker criterion for well-definedness (figure 4.30) which takes into account
that all values passed to a fully applied function are in canonical form.

if ` D-Elim~t : T , where D-Elim is fully applied
then matches(~pi,~t) =⇒ σ for exactly one i

Figure 4.30: The run-time well-definedness condition for ι-schemes

The adequacy property tells us that the target will always match a constructor pattern

Chapter 4. Optimising Inductive Families 104

at run-time, hence we may safely presuppose a pattern from which no information is gained,
as suggested above. Moreover, by applying this observation inductively, we can sometimes
extract another, more drastic optimisation from the guarantee of adequacy at run-time —
collapsing of content free data structures.

4.3.4 The Collapsing Optimisation

Let us reconsider the optimisation of ≤ in a run-time scenario. At run-time, always reducing
in the empty context, we never need to check that the recursive argument p is canonical
because the adequacy property tells us that it must be. Hence, at run-time, we no longer
need to store the recursive argument — the entire family collapses. This optimisation is
given in figure 4.31.

JleOK =⇒ λy . ({leO y})
JleSK =⇒ λx ; y ; p. ({leS x y p})
≤-Elim 0 y {leO y} P mleO mleS ; mleO y
≤-Elim (s x) (s y) {leS x y p} P mleO mleS

; mleS x y ({p}) (≤-Elim x y {p} P mleO mleS)

Figure 4.31: Run-time optimisation of ≤

Note that ({p}) remains an argument to the mleS method, although after deletion we pass
the trivial canonical object; since mleS can be instantiated by any function of an appropriate
type we must take into account the possibility that it is instantiated by a polymorphic
function, where it is unknown at compile-time whether an argument is collapsible or not.

For which families can we do this run-time optimisation?

If we have two terms a, b in a family D ~s, and the values of a and b are determined
entirely by ~s, such that there is at most one element of D ~s, then we say D is collapsible

(figure 4.32). The relation ≤ is collapsible because there is only one way of constructing any
value in x≤y for given indices x and y .

A family D is collapsible
if ` x , y : D~s implies ` x ' y

Figure 4.32: Collapsible families

Again, deciding whether a family is collapsible is likely to be undecidable in general,
but we can apply a more restricted notion which identifies collapsible families which can be
reconstructed from their indices. We say a family is concretely collapsible (figure 4.33)
if it is concretely detaggable (which accounts for reconstructing the constructor choice from
the indices), and for each constructor c : ∀~a : ~A. D ~r1 → . . . → D ~rj → D ~s, epats (∅,~s)

Chapter 4. Optimising Inductive Families 105

gives (~a, ~p) — that is, all of the non-recursive arguments ~a appear in the set of concretely
forceable variables.

For a concretely detaggable family D with i constructors of the form
ci : ∀~a : ~Ai. D ~ri1 → . . .→ D ~rij → D~s

If for each i , epats (∅,~s) =⇒ (~a, ~p) then D is concretely collapsible

Figure 4.33: Concretely collapsible families

The general case for the collapsing optimisation is given in figure 4.34. The original
D-Elim, which is passed an argument in the family D, is transformed into a new version of
D-Elim which has that argument dropped. The motive still has the same type as in the
standard D-Elim, but the only value which will be passed in the target position will be the
trivial canonical value, 〈〉.

D-Elim ~p {c ~a ~y} P ~m
; mc ~a ({y1}) . . . ({yn}) (D-Elim ~r1 {y1} P ~m) . . . (D-Elim ~rn {yn} P ~m)

JcK =⇒ λ~a;~y . ({c ~a ~y})
JD-ElimK =⇒ λ~i ; x ;P ; ~m. D-Elim~i {x} P ~m

Figure 4.34: The collapsing optimisation

Theorem 4.9. The collapsing implementation of D-Elim is respectful at run-time and
well-defined at run-time.

Proof. These schemes are well-defined at run-time (in the empty context) by the same
argument as for detagging. They are respectful at run-time because the only possible left-
hand sides have the form ` D-Elim~s ′ (c~a ′~y ′)P ′ ~m ′, hence, by disjointness, the only possible
match, even with the target deleted, is with the scheme for c, with matching substitution
σ = ~a ′/~a ◦ P ′/P ◦ ~m ′/~m, binding all the undeleted free variables on the right-hand side
because epats (∅,~s) =⇒ (~a, ~p). Taking τ = ~y ′/~y , we see that

` τ |σ(D-Elim ~p {c ~a ~y} P ~m)| = D-Elim~s ′ (c ~a ′ ~y ′) P ′ ~m ′

hence these schemes are respectful at run-time.

Trade-offs

For a concretely collapsible family, the constructor tag and all the non-recursive arguments
are cheaply recoverable from the indices. “Cheaply” means that the arguments can be
retrieved in constant time by matching on the fully evaluated indices, and the constructor
tag can be determined by inspecting a (user determined) small number of the constructor
tags on the indices.

Chapter 4. Optimising Inductive Families 106

There is a trade-off in all of these optimisations between storage requirements and speed.
Even though arguments can be retrieved in constant time, for non-trivial indices — e.g.
s(s(s(s(s(s n))))) — the cost of recovery increases, as recovering the value n in this case
involves analysing the argument of each successor symbol. Another issue is that indices
may also be computed as the result of a function; in a lazy evaluation setting, an effect of
forcing here may be to compute a value which would otherwise remain unused. We have
not yet explored the space/time trade-offs of these optimisations for such complex indices,
in particular because the dependently typed programs we have investigated so far have not
had such complex indices.

The possibility of collapsing data structures is the main advantage of the detagging
optimisation; detagging is a necessary step towards collapsing. In general, the space saving
in not storing the tag of a family at run-time is small in comparison to the fact that we
are now committed to retaining some indices in order to discriminate between ι-reductions.
Otherwise, as we will see with some of the optimisations in Chapter 6, we may be able
to discard these indices. If detagging leads to collapsing of an otherwise redundant data
structure however, it is beneficial.

4.3.5 Interaction Between Optimisations

While these optimisations work well on inductive families in isolation, we should consider how
optimisations will interact when several constructors and elimination rules are transformed.
There is one consideration in particular — earlier, I stated that the elimination rule for a
family D was the only function allowed to examine D directly. Clearly, in the presence of
detagging, this is no longer the case. Now, any elimination rule is able to examine D, if D

forms an index of a concretely detaggable family. For example, the detagged Vect-Elim rule
has direct access to the constructors of N.

What problems might this cause? Consider the following data structure, an association
list which links a Vect of keys (B) to their values (A):

data A,B : ? v : Vect B n
aVect A B v : ?

where
aNil : aVect A B ε

a : A l : aVect A B v
aCons a l : aVect A B (b::v)

A first look at this suggests it might be a detaggable family; each constructor’s Vect index
is disjoint, surely? However, since Vect itself is detaggable, we can no longer discriminate
on its constructors! The elaboration of aVect is shown in figure 4.35.

That is, the current set of substitutions from TT to ExTT are applied immediately the
family is elaborated. Notice that although we can not discriminate on the constructors of
Vect, by indexing over a Vect we must also index over Vect’s indices! And so, this family is
also detaggable, by disjointness of Vect’s indices.

In general, if constructors of a family D are indexed by disjoint constructors of a de-

Chapter 4. Optimising Inductive Families 107

aNil : ∀A,B? : . aVect A B {ε}
aCons : ∀A,B :?. ∀a :A. ∀b :B . ∀n :N. ∀v :Vect B n. ∀l :aVect A B v .

aVect A B ({::} {B} {n} b v)
aVect-Elim A B 0 ({ε} {B}) aNil P maNil maCons ; maNil

aVect-Elim A B (s k) ({::} {B} {k} b v) (aCons A B a b k l) P maNil maCons

; maCons A B a b k v l (aVect-Elim A B k v l P maNil maCons)

Figure 4.35: Elaboration of aVect

taggable family X, D is also detaggable because the case distinction which discriminates
between X’s constructors can also be used to discriminate between D’s constructors. We
must, however, be careful to apply substitutions as we go so as not to attempt pattern
matching on these detagged constructors.

4.3.6 Using the Standard Implementation

It is also possible that we could take a more straightforward approach to implementing
optimised elimination rules, even using the standard implementation. Recall the standard
implementation of Vect-Elim, which marks the indices as presupposed:

Vect-Elim [A] [0] (ε A) P mε m:: ; mε

Vect-Elim [A] [s k] (:: A k a v) P mε m:: ; m:: k a v (Vect-Elim A k v P mε m::)

In the forcing, detagging and collapsing optimisations, we have exploited the presence of
constructor symbols in indices to remove arguments from data structures. An alternative
optimisation, however, would arise from the observation that the indices are never examined
in the body of the standard implementation of D-Elim so need not be passed to the elimi-
nation operator at all. This would save space, in that there would not be extra references to
the indices on the stack, but we would also expect to save time since building an application
of the elimination rule would require fewer MKAP instructions.

In the current implementation, we prefer to use the alternative implementations gen-
erated by the forcing, detagging and collapsing optimisations, rather than the standard
implementation, for two reasons:

• Firstly, if we remove arguments from the application of the elimination operator, rather
than the application of the constructor, then there will still be pointers to the indices
at each level of a recursive data structure. If on the other hand we remove arguments
from the constructor, there are only pointers to the indices at the top level application
of the elimination operator — these applications may, of course, occupy a significant
amount of memory in a lazy implementation.

• Secondly, as we will see in Chapter 6, we have further techniques for optimising ap-
plications of elimination operators which can in many cases remove arguments to the

Chapter 4. Optimising Inductive Families 108

operator as well as constructor arguments. If we make the choice too early between us-
ing the standard implementation and an alternative implementation, we will be denied
these optimisations.

Nevertheless, there are many issues to consider in optimising a program, and it is not
clear whether the techniques presented above are optimal in all cases. For example, building
an application of an eliminator is more expensive than building a constructor application,
since it requires more steps (MKAP applies a function to only one argument, MKCON applies
a constructor to all of its arguments, since it can assume that constructors are fully applied).
Further work is required to determine how other implementation choices (for example, lazy
versus eager evaluation) affect the optimisations.

4.4 Compilation Scheme for ExTT

4.4.1 Extensions to RunTT

The language of supercombinators, RunTT, is now built from marked terms in ExTT. The
translation into ExTT is an analysis phase and the actual erasure is applied in the lifting on
RunTT supercombinators. Marked terms, {t}, are simply omitted as part of the supercom-
binator lifting algorithm. By erasing the same arguments from constructors and patterns
of ι-schemes, we ensure that deleted arguments are matched only by deleted patterns and
therefore both can safely be removed.

Compiling elimination rules into RunTT is no longer so straightforward as compilation to
a case on the target of the elimination rule. Previously, we used case analysis on the target
to extract constructor arguments. Having elided some of these owing to their repetition,
we need another means of retrieving their values. One way to do this is with multiple
case expressions. However, this is potentially expensive. As a result of the well-definedness
property of ι-schemes, if we know which ι-scheme applies, we also know the form of each
argument to the elimination rule. As a result, we would like to be able to project subterms
out of these arguments without checking their form. We would like to do only enough case
analysis to establish which ι-scheme applies. We also now introduce a “match anything”
pattern for case analysis which is useful in the compilation of ι-schemes for detagged families.

To avoid case analysis where we already know the form of an argument, I introduce
argument projection into RunTT. Where a term t in RunTT is known to have the form
c〈e0, e1, . . . en〉, t !i projects the ith argument out of the tuple if i ≤ n, and is undefined
otherwise. However, we know that i ≤ n must hold, so there is no run-time check.

As a result of the detagging optimisation, we would also like to delete constructor tags
from the RunTT representation. As well as tagged constructor applications, c〈~e〉, I introduce
untagged constructor applications, 〈~e〉. case analysis on such forms is not allowed; instead,
argument projection is used to retrieve arguments.

The syntax of this extended RunTT is given in figure 4.36.

Chapter 4. Optimising Inductive Families 109

s ::= λ~a : ~e. e (supercombinator)
e ::= x (bound variable) | f (global name)
| ∀x :e. e (function space) | ?i (type of types)
| e e (function application) | c〈~e〉 (constructor application)
| let a : e 7→ e in e (let binding) | D〈~e〉 (type constructor application)
| e!i (argument projection) | 〈~e〉 (untagged constructor)
| case e of ~alt (case expression)

alt ::= c 〈~x 〉 ; e (case alternative)
| ; e (match anything)

Figure 4.36: RunTT with extensions

4.4.2 Compiling Elimination Rules

Translating into the supercombinator representation from ExTT is relatively straightforward,
using the algorithm presented in Chapter 3 with the additional requirement that marked
terms be removed. Translation of pattern matching ι-schemes is less straightforward. The
main problem arises where a family has been detagged since we are no longer guaranteed that
there is an argument for which all patterns have disjoint constructor tags. Another problem
is that case analysis on the target does not necessarily retrieve all of the arguments which
will be passed to the method, as some may have been removed by the forcing optimisation.

Pattern matching ι-schemes can be compiled into case expressions using Augustsson’s
pattern matching compiler algorithm [Aug85, Pey87] with some modifications and simplifi-
cations. The priority is to establish which ι-scheme applies with as few case expressions as
possible. Well-definedness at run-time of elimination rules tells us that exactly one of the
cases must match; there is no error case to handle. This property makes optimisation of
pattern matching much easier, compared with other optimisations of the pattern matching
compiler algorithm — optimisations such as those described in [SR00, FM01] make use of
exhaustiveness information (i.e. checking that the patterns cover all cases) or reordering
constructor tests. In particular, the algorithm we present here tests each constructor only
once.

The pattern matching compiler is defined by the I compilation scheme. This scheme
takes two arguments; firstly, a sequence of names of the i arguments to the elimination
rule, e1 . . . ei. The second argument is a list of patterns and their reductions, each one
corresponding to a case of the elimination rule.

I(e1 . . . ei,

p11 . . . p1i ; x1

. . .

pn1 . . . pni ; xn

)

This scheme compiles a respectful and well defined (non-overlapping and no error case —
exactly one set of patterns matches in all cases) set of ι-schemes of the form

Chapter 4. Optimising Inductive Families 110

f p11 . . . p1i ; x1

. . .

f pn1 . . . pni ; xn

where the arguments are given unique names e1 . . . ei.

There are some preliminaries to consider before applying this method. Firstly, we must
consider how to project arguments from constructors. For each pattern argument to each
ι-scheme, pij , we extract its variable set ~v (that is, the names which appear as pattern
variables in pij), together with, for each variable v in that variable set, a term t which
projects the value of that variable from the argument ej matched by the pattern pij . Then
the right hand side of the ι-scheme xi is modified by substituting the term t for the variable
v . We define the meta-operation project, which computes the mappings from ExTT names
to RunTT terms, as in figure 4.37.

Given a pattern p, and the name of the argument which matches on that pattern n,
project generates a list of pairs (x , t), where x is a pattern variable and t is the RunTT

term which projects the value of x from the argument matched by the pattern. The argument
f is a function passed to recursive calls of project; when looking for names in a nested
pattern, f is the RunTT term which retrieves the term matched by the nested pattern.

projargs is a helper operation which retrieves names from nested patterns — i is the
index of the argument being examined. For each (unmarked) argument x , projargs calls
project on x with an argument projection composed with f .

project(n, x) =⇒ project’(n, (λa =⇒ a), x)

project’(n, f , x) =⇒ [(x , f n)]
project’(n, f , (c ~e)) =⇒ projargs(n, f , 0,~e)
project’(n, f , ({c} ~e)) =⇒ projargs(n, f , 0,~e)
project’(n, f , [x]) =⇒ []

projargs(n, f , i , []) =⇒ []
projargs(n, f , i , ({x} : xs)) =⇒ projargs n f i xs
projargs(n, f , i , (x : xs))

=⇒ project’(n, ((λa =⇒ (a!i)) ◦ f), x) ++ projargs(n, f , (i + 1), xs)

Figure 4.37: The project operation

For example, if we have a pattern ({::} {A} {k} a v) for an argument x , we can extract
RunTT terms to retrieve a and v from x with project(x , ({::} {A} {k} a v)). Evaluation of
this proceeds as follows:

Chapter 4. Optimising Inductive Families 111

project(x , ({::} {A} {k} a v))⇒ project’(x , (λx =⇒ x), ({::} {A} {k} a v))
⇒ projargs(x , (λx =⇒ x), 0, 〈{A} {k} a v〉)
⇒ projargs(x , (λx =⇒ x), 0, 〈{k} a v〉)
⇒ projargs(x , (λx =⇒ x), 0, 〈a v〉)
⇒ project’(x , (λa =⇒ a!0) a)

++ projargs(x , (λx =⇒ x), 1, 〈v〉)
⇒ [(a, x !0)] ++ projargs(x , (λx =⇒ x), 1, 〈v〉)
⇒ [(a, x !0)] ++ project’(x , (λa =⇒ a!1), v)
⇒ [(a, x !0), (v , x !1)]

Arguments may be nested inside constructors, such as the n in s (s n). In this case, the
argument is projected out as follows:

project(x , s (s n)) ⇒ [(n, (x !0)!0)]

For each pattern pij , a mapping from variable names matched to the RunTT terms which
retrieve those variables is given by an application of project(ej , (λx =⇒ x) pij). Then
these terms are substituted in the right hand side of the pattern for the argument names.

For example, the N-Elim rule

N-Elim 0 P m0 ms ; m0

N-Elim (s k) P m0 ms ; ms k (N-Elim k P m0 ms)

is compiled to a RunTT case expression by invoking the I compilation scheme as follows:

N-Elim 7→ I(〈n,P ,m0,ms〉,
{

0 P m0 ms ; m0

(s k) P m0 ms ; ms (n!0) (N-Elim (n!0) P m0 ms)

}
)

A second consideration is how to optimise the rule so that the minimum number of case
analyses are required. To achieve this, we reorder the ~e such that the argument where
most patterns are disjoint (i.e., the greatest number of disjoint constructors) is examined
first. This is a greedy approach, the intention being that one case analysis will suffice
in the maximum possible cases. [SR00] describes heuristics for minimising the number of
constructor tests, but for elimination rules for non-detaggable families (and even many for
detaggable families), there will be an argument where all patterns are disjoint.

The I compilation scheme, summarised in figure 4.38, proceeds by examining the leftmost
patterns p11 . . . p1n, which represent the patterns which the first argument e1 could match.
It is a recursive function, ~e decreasing in length on each recursive call, which shows its
termination. There are several cases to consider.

Case 1: n=1; only one possible pattern

In this case, no further checking need be done, as we have eliminated all but one case. Since
the elimination rule is total, this must be the case which applies. No case is needed, as the
variables in the patterns are extracted by argument projection in x1.

Chapter 4. Optimising Inductive Families 112

Case 1 Only one possible ι-scheme

I(e1 . . . ei,
{
p11 . . . p1i ; x1

}
) =⇒ x1

Case 2 Leftmost patterns are all disjoint

I(e1 . . . ei,

(c1 ~a1) p12 . . . p1i ; x1

. . .
(cn ~an) pn2 . . . pni ; xn

) =⇒ case e1 of

(c1 ~a1) ; x1

. . .
(cn ~an) ; xn

Case 3 No pair of leftmost patterns are disjoint

I(e1 . . . em,

p11 . . . p1i ; x1

. . .
pn1 . . . pni ; xi

) =⇒ I(e2 . . . en,

p12 . . . p1i ; x1

. . .
pn2 . . . pni ; xi

)

Case 4 At least one pair of leftmost patterns is disjoint

Take P to be the smallest set such that pi1 ∈ P if pi1 is in constructor form. Then:

I(e1 . . . ei,

p11 . . . p1i ; x1

. . .
pn1 . . . pni ; xn

) =⇒

case e1 of

p ; I(e2 . . . en,

{
pk2 . . . pki ; x1

. . .

}
)

[where ∀p ∈ P , ∀k . pk1 6∈ P or (pk1 = c〈~e〉 and p = c〈~e ′〉]
. . .

; I(e2 . . . en,

{
pk2 . . . pki ; x1

. . .

}
)

[where ∀k .pk1 6∈ P]

Figure 4.38: I compilation scheme

I(e1 . . . ei,
{
p11 . . . p1i ; x1

}
) =⇒ x1

Case 2: p11 . . . pn1 are all disjoint patterns

In this case, distinction can be made on the first argument alone. If ∀i 6= j .disjoint(pi1, pj1),
pi1 is constructor headed for all i , such that ci ~ai = pi1 and the RunTT case expression is
built as follows:

I(e1 . . . ei,

(c1 ~a1) p12 . . . p1i ; x1

. . .

(cn ~an) pn2 . . . pni ; xn

) =⇒ case e1 of
(c1 ~a1) ; x1

. . .

(cn ~an) ; xn

Chapter 4. Optimising Inductive Families 113

Case 3: No pair in p11 . . . pn1 is headed by disjoint constructors

In this case, no distinction can be made on this argument, so we move on. If a term is
presupposed, this means we don’t even examine it because we already know what it is;
examining it in the compiled code would break our specification of match. The RunTT

expression is built as follows:

I(e1 . . . em,

p11 . . . p1i ; x1

. . .

pn1 . . . pni ; xi

) =⇒ I(e2 . . . en,

p12 . . . p1i ; x1

. . .

pn2 . . . pni ; xi

)

In practice, the optimisation of reordering the ~e in descending order of the number of
disjoint constructor patterns will ensure that this case never applies.

Case 4: Two or more of p11 . . . pn1 are headed by disjoint constructors

This is the most complex case, and is a generalisation of case 2. Here, some ι-schemes can
be eliminated, but no definite choice can be made. We make recursive calls to I, leaving out
the schemes which cannot match. We take P to be the smallest set of patterns such that
pi1 ∈ P if pi1 = c〈~e〉 for some c and ~e.

Then the RunTT case expression is built by:

I(e1 . . . ei,

p11 . . . p1i ; x1

. . .

pn1 . . . pni ; xn

) =⇒

case e1 of

p ; I(e2 . . . en,

{
pk2 . . . pki ; x1

. . .

}
)

[where ∀p ∈ P , ∀k . pk1 6∈ P or (pk1 = c〈~e〉 and p = c〈~e ′〉)]
. . .

; I(e2 . . . en,

{
pk2 . . . pki ; x1

. . .

}
)

[where ∀k .pk1 6∈ P]

That is to say, if e1 matches a pattern p, we can rule out the cases where the pattern for
e1 is headed by a different constructor, but we cannot rule out the cases where the pattern
for e1 is a variable.

If there is only one pattern variable e1 left to consider, all patterns must be disjoint,
or an error has occurred. If a family is detaggable, it is on the understanding that case
distinction can be made on the indices. Otherwise, case distinction can always be made on
the target.

There is a question remaining of how to compile a rule with no ι-schemes, such as with
the elimination rule for the empty type:

Chapter 4. Optimising Inductive Families 114

data
False : ?

where

False-Elim : ∀x :False. ∀P :False→ ?. P x

This type has no constructors, and hence the elimination rule has no ι-schemes. Of
course, in practice, this rule can never be executed, since there is no canonical form of False

on which to apply it. I will postpone discussion of an effective way to handle this problem
until section 6.2.4 — for the moment, it suffices to say that False-Elim can not reduce.

Example — Vect

Recall the detagged Vect elimination rule:

Vect-Elim A 0 ({ε} {A}) P mε m:: ; mε

Vect-Elim A (s k) ({::} {A} {k} a v) P mε m:: ; m:: k a v (Vect-Elim A k v P mε m::)

The first step in compiling this to pattern matching form is to give each argument a
unique name. For readability, let us take A, n, x , P , mε and m:: (rather than e1 . . . e6).
Then for each ι-scheme, we compute the terms required to extract pattern variables from
the left hand side with project. This is trivial in the ε case. For ::, applying project to
each argument yields:

project(A,A) =⇒ [(A,A)]
project(n, (s k)) =⇒ [(k ,n!0)]
project(x , ({::} {A} {k} a v)) =⇒ [(a, x !0), (v , x !1)]
project(P ,P) =⇒ [(P ,P)]
project(mε,mε) =⇒ [(mε,mε)]
project(m::,m::) =⇒ [(m::,m::)]

Then we get a RunTT term for Vect-Elim by applying I as follows:

Vect-Elim 7→ λA; n; x ; P ; mε; m::.

I(n,A, x ,P ,mε,m::,

0 A ({ε} {A}) P mε m:: ; mε

(s k) A ({::} {A} {k} a v) P mε m:: ;

m:: (n!0) (x !0) (x !1)
(Vect-Elim A (n!0) (x !1) P mε m::)

)

which reduces to the following case expression:

Vect-Elim 7→ λA; n; x ; P ; mε; m::.

case n of
0 ; mε

(s〈k〉) ; m:: (n!0) (x !0) (x !1)
(Vect-Elim A (n!0) (x !1) P mε m::)

A curious effect of this compilation algorithm as that, although the case expression binds
the k argument of s, it is not used in the right hand side; rather, n!0 is used to get k . This
happens because we do not know before I compilation which names can be bound by case

Chapter 4. Optimising Inductive Families 115

expressions and which we need to get by argument projection. It is a simple transformation
to reinstate names which are bound by case afterwards, by reversing the mapping generated
by the project operation. In this case, we have s k , and project(n, (s k)) =⇒ [(k , (n!0))];
reversing the mapping from k to (n!0) gives:

Vect-Elim 7→ λA; n; x ; P ; mε; m::.

case n of
0 ; mε

(s〈k〉) ; m:: k (x !0) (x !1)
(Vect-Elim A k (x !1) P mε m::)

However, we do not do this immediately after compilation of the patterns — to do so is
a premature optimisation1. Instead we wait until other optimisations have been applied to
the RunTT term.

Example — between

A more complex example results from the between relation over three numbers m, n, p,
which expresses the property that m ≤ n ≤ p:

data m,n, p : N
between m n p : ?

where
bO : between 0 0 0

b : between 0 0 m
bOOs b : between 0 0 (s m)

b : between 0 m n
b0ss b : between 0 (s m) (s n)

b : between m n p
bsss b : between (s m) (s n) (s p)

To show that this relation really does represent the property we want, we can prove the
lemma m ≤ n → n ≤ p → betweenmnp. This can be proved by induction over the variables
m, n and p, then inversion over the relations. The ι-schemes for between are shown in figure
4.39.

between-Elim 0 0 0 bO P mbO mbOOs mb0ss mbsss ; mbO

between-Elim 0 0 (s m) (bOOs m b) P mbO mbOOs mb0ss mbsss

; mbOOs m b (between-Elim 0 0 m b P mbO mbOOs mb0ss mbsss)
between-Elim 0 (s m) (s n) (b0ss m n b) P mbO mbOOs mb0ss mbsss

; mb0ss m n b (between-Elim 0 m n b P mbO mbOOs mb0ss mbsss)
between-Elim (s m) (s n) (s p) (bsss m n p b) P mbO mbOOs mb0ss mbsss

; mbsss m n p b (between-Elim m n p b P mbO mbOOs mb0ss mbsss)

Figure 4.39: ι-schemes for between-Elim

between is concretely detaggable, since

∀ i 6= j. ∃k . disjoint(pik, pjk) =⇒ true

1The reason why projection is preferred is explained in section 6.2.4.

Chapter 4. Optimising Inductive Families 116

That is, it is possible to establish which constructor applies purely by examining the
indices. In addition, between is concretely collapsible. The implementation of the (run-
time) elimination rule is given by the marked-up ι-schemes in figure 4.40.

between-Elim 0 0 0 {bO} P mbO mbOOs mb0ss mbsss ; mbO

between-Elim 0 0 (s m) {bOOs m b} P mbO mbOOs mb0ss mbsss

; mbOOs m ({b}) (between-Elim 0 0 m {b} P mbO mbOOs mb0ss mbsss)
between-Elim 0 (s m) (s n) {b0ss m n b} P mbO mbOOs mb0ss mbsss

; mb0ss m n ({b}) (between-Elim 0 m n {b} P mbO mbOOs mb0ss mbsss)
between-Elim (s m) (s n) (s p) {bsss m n p b} P mbO mbOOs mb0ss mbsss

; mbsss m n p ({b}) (between-Elim m n p {b} P mbO mbOOs mb0ss mbsss)

Figure 4.40: ι-schemes for between-Elim after collapsing

Applying the I compilation scheme, which repeatedly applies case 4, yields the super-
combinator definition shown in figure 4.41. Note again that since between is concretely
collapsible, instances passed to the methods are replaced with the trivial canonical empty
tuple, 〈〉.

between-Elim 7→ λm; n; p; P ; mbO; mbOOs; mb0ss; mbsss.
case m of

0 ; case n of
0 ; case p of

0 ; mbO

s〈k〉 ; mbOOs k 〈〉 . . .
s〈k〉 ; mb0ss k (p!0) 〈〉 . . .

s〈k〉 ; mbsss k (n!0) (p!0) 〈〉 . . .

Figure 4.41: Compiled ι-schemes for between-Elim

4.4.3 Extensions to the G-machine

The extensions made to RunTT in the previous section necessitate some alterations to the
G-machine. There are two principal changes:

• Implementation of constructor argument projection (e!i) is possible via the CASEJUMP

instruction, but this is inefficient since the purpose is to avoid unnecessary case analysis
at run-time. We ought to implement this operation more efficiently.

• Case analysis now exists only to establish which ι-scheme to execute, not to project
out arguments. We can therefore imagine a simpler alternative to CASEJUMP. In
addition, since case is now not necessarily on the target of an elimination rule, some
cases may be impossible. RunTT includes a “match anything” case alternative, so this
also needs to be handled.

Chapter 4. Optimising Inductive Families 117

New Compilation Schemes

To handle these additions to the language, we need to make additions to the EJ·K and
CJ·K compilation schemes, and to the heap representation of the G-machine.

There are some alternative approaches to dealing with argument projection in the G-
machine. The effect of projecting the nth argument from a graph G could be to either push
a new graph node onto the stack for later evaluation, PROJ n G (the lazy approach) or to
push the graph pointed to by the nth argument of a G in canonical form onto the stack (the
eager approach). I choose the eager approach because, in general, the projection will not be
made more than twice in an ι-scheme (once as an argument to the method, and once in the
recursive call). The overhead of constructing the graph node is too much for the laziness to
compensate for this; and even so, an optimisation which lifts out common subexpressions
can ensure that the projection is evaluated only once.

Construction of untagged structures is relatively straightforward. Corresponding to
CON t xs, there is a new graph node type:

• TUP xs, where xs is a list of known length, which represents a detagged constructor
as a tuple of the arguments xs.

Two new instructions are added to the G-machine. PROJ i projects the ith argument
out of the (canonical) object on top of the stack, replacing the top stack value. MKTUP i
constructs an untagged constructor from the top i stack elements. The G-machine state
transition rules for these instructions are given in figure 4.42.

〈MKTUP i ; c,n0 . . .ni−1.S ,G ,E ,D〉 =⇒ 〈c,n ′.S ,G [n ′ = TUP (n0 . . .ni−1)],E ,D〉
〈PROJ i ; c,n0.S ,G [n0 = CON t (x0 . . . xi . . . xa),E ,D〉 =⇒ 〈c, xi.S ,G ,E ,D〉

(where a is the number of arguments to the constructor)
〈PROJ i ; c,n0.S ,G [n0 = TUP (x0 . . . xi . . . xa),E ,D〉 =⇒ 〈c, xi.S ,G ,E ,D〉

(where a is the number of arguments in the tuple)

Figure 4.42: State transitions for MKTUP and PROJ

The additions to the EJ·K compilation scheme are given in figure 4.43. Firstly, evaluating
an argument projection e!i involves evaluation of e (to get it into a canonical form) then
projection of the ith argument of e with PROJ. We also account for evaluation of untagged
tuples and case expressions with defaults.

The CASEJUMP instruction has slightly different behaviour to account for the changes
to RunTT. It examines the target and jumps to the appropriate label, as before, but there
is also a default case to account for the “match anything” pattern. There is still no error
case; typechecking accounts for the fact that this can’t happen.

Figure 4.44 gives the additions to the CJ·K compilation scheme. For argument projection,
note that the projection itself is evaluated eagerly; e is compiled by the EJ·K scheme to ensure

Chapter 4. Optimising Inductive Families 118

EJe!iK r n =⇒ EJeK r n;PROJ i ; EVAL
EJ〈e1, e2, . . . , ei〉K r n =⇒ CJe1K r n; CJe2K r (n + 1); . . . ;

CJeiK r (n + i − 1); MKTUP i
EJcase e of c1〈~a1〉 ; e1 . . . cn〈~an〉 ; en , ; edefK r n =⇒
EJeK r n; CASEJUMP (c1, l1) (c2, l2) . . . (cn, ln) ldef ;

LABEL l1; SPLIT n1; EJe1K d1 n + n1; MOVE n1 + 1; DISCARD n1 + 1; JUMP l
. . .
LABEL ldef ; EJedefK r n;

LABEL l
where dn(aij) =⇒ n + j

dn(x) =⇒ r(x)
nk = length(~ak)

Figure 4.43: Extension to the EJ·K scheme

that the object of the projection is in canonical form. This scheme also includes construction
of untagged tuples.

CJe!iK r n =⇒ EJeK r n;PROJ i
CJ〈e1, e2, . . . , ei〉K r n =⇒ CJe1K r n; CJe2K r (n + 1); . . . ;

CJeiK r (n + i − 1); MKTUP i

Figure 4.44: Extensions to the CJ·K scheme

4.5 Examples

We can see the effect that the transformations described in this chapter have on programs
by running the programs on a G-machine both with and without the transformations ap-
plied. There are several quantities which we may choose to measure, such as the number
of instructions executed, memory allocations, memory usage, processor cycles used or time
taken. The quantities we choose to measure for each run, näıve and optimised, are the
following:

• The number of G-machine instructions executed.

• The number of thunks (suspended computations) created.

• The number of memory accesses (instructions which analyse a heap cell).

• The number of cells allocated for data storage.

We choose number of instructions executed above processor cycles or time taken because
of the nature of the implementation of the G-machine, and the size of the examples; since the

Chapter 4. Optimising Inductive Families 119

examples are small and run quickly, we can get a more precise measure of the time taken this
way. We choose thunks and cell allocations to give an idea of how much storage is required,
which gives a picture of how well the optimisations perform as storage optimisations.

The only optimisations applied are those presented in this chapter; there is, for example,
no strictness analysis or inlining or any form of tail recursion transformation. This is to see
how the forcing, detagging and collapsing optimisations work independently of any other
analysis. Some of the results we will see may seem surprising, particular with regard to
the number of instructions executed. This is largely due to the inefficiency of number
representation in TT, using an unary representation of N — this problem will be addressed
in Chapter 5. The extra layer of abstraction imposed by elimination rules, particularly
arguments unused at run-time such as the motive, also adds significant overheads which will
be addressed in Chapter 6. There is also an overhead in outputting results (which we do
by converting the result of each program to a string), a trivial implementation detail not
addressed in this thesis.

4.5.1 The Finite Sets

The finite sets, indexed over a natural number n, are a family of types with n elements.
Effectively, they are a representation of bounded numbers and are declared as follows:

data n : N
Fin n : ?

where
f0 : Fin (s n)

i : Fin n
fs i : Fin (s n)

The forcing optimisation elides the indices from the elaborated constructors:

Jf0K =⇒ λn. f0 {n}
JfsK =⇒ λn; i . fs {n} i

After stripping the forceable arguments, the shape of the resulting type matches that of
N— that is, the base constructor takes no arguments and the step constructor takes a single
recursive argument. This is to be expected; Fin and N represent the same thing (natural
numbers), but Fin also maintains an invariant representing an upper bound on the number
which is not part of the data structure.

An expression, lookup(fs(fsf0))((s(s0))::(s0)::0::ε), was evaluated and printed before and
after applying the transformations. The results of evaluating and printing this expression
are shown in figure 4.45.

4.5.2 Comparison of Natural Numbers

The Compare family from [MM04b] represents the result of comparing two numbers, storing
which is the greater and by how much:

Chapter 4. Optimising Inductive Families 120

Program Version Instructions Thunks Memory Accesses Cells
Näıve 549 300 166 39

Vector lookup Optimised 537 300 166 27
Change -2.23% - - -30.76%

Figure 4.45: Run-time costs of Fin and Vect

data m : N n : N
Compare m n : ?

where y : N
lt y : Compare x (plus x (s y))

eq : Compare x x

x : N
gt x : Compare (plus y (s x)) y

Compare is an example of a family which is collapsible, but not concretely collapsible.
Clearly there is only one possible element of Compare m n for each m and n, and given this
element we can extract their difference in constant time. If we were to collapse Compare

we would replace this simple inspection by the recomputation of the difference each time
the same value was used. We restrict concretely collapsible families to those where the
recomputation of values is cheap.

Nonetheless, by forcing, Compare need only store which index is larger and by how much:

JltK =⇒ λx ; y . lt {x} y
JeqK =⇒ λx . eq {x}
JgtK =⇒ λx ; y . gt x {y}

The results of applying this optimisation to a program which computes the gcd of two
Ns by using view Compare are shown in figure 4.46.

Program Version Instructions Thunks Memory Accesses Cells
Näıve 37896 18864 12293 2749

gcd 6 3 Optimised 37486 18636 12293 2567
Change -1.08% -1.20% - -6.62%

Figure 4.46: Run-time costs of gcd, written by view Compare

For reference, the gcd program is presented in figure 4.47. A view plusrec is defined to
give recursion on numbers which are shown to be smaller by their presence as an argument
to plus. The “?” used as an argument to plusRec indicates that the typechecker is expected
to work out what this argument should be — it is often the case in writing dependently
typed programs (particularly those which express proofs) that the typechecker can work out
what an argument should be, purely from its type.

Chapter 4. Optimising Inductive Families 121

data n : N
PlusRec n where R : ∀a, b :N. (n = s(plus a b)) → PlusRec b

plusRec R : PlusRec n

let

n : N R : ∀a, b :N. ∀eq :n = s (plus a b). PlusRec b
a, b : N eq ′ : s n = s (plus a n)

plusrecs n R a b eq ′ : PlusRec b
plusrecs n R a b eq ′ ⇐ case eq ′

plusrecs (plus a b) R a b eq ′ ⇐ case a
plusrecs b R 0 b refl 7→ plusRec R
plusrecs (s (plus a b)) R (s a) b refl 7→ R a b refl

let n : N
plusrec n : PlusRec n

plusrec n ⇐ elim n
plusrec 0 7→ plusRec ?
plusrec (s k) 7→ plusRec (plusrecs k (λa, b :N. λeq :k = s (plus a b). ?))

let m,n : N
gcd m n : N

gcd m n ⇐ view plusrec m ⇐ view plusrec n
⇐ compare m n

gcd x (plus x (sy)) ⇐ case x
gcd 0 (s y) 7→ s y
gcd (s x) (plus (s x) (s y)) 7→ gcd (s x) (s y)
gcd x x 7→ x
gcd (plus y (s x)) y ⇐ case y
gcd (s x) 0 7→ s x
gcd (plus (s y) (s x)) (s y) 7→ gcd (s y) (s x)

Figure 4.47: Computing the greatest common divisor of two integers

4.5.3 Domain Predicates

In [BC03], Bove and Capretta use domain predicates to prove termination of general re-
cursive functions, an example of which we have already seen in section 2.3.4. Domain
predicates are inductive families which express the termination criteria for each possible
input to a function.

The quicksort function terminates on the input nil, and terminates on the input consx xs
if it terminates on the inputs filter (< x) xs and filter (≥ x) xs. This is expressed by the
qsAcc predicate; this gives the termination criteria for each input cons x xs and nil:

data l : List N
qsAcc l : ?

where
qsNil : qsAcc nil

qsl : qsAcc (filter (< x) xs) qsr : qsAcc (filter (≥ x) xs)
qsCons qsl qsr : qsAcc (cons x xs)

Chapter 4. Optimising Inductive Families 122

The main part of quicksort is defined by induction over this predicate; the details of
the termination proof lie in converting a list to an instance of the domain predicate. A näıve
implementation of this method would need to store the predicate, since quicksort is, in
their method, implemented by induction over it. However, qsAcc is concretely collapsible,
hence it need not be stored at run-time:

JqsNilK =⇒ {qsNil}
JqsConsK =⇒ λx ; xs; qsl ; qsr . {qsCons x xs qsl qsr}

In fact the optimisation replaces computation over qsAcc by computation over its indices,
restoring the intended operational semantics of the original program!

We should expect Bove-Capretta domain predicates to be collapsible because they are
constructed mechanically from pattern matching programs in the first place. Further, do-
main predicates generated to show termination of a function defined by non-overlapping
patterns are concretely collapsible.

Take a non-structurally recursive f , defined by pattern matching:

let x : D~s
f x : T f ~p1 7→ e1

. . .

f ~pn 7→ en

where ei may include any number of arbitrary recursive calls to f ~x , for arbitrary terms
~x where all variables in ~x are retrievable from ~p by pattern matching. For the predicate to
be concretely collapsible, the patterns ~pi must be non-overlapping and complete, i.e.:

∀ i 6= j. ∃k . disjoint(pik, pjk) =⇒ true

This is the same condition which ensures that the elimination rule for detaggable families is
respectful and well-defined.

For each of the cases ~pi, we have that f terminates if all recursive calls in ei terminate.
The domain predicate generated for f is of this form:

data x : D~s
fAcc x : ?

where ~r1 : fAcc ~x1 . . .~rm : fAcc ~xm
fp1 ~r : fAcc ~p1

. . . ~r1 : fAcc ~x1 . . .~rl : fAcc ~xl
fpn ~r : fAcc ~pn

The fAcc predicate gives termination conditions for each of the cases of f . A case i , with
patterns ~pi, terminates if every recursive call made by that case terminates. The ~xj indices
of the nested fAccs are the arguments to the recursive calls — any variables in these terms
are forceable arguments, since they are retrieved from ~pi by pattern matching.

Recall that a family is concretely collapsible if it is concretely detaggable and if, for
each constructor, all of the non-recursive arguments are forceable. Now observe that this is
always true for any fAcc:

Chapter 4. Optimising Inductive Families 123

• It is detaggable, because the condition that the patterns ~pi are non-overlapping in the
definition of f is the same as the condition for the indices of a detaggable family. Since
the ~pi are the indices of fAcc, it is a detaggable family.

• All non-recursive arguments for each constructor (the variables appearing in ~xj) are
forceable, since they are retrieved from ~pi by pattern matching.

Figure 4.48 shows how the collapsing transformation affects the run-time costs of quicksort.

Program Version Instructions Thunks Memory Accesses Cells
Näıve 175649 86600 55221 17268

Quicksort Optimised 171264 85586 55189 13900
Change -2.50% -1.17% -0.05% -19.50%

Figure 4.48: Run-time costs of quicksort

4.5.4 Non-repeating Lists

We can use the List family to build a representation of lists in which duplicate values are
not permitted. To do this, we build a new datatype indexed over lists and including an
additional proof which verifies that in each non-empty list, the head is not an element of
the tail. We define the elem function, which tests whether a value is an element of a list as
follows; the f argument is instantiated with a function to test equality between two values
of the parameter type. This is similar to Haskell’s type class system, in which, internally,
a dictionary would be passed to elem containing the appropriate instance of the equality
function.

let a : A l : List A f : A→ A→ Bool
elem a l f : Bool

elem a l f ⇐ elim l
elem a nil f 7→ false

elem a (cons x xs) f | f a x
|| p ⇐ case p
|| true 7→ true
|| false 7→ elem a xs s

The So family is a predicate which says that its argument is always true — it is indexed
over Bool but only an element of So true can be instantiated:

data b : Bool
So b : ?

where
oh : So true

So is trivially concretely collapsible; there is only one possible value. Now we can use the
So family to prove that a value added to a list is not already an element of that list. The
DList family represents lists with no duplicate elements, and is indexed over the list which

Chapter 4. Optimising Inductive Families 124

holds the actual data, as well as an equality function used for testing for presence of a value
in the list:

data f : A→ A→ Bool l : List A
DList A f l : ?

where ∅ : DList A f nil

x : A s : DList A f xs p : So (not (elem x xs f))
insert x s p : DList A f (cons x xs)

There are several advantages to indexing this structure over lists. Essentially, it is a list
but with extra preconditions; indexing over lists means that we can still use List functions
such as elem over DLists. Indexing over List also makes DList concretely collapsible, so the
run-time representation is simply the underlying List coupled with the equality function.
The disadvantage is that the user of this type has to maintain invariant properties of the
underlying list — this is important in defining DList functions, but we would prefer to
abstract details of these invariants away from users of the type. Rather than make the user
use the DList type directly, we use a dependent pair to expose an interface:

DListTop A f 7→ Σ (List A) (DList A f)

The collapsing optimisation yields the following substitutions for constructors of DList:

J∅K =⇒ λA; f ; l . {∅} {A} {f} {l}
JinsertK =⇒ λA; f ; x ; xs; s; p. {insert} {A} {f} {x} {xs} {s} {p}
The run-time costs of a function over a DList are shown in figure 4.49. This function

takes a DList of Ns and totals all numbers in that DList.

Program Version Instructions Thunks Memory Accesses Cells
Näıve 69612 28218 30695 2494

Totalling a DList Optimised 66333 27278 29774 1622
Change -4.71% -3.33% -3.00% -34.96%

Figure 4.49: Run-time costs of adding values in a DList

4.5.5 Simply Typed λ-calculus

We define the simply typed λ-calculus in a similar fashion to [MM04b], making extensive
use of inductive families to specify invariants on the data structures. We begin with STy,
an unindexed type representing simple monomorphic types with a base type and function
spaces:

data
STy : ?

where
ι : STy

s, t : STy
s ⇒ t : STy

Chapter 4. Optimising Inductive Families 125

We represent contexts by Vects of types, Env = Vect STy. The explicit size allows us to
give a safe de Bruijn representation of variables, themselves rendered by the the Fin family.
Hence our the family Expr, represents non-checked but well-scoped terms.

data n : N
Expr n : ?

where i : Fin n
eVar i : Expr n

S : STy t : Expr s n
eLam S t : Expr n

f , s : Expr n
eApp f s : Expr n

Clearly n is forceable for each of these constructors, by its appearance as a variable in
the index of each constructor.

In order to give types to variables, we introduce the Var relation, representing member-
ship of a context. Var G i T states that the ith member of the context G has type T , and
is concretely collapsible.

data G : Env n i : Fin n T : STy
Var G i T : ?

where
stop : Var (S ::G) f0 S

v : Var G i T
pop v : Var (S ::G) (fs i) T

Finally, we have a type of well typed terms. This is indexed over a context, the raw
term it arises from and its type. This gives us a particularly safe representation — it is not
possible to write a typechecker which gives rise to the wrong well typed term. This indexing
also enables us to synchronise terms safely with value environments during evaluation in the
style of Augustsson and Carlsson [AC99].

data G : Env n e : Expr n T : STy
Term G e T : ?

where v : Var G i T
var v : Term G (eVar i) T

b : Term (S ::G) e T
lam b : Term G (eLam S e) (S ⇒ T)

f : Term G fe (S ⇒ T) a : Term G ae S
app f a : Term G (eApp fe ae) T

A näıve implementation of Term gives rise to a horrifying amount of duplication. For-
tunately, many of the arguments are forceable and thanks to the indexing over raw terms,
Term is also detaggable. After these optimisations and the collapsing of Var, this is all that
remains:

JvarK =⇒ λn;G ; i ;T ; v . {var} {n} {G} {i} {T} {v}
JlamK =⇒ λn;G ;S ; e;T ; b. {lam} {n} {G} {S} {e} {T} b
JappK =⇒ λn;G ; fe;S ;T ; f ; ae; a. {app} {n} {G} {fe} S {T} f {ae} a

The only non-recursive arguments which survive are the domain types of applications.
Typechecking thus consists of ensuring that these can be determined.

The run-time costs of running the typechecker on a simple term, applying the identity
function to an element of base type, are shown in figure 4.50.

Chapter 4. Optimising Inductive Families 126

Program Version Instructions Thunks Memory Accesses Cells
Näıve 23232 13746 6910 1620

Typechecking Optimised 20891 11820 6722 1136
(λx : ι. x)ι Change -10.08% -14.01% -2.72% -29.88%

Figure 4.50: Run-time costs of typechecking (λx : ι. x) ι

4.5.6 Results summary

Program Version Instructions Thunks Memory Accesses Cells
Näıve 549 300 166 39

Vector lookup Optimised 537 300 166 27
Change -2.23% - - -30.76%
Näıve 37896 18864 12293 2749

gcd 6 3 Optimised 37486 18636 12293 2567
Change -1.08% -1.20% - -6.62%
Näıve 175649 86600 55221 17268

Quicksort Optimised 171264 85586 55189 13900
Change -2.50% -1.17% -0.05% -19.50%
Näıve 69612 28218 30695 2494

Totalling a DList Optimised 66333 27278 29774 1622
Change -4.71% -3.33% -3.00% -34.96%
Näıve 23232 13746 6910 1620

Typechecking Optimised 20891 11820 6722 1136
(λx : ι. x)ι Change -10.08% -14.01% -2.72% -29.88%

Figure 4.51: Results of marking optimisation

The results are summarised in figure 4.51. In each case there is a significant reduc-
tion in the number of cell allocations made on the heap (this being where data is stored).
Correspondingly, there is a reduction in the number of instructions executed; this is not
surprising, since fewer heap nodes need to be created. The transformations are intended as
storage optimisations and are applied here with some success — the number of memory ac-
cesses, however, remains largely the same. This is not surprising, because the optimisations
are intended to avoid duplication of data rather than to remove data outright. It is however
also good to see that a result of the space optimisation is also a slight reduction in the
number of overall instructions executed. It would be surprising to see anything other than
a reduction in space, given the nature of the transformations; each transformation removes
subterms rather than rearranging subterms so it is almost certain that we should see a saving
somewhere. Nevertheless, these results show that, at least for these simple examples, these
optimisations are not at the expense of time.

Since this is an experimental implementation, we do not necessarily get an accurate
picture of run-time just from the number of instructions executed; in particular, some in-

Chapter 4. Optimising Inductive Families 127

structions are more expensive to execute than others. We can, however, see from the nature
of the transformations that in general they remove instructions, rather than replacing sev-
eral cheap instructions with one expensive one. i.e., the transformations prune ExTT terms,
in that they simply remove constructor arguments. Hence in the G-code, there are fewer
PUSH instructions, and MKCON builds smaller data structures. The only way in which
these transformations can cause performance to get worse (in terms of time, using a lazy
evaluation strategy) is if they cause an index to be evaluated which otherwise would not be
- this would happen if the index is needed for some other computation (i.e. PROJ needs to
be evaluated) or an index is used for discrimination. However, in general, we choose indices
because their values are related to the family’s values and so construction of the family is
closely related to computation of the index, hence this problem is unlikely to arise. Also,
Ennals notes in [EP03, Enn03] that most values are eventually evaluated to normal form,
so there is rarely a penalty in “speculatively” evaluating a value.

These results are obtained by applying the forcing, detagging and collapsing optimisa-
tions in isolation, and therefore do not present a full picture of the run-time costs of Epigram

programs. We should also consider that these programs are all run to completion; in many
situations, particularly with lazy evaluation, we may expect production and consumption of
data to be interleaved. In future work, when there is a significant body of Epigram code to
experiment with, it will be interesting to investigate how other optimisations interact with
the optimisations presented here. In particular, Jones’ root optimisation [Jon94], which
takes advantage of arguments which do not change in recursive calls, may have a beneficial
effect on the implementation of elimination rules. Serious G-machine implementations also
do some re-ordering of arguments; this kind of technique may also improve the effect of the
root optimisation.

Dependent types present us with another approach to reasoning about optimisations;
in future work, we may wish to model potential optimisations by creating a representation
of ExTT code in Epigram itself, indexed over its cost, similar to Santos’ cost semantics
[San95]. Using such an approach, we could predict the cost of the original and transformed
code, and compare the prediction with actual results.

4.6 A larger example — A well-typed interpreter

Some of the advantages of Cayenne [Aug98] are demonstrated by Augustsson and Carlsson’s
well-typed interpreter [AC99]. The interpreter they implement has the following features:

• It implements addition of integers, boolean comparisons, λ-abstraction and function
application, returning an element of a Cayenne type.

• The return type depends on the program being interpreted. For example, the return
type of an addition operation is an integer, but the return type of a comparison is a
boolean. In a simply typed language, this would be achieved through a tagged union,

Chapter 4. Optimising Inductive Families 128

with a tag indicating the return type. Augustsson and Carlsson demonstrate that the
overhead of the tag is unnecessary when using dependent types.

• Only well-typed expressions can be interpreted, achieved through the using of a well-
typing predicate passed to the interpreter.

• Type dependency is also used to verify the synchronisation between type environments
(that is, the types passed to a λ-abstraction) and value environments (the values
applied to a λ-abstraction). If, for example, the first element in the type environment
is N, the first element of the value environment can only be an element of N.

In this section, I implement the same program using inductive families to represent well-
typedness (removing the need for a well-typing predicate) and synchronisation of type and
value environments. I also show how the marking optimisations of this chapter lead to an
efficient RunTT implementation.

4.6.1 The language

The language to be interpreted is a simply typed λ-calculus with integers, booleans, addition
and comparison. I will refer to this language as λAC. Its syntax is shown in figure 4.52
and its typing rules in figure 4.53. This language augments Augustsson and Carlsson’s
implementation with a primitive recursion operator for natural numbers, primrec.

e ::= λa : s. e λ-abstraction | e1 e2 application
| a bound variable | e1 + e2 addition
| e1 ≤ e2 less than or equal | e1 and e2 boolean and
| n number | b boolean value
| primrec e1 e2 e3 primitive recursion

Figure 4.52: The interpreter language, λAC

Γ ` n : N Γ ` b : Bool

Γ ` e1 : s → t Γ ` e2 : s
Γ ` e1 e2 : t

Γ, a : s ` e : t
Γ ` λa : s. e : s → t

Γ ` e1 : N Γ ` e1 : N
Γ ` e1 + e2 : N

Γ ` e1 : N Γ ` e1 : N
Γ ` e1 ≤ e2 : Bool

Γ ` e1 : Bool Γ ` e1 : Bool
Γ ` e1 and e2 : Bool Γ, a : t ` a : t

Γ ` x : N z : A s : N→ A→ A
Γ ` primrec x z s : A

Figure 4.53: Typing rules for λAC

Chapter 4. Optimising Inductive Families 129

4.6.2 Representation

This language can be represented as an inductive family which, by indexing over the type
environment and the type of an expression, ensures that only well-typed expressions can be
built.

Since the value returned by the interpreter is a type in the implementation language,
we implement type environments as a vector of types. As with the simply typed λ-calculus
example of section 4.5.5, we represent type environments as vectors of types, and membership
of a type environment as a relation (figure 4.54).

let n : N
Env n : ?

Env n 7→ Vect ? n

data G : Env n i : Fin n t : ?
Var G i t : ?

where
stop : Var (s::G) f0 s

v : Var G i t
pop v : Var (s::G) (fs i) t

Figure 4.54: Type environments

The declaration of the family representing λAC is as shown in figure 4.55. There is a clear
resemblance between this declaration and the typing rules in figure 4.53. There is no need
for a well-typing predicate; indexing over the type means that if a term can be built at all
it must be well typed.

data G : Env n A : ?
Expr G A : ?

where

k : N
enat k : Expr G N

b : Bool
ebool b : Expr G Bool

f : Expr G (s → t) a : Expr G s
eapp f a : Expr G t

e : Expr (s::G) t
elam e : Expr G (s → t)

a, b : Expr G N
eadd a b : Expr G N

a, b : Expr G N
ele a b : Expr G Bool

a, b : Expr G Bool
eand a b : Expr G Bool

v : Var G i t
evar v : Expr G t

x : Expr G N z : Expr G A s : Expr G (N→ A→ A)
eprimrec x z s : Expr G A

Figure 4.55: Interpreter type declaration

The interpreter has a value environment in which to look up the values of variables.
Since variables in the environment may have different types, using a Vect is not appropriate.
Instead, we synchronise it with the type environment; each value in the value environment
gets its type from the corresponding entry in the type environment. The declaration of the

Chapter 4. Optimising Inductive Families 130

value environment is given in figure 4.56, along with a lookup function.

data G : Env n
ValEnv G : ?

where
empty : ValEnv ε

t : T r : ValEnv G
extend t r : ValEnv (T ::r)

let v : Var G i T ve : ValEnv G
envLookup v ve : T

envLookup v ve ⇐ elim v
envLookup stop (extend t r) 7→ t
envLookup (pop v) (extend t r) 7→ envLookup v r

Figure 4.56: Value environments

Note, in envLookup, that it is only possible to look up values in a non-empty environ-
ment. This is ensured by the type of v , which is indexed over i : Fin n, making i and n
implicit arguments to envLookup. Since i cannot take an index of zero, the ValEnv cannot
be indexed over a non-empty type environment. The type of envLookup ensures that the
value we retrieve from the value environment will have the type given by the corresponding
entry in the type environment.

Remark — Universes

In the interpreter, we represent type environments as a vector of ?. There is a difficulty here
with universe levels, however, as we do not have cumulativity; here we use Vect to contain
elements of type ?0 (i.e., the parameter type is itself of type ?1), whereas earlier we have
used Vect to contain elements of some type in ?0. With the type theory as it stands, we
can only do this with two separate declarations of Vect, at different universe levels, which
is at best inconvenient — it would be preferable for Vect to allow element types at all levels
of the universe hierarchy. In this example, we assume that this is the only use of Vect and
allow it to contain elements of ?0. Nevertheless, the problem of how to deal with universe
hierarchies must ultimately be addressed.

A possible solution is to use Tarski style universes [ML85], as discussed in [Luo94] and
implemented in Plastic [CL01]. However, such decisions about the representation of uni-
verses do not affect the optimisations presented in this thesis, and so we will not discuss
them further here.

4.6.3 The interpreter

The implementation of the interpreter for λAC is shown in figure 4.57 — this program
can also be viewed as a proof that evaluation of expressions in λAC terminates, since the
implementation is in a strongly normalising language. primrec is a helper function which
implements the primitive recursion over N.

Chapter 4. Optimising Inductive Families 131

interp itself is written by structural recursion over the input expression x . It returns a
semantic representation, as an Epigram term, of the input expression. So, for example, the
interpretation of a λ-abstraction in λAC (elam) is an Epigram function which implements
that λ-abstraction. Interpretation of an application then simply applies the function to the
interpretation of its argument. Note that in the case for elam, we use the implicit argument
s to establish the input type of the function. This approach is similar to normalisation by
evaluation (see Appendix C) in that we construct a semantic representation of the term to
be interpreted, but there is no reification back to the object language here.

let x : Expr G T ve : ValEnv G
interp x ve : T

interp x ve ⇐ elim x
interp (enat k) ve 7→ k
interp (ebool b) ve 7→ b
interp (eapp f a) ve 7→ (interp f ve) (interp a ve)
interp (elams e) ve 7→ λa : s. interp e (extend a ve)
interp (eadd a b) ve 7→ plus (interp a ve) (interp b ve)
interp (ele a b) ve 7→ le (interp a ve) (interp b ve)
interp (eand a b) ve 7→ and (interp a ve) (interp b ve)
interp (evar v) ve 7→ envLookup v ve
interp (eprimrec x z s) ve 7→ primrec (interp x ve) (interp z ve) (interp s ve)

let n : N z : A s : N→ A→ A
primrec n z : s : A

primrec n z s ⇐ elim n
primrec 0 z s 7→ z
primrec (s k) z s 7→ s k (primrec k z s)

Figure 4.57: The interpreter

The plus function which implements the eadd operation is defined elsewhere; the boolean
operations le and and have straightforward implementations (figure 4.58).

let n,m : N
le n m : Bool

le n m ⇐ elim n
le 0 m 7→ true
le (s n) m ⇐ elim m
le (s n) 0 7→ false
le (s n) (s m) 7→ le n m

let x , y : Bool
and x y : Bool

and x y ⇐ case x
and true y 7→ y
and false y 7→ false

Figure 4.58: Implementation of le and and

Chapter 4. Optimising Inductive Families 132

4.6.4 Optimisation

We have already seen the optimisations which apply to Fin and Vect, which can also be
applied in this case. We also observe that Var is concretely collapsible. The transformations
which arise by marking the forceable arguments to Expr’s constructors are shown in figure
4.59.

JenatK =⇒ λn;G ; k . enat {n} {G} k
JeboolK =⇒ λn;G ; b. ebool {n} {G} b
JeappK =⇒ λn;G ; s; t ; f ; a. eapp {n} {G} s {t} f a
JelamK =⇒ λn;G ; s; t ; e. elam {n} {G} s t e
JeaddK =⇒ λn;G ; a; b. eadd {n} {G} a b
JeleK =⇒ λn;G ; a; b. ele {n} {G} a b
JeandK =⇒ λn;G ; a; b. eand {n} {G} a b
JevarK =⇒ λn G ; i ; t ; v . evar {n} {G} i {t} {v}
JeprimrecK =⇒ λn;G ;A; x ; z ; s. eprimrec {n} {G} {A} x z s

Figure 4.59: Optimisation of Expr

There are several things to note about these transformations. In particular, the type
environment which is stored at every node of an expression in a näıve implementation of
Expr is removed from the term entirely so will appear only as an argument to Expr-Elim.
We also see that some of the ? arguments have not been marked, however — s and t are still
arguments to elam, s is still an argument to eapp. These are not forceable since, as they do
not appear in the indices of these constructors, they will not appear as pattern variables in
Expr-Elim. However, as there is no casetype construct, these arguments can never be used
— it is conceivable that a later optimisation can remove such arguments.

If we also optimise out the unusable type arguments which remain, this structure is the
same as the one used in [AC99], and the same as a structure we might consider using to
represent terms in a simply typed language. In this example, there is no run-time storage
overhead caused by indexing the family over several invariants.

4.6.5 Results

The run-time cost of the interpreter is assessed by evaluating four λAC expressions of varying
size and complexity. First, we define two functions; plus which applies the primitive addi-
tion operator to its two arguments, and mult which applies plus recursively to implement
multiplication. In λAC, these are defined as follows:

plus 7→ λx . λy . x + y
mult 7→ λx . λy . primrec x 0 (λk . λih. plus y ih)

The four expressions we interpret are, in increasing order of complexity, 2, 2+3, plus 2 3
and mult 2 3. The run-time cost of each of these evaluations is shown in figure 4.60.

Chapter 4. Optimising Inductive Families 133

Program Version Instructions Thunks Memory Accesses Cells
Näıve 1009 744 225 35

2 Optimised 997 744 225 23
Change -1.18% - - -34.29%
Näıve 9569 6876 2419 526

2+3 Optimised 9389 6876 2419 346
Change -1.88% - 0 -34.22%
Näıve 31661 21120 8236 3037

plus 2 3 Optimised 30218 20904 8104 1846
Change -4.55% -1.02% -1.60% -39.21%
Näıve 199832 113916 54669 27766

mult 2 3 Optimised 187473 112620 53637 16919
Change -6.18% -1.14% -1.89% -39.07%

Figure 4.60: Run-time costs of the interpreter

Clearly, the biggest gain on applying the optimisation is the reduction in the number
of cells required to store data. This is not surprising since it is precisely the purpose of
the forcing and detagging optimisations. In each case, the optimisation removes 35-40% of
the allocations. A natural consequence of this is to reduce the total number of G-machine
instructions executed — there are fewer arguments to constructors, so fewer stack operations
required. For the larger expressions we also see a slight reduction in the number of thunks
built — this occurs as a result of RunTT functions which build constructor applications
needing fewer arguments, e.g.:

λn;G ; k . enat n G k optimises to λk . enat k

The optimised version builds fewer application nodes, hence fewer thunks.

4.7 Summary

We have seen in this chapter how the properties of elimination rules lead to the optimisation
of the data structures eliminated by those rules and the programs which elaborate in terms
of those rules. We have defined an extended execution language for TT, which we call ExTT.
Terms in ExTT can arise only by applying an optimising transformation for the original TT.
In particular, we apply three optimisations based on the form of an elimination rule:

• The forcing optimisation arises from the observation that arguments which are re-
peated in an elimination rule must be convertible. We only need to keep one copy of
such arguments — given the choice between keeping the copy passed as an index to
the elimination rule and keeping the copy stored within the data structure, we keep
the copy passed to the elimination rule, firstly because this appears only in the top
level application and secondly because we will have further opportunities to remove
this if it remains unused.

Chapter 4. Optimising Inductive Families 134

• The detagging optimisation arises from the observation that elimination rules are well-
defined (that is, complete and non-overlapping). Hence, if we can determine which
ι-scheme to choose based on the constructors of something other than the target, we
need never store the constructors of the target itself.

• The collapsing optimisation arises from the observation that evaluation at run-time is
in the empty context and hence all observable terms are in canonical form. If we never
need to examine the canonical form of an object, we need not store that object at all.

The collapsing optimisation is only valid at run-time, which means that different trans-
formations are used for constructors and elimination rules of collapsible families depending
on whether we are in a compile-time or run-time setting. We cannot, therefore, simply apply
the transformation from TT to ExTT once at compile-time only — if we want to get the full
benefit of the collapsing optimisation, we have to apply a second set of transformations for
the run-time setting.

These are remarkably straightforward optimisations, but they only present themselves
because we are taking inductive families seriously as data structures. The purpose of the
forcing optimisation is largely to overcome the space penalties of adopting dependent types
in the first place, but detagging derives new benefit from static information unavailable in
a simply typed setting. For example, in the development of a typechecker for the simply
typed λ-calculus as presented in section 4.5.5, it is clear that there must be a link between
the raw terms and the well-typed terms. In a simply typed language, this is inexpressible,
but the indexing of the well-typed terms over the raw terms not only expresses the link, but
leads to an optimisation of the representation of well-typed terms. Collapsing, too, derives
further benefit — we can delete accessibility arguments and equational reasoning from run-
time code not because we deem them to be proof-irrelevant, but because they actually are
irrelevant. This allows us to build new structures on top of old structures, with additional
invariants (such as the non-repeating list example of section 4.5.4), without any overhead.

The forcing, detagging and collapsing optimisations necessitate a more sophisticated
compilation scheme for elimination rules than we used in Chapter 3, as we saw in sec-
tion 4.4.2. This is a modified version of Augustsson’s pattern matching compiler algo-
rithm [Aug85, Pey87]. The modifications are made to take advantage of the respectfulness
and well-definedness of elimination rules — we only do enough case analysis to identify which
ι-scheme applies, and use constructor argument projection (x !i) to project out arguments
where we already know (due to well-definedness) what form an object must take.

As with all optimisations, there are various trade-offs to consider when applying these
optimisations. For example, forcing is a storage optimisation, but we must consider the
possible time penalty in reconstructing the forced arguments from the indices, where the
indices are sufficiently complex. With detagging and collapsing, we must consider whether
removing the tag leads to an overly complex implementation of the elimination rule, due
to increased difficulty in discriminating between constructors. Evaluation strategy also has

Chapter 4. Optimising Inductive Families 135

an effect; it is possible that these storage optimisations cause terms to be evaluated which
would otherwise remain unused in a lazy evaluation setting. With the examples we have seen
in this chapter, it is relatively easy to project out constructor arguments and discriminate
on elimination rules, since the indices on the families we have considered are not partic-
ularly complex. However, we are just beginning to learn how to write dependently typed
programs, and it remains to be seen whether the programs we have seen in this chapter are
representative of dependently typed programs as a whole.

Chapter 5

Number Representation

Paul Graham notes in “The Hundred Year Language” [Gra03] that in a programming lan-
guage, just as in Mathematics, the fewer axioms the better. He even asks “Could a pro-
gramming language go so far as to get rid of numbers as a fundamental data type?” The
original core definition of Lisp as proposed by McCarthy [McC60] did not have numbers as
primitives, after all, and this is what we have done so far with Epigram, defining natural
numbers just as any other inductive datatype. While this is convenient for programming
thanks to the natural structure it has and the elimination behaviour it generates, it is not
practical for computation with large numbers due to space and time complexity. What
we look for with natural numbers, and potentially with any data structure which can be
represented in a more compact fashion, is an efficient internal representation in RunTT and
transformation rules from the TT definition to the efficient internal representation.

A practical programming language includes certain datatypes as primitives, from which
the user can build more complex data structures. Such primitives typically include integer
and real numbers, characters and strings. These primitive types can be equipped with
primitive operations such as comparison, arithmetic in the case of numbers, and various
manipulation operators in the case of strings. The choice of primitive types in a programming
language is often based on the data which the underlying machine has a representation for,
numbers being the obvious example. Landin considers a family of languages, Iswim [Lan66],
parametrised over the choice of primitive types (in Landin’s words, “a basic set of given
things”) with a common structure (“a way of expressing things in terms of other things”)
where the choice of primitives affects the application domain of a language.

In Epigram, however, there are no primitive types — only a “way of expressing things in
terms of other things” — and all data structures are built by hand via inductive datatypes.
As a consequence, the core language has no access to the machine’s efficient implementation
of primitive types. We may define types with similar behaviour to the structures provided
by the CPU, such as N, but with far worse performance, in terms of both speed and space.
In this chapter, we will consider ways to improve this situation, first considering an imple-

136

Chapter 5. Number Representation 137

mentation of binary arithmetic purely in Epigram, then an external implementation which
uses the CPU’s representation of numbers as the underlying representation of N.

5.1 Representing Numbers in Type Theory

In Chapter 3, I mentioned the inefficiency of number representation as an overhead which
we must take into consideration in the design of a run-time system for Epigram. The ad-
vantages to the programmer are that the unary structure of N gives rise to obvious recursion
behaviour and, correspondingly, straightforward proofs of properties of functions over N and
data structures indexed over N. These advantages are perhaps outweighed by efficiency con-
siderations. The size of the representation of a number n is proportional to n itself; compare
this with a binary representation where the size is proportional to log n. Correspondingly,
the unary nature of the structure means that arithmetic operations take time proportional
to n whereas operations on a binary representation take time proportional to log n.

An example of the limitations of the N representation arises in [CO01]. This work is
primarily interested in using an external oracle to provide witnesses for applying Pockling-
ton’s Criterion to show primality of large integers; this works by using a Java program to
generate Coq tactic scripts. Caprotti and Oostdijk note that while they are able to generate
tactic scripts for large numbers, the theorem prover is not able to process the data structures
required to store these numbers.

Work by Magaud and Bertot [MB01] improves the situation within Coq. Here, they
present a technique for transforming data structures and their proofs into a more efficient
representation using N as their example. This involves mapping the constructors and elim-
ination rule of N to a binary setting bin, relying on a proof of an isomorphism between N
and bin. While clearly an improvement, this technique still relies on N as an intermediate
structure for implementing the elimination rule. In a practical programming language we
would like to avoid such overheads, and take advantage of the underlying machine directly.

5.1.1 What is N used for?

There are three main uses for natural numbers in Epigram programs:

1. The structure of a N allows it to be used to specify size-based invariants of data
structures; Vect is an example of this, in that adding an item to a vector corresponds
to adding a s symbol to a N. Many properties of N and operations on it can be proved
inductively in order to verify properties of structures which are indexed over N.

2. Recursion over N gives bounded iteration, corresponding to a for loop in an imperative
language. N-Elim n represents performing an operation n times. This is similar
to the motivation for the Church numeral representation [Chu41] which represents
application of a function n times.

Chapter 5. Number Representation 138

3. N and its basic operations plus and mult can be used as a straightforward implemen-
tation of unsigned integer arithmetic.

The most important of these is the first; using N in this way gives us a method for
verifying size-based properties of programs without having to execute N based programs at
run-time (since the properties are verified once and for all at compile-time). The second
purpose, using N-Elim to perform an operation n times, gives a method for repetition with
guaranteed termination (as with a for loop in an imperative language). In this case, we
need not worry that the structure of N is of order n, because n is exactly how many times we
want to execute an operation. In the third case, however, using N to implement arithmetic,
the structure of the number representation is unimportant; plus and mult are abstract
operations for which the programmer is not interested in the internal representation or
implementation. It is unreasonable to consider N an appropriate structure where arithmetic
is an end in itself.

There are therefore two separate settings to consider; where the structure is important (as
in verification of properties and bounded iteration) and where the structure is unimportant
(as in arithmetic). These are two separate aims, and it therefore makes sense to choose two
separate representations for each.

5.2 The Word family

In this section I present an implementation of binary numbers in Epigram taking advantage
of inductive families and views. The main aim of this representation is to provide a space
efficient representation and efficient arithmetic operations entirely within the core language
of Epigram.

There have been proposals for methods of representing numbers efficiently in the λ-
calculus. [Gol00] chooses a representation based on a list of bits with predicates for zero
and successor and a predecessor function and defines efficient arithmetic functions. A rep-
resentation in Coq is given by [MB01], based on numbers of the form 0, 1, 2 × x and
2× x + 1.

Many different approaches to number representation are suggested by [Knu69]. I choose
a dichotomous representation for numbers; a number is a represented as a tree of digits,
with the individual bits at the leaves. Every number, other than the base cases, has a more
significant word and a less significant word. This representation1 has simplicity in mind. It
leads to a straightforward definition of the successor, addition and multiplication functions
since there are only two cases to deal with — one digit and two digit numbers.

1originally due to James McKinna

Chapter 5. Number Representation 139

5.2.1 Word n

Word n is a family representing non-zero numbers of length 2n digits. I also define a
parametrised type (·)0 which adds a zero element to any type. Representing non-zero
numbers separately, while slightly complicating the data structure, has some advantages.
Firstly, it leads to a certain amount of compression; large numbers of leading zeroes are
collapsed. Secondly, it allows a more precise definition of the types of certain functions,
including successor and predecessor.

The (·)0 family (figure 5.1) adds a zero element to any family; a value is either zero, or
any value in the original family. This is the same in structure as the Maybe type in Haskell.

data T : ?
(T)0 : ?

where
O : (T)0

t : T
t : (T)0

Figure 5.1: Lifting a zero element

Non zero words are indexed over n, such that their length is 2n . This means that for
n 6= 0, the number can be broken down into two halves; a more significant word and a less
significant word. Also, they are parametrised over the digit type, D . The digit represents
the base of the number system. Informally, a number composed of 2k+1 digits can be any
of the following:

←− 2k+1 digits −→
Zero

← 2k digits→ ← 2k digits→
Zero Non Zero

← 2k digits→ ← 2k digits→
Non Zero Number

The base case, for numbers of 20 digits, is clearly simply a digit:

←− 20 digits −→
Digit

The Epigram declaration which builds such a structure is given in figure 5.2.
For simplicity, in what follows I will take D = {1} and elide it, so that Wordn contains a

binary representation of numbers. There is no reason why D should not be any other base,
including 32 bit machine integers.

The indexing of numbers over n is crucial to this representation for two reasons in
particular. Without it, it would be possible to build badly formed numbers where the left
and right halves were of different lengths, necessitating either run-time checks on the length,
or needless complexity in function definitions. Also, the index provides a useful structure

Chapter 5. Number Representation 140

data D : ? n : N
Word D n : ?

where d : D
Wd d : Word D 0

w : Word D n
W0 w : Word D (s n)

w : Word D n w
0

: (Word D n)0
W@ w w0 : Word D (s n)

Figure 5.2: Word declaration

for recursive calls — it is possible to write functions with a base2 case (dealing with the
single digit numbers) and a recursive case (dealing with the two digit numbers). Indexing
over n means that numbers are inherently bounded by the index, unlike N which is (at least
theoretically) unbounded. While this may be a disadvantage if we really want to represent
unbounded numbers, it is in harmony with bounded machine arithmetic.
Remark: Using (·)0 to insert a zero element into Word has the unfortunate problem of
making the recursive argument w0 to W@ non strictly positive. While there is a simple
transformation to get around this problem, namely using two separate families for zero and
non-zero Words, we will continue using (·)0 for clarity of presentation.

5.2.2 The Split view of Word (s n)

I have said that this representation of numbers is dichotomous, which suggests that any
number of length greater than one digit can be regarded as a two digit number. We might
say that in this representation, every number has at most two digits. Dichotomous repre-
sentations have been used in the past to implement numbers of arbitrary size, such as in
early versions of LeLisp and as possible hardware representations3. To take advantage of
this property, I introduce a view of numbers which gives their two digits separately, splitting
them into a more significant word and a less significant word. To begin, I define a “glue”
function (x |y) which appends two digits:

let w , v : (Word n)0
w | v : (Word s n)0

w | v ⇐ case w
O | v ⇐ case v
O | O 7→ O

O | w 7→ W0 w
w | v 7→ W@ w v

Then the Split view of a number (figure 5.3) gives the more significant and less significant
halves of that number. The covering function for this view is straightforward to define (figure

2“Base” being a particularly appropriate word in this context.
3Jean Vuillemin, personal communication.

Chapter 5. Number Representation 141

5.4); it is basically the inverse of the glue function defined above.

data w : (Word s n)0
Split w : ?

where msw , lsw : (Word n)0
digits msw lsw : Split (msw | lsw)

Figure 5.3: The Split view

let w : (Word s n)0
split w : Split w split w ⇐ case w

split O 7→ digits O O

split b ⇐ case b
split W0 w 7→ digits O w
split W@ w v 7→ digits w v

Figure 5.4: Covering function for Split

This view gives a convenient form for pattern matching on two digit numbers. Using
view splitw for recursion over w gives a pattern containing the two “digits” of the number:

let w : (Word s n)0
f w : SomeType

f w ⇐ view split w
f (msw |lsw) 7→ . . .

This view is used extensively in the definition of arithmetic over Words. In particular,
when defining functions by induction over the length of the Word, n, splitting numbers in
this way gives us access to the recursive calls on the smaller Words.

5.2.3 The successor function

Since numbers are inherently bounded by their index, it is possible for the successor function
to overflow. What, then, is an appropriate type for successor? I represent the possibility of
overflow with the (·)∞ type (figure 5.5), which, like (·)0, is the same in structure as the
Maybe type in Haskell.

data T : ?
(T)∞ : ?

where ∞ : (T)∞
t : T

dte : (T)∞

Figure 5.5: Overflow type

It would be good for the successor function to be surjective, since then it has an inverse,
the predecessor function. The zerolessness of Word means that it is possible to give it an

Chapter 5. Number Representation 142

appropriate type. The definition is by induction over the index, n, where the s n case is
defined by the Split view. Note that the index is an implicit argument to this function; since
recursion is on this index, I have subscripted it in the definition (figure 5.6). Note also that
there is a separate function, sucDigit for implementing the base case (one digit numbers).

let w : (Word n)0
suc w : (Word n)∞

sucn w ⇐ elim n
suc0 w 7→ sucDigit w
sucs n w ⇐ view split w
sucs n (msw |lsw) | suc lsw|| ∞ | suc msw|| ∞ 7→ ∞|| dmsw ′e 7→ dmsw ′|Oe|| dlsw ′e 7→ msw |lsw ′

let w : (Word 0)0
sucDigit w : (Word 0)∞ sucDigit w ⇐ case w

sucDigit O 7→ d Wd 1 e
sucDigit w 7→ ∞

Figure 5.6: The successor function

5.2.4 Addition

Like successor, addition on bounded numbers can overflow. The typical way to capture this
with hardware implementations of binary arithmetic is with a carry flag. This is perhaps
reminiscent of the way we were taught to add up two digit numbers in primary school, with
the form shown in figure 5.7.

zin
a b

+ c d
zout e f

Figure 5.7: General form of addition

We begin by adding the less significant digits, and getting an intermediate carry, (zmid , f) =
b +zin d . Then we add the more significant digits using the intermediate carry, (zout , e) =
a +zmid

c. The carry flag is represented by the type Carry, with two constructors yes

and no. The return type is a pair of the carry flag and the binary number — this is
not a dependent pair, so we use the simpler tuple type Carry × (Word n)0 rather than
Σ Carry (λz :Carry. (Word n)0).

Chapter 5. Number Representation 143

With the dichotomous representation, this maps nicely into a case for the base digits, and
a recursive case. Again, recursion is on the length index of the arguments. This function
is surjective — the base case is clearly surjective by examining all the possibilities, and
the recursive case (figure 5.8) is surjective because it simply glues the result of (surjective)
recursive calls together. The base case (figure 5.9) does nothing more than tabulate the
eight possible base cases for add with carry on a single bit number.

data
Carry : ?

where
no : Carry yes : Carry

let x , y : (Word n)0 zin : Carry
adc x y zin : Carry × (Word n)0

adcn x y zin ⇐ elim n
adc0 x y zin 7→ adcDigit x y zin
adcs n ab cd zin ⇐ view split ab ⇐ view split cd
adcs n (a|b) (c|d) zin | adc b d zin|| (zmid , f) | adc a c zmid|| (zout , e) 7→ (zout , e|f)

Figure 5.8: Definition of adc

let x , y : (Word 0)0 zin : Carry
adcDigit x y zin : Carry × (Word 0)0

adcDigit x y zin ⇐ case zin , case y , case x
adcDigit O O no 7→ (no, O)
adcDigit O b no 7→ (no, Wd 1)
adcDigit b O no 7→ (no, Wd 1)
adcDigit b b no 7→ (yes, O)
adcDigit O O yes 7→ (no, Wd 1)
adcDigit O b yes 7→ (yes, O)
adcDigit b O yes 7→ (yes, O)
adcDigit b b yes 7→ (yes, Wd 1)

Figure 5.9: Base case of adc

The simplicity of this definition is due entirely to the choice of representation. At the
expense of doing a little extra work to build an appropriate elimination rule (by the Split

view) for two digit Words, we get a simple implementation for addition.

5.2.5 Multiplication

Let us go back to school again, and consider how we were taught to multiply two two-digit
numbers using long multiplication. The general form can be presented as in figure 5.10.

Chapter 5. Number Representation 144

a b
× c d

e f e | f = b × d
g h g | h = a × d
i j i | j = b × c

k l k | l = a × c
m n o p
z2 z1

where p = f
z1, o = e + h + j
z2,n = g + i + l + z1
m = k + z2

Figure 5.10: General form of multiplication

This is an approach we can consider taking for multiplication with Word; for a two-digit
multiplication, there are four smaller multiplications on single-digit numbers, which lends
itself to recursion on the size of the number. However, this seems untidy, not to mention
inefficient — as well as four multiplications, there are five additions (z1 and z2 being the
carry of these additions).

Instead of straightforward multiplication, therefore, I implement multiplication with ac-
cumulator. The idea is that instead of the addition taking place at the top level, it is pushed
through each recursive call as an accumulator with the actual addition only taking place in
the base case. In this way, the four digits of the result can simply be read off, rather than
calculated from addition of intermediate results. The general scheme (figure 5.11) is similar
to that of long multiplication, but we see the addition in the intermediate computations.
The type is as follows:

let w1 ,w2 , z1 , z2 : (Word n)0
mult w1 w2 z1 z2 : (Word n)0 × (Word n)0

a b ← split w1

× c d ← split w2

+ e f ← split z1
+ g h ← split z2

i j ← mult b d f h (b × d + f + h)
k l ← mult a d e g (a × d + e + g)
m n ← mult b c i l (b × c + i + l)

o p ← mult a c k m (a × c + k + m)
o | p n | j

Figure 5.11: Scheme for multiplication with accumulator

This scheme is implemented by split on all four arguments, then recursion on the index

Chapter 5. Number Representation 145

of the Word (figure 5.12). It should be noted that the zeroless representation allows us to
take some shortcuts in this definition (although they are not presented here) since n×0 = 0.

let w1 ,w2 , z1 , z2 : (Word n)0
mult w1 w2 z1 z2 : (Word n)0 × (Word n)0

mults n (a|b) (c|d) (e|f) (g |h) |mult b d f h|| (i , j) |mult a d e g|| (k , l) |mult b c i l|| (m,n) |mult a c k m|| (o, p)
7→ (o|p,n|j)

Figure 5.12: Recursive case of mult

This method of multiplication with accumulator does, however, still involve four sub
multiplications. This is mainly as a result of the chosen representation; however, many more
efficient algorithms exist for multiplication which reduce the number of multiplications on
smaller digits to three, most notably Karatsuba multiplication [KO63]. Bernstein [Ber98]
gives a survey of these techniques, attempting to present every technique known at the time
of writing. While the implementation presented here is less sophisticated, it does give us
some insight into how we might use type dependency to give more precise typing for complex
operations.

5.2.6 Changing Bases

So far, we have taken the base D = {1}. What happens if we take some other base? Any type
can be used as the base, provided that there is an implementation of sucDigit, adcDigit

and multDigit for that type. To access these implementations, it becomes necessary to
parametrise the type not only over D , but over the implementations of these base cases
for arithmetic (hence separating out the definitions of sucDigit, addDigit and so on).
This does not clutter the definitions of functions on Word, or the construction of values
in Word, as may be expected, because parameters can be left implicit. An appropriate
definition is shown in figure 5.13. The extra parameters, s, a and m are the base cases for
successor, addition and multiplication on D respectively. Comparing this with the Haskell
type class approach, we might consider digits to be a type class with successor, addition and
multiplication defined as methods of that class. In Haskell, these methods would be passed
around in a dictionary, in much the same way as they are passed as indices to the Word

family here.

A natural choice for the base would be machine integers. We can imagine these to be
simulated by an Epigram data declaration as follows:

Chapter 5. Number Representation 146

data

s : D → (D)∞

a : D → D → Carry→ (Carry ×D)
D : ? m : D → D → D → D → D n : N

Word D s a m n : ?

where d : D
Wd d : Word D s a m 0

w : Word D s a m n
W0 w : Word D s a m (s n)

w : Word D s a m n w0 : (Word D s a m n)0
W@ w w

0
: Word D s a m (s n)

Figure 5.13: Word declaration, with base functions

data
Int : ?

where
0 : Int 1 : Int 2 : Int

. . .
4294967295 : Int

This definition would be accompanied by suitable definitions for accessing the low level
implementations of successor, addition and multiplication. These functions would of course
have to rely on features outside the core of Epigram.

sucInt : Int→ (Int)∞

adcInt : Int→ Int→ Carry→ (Carry × Int)
multInt : Int→ Int→ Int→ Int→ Int

5.2.7 Building Big Numbers From Word

A problem with the Word n family as given is that it is still inherently bounded by 22n − 1.
Thus it is not isomorphic to N and cannot be used invisibly as a drop-in replacement for
N at runtime. One way to represent unbounded numbers based on Word is as a dependent
pair:

bignum 7→ Σn : N. (Word n)0

Unfortunately, this is still not isomorphic with N; this can be seen by observing that,
for example, while (0, O) and (s0,O) are distinct bignums, they both represent the number
zero. In many contexts, this is not a problem. However, it does make proving an elimination
rule with behaviour corresponding to that of N-Elim more difficult.

The difficulty is caused by the possibility of leading zeroes; an alternative representation
of big numbers, built on top of Word, is to build a family BigNumber with constructors
corresponding to Word, but without a leading zero constructor (figure 5.14). Zeroes are
lifted with (·)0 as before.

There is a straightforward mapping between Word and BigNumber (figure 5.15) since the
constructors are similar.

Chapter 5. Number Representation 147

data D : ?
BigNumber D : ?

where d : D
BigD d : BigNumber D

w : Word D n w
0

: (Word D n)0
Big@ w w0 : BigNumber D

Figure 5.14: Big Number declaration

let w : (Word n)0
wordToBig w : (BigNumber)0

wordToBig w ⇐ case w
wordToBig O 7→ O
wordToBig w ⇐ case w
wordToBig Wd d 7→ BigD d
wordToBig W0 w 7→ wordToBig w
wordToBig W@ w w0 7→ Big@ w w0

let b : (BigNumber)0
wordIdx b : N wordIdx b ⇐ caseb

wordIdx O 7→ 0

wordIdx b ⇐ case b
wordIdx BigD d 7→ 0

wordIdx Big@n w w0 7→ s n

let b : (BigNumber)0
bigToWord b : (Word (wordIdx b))0

bigToWord b ⇐ case b
bigToWord O 7→ O

bigToWord b ⇐ case b
bigToWord BigD d 7→ Wd d

bigToWord Big@ w w0 7→ W@ w w0

Figure 5.15: Mapping between BigNumber and Word

Arithmetic operations on BigNumber are implemented in terms of the Word functions.
Some manipulation of indices is required so that both arguments are in the same branch
of the Word family, and to deal with possible carry flags (in the case of addition) and
accumulators (in the case of multiplication).

The basic pattern for arithmetic on two numbers x : (Word n)0 and y : (Word m)0
is to compare the indices m and n, and pad the smaller to the size of the larger, using the
pad function (figure 5.16).

The type of pad (returning an index of plusp n) allows it to be used in conjunction with
max (written by view compare) and compare. The definition of max is given in figure
5.17.

Then the helper function adcBig, which adds two differently sized Words, returning a
Word of the larger size and a carry flag, can be defined by the same pattern of recursion, as

Chapter 5. Number Representation 148

let w : (Word n)0 p : N
pad w p : (Word (plus p n))0

pad w p ⇐ elim p
pad w 0 7→ w
pad w (s n) 7→ O|(pad w n)

Figure 5.16: The pad function

let x , y : N
max x y : N max x y ⇐ view compare x y

max x (plus (s y) x) 7→ plus (s y) x
max x x 7→ x
max (plus (s x) y) y 7→ plus (s x) y

Figure 5.17: The max function

in figure 5.18.

let w1 : (Word n)0 w2 : (Word m)0 zin : Carry
adcBig : Carry × (Word (max n m))0

adcBig n w1 m w2 zin ⇐ view compare n m
adcBig n w1 (plus (s y) n) w2 zin 7→ adc (pad w1 (s y)) w2 zin

adcBig n w1 n w2 zin 7→ adc w1 w2 zin

adcBig (plus (s x) n) w1 m w2 zin 7→ adc w1 (pad w2 (s x)) zin

Figure 5.18: Adding two Words of different size

Finally, we write a function to convert the BigNumbers into Words, do the arithmetic,
then convert back again. This function (in figure 5.19) also has to deal with any possible
carry resulting from the addition and resize the BigNumber accordingly. one is a helper
function which builds a Word n representing the number one, with appropriate index n.

5.2.8 Discussion

The BigNumber type gives us a method for computation with large numbers in type theory.
Its advantages for arithmetic become more noticeable as numbers get larger; with small
numbers there are overheads in constructing the data structure and the arithmetic operations
are more complex than those of N. We cannot replace N entirely with BigNumber however.
Firstly, it is indexed over N so it does not make sense to remove N entirely. Secondly, the
elimination rule for BigNumber does not give the same primitive recursion behaviour as that
of N. While it is possible to build such an induction principle, it relies on an isomorphism
between BigNumber and N and conversion between the two structures; doing this means
that we still have to use N as an intermediate structure and so the space advantages are
lost. BigNumber is only really useful as an implementation of big number arithmetic.

Chapter 5. Number Representation 149

let a, b : (BigNumber)0
addBig : (BigNumber)0 → (BigNumber)0 → (BigNumber)0

addBig a b | p ← adcBig (bigToWord a) (bigToWord b) ⇐ case p|| (z ,w) ⇐ case z|| (no,w) 7→ wordToBig w|| (yes,w) 7→ one|(wordToBig w)

Figure 5.19: Adding two BigNumbers

A further problem with BigNumber is the difficulty of implementing division. Addition
and multiplication work well in the framework of two digit numbers, but there is no obvious
way to implement division in terms of division on numbers with a smaller index, except by
repeated subtraction.

5.3 External Implementation of N

BigNumber’s disadvantages are that it is less efficient than N for computation with small
numbers and that there is no direct primitive recursion behaviour matching that of N. We
now consider an alternative approach to number representation, using an external library to
implement unbounded numbers. GMP, the GNU Multi-precision arithmetic library [G+04]
is one such library; some implementations of Haskell Integers (for example, in GHC and
the Haskell B Compiler) use GMP. The issue with an external library is whether we can
trust uncertified external code to be called from a certified core. We certainly have no reason
not to trust GMP as a faithful implementation of unbounded numbers. In particular, as a
well used library, a lot of software would fail if there were errors. Aside from this, there is
research taking place into proving the correctness of features of GMP [BMZ02]. If we take
GMP to be a trusted external oracle, what are the steps involved in compiling TT terms
which use N into RunTT terms which use GMP?

To answer this question, consider how N is used. It has constructors and an elimination
rule, so naturally these will need to be translated into the new setting. The ι-schemes of
the elimination rule are implemented in terms of pattern matching on N, so we will need
to consider pattern matching on the new representation. Finally, in considering pattern
matching, we should bear in mind that detagged and collapsible families may also have
elimination rules implemented by pattern matching on Ns.

5.3.1 Construction of Ns

For constructing Ns in the RunTT setting, I introduce integer literals and an addition op-
erator into ExTT and correspondingly into the supercombinator language. We introduce
these at the intermediate level of ExTT rather than into RunTT because of the need to

Chapter 5. Number Representation 150

pattern match on the new representation in the compilation of elimination rules; the rules
for some detagged families in particular may need to match on N. We add features to ExTT

to construct Ns in this form, and to manipulate them, shown in figure 5.20.

t ::= . . .
| i (Integer literal)
| t op t (Arithmetic operator)
| t cmp t (Comparison operator)
| if t then t else t (Integer testing)

op ::= + | − | ∗
cmp ::= < |== |>

Figure 5.20: Additions to ExTT for external implementation of N

This allows the following simple translation on ExTT terms:

J0K =⇒ 0
Js〈n〉K =⇒ JnK+ 1

Any repeated successor applications (e.g., s (s (s k))) results in multiple additions. A
simple constant folding optimisation removes this. For example, Js (s (s k))K =⇒ k + 3.

Note, however, that RunTT terms arising from elimination rules are, as usual, treated
differently. This is necessary, since pattern matching on integers and pattern matching on
inductive families are implemented in very different ways — a simple transformation on
RunTT case expressions is not sufficient to cover this.

There is, perhaps, a worry about preserving type correctness here. Since the transfor-
mation occurs only on well typed terms, and all Ns are converted to integers (by observing
that each constructor is mapped to an integer), we need not be concerned that correctness
is compromised.

Boxing and Unboxing

In the current implementation, integers are given a boxed representation; i.e., they are
stored on the heap as a reference to the integer, rather than the integer itself. This is
because GMP uses a boxed representation; it is not the case that an arbitrary integer can
fit into a single machine word.

Nevertheless, there is much to be gained from considering how to avoid boxing and
unboxing where possible. GHC includes unboxed values as first class values [PL91a] which
aids strictness analysis and allows unboxed values to be used as part of algebraic data
structures.

While an advantage of boxing values is to give a uniform representation to data which
aids in the compilation of polymorphic functions (in that only one version need be compiled,
rather than separate version for instantiation with integers, characters, booleans etc), this

Chapter 5. Number Representation 151

does mean that instantiating the function with a primitive type can be needlessly inefficient.
In [HM95], Harper and Morrisett describe a technique for run-time type analysis which
allows separate compilation of boxed and unboxed versions of polymorphic functions. To
apply this technique in Epigram would require the addition of a casetype operator at the
RunTT level, and would necessitate the storing of some type information on the heap (rather
than merely storing a TYPE node as we do currently), but the benefits from avoiding boxing
may be enough to make this worthwhile.

5.3.2 Elimination and Pattern Matching

If we are to write the ι-schemes for the new implementation of N, we will need additions to
the pattern syntax which allow for matching on GMP integers. These extensions are shown
in figure 5.21.

p ::= . . .
| k (Integer literal pattern)
| x + k (Non zero variable)

Figure 5.21: Extensions to the pattern syntax for external implementation of N

A similar transformation is applied to patterns as that which is applied to ExTT terms.
Constant folding is applied on repeated applications of s so that the resulting pattern con-
forms to the syntax. The pattern transformation is as follows:

J0K =⇒ 0
Js nK =⇒ JnK+ 1

To implement matching on these patterns, and so that we can ultimately take advan-
tage of the GMP external implementation, I add further operations to RunTT which allow
inspection and manipulation of integers, corresponding to the extensions to ExTT. The full
extensions to RunTT are shown in figure 5.22.

e ::= . . .
| i (Integer literal)
| e op e (Arithmetic operator)
| e cmp e (Comparison operator)
| if e then e else e (Integer testing)

op ::= + | − | ∗
cmp ::= < |== |>

Figure 5.22: Extensions to RunTT for external implementation of N

The semantics of if are straightforward; if the expression being tested (a simple boolean
comparison) is true, evaluate the then branch, otherwise evaluate the else branch.

Chapter 5. Number Representation 152

The two new cases for the pattern syntax are handled by extra cases for the project’

operation, shown in figure 5.23. Recall from section 4.4.2 on page 110 that project com-
putes terms for projecting the values of arguments from patterns, with project’ as a helper
operation.

project’(n, f , k) = []
project’(n, f , (x + k)) = [x , (f n)− k]

Figure 5.23: Extra cases to project’

For an x + k pattern, if we know it matches, x is retrieved simply by subtracting k from
the argument n.

To compile pattern matching in this form, two cases are added to the pattern matching
compiler scheme I. Recall (from page 111) that I examines the patterns p11 . . . p1n, which
represent the patterns for the first argument e1, to establish whether case distinction can
be made on e1. These additional cases are summarised in figure 5.24.

Case 5 Two possibilities, with pa1 = 0 and pb1 = x + k , where a, b ∈ {1, 2}

I(e1 . . . ei,

{
0 pa2 . . . pai ; xa

(x + k) pb2 . . . pbi ; xb

}
) =⇒ if e1 == 0 then xa else xb

Case 6 pi1 = 0 for some i , and pj1 = x + k for some j

Take P to be the smallest set of patterns such that pi1 ∈ P if pi1 = 0 or pi1 = x + k
for some constant k . Then:

I(e1 . . . ei,

p11 . . . p1i ; x1

. . .
pn1 . . . pni ; xn

) =⇒

if e1 == 0 then I(e2 . . . en,

{
pk2 . . . pki ; x1

. . .

}
) [∀k . pk1 6∈ P or pk1 = 0]

else I(e2 . . . en,

{
pk2 . . . pki ; x1

. . .

}
) [∀k . pk1 6= 0]

Figure 5.24: Extra cases of I

Case 5: pa1 = 0 and pb1 = x + k , where a, b ∈ {1, 2} and n = 2

This is a special case for integers corresponding to case 2 for constructor patterns. Case
distinction can be made on this argument alone. If e1 = 0, we evaluate case a, otherwise
we evaluate case b. The RunTT case expression is built as follows:

I(e1 . . . ei,

{
0 pa2 . . . pai ; xa

(x + k) pb2 . . . pbi ; xb

}
) =⇒ if e1 == 0 then xa else xb

It is not necessary for the zero case to appear first; the cases can be in either order.

Chapter 5. Number Representation 153

Case 6: pi1 = 0 for some i , and pj1 = x + k for some j

This is a special case of the compiler for integers, corresponding to case 4, where two or
more of p11 . . . pn1 are headed by disjoint constructors. We take P to be the smallest set of
patterns such that pi1 ∈ P if pi1 = 0 or pi1 = x + k for some constant k .

Then the RunTT expression is built as follows:

I(e1 . . . ei,

p11 . . . p1i ; x1

. . .

pn1 . . . pni ; xn

) =⇒

if e1 == 0 then I(e2 . . . en,

{
pk2 . . . pki ; x1

. . .

}
) [∀k . pk1 6∈ P or pk1 = 0]

else I(e2 . . . en,

{
pk2 . . . pki ; x1

. . .

}
) [∀k . pk1 6= 0]

Example — N-Elim

With this new representation, how is elimination of Ns compiled into RunTT?

N-Elim 0 P m0 ms ; m0

N-Elim (s k) P m0 ms ; ms k (N-Elim k P m0 ms)

The transformation to the integer representation gives us this rule to compile into RunTT:

N-Elim 0 P m0 ms ; m0

N-Elim (k + 1) P m0 ms ; ms k (N-Elim k P m0 ms)

For the second case, applying project to the first argument (let us call this argument
n) yields:

project(n, (k + 1)) =⇒ [(k ,n − 1)]

Examining the patterns for the first argument, we see that case 5 applies. The term in
RunTT is therefore a straightforward if expression:

N-Elim 7→ λn; P ; m0; ms.

if n == 0 then m0 else ms (n − 1) (N-Elim (n − 1) P m0 msuc)

Aside — recursion and iteration

If reduction order does not matter, which it does not when termination is guaranteed, we
might consider an alternative implementation of N-Elim which is iterative rather than re-
cursive. This relies on some additional notation for RunTT (for which I will not give a formal
treatment); we add assignment to a mutable variable (x := t), explicit sequencing (indicated

Chapter 5. Number Representation 154

by separating expressions with a semicolon) and a while loop for bounded iteration. With
this additional notation, we can write an iterative version of N-Elim:

N-Elim 7→ λn; P ; m0; ms.

acc := m0;
k := 0;
while k < n

acc := ms k acc;
k := k + 1

return acc

This clearly has the same behaviour as the original N-Elim, but without the overhead
of building a thunk for the recursive call. The locally bound k and acc are reused, although
this requires that ms is evaluated eagerly — hence the requirement that termination is
guaranteed. We also need to be careful in the case where the successor case does not
make a recursive call. Unfortunately, this does not generalise; we can only do this because
N holds no data other than its own size. Nor can we build this function directly from the
pattern matching representation of N-Elim in ExTT. However, it may be worth hard-coding
elimination rules such as this since optimising an elimination rule optimises those programs
which are written in terms of it; a future research direction could potentially involve the
identification of efficient (tail-recursive or iterative) elimination rules.

Example — between-Elim

Recall the between type from Chapter 4 which represents a proof that m ≤ n ≤ p:

data m,n, p : N
between m n p : ?

where
bO : between 0 0 0

b : between 0 0 m
bOOs b : between 0 0 (s m)

b : between 0 m n
b0ss b : between 0 (s m) (s n)

b : between m n p
bsss b : between (s m) (s n) (s p)

The collapsing of this relation along with the translation to GMP integers gives ι-schemes
as in figure 5.25. Applying the I compilation scheme, which repeatedly applies case 6,
yields the supercombinator definition shown in figure 5.26. As before instances passed to
the methods are replaced with the trivial canonical empty tuple, 〈〉.

5.3.3 Homomorphisms with N

So far with this integer representation, we have managed to convert the TT representation
into an efficient run-time representation. The only improvement we really have, though,
is space compression — all functions are ultimately still written by structural induction
over N, using N-Elim. In order to really take advantage of this efficient representation, we

Chapter 5. Number Representation 155

between-Elim 0 0 0 {bO} P mbO mbOOs mb0ss mbsss ; mbO

between-Elim 0 0 (s m) {bOOs m b} P mbO mbOOs mb0ss mbsss

; mbOOs m ({b}) (between-Elim 0 0 m {b} P mbO mbOOs mb0ss mbsss)
between-Elim 0 (s m) (s n) {b0ss m n b} P mbO mbOOs mb0ss mbsss

; mb0ss m n ({b}) (between-Elim 0 m n {b} P mbO mbOOs mb0ss mbsss)
between-Elim (s m) (s n) (s p) {bsss m n p b} P mbO mbOOs mb0ss mbsss

; mbsss m n p ({b}) (between-Elim m n p {b} P mbO mbOOs mb0ss mbsss)

Figure 5.25: ι-schemes for between-Elim with GMP

between-Elim 7→ λm; n; p; P ; mbO; mbOOs; mb0ss; mbsss.
if m == 0

then if n == 0
then if p == 0

then mbO

else mbOOs (p − 1) 〈〉 . . .
else mb0ss (n − 1) (p − 1) 〈〉 . . .

else mbsss (m − 1) (n − 1) (p − 1) 〈〉 . . .

Figure 5.26: Compiled ι-schemes for between-Elim

would like to use the arithmetic operations provided by the GMP library rather than the
TT definitions.

I will consider three basic functions; plus, mult and compare. I consider compare to
be an important function to optimise, if not a primitive, since it implements an ordering
and subtraction on Ns at the same time. Not only this, but as compare n m has linear
complexity for what is essentially subtraction, a more efficient implementation would be
beneficial.

We write functions on GMP integers in ExTT corresponding to the N based definitions.
plus and mult have corresponding implementations in ExTT defined using primitive oper-
ators as follows:

plusInt 7→ λn; m. n + m
multInt 7→ λn; m. n ∗m

To use these definitions in place of the TT definitions, the following transformations are
applied during the transformation from TT to ExTT:

JplusK =⇒ plusInt

JmultK =⇒ multInt

As an additional optimisation, where these functions are fully applied the definitions can
be unfolded. Hence plusInt x y becomes simply x + y . compare is slightly more difficult;
for one thing, it must take into account the erasure of forced arguments in the Compare

Chapter 5. Number Representation 156

family. As a result, the ExTT definition is similarly marked up. Its marked TT definition is
as follows:

compareInt 7→ λn; m.

if n < m then lt {n} (m − n − 1)
else if n == m then eq {n}

else gt {m} (n −m − 1)

Then a similar transformation as before is used in the translation phase from TT to
ExTT. We do not automatically unfold compareInt as with plusInt and multInt as the
definition is rather larger.

JcompareK =⇒ compareInt

5.3.4 Typechecking the External Implementation

Since the GMP integers are added in ExTT, it is worth considering how the addition of GMP
integers affects the typechecking algorithm. The conversion check, conceptually, involves the
checking for syntactic equality of normal forms. For the external implementation of N we
can use the equality defined by GMP to check the syntactic equality of the Ns:

x , y : N x =GMP y
x ≡ y

Hence if two GMP-implemented Ns x and y are equal by a GMP equality test, then they
are convertible. We are not attempting to reason about the conversion to GMP here — the
use of this rule implies that we trust the correctness of GMP’s implementation of equality.

There is a problem, however, with typechecking the external GMP implementation of
N; namely that the conversion rules which previously held for plus, mult and compare do
not hold for plusInt, multInt and compareInt. For example, the definition of plus gives
two rules for the conversion checker (these rules arise from the direct reduction behaviour
of plus when the first argument is in canonical form):

plus 0 m ' m
plus (s k) m ' s (plus k m)

Similar rules do not hold for plusInt because the reduction behaviour of the + operator
is defined externally. The solution adopted by [MB01] is to make these conversion rules
explicit. To do this, we can define the following axioms describing the external behaviour
of GMP Ns:

plus0 : ∀n :N. plusInt 0 m = m
pluss : ∀n,m :N. plusInt (k + 1) m = (plusInt k m) + 1

These type isomorphisms (whose run-time implementations are effectively the identity
function) are inserted by the typechecker where they transform a term’s actual type into its

Chapter 5. Number Representation 157

expected type, using the algorithm from [MB01]. In the current implementation, however,
the typechecker uses the näıve representation of N for typechecking, only transforming for
compilation. This is acceptable for many programs with limited type level computation,
however a future implementation will also transform to an efficient implementation of N for
compile-time execution.

5.3.5 Extensions to the G-machine

The new RunTT operations for manipulating GMP integers will clearly need to be trans-
lated to primitive operations in the G-machine. Johnsson’s G-machine [Joh84] has a value

stack of basic values for storing intermediate values in primitive types. Until now, we have
considered the G-machine to be a 5-tuple (see section 3.5.2); now I add a value stack, so that
the G-machine state is a 6-tuple 〈C ,S ,V ,G ,E ,D〉. The primitive values are big numbers
and boolean values (arising from comparisons on big numbers.) The idea behind the value
stack is that it avoids building graphs from intermediate computations — a value is only
transferred onto the main stack when a computation is complete. This is similar to the
approach adopted by the STG machine.

There is a new graph node, BIGINT i , where i is an integer represented by GMP, and a
graph node BOOLb where b is a boolean value. Also, I add new instructions for manipulation
of big numbers and booleans on the value stack. Values on the value stack are either big
integers or booleans, i or b. These instructions are defined as follows:

• PUSHBIG i constructs a graph BIGINT i and pushes it onto the stack S . There is no
equivalent for booleans, since we do not have boolean literals in RunTT; they arise
only from comparisons.

• PUSHINT i pushes the value i onto the value stack V .

• PUSHBOOL b pushes the value b onto the value stack V .

• GET retrieves the integer from the graph at the top of the stack (which must be a
BIGINT i) and pushes i onto the value stack V .

• MKINT pushes the integer at the top of the value stack V onto the stack S (the
opposite of GET.)

• MKBOOL pushes the boolean at the top of the value stack V onto the stack S .

• ADD, SUB and MULT apply the appropriate arithmetic operation to the top two values
on the value stack V .

• LT, EQ and GT apply the appropriate boolean comparison to the top two values on
the value stack V .

Chapter 5. Number Representation 158

• JTRUE l examines the value on the top of the value stack and jumps to the label l if
the value is a boolean “true”.

The state transition rules for these instructions are given in figure 5.27.

〈PUSHBIG i ; c,S ,V ,G ,E ,D〉 =⇒ 〈c,n.S ,V ,G [n = BIGINT i],E ,D〉
〈PUSHINT i ; c,S ,V ,G ,E ,D〉 =⇒ 〈c,S , i .V ,G ,E ,D〉
〈PUSHBOOL b; c,S ,V ,G ,E ,D〉 =⇒ 〈c,S , b.V ,G ,E ,D〉
〈GET; c,n.S ,V ,G [n = BIGINT i],E ,D〉 =⇒ 〈c,S , i .V ,G ,E ,D〉
〈MKINT; c,S , i .V ,G ,E ,D〉 =⇒ 〈c,n.S ,V ,G [n = BIGINT i],E ,D〉
〈MKBOOL; c,S , b.V ,G ,E ,D〉 =⇒ 〈c,n.S ,V ,G [n = BOOL b],E ,D〉
〈ADD; c,S , x .y .V ,G ,E ,D〉 =⇒ 〈c,S , x + y .V ,G ,E ,D〉
〈SUB; c,S , x .y .V ,G ,E ,D〉 =⇒ 〈c,S , x − y .V ,G ,E ,D〉
〈MULT; c,S , x .y .V ,G ,E ,D〉 =⇒ 〈c,S , x ∗ y .V ,G ,E ,D〉
〈LT; c,S , x .y .V ,G ,E ,D〉 =⇒ 〈c,S , x < y .V ,G ,E ,D〉
〈EQ; c,S , x .y .V ,G ,E ,D〉 =⇒ 〈c,S , x = y .V ,G ,E ,D〉
〈GT; c,S , x .y .V ,G ,E ,D〉 =⇒ 〈c,S , x > y .V ,G ,E ,D〉
〈JTRUE l ; c,S , true.V ,G ,E ,D〉 =⇒ 〈JUMP l ; c,S ,V ,G ,E ,D〉
〈JTRUE l ; c,S , false.V ,G ,E ,D〉 =⇒ 〈c,S ,V ,G ,E ,D〉

Figure 5.27: State transitions for computing basic values

5.3.6 Compilation Scheme

A new compilation scheme, BJ·K , compiles expressions of basic values. This scheme compiles
code to put an expression on the value stack rather than the main stack. Since the value
stack consists only of integers and booleans the resulting code will be more efficient than
manipulations on a stack of graphs. Compiling with this scheme effectively implements the
unboxing of integers and booleans for compilation of complex expressions, then boxing the
result. The BJ·K scheme is given in figure 5.28.

BJiK r n =⇒ PUSHINT i
BJe1 + e2K r n =⇒ BJe1K r n; BJe2K r n; ADD
BJe1 − e2K r n =⇒ BJe1K r n; BJe2K r n; SUB
BJe1 ∗ e2K r n =⇒ BJe1K r n; BJe2K r n; MULT
BJe1 < e2K r n =⇒ BJe1K r n; BJe2K r n; LT
BJe1 = e2K r n =⇒ BJe1K r n; BJe2K r n; EQ
BJe1 > e2K r n =⇒ BJe1K r n; BJe2K r n; GT

Figure 5.28: The BJ·K compilation scheme

I extend the EJ·K scheme to handle basic values, as in figure 5.29; top level expressions
are passed through to the BJ·K scheme and the result placed on the stack. The EJ·K scheme

Chapter 5. Number Representation 159

also handles if expressions. The only addition to the CJ·K scheme is to construct graphs of
primitive values (shown in figure 5.30.

EJe1 + e2K r n =⇒ BJe1 + e2K r n; MKINT
EJe1 − e2K r n =⇒ BJe1 − e2K r n; MKINT
EJe1 ∗ e2K r n =⇒ BJe1 ∗ e2K r n; MKINT
EJe1 < e2K r n =⇒ BJe1 < e2K r n; MKBOOL
EJe1 = e2K r n =⇒ BJe1 = e2K r n; MKBOOL
EJe1 > e2K r n =⇒ BJe1 > e2K r n; MKBOOL
EJif e1 then e2 else e3K =⇒ BJe1K r n; JTRUE lT ;

EJe3K r n; JUMP l ;
LABEL lT ;
EJe2K r n;

LABEL l
EJiK r n =⇒ PUSHBIG i

Figure 5.29: Extensions to the EJ·K compilation scheme

CJiK r n =⇒ PUSHBIG i

Figure 5.30: Extension to the CJ·K compilation scheme

5.3.7 Example — Factorial Computation

A common example of a recursive function over the natural numbers is the factorial function
(n!). The simplest way to write this in Epigram is as in figure 5.31, following the usual
rules that 0! = 1 and n! = n ∗ (n − 1)!:

let n : N
fact n : N

fact 0 7→ s0
fact (s k) 7→ mult (s k) (fact k)

Figure 5.31: Factorial Function

The problem with writing a function over a natural number n is that it it very likely to
have complexity of at least O(n). With factorial, the problem is even greater as the size
of numbers involved grows very rapidly. This is as much a problem of storage as speed —
the unary representation requires nearly four million cells to store 10!. Let us nevertheless
examine the compilation of the fact function as defined in figure 5.31. The elaborator
produces the following definition in TT:

fact 7→ λn :N. natElim n (λn :N. N) (s0) (λk , ih :N. mult (s k) ih)

Chapter 5. Number Representation 160

Beginning with a näıve approach and taking the above definition as the ExTT version of
fact, we get the following straightforward translation to RunTT supercombinators:

fact 7→ λn. natElim n fact1 s〈0〉 fact2
fact1 7→ λn. N
fact2 7→ λk ; ih. mult s〈k〉 ih

These supercombinators compile to G-code as follows:

SJfactK =⇒ PUSHFUN N-Elim; PUSH 1; MKAP; PUSHFUN fact1; MKAP;
MKCON 0 0; MKCON s 1; MKAP; PUSHFUN fact2; MKAP;
UPDATE 2; RET 1

SJfact1K =⇒ MKTYPE; UPDATE 2; RET 1
SJfact2K =⇒ PUSHFUN mult; PUSH 2;MKCON s 1; MKAP;

PUSH 1; MKAP; UPDATE 3; RET 2

The inefficiency in this definition is caused by the use of the O(n) function mult to do
the multiplication. If, instead, we apply the transformations of this chapter to replace N
with an external GMP based representation then we have access to a fast multiplication
function. The translations yield the following ExTT definition:

fact 7→ λn :N. natElim n (λn :N. N) 1 (λk , ih :N. multInt (k + 1) ih)

We can unfold the definition of multInt to get the following simpler definition:

fact 7→ λn :N. natElim n (λn :N. N) 1 (λk , ih :N. (k + 1) ∗ ih)

There is now the following translation to RunTT supercombinators:

fact 7→ λn. natElim n fact1 1 fact2

fact1 7→ λn. N
fact2 7→ λk ; ih. (k + 1) ∗ ih

Finally, we get the following G-code for these supercombinators:

SJfactK =⇒ PUSHFUN N-Elim; PUSH 1; MKAP; PUSHFUN fact1; MKAP;
PUSHBIG 1; PUSHFUN fact2; MKAP;UPDATE 2; RET 1

SJfact1K =⇒ MKTYPE; UPDATE 2; RET 1
SJfact2K =⇒ PUSH 1; GET ;PUSHBASIC 1; ADD; PUSH 0; GET;

MULT; MKINT; UPDATE 3; RET 2

The main difference between the two definitions is simply that the user defined mult

function has been replaced by an efficient external representation encoded as a single G-
machine instruction. The effects of this simple transformation, even on the small application
of fact sss0, are large, and shown in figure 5.32.

Note again that these results are based only on the optimisation of N. Other overheads,
including the extra layer of abstraction imposed by the use of elimination rules and the
outputting of results (via a show function again defined by an elimination rule) are also
present, and we will see some optimisations for removing these in Chapter 6.

Chapter 5. Number Representation 161

Program Version Instructions Thunks Memory Accesses Cells
Näıve 118931 55372 40863 7871

fact sss0 Optimised 4304 1382 1098 182
Change -96.38% -97.50% -97.31% -97.69%

Figure 5.32: Run-time costs of the factorial function

5.3.8 Extending to Other Primitives

The approach to primitives we have taken here is rather different from the approach taken
by GHC in the Spineless Tagless G-machine [Pey92]. In that system, the philosophy is that
the machinery for implementing user defined types should be efficient enough to be usable
for primitives such as lists. We have taken a different approach to N for two reasons:

• N is inherently inefficient, being a unary representation of numbers. Despite this, the
structure has advantages at compile-time, so it makes sense to use N and transform it
to an efficient representation.

• In general, we can expect to get a big performance improvement by optimising common
operations and datatypes (similar to the RISC approach to computer architecture,
where the philosophy is to choose a small highly optimised set of common instructions).
We should not see this as imposing a performance penalty on user defined types, but
rather making a performance gain on common primitive types.

Having implemented N externally, we might consider whether other primitives can be
implemented externally. In some ways this follows Landin [Lan66], who suggests a family
of languages (Iswim) parametrised over the set of primitives they choose; the choice of
primitives is based on the problem domain. An Epigram data type has the following
features which an external implementation may provide:

Constructors. In the case of N, 0 was mapped to 0 and s n to n + 1.

Elimination Rule. An implementation of N-Elim was built by determining the correct
pattern matching behaviour for 0 and n + k from the pattern matching behaviour of
0 and s.

Primitive Operations. plus, mult and compare were mapped to plusInt, multInt and
compareInt respectively.

Conversion Rule. A conversion rule for N constants was given in terms of the GMP equal-
ity test.

So providing an external implementation of a datatype means giving Epigram types
to externally implemented operations. Not all of these make sense for every data type;

Chapter 5. Number Representation 162

in particular floating point numbers have no obvious primitive recursion behaviour, for
example, and even a conversion rule is difficult since there is always an error bound in a
floating point calculation. A floating point implementation would be treated as an abstract
data type, only providing constructor functions and primitive arithmetic operations. Further
investigation of such details should be in the context of a module system for Epigram,
primitive types being provided by an external module.

Integers

Having considered an efficient implementation of the natural numbers, we should also
consider how integers (Z) might be represented in Epigram. The approach taken by
Lego [LP92] is to treat integers as a pair of natural numbers, including a positive and
negative component. This is a simple representation, but has the disadvantage that a single
integer can be represented in an infinite number of ways. A pair of a natural number and
its sign is another possible representation. The current Coq implementation, on the other
hand, uses a more sophisticated representation based on binary, as described in [MB01].

However integers are described as an Epigram type, it will of course be possible to apply
the same techniques we have applied to N to give an efficient internal representation.

Multiple Return Values

Numbers are not the only thing which it is useful to treat as a primitive. In Epigram, and
in programming with inductive families in general, we often find it useful to return pairs (or
larger tuples) of values. This is because values carry around invariants; a Vect is paired with
its length, for example. Hence, if a function can return a different length Vect depending on
its input, it needs to return the length along with the Vect using a Σ type. For example, we
can write the vector filter function as follows:

let f : A→ Bool xs : Vect A n
vfilter f xs : Σ N (Vect A)

vfilter f xs ⇐ elim xs
vfilter f ε 7→ (?, nil)
vfilter f (x ::xs) | b ← f x ⇐ case b

|| true | p ← vfilter f xs ⇐ case p
|| (, xs ′) 7→ (?, x ::xs ′)

|| false | p ← vfilter f xs ⇐ case p
|| (, xs ′) 7→ (?, xs ′)

Returning values along with their dependencies is a common programming idiom with de-
pendent types, as we saw in section 2.3.1. For this reason, it may be beneficial to implement
techniques for dealing with multiple return values; doing so has already been investigated
for Standard ML [Mit94] and similar techniques can apply to Epigram. Using C-- as a
back-end has an advantage here, as it supports multiple return values in machine registers.

Chapter 5. Number Representation 163

5.4 Correctness of External Implementation

One of the advantages of programming in Epigram is that proofs of correctness can be given
in the language itself. When we use an external implementation of some language feature
however, as we have with N, we cannot do this. The closest we can get to a correctness proof
of the GMP representation is to model GMP integers in Epigram and check the correctness
of the model. This is not quite the same as a full correctness proof; any errors in modelling
are caught but not necessarily errors in the implementation. It is still worth doing, however,
for the following reasons:

• We can at least check the correctness of the algorithms and memory allocation, as
with a recent proof of GMP square root [BMZ02, Mag03].

• As a longer term goal, a precise specification of GMP numbers and their associated
operations may lead to the extraction of a more efficient implementation.

I do not propose to give a full model of GMP numbers and their operators here; to do so
would be a very large project and a possible direction for future research. However, let us
briefly consider how we might represent their structure as an inductive family in Epigram.

5.4.1 Representing GMP integers

The internal representation of an integer is as a C struct with three fields [G+04]. These
fields are:

• An array of limbs. Limbs correspond to digits; the D parameter of the Word family
gives a concrete representation of limbs.

• An integer representing the number of limbs in the number. This integer is negative
when representing a negative number. We only consider positive numbers for N, so
we will only consider positive integers in this field. This integer corresponds to the n
index of the Word family.

• An integer representing the space allocated for limbs. If any operation causes the
number to outgrow the space allocated for it, more space is allocated and this field
changed accordingly.

Leaving aside the memory allocation issue for the moment, we might model integers in
a GMP style as follows:

data D : ? n : N
GMP D n : ?

where ls : Vect D n
mkGMP ls : GMP D n

GMP integers are modelled as a sized list, so we use Vect to keep the list of limbs and its
size consistent (in fact, all we do here is add another level of constructor to keep the type
distinct from Vect). n represents the amount of limbs, and ls the array of limbs. We can

Chapter 5. Number Representation 164

use similar techniques to those in section 5.2.7 to resize the Vects accordingly for arithmetic
operations between numbers of different sizes.

A refinement of this includes a representation of the memory allocated for the number,
and carries a proof that there is enough memory to store the number:

data D : ? n : N
GMP D n : ?

where a : N ls : Vect D n p : n ≤ a
mkGMP a ls : GMP D n

The extra argument to mkGMP, a, represents the number of limbs available. The con-
structor also carries a proof p (represented by ≤, and therefore concretely collapsible) that
there is enough space to store the limbs in this amount of memory. By writing the arithmetic
functions on this representation, we can extract the following information:

• Where there is a possibility of overflow.

• Where and when memory allocations might be needed and where they are superfluous.

It is perhaps too much to hope that extraction of code for arithmetic on this representa-
tion would be more efficient than the highly tuned machine code implementation of GMP.
However, modelling the properties of GMP data structures in this way can give us some
insight into where safety checks are needed in the low level implementation.

5.4.2 Correctness of Behaviour

The representation we now have ensures that the memory allocated for limbs is always
enough to hold the data. What it does not ensure is that arithmetic operations have the
correct behaviour. This is another situation where inductive families can help; we can also
index the GMP family by the N it represents. To do this, we write a function to convert the
limb representation to its corresponding N:

let ls : Vect D n
limbsToNat ls : N

Then the return type of the mkGMP constructor also gives the N interpretation of the
GMP number:

data D : ? n, i : N
GMP D n i : ?

where a : N ls : Vect D n p : n ≤ a
mkGMP a ls : GMP D n (limbsToNat ls)

Then to implement, for example, addition on GMP numbers builds an implicit proof that
the GMP addition is a homomorphism with the N addition. Since addition may overflow
and therefore require more space to store the result, we return a dependent pair containing
the length and the GMP value.

let x : GMP D n i y : GMP D m j
addGMP x y : Σ N (λn :N. GMP D n (plus i j))

Any implementation of this function must be a correct implementation of addition; any-
thing else would not typecheck.

Chapter 5. Number Representation 165

5.5 Summary

We have seen three uses of natural numbers; two of these (bounded recursion and indexing
of data structures) rely on the structure of N, and the other (arithmetic) does not, as it
provides implementations of abstract operations on numbers.

Since arithmetic operations are abstract operations on numbers, we can consider alter-
native representations of numbers to provide more efficient implementations of arithmetic.
With the Word family in section 5.2, we saw an implementation of binary numbers purely
in Epigram, using size invariants to verify the structure of these numbers. However, even
implementing binary numbers in this way is impractical when compared to a hardware im-
plementation. One possibility to improve this is to parametrise Word over a base type which
implements arithmetic in hardware. However, allowing access to a hardware implementa-
tion forces us to extend the core language of TT and consider the additional typing and
conversion rules this entails. A more useful application of this kind of implementation is for
the verification of hardware design — we could imagine using a dependently typed language
to model the hardware and its properties and implement operations on the hardware in a
type safe way.

When numbers are used primarily for their structural properties it is still good to con-
sider an efficient representation. In section 5.3 we saw additions to ExTT and associated
translation rules for using an efficient external implementation of N via the GMP library.
The advantage of this approach is that no changes are required to the core language, al-
though we do need to justify that the translation rules are valid. We can justify this using
the same observation that we used in Chapter 4 to build efficient elimination rules; i.e., any
representation can be used for a family provided that its elimination rule can discriminate
between ι-schemes. Our translation scheme provides direct mappings from N to GMP, and
corresponding additions to the I compilation scheme. The major difficulty is in verifying
that the GMP implementation of arithmetic mirrors the Epigram implementation — to do
this directly in Epigram is impossible, since GMP is an external library, but it is possible
to model GMP integers in Epigram. This verification is a large and difficult task, but we
have seen one possible way to approach the problem. For all practical purposes, however, it
would be unreasonable to assume that GMP is not a correct implementation of arithmetic,
given its successful use in other programming language implementations (such as GHC and
Python).

What we have not seen is how we might use Epigram to implement heavily numerical
programs. For this sort of application, we should think of numbers as abstract data, with
abstract operations. Where possible, we would give these operations Epigram types (e.g.
Float, Double, Int, etc) and conversion rules (as we did with the GMP representation of N).
It would make sense to investigate this approach in the context of a module system, rather
than as an addition to the core language.

The introduction of primitive types creates further implementation difficulties, not all

Chapter 5. Number Representation 166

of which we have investigated yet. We have briefly considered boxing and unboxing of
primitives, but further investigation is required as to how to handle unboxed values most
efficiently, whether using the techniques of [PL91a], [HM95] or others. The casetype analysis
of [HM95] may be particularly beneficial and relatively simple to implement since we already
have type level programs.

Chapter 6

Additional Optimisations

Several other well known optimisation techniques can, of course, be applied to Epigram

terms arising from the optimisations already presented. This chapter presents some well-
known optimisations and some which arise from the Epigram type system and shows how
these optimisations might interact with those already seen. The optimisations we present
are to be applied after typechecking, and hence are run-time only.

The approach taken follows that of Santos, who exploits the advantages of Compilation by
Transformation for Haskell in his thesis [San95]; the transformation based optimiser is also
described in [PS98]. This approach to compilation uses a single intermediate representation
during most of the compilation process. This has the advantages that it allows optimisations
to be implemented in a simple way, and that transformations are easier to prove correct —
each transformation can be implemented and verified independently. For Epigram, we
apply optimising transformations at two levels. Higher level transformations on ExTT terms
are used to transform some of the more abstract features of the language into a form more
suitable for efficient compilation — in particular, the transformation of recursion operators
into direct recursive calls. We also apply optimising transformations at the RunTT level.
We separate these optimisation passes for two reasons:

• Types are preserved in ExTT terms, which makes it easier to prove transformations
correct. We would prefer to preserve types for as long as possible so we try to perform
as many transformations at this level as we can. At this level, we can also take
advantage of labelled types (see section 2.1.8) for optimisation.

• Further optimisations are available once all functions are transformed into their RunTT

representation, since there is no longer the need to take care to maintain the sepa-
ration between user defined functions and elimination rules. In particular, inlining
of non-recursive elimination rules becomes available. More aggressive (and non type
preserving) optimisations such as argument removal also become available.

167

Chapter 6. Additional Optimisations 168

We transform at the level of ExTT, rather than TT. This is firstly so that we do not inter-
fere with the analysis of elimination rules which allows the deletion of redundant arguments
(see Chapter 4). In addition, we can be more liberal with ExTT terms — we are already
sure of their type correctness and termination properties, so we can concern ourselves more
with their meaning, the main example being the replacement of elimination rules with the
more efficient direct recursive calls.

6.1 Optimisations in ExTT

6.1.1 β-reduction

The most basic transformation which can be applied to terms in ExTT is β-reduction:

J(λx :T . e)aK =⇒ e[a/x]

We must be careful not to apply this automatically, however. If x occurs more than once
in e, we risk evaluating the same a more than once. In such a situation, it is safer to either
not β-reduce, or to let bind the name before reducing, as follows:

J(λx :T . e)aK =⇒ let x 7→ a in e

β-reduction is always worth applying, in either of these forms, since it saves a reduction
at run-time and, even more importantly, can expose the other transformations which we will
discuss in this chapter.

6.1.2 Simplifying Non-recursive D-Elim

Writing a function over a family D by means of the elimination operator D-Elim gives the
programmer access to a recursive call on any recursive arguments of D. But if a function
written over D-Elim does not make any recursive calls (that is, it does not use the inductive
hypothesis in a method call), it would be better written with the case operator D-Case.
Both D-Case and D-Elim are generated automatically on elaboration of a family D, D-Case

being constructed from D-Elim by discarding the inductive hypotheses.

Here is a trivial example:

let n : N
isZero n : Bool

isZero n ⇐ elim n
isZero 0 7→ true

isZero (s k) 7→ false

This elaborates to the following term in ExTT:

isZero 7→ λn :N. N-Elim n (λn :N. N) true (λk , ih :N. false)

Since the inductive hypothesis ih is unused in the method for s, we can safely use N-Case

rather than N-Elim:

Chapter 6. Additional Optimisations 169

isZero 7→ λn :N. N-Case n (λn :N. N) true (λk :N. false)

How do we tell which argument to the method is the inductive hypothesis? Due to the
way we build elimination rules, an inductive hypothesis follows each recursive argument.
More generally, however, we can make use of the labelling on types (see section 2.1.8).
Until now, I have been suppressing labels; recall that elaborated Epigram terms label
recursive calls and inductive hypotheses, so that it is clear to the programmer (in the high
level notation) what the meaning of the inductive hypothesis is and so that the elaborator
can tell what the allowed recursive calls are. Elaboration of isZero with labels gives the
following:

isZero : ∀n :N. 〈isZero n : N〉
isZero 7→ λn :N. N-Elim n (λn :N. 〈isZero n : N〉)

(return true) (λk :N. λih :〈isZero k : N〉. (return false))

It is clear which is the inductive hypothesis from the label on its type; since no inductive
hypothesis is used, N-Elim can be replaced with N-Case. A similar transformation applies
for D-View where there are no appeals to an inductive hypothesis.

This is an apparently trivial optimisation, which I call elimination unfolding, with
not much obvious benefit in practical terms. However, it does open up the possibility for
further optimisations which were previously inapplicable, as we will now see.

6.1.3 Rewriting labelled types

Where a recursive function over D is written by D-Elim, the elimination rule is one extra
level of indirection. The purpose of the rule at compile-time is to ensure that all recursion
is primitive and so recursive functions terminate. At run-time, however, we would like to
remove this level of indirection since it has served its purpose and now merely causes a
run-time overhead.

Let us examine the plus function again, defined recursively using N-Elim. While we
have better ways of optimising this function (using an external representation of N), the
simplicity of the data structures used in this definition allow us to focus attention on the
rewriting of the recursive call.

let n,m : N
plus n m : N

plus n m ⇐ elim n
plus 0 m 7→ m
plus (s k) m 7→ s (plus k m)

Elaboration, including the labelling, gives the following term in ExTT:

plus : ∀n,m :N. 〈plus n m : N〉
plus 7→ λn,m :N. N-Elim n (λn :N. 〈plus n m : N〉) (return m)

(λk :N. λih :〈plus k m : N〉. return s(call 〈plus k m〉 ih))

Chapter 6. Additional Optimisations 170

The labelling gives us the meaning of each inductive hypothesis; the call 〈plus k m〉 ih
says that the use of ih represents a call of plus k m. If that is what it represents, why the
indirection? Once termination (via a primitive recursive definition) has been established
and the term typechecked, we can replace the appeal to the inductive hypothesis with its
actual meaning. The transformation is simple, and shown in figure 6.1.

Jcall 〈l〉 tK =⇒ call 〈l〉 l

Figure 6.1: Rewriting a term with labelled type

The call and return are retained by this transformation to preserve type correctness, but
we no longer use the inductive hypothesis. The elaborated plus becomes:

plus : ∀n,m :N. 〈plus n m : N〉
plus 7→ λn,m :N. N-Elim n (λn :N. 〈plus n m : N〉) (return m)

(λk :N. λih :〈plus k m : N〉. return s(call 〈plus k m〉 (plus k m)))

Since there is now no use of the inductive hypothesis in this function, by the transfor-
mation of the previous section we can use N-Case instead of N-Elim:

plus : ∀n,m :N. 〈plus n m : N〉
plus 7→ λn,m :N. N-Case n (λn :N. 〈plus n m : N〉) (return m)

(λk :N. return s(call 〈plus k m〉 (plus k m)))

The typing rules of the labelling operation are such that a well-typed term results from
dropping the labelling annotations 〈l : T 〉 and call and return expressions, by the substi-
tutions in figure 6.2 (which must all be applied together to preserve type correctness):

J〈l : T 〉K =⇒ T
Jcall 〈l〉 tK =⇒ t
Jreturn tK =⇒ t

Figure 6.2: Removing labels

Applying these substitutions to the elaborated plus gives:

plus : ∀n,m :N. N
plus 7→ λn,m :N. N-Case n (λn :N. N) n

(λk :N. s(plus k m))

By doing these transformations we recover the pattern matching behaviour in the elab-
orated program which was specified in the original Epigram program. In Oleg [McB00a],
tactics exist to create a correct pattern matching program from the elaborated definition.
This is a slightly different approach; here we recover the compiled pattern matching program
directly. D-Case is after all merely a higher level abstraction of applying the case operator
to an element of D~s. The approach we take here has two advantages:

Chapter 6. Additional Optimisations 171

• We still recover a compiled form for programs which do not have directly compilable
pattern matching behaviour, such as those built by user defined elimination rules or
views. We cannot, for example, compile the pattern matching form of compare on
page 50 because the patterns on the left hand side are arbitrary terms rather than
constructor forms.

• We do not have to take an additional step of compiling the resulting pattern match-
ing definitions into simple case expressions; to do this would duplicate work, having
compiled elimination rules and built the program in terms of those elimination rules.

With the current implementation of elimination rules, this transformation is always ben-
eficial as it removes a layer of indirection. In future, however, we may need to be more
careful if we choose an optimised iterative or tail-recursive implementation of an elimination
rule (as suggested for N-Elim on page 153) since this transformation would supersede the
optimised elimination rule.

6.1.4 Optimising D-Rec

Recall from section 2.2.6 how structurally recursive functions are built by memoising recur-
sive calls. The example given was the Fibonacci function:

let n : N
fib n : N

fib n ⇐ rec n, case n
fib 0 7→ 0

fib (s k) ⇐ case k
fib (s 0) 7→ s 0

fib (s (s k ′)) 7→ plus (fib k ′) (fib (s k ′))

Elaboration of this gives rise to a frightening looking term, which is no less frightening (but
perhaps more informative) for the insertion of labels into the types:

fib 7→ λn :N. N-Rec n (λx :N. 〈fib x : N〉)
(λn ′ :N. N-Case n ′ (λx :N. (N-Memo (λy :N. 〈fib y : N〉) x)→ 〈fib x : N〉)

(λu :True. return s0)
(λk :N. N-Case k (λx :N. (N-Memo (λy :N. 〈fib y : N〉) s x)→ 〈fib x : N〉)

(λx : (N-Memo (λy :N. 〈fib y : N〉) s0). return s0)
(λk :N. λM : (N, (N,N-Memo (λx :N. 〈fib x : N〉) k)).

return plus (call 〈fib s k〉 (fst M)) (call 〈fib k〉 (fst (snd M))))))

There are two questions to answer about optimisations of D-Rec:

1. Can we remove the outermost call to D-Rec?

2. Even if we can, do we want to?

Chapter 6. Additional Optimisations 172

D-Rec is used for memoising the results of recursive calls; the purpose of this is primarily
to make recursive calls on structurally smaller values accessible. Given the labels on terms
identifying the meaning of lookups in the memo structure (such as in the call on the last line
of the fib function above) is the memo structure now necessary? Let us see what happens
to fib after applying the call rewriting transformation and dropping labels:

fib 7→ λn :N. N-Rec n (λn :N. N)
(λn :N. N-Case n (λn :N. (N-Memo (λn :N. N) n)→ N)

(λu :True. s0)
(λk :N. N-Case k (λn :N. (N-Memo (λn :N. N) s n)→ N)

(λx : (N-Memo (λn :N. N) s0. s0))
(λk :N. λM : (N, (N,N-Memo (λn :N. N) k)).

plus (fib (s k)) (fib k))))

The memo structure M is no longer used in the recursive case, which suggests that we
can drop the outermost N-Rec and indeed, if we do, the function behaves in the same way
as our original elaborated definition:

fib 7→ λn :N. N-Case n (λn :N. N)
(s0)
(λk :N. N-Case k (λn :N. N)

(s0)
(λk :N.

plus (fib (s k)) (fib k)))

Unfortunately, doing this “optimisation” has in fact made the function less efficient;
previously, the memoisation of recursive calls also ensured that no call to fib was computed
twice. Here, however, in the recursive case, fib k is computed twice — once directly, and
once as a recursive call of fib (s k).

The answer to the first question is yes — we can remove the outermost D-Rec by re-
placing lookups in the memo structure with the appropriate recursive call. In this case,
the answer to the second question is no — it results in a less efficient definition. Perhaps,
however, in cases where only one recursive call is made in each branch of the function, this
transformation is worthwhile as the benefit of memoisation is limited to showing the function
is structurally recursive.

We are now in a position to compile definitions efficiently into their RunTT representa-
tion. A further transformation phase is applied to RunTT, which is the subject of the next
section.

Chapter 6. Additional Optimisations 173

6.2 Optimisations in RunTT

6.2.1 Inlining

The inlining transformation expands function definitions in-place; instead of calling the
function at run-time, we replace the call with the body of the function at compile-time. We
can not always be certain that inlining is an optimisation; [PM02] details many of the issues
involved. Whether to inline a function depends on several factors such as the size of the
function body (small functions are good candidates), the number of times it is applied (a
function called few times is a good candidate) and whether we can be certain that inlining
will not cause duplication of work.

Inlining of a suitable function f is given by the transformation in figure 6.3. Note that
the instances of f which are inlined are fully applied; although this may rule out some useful
optimisations, we do this because the RunTT syntax allows λ only at the top level.

f 7→ λ~x .e
Jf ~aK =⇒ e[~a/~x] where length(~a) = arity(f)

Figure 6.3: The inlining transformation

Why do we do the inlining at the RunTT level rather than earlier, in ExTT? The reason
is that inlining in RunTT allows inlining of D-Case operators. In ExTT, we cannot inline
elimination rules since their form (direct definition of ι-reductions) is incompatible with the
form of user defined functions.

Example — Inlining Case Operators

Following on from the rewriting of labelled types earlier, we observe that D-Case operators
are good candidates for inlining — they are not recursive, and can often be syntactically
smaller than the call. This removes the final layer of indirection introduced by using D-Elim

operators in the first place.

After the transformations on ExTT which reduce plus to an application of N-Case with
direct recursion, the supercombinators generated for plus are:

plus 7→ λn;m : N. N-Case n plus1 m (plus2 n)
plus1 7→ λn :N. N
plus2 7→ λn; k :N. s〈plus n k〉
N-Case 7→ λn; P ;m0;ms. case n of

0〈〉 ; m0

s〈k〉 ; ms k

plus1, plus2 and N-Case are all suitable candidates for inlining. At this stage, plus1

and plus2 are not fully applied in plus so they cannot be inlined, but N-Case can, which

Chapter 6. Additional Optimisations 174

gives the following:

plus 7→ λn;m : N. case n of
0〈〉 ; m
s〈k〉 ; plus2 k m

plus1 7→ λn :N. N
plus2 7→ λn; k :N. s〈plus n k〉

Now, plus2 is fully applied so can be inlined, and since P was not used by N-Case, the
use of plus1 drops out of the program. This gives the following single definition for plus:

plus 7→ λn;m : N. case n of
0〈〉 ; m
s〈k〉 ; s〈plus k m〉

So plus, defined by an elimination rule, is ultimately transformed to a directly recursive
function implemented by case analysis, which is the supercombinator definition we might
expect if plus had been defined by pattern matching in the first place.

Another Example — flatten

plus is a straightforward example of this process, but perhaps an unrealistic one since we
have better ways of optimising this function using the GMP transformation of Chapter 5.
Let us examine how the same process applies to the flatten function over a user defined
structure, a binary tree. Let us first look at the data structure, and the high level definition
of the function.

We choose to define trees with values stored only at the leaves:

data A : ?
Tree A : ?

where a : A
Leaf a : Tree A

l : Tree A r : Tree A
Node l r : Tree A

Flattening a tree into a list involves creating a list of one item, in the Leaf case, and
appending the result of recursive calls on the left and right trees in the Node case.

let t : Tree A
flatten t : List A flatten t ⇐ Tree-Elim t

flatten (Leaf a) 7→ cons a nil

flatten (Node l r) 7→ append (flatten l) (flatten r)

This definition elaborates to the following, based on Tree-Elim, with the implicit argument
A to flatten made explicit, and labels placed on the terms:

flatten 7→ λA :?. λt :Tree A.

Tree-Elim t (λt :Tree A. 〈flatten A t : List A〉)
(λa :A. return (cons a nil))
(λl :Tree A. λlih :〈flatten A l : List A〉.
λr :Tree A. λrih :〈flatten A r : List A〉.

return (append (call 〈flatten A l〉 lih) (call 〈flatten A r〉 rih)))

Chapter 6. Additional Optimisations 175

Rewriting in ExTT replaces the inductive hypotheses lih and rih with the recursive calls
they represent, flattenAl and flattenAr . Now the call to Tree-Elim can be replaced with
a call to Tree-Case:

flatten 7→ λA :?. λt :Tree A.

Tree-Case t (λt :Tree A. List A)
(λa :A. cons a nil)
(λl :Tree A. λr :Tree A.

(append (flatten A l) (flatten A r)))

In the translation to RunTT the call to Tree-Case can be inlined, resulting in the following
supercombinator definition of flatten (note that the type labels, A, are removed from the
structure by forcing):

flatten 7→ λA; t . case t of
Leaf〈a〉 ; cons〈a, nil〈〉〉
Node〈l , r〉 ; append (flatten A l) (flatten A r)

6.2.2 Unused Argument Removal

An apparently trivial but nevertheless important optimisation is the removal of arguments
which are unused in a supercombinator body, by examining their syntactic occurrence. In
simply typed languages, such a transformation is unlikely to have much of an effect, since all
arguments are there because the programmer has put them there. With Epigram’s implicit
arguments, sometimes arguments are inserted into elaborated terms only for typechecking.
This is particularly likely when programming with inductive families — an index to a family
must also be passed as an (often implicit) argument to a function over the family, whether
needed or not by that function.

An example is the flatten function in the previous section. The A argument is unused,
although it must be there for the function to typecheck. At run-time, this argument can
clearly be discarded.

The Argument Removal Transformation

Consider a supercombinator f with arguments ~x .

f 7→ λ~x . e

The body of f may make any number of direct recursive calls to f , with arguments ~yj .
Then each argument in ~x may be classified as follows:

• Passive: Either xi does not appear in e at all, or it is used only as (or as part of) the
ith argument to any fully applied recursive call of f .

• Active: xi appears anywhere else in e — either not as an argument to a recursive call
of f , or as part of the j th argument, where j 6= i .

Chapter 6. Additional Optimisations 176

A passive argument need not be passed to f , for obvious reasons — f will never examine
it. In a base case, a passive argument xi is unused since it appears only as the ith argument
to recursive calls. In a recursive case, xi is unused if it is unused in the recursive call; it
must be unused, by induction.

So, splitting the arguments ~x into ~xa (the active arguments) and ~xp (the passive argu-
ments), we make the removal optimisation as in figure 6.4. Note that the substitution of
f ′ for f is also made in the body of f so that unused arguments to recursive calls are also
substituted.

f ′ 7→ λ~xa . e
f 7→ λ~xa ;~xp . f ′ ~xa

Jf ~xa ~xpK =⇒ f ′ ~xa

Figure 6.4: The argument removal transformation

Why build a new f ′ rather than simply modifying f? The problem is that a higher
order function may call f , and we have changed the type of f by removing arguments.
Such a function cannot know until run-time which function to call and therefore it cannot
know which arguments have been dropped from the function. Therefore, only fully applied
instances of f are transformed. This is a technique also used by [PL91a] to exploit strictness
analysis by changing boxed values to unboxed values without changing the type of a function.
f is a wrapper function for f ′, which is the worker.

Since the argument removal optimisation removes some type information from defini-
tions, it is one of the last transformations to be applied — after all type preserving optimi-
sations have been applied.

Nested Unused Arguments

If an argument ai is used in f only in a call to g, but is unused in g, what happens to ai in
f? The design of the system is that a declaration gets elaborated, optimised and translated
to G-code immediately — as a result, when f is declared, we already have the substitutions
generated from the declaration of g. Applying these substitutions to f before looking for
new transformations means that the argument ai is also identified as unused in f .

Argument Removal and Detagging

This optimisation does raise a question about the detagging transformation from Chapter
4. The compilation of the Vect append function illustrates the problem:

let xs : Vect A n ys : Vect A m
append xs ys : Vect A (plus n m)

append ε ys 7→ ys
append (x ::xs) ys 7→ x ::(append xs ys)

Chapter 6. Additional Optimisations 177

Although not explicitly stated, or used, n and m must be arguments to the elaborated
append for the term to typecheck. At run-time, they are never explicitly used — this causes
meaningless extra stack push and pop instructions in the G-code, so can these arguments
simply be dropped? Unfortunately, it is not so simple. Consider the elaborated append,
after the detagging optimisation:

append 7→ λA :?. λn,m :N. λxs :Vect A n. λys :Vect A m.

Vect-Elim n xs
(λn :N. λxs :Vect A n. 〈append A n m xs ys : Vect A (plus n m)〉)
return ys
(λk :N. λx :A. λxs :Vect A k .

λih :〈append A k m xs ys : Vect A (plus k m)〉.
return {::} {A} {k} x (call 〈append A k m xs ys〉 ih))

After the transformations of the previous section (making recursion direct, and inlining)
as well as detagging, we get the following supercombinator for append:

append 7→ λA;n;m; xs; ys. case n of
0 ; ys
s〈k〉 ; ::〈(xs!0), (append A k m (xs!1) ys)〉

We need to keep n, as we establish which constructor of Vect was used by examining n.
We can still drop two arguments from append however (A and m are both passive, since
they are used only in the recursive call), and get the following substitution:

append′ 7→ λn; xs; ys. case n of
0 ; ys
s〈k〉 ; ::〈(xs!0), (append′ k (xs!1) ys)〉

Jappend A n m xs ysK =⇒ append′ n xs ys

If we do not allow detagging, and only apply the forcing optimisation, we get the following
supercombinator which discriminates on the constructors of Vect:

append 7→ λA;n;m; xs; ys. case xs of
ε ; ys
::〈a, v〉 ; :: 〈a, (append A (n!0) m v ys)〉

Here, clearly A, n and m are passive as they are only used in the recursive call so we can
build append′ by dropping these unused arguments and apply the following substitution:

append′ 7→ λxs; ys. case xs of
ε ; ys
::〈a, v〉 ; :: 〈a, (append′ v ys)〉

Jappend A n m xs ysK =⇒ append′ xs ys

This is an example of the tradeoffs which have to be made when optimising. Detagging
reduces the storage requirement of Vect, but we lose this run-time speed optimisation. Since

Chapter 6. Additional Optimisations 178

the space optimisation of detagging is small, this is one reason why we restrict detagging to
those families which are also concretely collapsible.

Types and Proofs

A common application of this transformation is to polymorphic functions, that is, those
which depend on a type. Since there is no casetype construct at present, any argument
A : ? cannot be used. Such arguments will ultimately be identified as unused and hence
dropped from run-time code.

Another consideration is what happens to proofs which cannot be collapsed. Dependently
typed programs may carry proofs of properties which are verified by the typechecker, but
never used at run-time. These are the kind of object which would be in the Prop family
in Coq and hence dropped by program extraction. In our system, we identify such objects
as unused and drop them. This definition of ≤, for example, is not concretely collapsible,
because it is not detaggable:

data m,n : N
m≤n : ?

where
leN n : n≤n

p : n≤m
leR p : n≤s m

We may use this relation to verify properties of functions. We can define minus by
induction over the numbers, using the proof to ensure that no invalid call of minus can be
made:

let n,m : N p : m≤n
minus n m p : N minus n 0 p 7→ n

minus n (s m) p 7→ s (minus n m (le trans S p))

A small amount of theorem proving is necessary to create the third argument to the
recursive call of minus. le trans S is a lemma which proves s n≤m → n≤m. When
elaborated and compiled to an optimised supercombinator, we get the following:

minus 7→ λn;m; p. case m of
0 ; n
s〈k〉 ; s〈minus n k (le trans S p)〉

The 3rd argument, p, is passive; it only appears as part of the 3rd argument to the
recursive call. As such, it can be removed.

Higher Order Functions

A limitation of this transformation can arise with the use of higher order functions. For
example, consider the following function vmap which maps a function across a vector.

let f : A→ B xs : Vect A n
vmap f xs : Vect B n vmap f xs ⇐ elim xs

vmap f ε 7→ ε

vmap f (x ::xs) 7→ (f x)::(vmap f xs)

Chapter 6. Additional Optimisations 179

We may wish to map a function with unused arguments across this vector, such as the
following function mkPair which pairs a value of any type with itself. In its elaborated
form, there is an unused argument A giving the type of the value.

let a : A
mkPair a : (A×A) mkPair a 7→ (a, a)

mkPair 7→ λA; a. (a, a)A

When passed to the higher order function vmap, for example to map across a vector
xs : Vect N n, the elaborated ExTT is as follows:

vmap N (N× N) n (mkPair N) xs

Since mkPair is not fully applied here, we cannot apply the argument removal trans-
formation, and must instead call the wrapper function. One possible way to avoid this is to
η-expand the application and λ-lift the resulting abstraction. It is not obvious whether this
additional step, creating an extra supercombinator, is beneficial, and further experimenta-
tion with real Epigram programs will be necessary to provide useful data for comparison.

6.2.3 Identifying No-Operations

Consider the following function, which weakens an element of a finite set by lifting it into
the next biggest set:

let i : Fin n
weaken i : Fin (s n) weaken f0 7→ f0

weaken (fs i) 7→ fs (weaken i)

This function doesn’t appear to be doing much — in fact, most of the activity is implicit;
in the f0 case the return value is in the next higher set but we do not see this due to the
implicit argument. To clarify what is happening, let us look at the elaboration of weaken

to TT:

weaken 7→ λn :N. λi :Fin n. Fin-Elim i (λn :N. λi :Fin n. 〈weaken n i : Fin (s n)〉)
(λn :N. return (f0 (s n)))
(λn :N. λi :Fin n. λih :〈weaken n i : Fin (s n)〉.

return fs (s n) (call 〈weaken n i〉 ih))

We now see explicitly that the function increments the index of the finite set. Fin has
forceable arguments, however, so after the forcing optimisation, we have the following ExTT

definition:

weaken 7→ λn :N. λi :Fin n. Fin-Elim i (λn :N. λi :Fin n. 〈weaken n i : Fin (s n)〉)
(λn :N. return (f0 {s n}))
(λn :N. λi :Fin n. λih :〈weaken n i : Fin (s n)〉.

return fs {s n} (call 〈weaken n i〉 ih))

The indices which are incremented (which is, of course, the purpose of this function)
have been deleted! We might begin to get suspicious of the purpose and run-time cost

Chapter 6. Additional Optimisations 180

of this function, even more so when we examine the supercombinator which results after
elimination unfolding, inlining and argument removal:

weaken 7→ λi . case i of
f0〈〉 ; f0〈〉
fs〈i ′〉 ; fs〈weaken i ′〉

We have a function which does nothing, recursively. Clearly, we would like to avoid
running this function as it has existed only to manage indices for typechecking. The RunTT

transformation we would like is:

JweakenK =⇒ id

(where id 7→ λx . x and can itself be inlined.)
How can we establish systematically whether a RunTT function is equivalent to the

identity function? A function f of a family D with n constructors ci ~ai ~yi where ~a are non-
recursive arguments and ~y are recursive arguments is effectively a no-operation if it has the
following form:

f 7→ λx . case x of
c1〈~a, ~y〉 ; c1〈~a, f y11, . . . , f y1m〉
. . .

cn〈~a, ~y〉 ; cn〈~a, f yn1, . . . , f ynm〉
The property that a function of this form is effectively the identity function can be

shown as follows. Where the input to f is a constructor ci with no recursive arguments,
then f ci〈~a〉 = ci〈~a〉, and so for all base cases, the function is equivalent to the identity
function. Now, where the input is a constructor ci with recursive arguments, we have

f ci〈~ai, ~yi〉 7→ ci〈~a, f yi1 . . . f yim〉
We must show that

ci〈~a, f yi1 . . . f yim〉 = ci〈~ai, ~yi〉
To show this, it suffices to show that f yij = yij for all i ,j . This is exactly what we get
from the inductive hypothesis, so f x = x for all x .

This is another important optimisation in a dependently typed setting which we would
not expect to have to deal with in a simply typed setting. Such “invariant management”
functions may often be used in typechecking and it is clearly desirable that we do not get a
corresponding run-time effect of taking structures apart only to put them back together again
immediately. Note that this transformation does not consider the possibility of mutually
recursive no-operations. In such a case, a more sophisticated analysis is required.

6.2.4 Rewriting of False-Elim

So far we have been examining transformations which exist primarily to catch up with the
position where we can start optimising simply typed programs. This in itself is a good thing;

Chapter 6. Additional Optimisations 181

several well understood optimisations are now open to us such as strictness analysis, tail
recursion optimisation, deforestation, several lower level code transformations from [San95]
and so on. But now, on top of these, we finally see an example of how dependent types can
further optimise programs.

The empty type False, is declared as follows:

data
False : ?

where

There are no constructors (i.e., no canonical forms) and, correspondingly, the elimination
rule has no ι-schemes and hence no reduction behaviour. At run-time, where elimination
rules are only executed when applied to canonical forms, we can be sure that False-Elim

will never be executed, because False has no canonical forms. What are the consequences
of this?

Recall that at run-time all arguments to functions must be reducible to a canonical form.
Since False has no canonical forms, we can be sure that any function taking an argument
of type False (or indeed any type with no constructors) will never be executed. Also, a
function which returns an instance of False can never produce such an instance so it, too,
will never be executed. We introduce a new constant, Impossible into RunTT to indicate
that an expression cannot be evaluated. Compilation of this constant produces code which
places a dummy value on the stack; this value cannot be examined since it has no canonical
forms, nor can we generate any code which attempts to examine it.

EJImpossibleK r n =⇒ ALLOC
CJImpossibleK r n =⇒ ALLOC

Figure 6.5: Compilation of Impossible

The ALLOC instruction (figure 6.6) pushes a dummy value, HOLE, onto the stack. In
practice, we never expect to build such a value in a lazy setting. ALLOC was used in
Johnsson’s original G-machine to allocate space for the results of letrec expressions.

〈ALLOC; c,S ,V ,G ,E ,D〉 =⇒ 〈c,n ′.S ,V ,G [n ′ = HOLE],E ,D〉

Figure 6.6: Operational semantics of ALLOC

Given a function

f 7→ λ~a. e

If ai : False for any i , or f : ∀~a : ~A. False, then we modify the definition of f to

f 7→ λ~a. Impossible

Chapter 6. Additional Optimisations 182

This transformation, impossible expression elimination, is defined as in figure 6.7. The
condition that T is a type with no elements may not be decidable, therefore in practice we
take as the condition that T is a family with no constructors.

Such functions obviously have all arguments in ~a unused, and can be inlined. This is
one example of a situation where retaining the types on supercombinators is convenient.
It is preferable to introduce Impossible as a keyword in RunTT rather than ExTT since
introducing it in ExTT would cause some terms not to be typecheckable.

Jλ~a. eK =⇒ λ~a. Impossible
if ∃ i such that ai : T
where T is a type with no elements.

Figure 6.7: Impossible expression elimination

An obvious example of a function which takes an argument of type False is False-Elim.
Recall from Section 4.4.2 the difficulty of compiling the ι-schemes for False-Elim — by this
transformation however, the supercombinator built for False-Elim is straightforward:

False-Elim 7→ λx ;P . Impossible

When combined with other transformations, particularly inlining, this is a powerful
optimisation technique. We will see shortly in section 6.2.6 how marking of impossible to
execute functions leads to the removal of impossible case branches.

This transformation relies on the strong normalisation property of TT; there is no ⊥ in
Epigram. If we were to remove the strong normalisation restriction from TT and allow
either or both of general recursion and partial function definitions, we would be able to
create a value of type False, which would invalidate this transformation. One way to do this
is by defining a general recursive function absurd as follows:

let absurd : False
absurd 7→ absurd

Another way is to use a partial function definition, and take the head of an empty list:

let l : List A
head l : A head (cons x xs) 7→ x

let absurd : False
absurd 7→ head nil

Since TT terms are strongly normalising, however, we need not worry about this and
can be certain that an element of False cannot be constructed.

6.2.5 Distributing Applications of case

If the result of a case expression is applied to some expression x , then x will be applied to
whatever the result of the case application is. In this situation, we move the application
to each case branch (figure 6.8). The advantage of this transformation is that it opens up

Chapter 6. Additional Optimisations 183

possible inlining in each case branch by ensuring that each branch is as fully applied as
possible. Inlining is important here since it can help to explicitly identify impossible cases.

J(case e of
c1 ~a1 ~y1 ; e1

. . .
cn ~an ~yn ; en) xK

=⇒ case e of
c1 ~a1 ~y1 ; e1 x
. . .
cn ~an ~yn ; en x

Figure 6.8: Distributing Applications

6.2.6 Impossible Case Deletion

If a case branch leads to impossible to execute code, that case branch can be deleted; there
is no point in generating code for an error condition since we know error conditions can
never be reached. Figure 6.9 shows the transformation.

Jcase e of
c1 ~a1 ~y1 ; e1

. . .
ci ~ai ~yi ; Impossible
. . .
cn ~an ~yn ; enK

=⇒ case e of
c1 ~a1 ~y1 ; e1

. . .
cn ~an ~yn ; en

Figure 6.9: Impossible Case Deletion

The possibility of this transformation arises after inlining of functions which cannot be
executed either due to returning False or taking an argument of type False.

case Collapsing

Santos [San95] lists several transformations which eliminate case expressions. These are:

• case reduction, where the case expression scrutinises a constructor application, a
variable which has already been scrutinised, or a variable let bound to a constructor
application.

• case elimination, which eliminates case expressions on already evaluated unboxed
values. Such case expressions exist to evaluate the unboxed value.

• case merging, which combines two case expressions which scrutinise the same vari-
able.

• case error, which reduces case ⊥ of . . . to ⊥.

Chapter 6. Additional Optimisations 184

• default binding elimination, which removes a default binding if the variable it
binds is unused.

• dead alternative elimination, which removes alternatives which cannot apply, given
previous case expressions. This is similar to our impossible case deletion, but is based
on analysis of code rather than types.

Many of these also apply in RunTT, but we have another possibility, which arises from the
fact that ⊥ is not a value in Epigram. If deletion of impossible cases and dead alternative
elimination leave only one option, then we no longer need to examine the scrutinee — we
already know what its value must be! This is only possible in the absence of ⊥; otherwise,
⊥ is an element of every type and can always be a possibility during case analysis.

Example – vTail

Consider again vTail, where the following simple definition hides an elaborate proof that
the empty vector case is impossible:

let v : Vect A (s n)
vTail v : Vect A n

vTail v ⇐ Vect-Case v
vTail (a:: v) 7→ v

It takes a number of elaboration and transformation steps before we are in a position
to apply any impossible case deletion at the RunTT level. The details of the elaboration
and compilation are given in appendix A; here we will only consider the final stages, in two
settings — firstly, where Vect has had the forcing optimisation only applied (figure 6.10),
and secondly, where it has had the detagging optimisation applied (figure 6.11).

vTail 7→ λA;n; v . case v of
ε〈〉 ; Impossible
::〈x , xs〉 ; (v !1)

Figure 6.10: vTail supercombinator for forced Vect

In the case of forced vectors, the ε case branch has been explicitly marked as impossible
to reach. By impossible case deletion, we can remove the Impossible branch, which results
in a case expression with only one possibility:

vTail 7→ λA;n; v . case v of
::〈x , xs〉 ; (v !1)

This results in a case expression which can be collapsed. We know that the only pos-
sibility is a :: constructor, so we do not even need to check. Note that if we had xs rather
than (v !1) as the right hand side, we would not be able to collapse the case; we would need

Chapter 6. Additional Optimisations 185

to use the case expression to bind xs to the tail of the vector. We only map argument
projections back to the name of the argument they project if we still have the name bound
by a case expression after all possible case eliminations have been applied. The resulting
supercombinators (after removal of unused arguments) are:

vTail′ 7→ λv . (v !1)
vTail 7→ λA;n; v . vTail′ v

vTail 7→ λA;n; v . case s〈n〉 of
0〈〉 ; Impossible
s〈k〉 ; (v !1)

Figure 6.11: vTail supercombinator for detagged Vect

In the case of detagged vectors (figure 6.11), the scrutinee of the case expression is already
a canonical form, so case selection can be made at compile-time rather than run-time before
even examining the contents of each case branch. Again, we end up with:

vTail′ 7→ λv . (v !1)
vTail 7→ λA;n; v . vTail′ v

6.2.7 Interaction Between Optimisations

Several of the optimisations presented here depend on each other — in particular, inlining
is important to all of them and applying more transformations opens up more possibility for
inlining. On definition of a function, after its elaboration to TT, we apply transformations
in the following order:

Transformations in ExTT

• Translate to ExTT from TT applying the forcing, detagging and collapsing markings
from Chapter 4 and the GMP transformation from Chapter 5.

• Apply β-reductions. We do this simple optimisation first as it can arise from optimi-
sations already made (forcing in particular) and can open up the possibility of further
optimisations.

• Rewrite labelled types and drop labelling annotations.

• Unfold D-Elim rules to D-Case. This is made possible by the removal of induction
hypotheses in the previous stage.

• Translate to RunTT.

Chapter 6. Additional Optimisations 186

Transformations in RunTT

• Inline D-Case operators. Later optimisations are applied to case expressions directly
and have a different effect depending on the function which uses the case operator, so
inlining these early gives the most benefit.

• Apply other inlining transformations generated from previous function definitions.

• Distribute case applications, to create opportunities for inlining and identification of
impossible cases.

• Identify expressions which cannot be evaluated due to taking or returning a value in
a type with no constructors.

• Apply inlining again, since the last stage may open up more inlinable applications.

• Delete impossible cases which may have arisen from the previous inlining stage.

• Collapse case expressions where possible. These may arise from the previous stage
where all but one case branches are impossible.

• Apply inlining again, since new inlining rules may have been generated and new op-
portunities may have arisen from case collapsing.

• Remove unused arguments.

• Identify No-operations. This can be applied at any time but it makes sense to wait
until as many removals as possible have been made since more no-operations may arise
as a result.

• Apply a final inlining phase, in particular to inline any applications of id generated
by the previous stage.

It is not clear, however, what the optimal ordering of transformations is, or even if
such an ordering exists. Since many transformations can expose possibilities for further
transformations, it may even be preferable to apply groups of transformations iteratively, as
is the case with GHC’s rewrite rules.

6.3 More Examples

Finally, let us look at how these transformations affect the compilation of some functions we
have already seen in a higher level form. First, we look at the RunTT code for the collapsing
of the domain predicate for quicksort. We then look at projection; firstly, projection of a
value from a vector, then the corresponding projection from a value environment indexed
over a vector as in the interpreter example in section 4.6.

Chapter 6. Additional Optimisations 187

6.3.1 Collapsing a domain predicate — quicksort

We saw in Chapter 4 how domain predicates for proving termination, such as that for
quicksort, are collapsible, so that the resulting code has the intended operational semantics
of the original program. quicksort is defined by means of a view, hence by induction over
a proof of the qsAcc predicate:

data l : List N
qsAcc l : ?

where
qsNil : qsAcc nil

qsl : qsAcc (filter (< x) xs) qsr : qsAcc (filter (≥ x) xs)
qsCons qsl qsr : qsAcc (cons x xs)

quicksort xs ⇐ view allQsAcc xs
quicksort nil 7→ nil

quicksort (cons x xs)
7→ quicksort (filter (< x) xs) ++ cons x (quicksort (filter (≥ x) xs))

Since qsAcc is collapsible (by being indexed over the List being sorted), its elimination
rule is defined by case analysis on the List. The RunTT supercombinator for quicksort is
simplified by the following transformations:

• Collapsing of qsAcc and forcing of List (which removes the element type from the
structure).

• Unfolding the view rule qsAcc-View to qsAcc-Case.

• Inlining qsAcc-Case to a direct case expression on the List index.

The resulting supercombinator is given in figure 6.12. This version of quicksort that we
compile is therefore exactly the version we would write in a high level language if we did not
have to show termination. The advantage is that we know this general recursive definition
must terminate.

quicksort 7→ λl . case l of
nil〈〉 ; nil〈〉
cons〈x , xs〉 ; quicksort (filter (< x) xs) ++

cons〈x ,quicksort (filter (≥ x) xs)〉

Figure 6.12: Supercombinator definition of quicksort

6.3.2 Projection from a vector — lookup

The lookup function projects the ith value from a vector. It does not need to check for an
empty vector, because its type specifies that the input cannot be an empty vector and there
can be no overflow. This should be reflected in the compiled code.

Chapter 6. Additional Optimisations 188

let i : Fin n v : Vect A n
lookup i v : A lookup f0 (a :: v) 7→ a

lookup (fs i) (a :: v) 7→ lookup i v

The RunTT supercombinator for lookup is simplified by the following transformations:

• Detagging of Vect and forcing of Fin.

• Unfolding of the elimination rule Fin-Elim to Fin-Case.

• Inlining Fin-Case.

• Elimination of the impossible case of ε.

• Dropping the unused arguments representing the indices of the Fin and Vect.

The resulting supercombinator is as follows:

lookup 7→ λi ; v . case i of
f0〈〉 ; v !0
fs〈x 〉 ; lookup x (v !1)

Figure 6.13: Supercombinator definition of lookup

This supercombinator reflects the fact that no run-time testing is required on the length
of the vector — to project values out and make the recursive calls, we simply assume that
the vector must be non-empty and project out the relevant argument. Figure 6.14 shows
the compiled G-code for the lookup function.

SJλi ; v . case i of
f0〈〉 ; v !0
fs〈x 〉 ; lookup x (v !1)K

=⇒ PUSH 1; EVAL;
CASEJUMP (f0, l1) (fs, l2);
LABEL l1;

PUSH 2; EVAL; PROJ 0; MOVE 1; DISCARD 1; JUMP l ;
LABEL l1;

SPLIT 1; PUSHFUN lookup; PUSH 0; MKAP;
PUSH 2; PROJ 1; MKAP; EVAL;
MOVE 2; DISCARD 2;

LABEL l ;

Figure 6.14: Compiled G-code for lookup

Chapter 6. Additional Optimisations 189

6.3.3 Projection from an environment — envLookup

In the implementation of the well-typed interpreter in section 4.6, we used the envLookup

function to project a value from the environment. This function was defined as follows:

let v : Var e i T ve : ValEnv e
envLookup v ve : T

envLookup stop (extend t r) 7→ t
envLookup (pop v) (extend t r) 7→ envLookup v r

Recall that the value environment is indexed over a type environment (represented by
a Vect of types) to ensure that values of the correct type are projected out of the value
environment. Again, the type specifies that the environment cannot be empty.

The RunTT supercombinator for envLookup is simplified by the following transforma-
tions:

• Detagging of ValEnv, forcing of Fin and collapsing of Var such that constructor choice
is made by the constructor of Fin.

• Unfolding of the elimination rule Var-Elim to Var-Case.

• Inlining of Var-Case to a direct case expression on its Fin index.

• Elimination of the impossible case of empty environments.

• Dropping the unused arguments representing the indices of the Var, Fin and type and
value environments.

The resulting supercombinator is given in figure 6.15.

envLookup 7→ λi ; ve. case i of
f0〈〉 ; ve!0
fs〈x 〉 ; envLookup x (ve!1)

Figure 6.15: Supercombinator definition of envLookup

Perhaps unsurprisingly, the resulting code has the same shape as the code for lookup;
the only difference in the high level definition is the introduction of several invariants to
check that the environments are synchronised. Removal of the invariants leads to code of
the same form.

Correspondingly, the G-code for envLookup is almost identical to that for lookup; the
only difference is in the recursive call (which is to envLookup rather than lookup). Figure
6.16 shows the G-code for envLookup.

Chapter 6. Additional Optimisations 190

SJλi ; ve. case i of
f0〈〉 ; ve!0
fs〈x 〉 ; envLookup x (ve!1)K

=⇒ PUSH 1; EVAL;
CASEJUMP (f0, l1) (fs, l2);
LABEL l1;

PUSH 2; EVAL; PROJ 0; MOVE 1; DISCARD 1; JUMP l ;
LABEL l1;

SPLIT 1; PUSHFUN envLookup; PUSH 0; MKAP;
PUSH 2; PROJ 1; MKAP; EVAL;
MOVE 2; DISCARD 2;

LABEL l ;

Figure 6.16: Compiled G-code for envLookup

6.4 Summary

In Epigram, we build function definitions by elimination rules. This has several advantages
— it gives a uniform way to build functions, ensures that functions are terminating by
abstracting recursive calls and we have also seen how we can use elimination rules to remove
duplicated data. However, they do add an extra level of abstraction; when we have finished
with the elimination rule, we would like to remove that level of abstraction and do recursion
directly. In this chapter, we have seen a technique for doing so, using labelled types to
replace inductive hypotheses with direct recursive calls.

Having removed this level of abstraction, we are now in a position to apply other well-
known optimisation techniques. Two very simple techniques are β-reduction and inlining.
While they do not in themselves produce a great improvement, their main purpose is to
expose other optimisation opportunities. We have seen several examples in this chapter, in
particular exposing impossible cases for removal and in extreme cases, such as with vTail to
remove the case expression completely since only one branch is possible. This ability to do
case collapsing when only one case is valid arises from the type system, because canonical
values cannot be ⊥.

Some other optimisations are necessitated by using dependent types, such as the removal
of identity functions like weaken. Dropping unused arguments is also more important
here than in a simply typed language, since several arguments may be added to functions
implicitly as the indices of a family. Inductive families are tied to their indices in that they
are always passed around with their indices. If a particular function does not use the indices,
we would like to avoid passing them to that function, but D-Case and D-Elim need the
indices to pass through to their methods. By removing D-Elim and inlining D-Case, we
can establish which of the indices are unused and remove them.

After applying the optimisations in this chapter, we are in a better position than we
would be with simple types — we can now apply several more well known optimisations

Chapter 6. Additional Optimisations 191

for tail recursion, strictness analysis, and so on, but we have already applied additional
optimisations based on the dependent type system.

Chapter 7

Conclusions

7.1 Contributions

In this thesis, we have seen several techniques for compiling dependently typed functional
programs. The style of programming involves extensive use of indices on inductive families
to maintain invariant properties of programs. In the course of developing an implementation
of the core language, TT, we have made the following observations:

• Well understood methods, with some minor extensions and modifications, can be used
to compile a dependently typed programming language based on inductive families.
We get a compiled implementation of TT by translating to supercombinators and
G-code. The additional considerations for Epigram are as follows:

– We need to take account of functions which accept varying numbers of arguments.
This is dealt with simply, without needing to modify the lambda lifting process,
by a supercombinator of fixed arity returning a value of function type if more
arguments are expected.

– The compilation scheme needs to take account of type constructors. Since we
have no means to analyse type constructors at run-time, we need only add one
node to the heap to represent all types.

• Implementing TT involves the compilation of pattern matching elimination rules. We
have observed that to compile such rules involves dealing with repeated arguments,
arbitrary terms, and the presence of presupposed constructor symbols in patterns. Far
from making pattern matching more difficult to compile (since we might expect to have
to perform a run-time conversion check), we can exploit the fact that all elimination
rules are well-defined and respectful — we do not have to test repeated arguments for
convertibility since we know by typechecking that such arguments must be convertible.
This analysis of the patterns in an elimination rule leads to three optimisations; forcing,

192

Chapter 7. Conclusions 193

detagging and collapsing. Forcing and detagging remove parts of structures which
represent information duplicated elsewhere whereas collapsing removes entire data
structures, meaning that a program can be defined by induction over a proof without
that proof having to be stored at run-time (domain predicates being an important
example of this).

• We have considered the implementation of a numerical data type in Epigram. To do
so in core Epigram is possible, however in a practical implementation we would like to
make use of the arithmetic operations available on the underlying CPU. To this end,
we have seen transformation rules inserted into the compilation process to translate
the unary definition of N into a GMP based implementation of big numbers.

• Impossible case removal is an optimisation which requires complex static analysis in a
simply typed language, but is easily implementable in our setting by analysis of types
and application of a set of fairly obvious program transformations. We can remove
impossible cases by observing that an element of the empty type, False, cannot be
constructed.

While there are obvious overheads in a näıve implementation of TT, by a series of re-
markably straightforward transformations we can remove these overheads and even achieve
optimisations which are not obviously available in equivalent simply typed programs.

7.2 Conclusions

Programming in Epigram is based on using elimination rules to implement the pattern
matching behaviour of functions. While the high level notation involves writing functions in
pattern matching form, the elaboration of these definitions into TT gives a definition in terms
of elimination rules derived from data declarations. Effectively, these elimination rule based
definitions correspond to compilation to simple case expressions. An elimination rule D-Elim

and its variants D-Case and D-View are high level abstractions of case expressions and can
be translated into case expressions by a simple unfolding and inlining transformation, as
seen in Chapter 6.

Elimination rules implement pattern matching, and are always used down to the RunTT

level (at least until D-Case operators are inlined) to abstract pattern matching. Only
elimination rules have access to the actual data; as such, we are free to choose any concrete
representation for a data type provided that:

• The implementation of its elimination rule knows how to choose the appropriate ι-
scheme based either on its own representation, or the representation of its indices.

• All other elimination rules know how to discriminate on its representation, if necessary
for detagging.

Chapter 7. Conclusions 194

• If its elimination rule cannot discriminate on its own representation (as is the case
with detagged families) then no other elimination rule will attempt to discriminate on
its representation.

While pattern matching and fixpoint equations are often considered better as they are
more readable for programmers [Coq92], elimination rules have advantages for implementa-
tion purposes, and so Epigram translates pattern matching definitions into elimination rule
based definitions. A further advantage is that implementation by elimination rules provides
an optimisation opportunity; moving all case analysis on a datatype into one place means
that it is easier to change the representation of that datatype, as we did with the forcing,
detagging and collapsing optimisations in Chapter 4.

This is also why we can choose a GMP implementation of N — only N-Elim and elim-
ination rules which discriminate on Ns need to know how to discriminate between 0 and
n + 1. It is conceivable that we could implement other datatypes externally in the same
way — an implementation of Vect may, for example, simply be an appropriate sized block
of memory. As long as the elimination rule knows how to discriminate between empty and
non-empty Vects (which it can do on length, as we know from detagging) and can extract the
head and tail of non-empty Vects, then we can choose this implementation. Optimisations
of data structures arise from analysis of elimination rules; forcing, detagging, collapsing,
and the transformation of N to a GMP representation all arise by such an analysis (forcing,
detagging and collapsing are automatic, the N transformation is not).

Ultimately, compilation of TT to an executable form is by using standard techniques
with small modifications. The modifications we made to the G-machine were simply a
graph node for holding types and argument projection for data structures for use in forced
and detagged elimination rules. We also have a modified pattern matching compilation
scheme for ι-schemes; this does not need to be as general as a scheme for pattern matching
definitions in a simply typed language because of the restriction that ι-schemes must be
respectful and well-defined. In particular, we have no need to check for unmatched patterns;
there can be no error case. Given the minimal modification made to the G-machine, we can
expect the same modifications to be applicable to more sophisticated and efficient run-time
systems, such as GRIN [BJ96, Boq99] or the STG-machine [Pey92].

The removal of domain predicates (such as in showing termination of quicksort) is
an important application of the collapsing technique. Bove points out [Bov02a] that if we
suppress the proofs of the domain predicate, we get almost exactly the original algorithm.
This is certainly true for the purposes of display and understanding, but the usual method
for suppressing proofs at run-time (by making them part of the logical Prop universe and not
allowing computation over them) does not work; we need to be able to write the function
by induction over these proofs. Collapsing provides a method for actually removing proofs
of the domain predicate at run-time.

Some of the techniques we have seen can also apply to program extraction, particularly as

Chapter 7. Conclusions 195

implemented in Coq [PM89, Let02]. The difficulty is in translating to the Case/Fix setting,
although implementing case as an operator D-Case, abstracting away the case analysis as
with elimination rules, is a possible approach. The current Coq extraction system does not
remove forced arguments from inductive families; it is primarily designed for extracting pro-
grams built from a specification which pairs a result with proofs of properties of that result.
The forcing optimisation would improve code extracted from indexed inductive families.
Collapsing would also be beneficial; extraction aims to remove logical parts from proofs and
retain computational parts. A collapsible data structure describes some other computation
(such as the domain predicate for quicksort) and as such is not itself a computational part;
removing such a structure would be a valuable optimisation for extracted code.

In imperative and simply typed functional languages, sophisticated techniques are neces-
sary to apply dead code elimination. In DML, Xi shows how constraint checking can be used
to eliminate unreachable case branches [Xi99a]. In our setting, with full inductive families,
the compile-time approach is even simpler — any function which takes an argument of a
type with no constructors (e.g. False), or returns a value in a type with no constructors,
can be replaced by the constant Impossible, leading to obvious transformations on RunTT

case expressions. Values of type False arise from the equational reasoning performed by
the elaborator on the indices of a family; it is the use of inductive families which allows
impossible cases to be deleted easily.

Array bounds check elimination is an optimisation which arises from Xi’s work [XP98]
with DML, where expressing constraints on function types results in the removal of bounds
checking code at run-time. The lookup function over the Vect family demonstrates a similar
optimisation in an inductive family based language. We never check the vector is empty
because the type proves that it cannot be. Again, with lookup, the impossible cases of
the empty vector are eliminated. This kind of optimisation is likely to come up often in
practice where a function’s domain type covers only part of a family — we see examples in
the interpreter at the end of Chapter 4 and the implementation of big number arithmetic
in Chapter 5.

The techniques described here depend on the knowledge gained from the type system.
However, many of them also depend on terms being strongly normalising. Without strong
normalisation, we can build a value of type False (although, obviously, not a canonical value
since there are none). If we can build an element of the empty type, we have arguments
which we can pass to False-Elim, which does not have ι-schemes. It does, however, allow
us to build non-canonical but type correct terms which prove something that ought to
be unprovable. For example, we can use a function absurd : False to build the proof
of 0 = sn which makes an application of vTail to an empty list type correct. Without
strong normalisation, we must introduce checks into the run-time system which make sure
a term is canonical before it is reduced; as soon as the possibility of non-canonical terms
at run-time is introduced, we lose the possibility of collapsing and impossible case branch
elimination. Forcing and detagging are still applicable however. Strong normalisation is

Chapter 7. Conclusions 196

even more important than we first thought — not only do we need it to ensure decidability
of typechecking, we also need it to make full use of types in optimisation.

The real question is whether the inductive family based programming paradigm can
compete with more mainstream programming paradigms. It is clear that programs based
on inductive families are safer, in that their type specifies more precisely what the program
does and hence gives the compiler more possibility of identifying errors at compile-time.
However, does this lead to slower, more memory-intensive performance at run-time? At
this stage, our implementation is not mature enough to give solid results for comparison,
nor is there a sufficient body of Epigram programs to get real world examples. However,
the nature of the code which is generated (both at the RunTT level and the compiled G-
machine code) with several run-time checks eliminated and no obvious redundant data or
arguments suggests that dependently typed programs can have at least as efficient a run-
time performance as simply typed programs; when run-time checks which would otherwise
be present are eliminated due to the richness of the type system (for example in lookup,
vTail) this suggests that dependently typed programs can ultimately be more efficient than
simply typed programs.

The techniques described in this thesis show that the style of programming implemented
by Epigram is a feasible approach to generating safe and efficient code at run-time — ap-
parent overheads are removable by remarkably straightforward analysis of elimination rules
and further optimisations arise directly from typing constraints. I believe that dependent
types will lead to programs which are faster and more easily shown correct than their simply
typed counterparts.

7.3 Further Work

Programming with inductive families as in Epigram is an innovative approach to program-
ming; until [McB00a] and [MM04b] the main focus of research into dependent types was for
theorem proving and program verification using systems such as Coq and Lego. This the-
sis has presented a first implementation of compilation techniques specifically designed with
dependently typed programming in mind. As such, it raises several questions and suggests
many possible directions for future work. We will finish by examining these questions and
considering how further work may proceed.

At the time of writing, the Epigram front end is still in development — an early version
has recently been released, but the majority of the work presented in this thesis was carried
out in a theorem prover based on TT, using small example programs which were elaborated
either by hand or with the help of other theorem proving systems. When the system is
stable, we need to write programs both to demonstrate the advantages of dependently typed
programming for ensuring program correctness and to have a more realistic body of programs
with which to test the run-time efficiency. Many of the examples of this thesis could be
extended or adapted; in particular it would be interesting to develop a compiler for a subset

Chapter 7. Conclusions 197

of Haskell in Epigram.

The compilation techniques discussed in this thesis are geared towards compilation of
code for run-time execution (although we have seen that the forcing and detagging optimi-
sations in particular are also applicable at compile-time). The execution strategy we have
examined, via RunTT and G-machine code, is designed for run-time execution only. How-
ever, it is also worth considering building abstract machine code for compile-time execution
by the typechecker, as in [GL02]. This work improves the speed of typechecking in Coq

substantially for theorems involving a large amount of computation, although for the Coq

standard library the speed is close to the original implementation. Checking the standard
library requires little computation; we might expect more in programs which use inductive
families heavily and so this approach is worth considering. Grégoire and Leroy implement
strict evaluation, whereas we have used lazy evaluation for Epigram — their techniques are
nevertheless adaptable to lazy evaluation by adding a new heap node type to the G-machine
for free variables.

Epigram is based on a strongly normalising dependent type theory. The strong normal-
isation property presents several possibilities for optimisation although many of these have
not yet been investigated. In a strongly normalising language choice of reduction order is
less important — whatever happens, the program will terminate, although choice of redex
can determine how quickly reduction reaches a normal form. If terms are not strongly nor-
malising, we have to be careful with optimisation due to the undecidability of the Halting
Problem; in a Turing complete language we cannot evaluate arbitrary subexpressions at
compile-time since they might not terminate. A lot of effort can be spent in a compiler for
a lazy language on finding which subexpressions can be evaluated strictly without causing a
program to loop forever due to the evaluation of an infinite structure, e.g. [CP85]. However,
since we have strong normalisation for Epigram, we can safely choose to evaluate any sub-
term strictly. We originally chose lazy evaluation because of the number of values (implicit
arguments to both functions and constructors in particular) which exist only for typecheck-
ing and which never need to be evaluated at run-time. In the presence of our optimisations,
perhaps we should reconsider this choice. There are still many problems where lazy eval-
uation is a more attractive choice — search problems are an example, where we build a
search tree for the whole search space, but only evaluate a small part of this tree — perhaps
we should default to strict evaluation and limit lazy evaluation to such problems. Robert
Ennals, in his thesis on adaptive evaluation strategies [Enn03], reaches the conclusion that
it is better to default to strict evaluation and annotate programs where laziness is required.
Further investigation is required on the benefits of each evaluation strategy in a strongly
normalising language.

Many of our optimisations are based on changing the implementation of a family’s elimi-
nation rules so that the family can be stored in a more efficient way. Optimising the elimina-
tion rule has the consequence of optimising programs which elaborate in terms of it. Hence,
we might not only consider implementations which allow more efficient storage of data, but

Chapter 7. Conclusions 198

also implementations which traverse data structures in a more efficient manner. We briefly
considered an iterative implementation of N-Elim in Chapter 5; traversal of Lists and Vects
is also an iterative process (since the structures are linear) so the recursive elimination rules
we generate are perhaps not the best implementation. Making functions tail-recursive is well
known as an important optimisation in functional programming [Ste77, LS00]; we ought to
look for such an optimisation in compiler generated elimination rules, since these rules form
the basis of all computation in Epigram. There are several things to consider in making
elimination rules for Lists and Vects iterative — it may involve changing the order of traver-
sal (right to left, rather than left to right) or even changing the internal representation of
the data structure.

There are some limits to the forcing optimisation as implemented in Chapter 4. Not all
forceable arguments are concretely forceable, as forcing relies on identifying the inverse of
injective functions for which we do not have a decision procedure in general. This means that,
potentially, we are storing duplicate values without being able to tell they are duplicates.
For example, we could index a binary tree over the number of items stored at the leaves:

data A : ? n : N
Tree A n : ?

where a : A
Leaf a : Tree A (s0)

l : Tree A n r : Tree A m
Node l r : Tree A (plus n m)

We cannot drop both n and m from the arguments to the Node constructor, but in theory
we can work out one from the other. In practice, however, the forcing optimisation keeps
both. Possible solutions involve allowing the user to specify how to compute a value which
is forceable, but not concretely forceable, or even allowing the user to specify that a value
is unused (and therefore deletable) at run-time and then checking that it really is unused.
Similar problems apply to the detagging and collapsing optimisations, where a value may
be detaggable or collapsible, but not concretely so. Many views are collapsible, for example
— Compare, however, is a view which is collapsible but not concretely collapsible.

In Chapter 5 we saw how an external implementation of N could be used to optimise
arithmetic. We could imagine extending this to give low level implementations of other com-
mon data structures, List and Vect being obvious examples. To do this would be to adopt an
opposing philosophy to that adopted in the design of the STG machine; a design philosophy
of the STG machine is that user defined types should be efficient enough that the same
technology can apply to built in types and standard library types (such as lists). However,
where efficient external implementations exist it makes sense to make use of them, partic-
ularly when applying the optimisation is a simple matter of replacing the constructors and
elimination rule with appropriate alternatives. Introducing primitives also encourages us to
think about unboxing representations; to implement unboxing in polymorphic functions, we
can consider introducing a type level case construct for run-time type analysis as in [HM95].
The overheads of this approach, namely that types (in many cases) need to be stored at
run-time are potentially outweighed by the benefits of unboxing. Of course, in any case

Chapter 7. Conclusions 199

where types remain unused they can still be deleted by the optimisations of Chapter 6. We
can also use external types in another way, by defining abstract datatypes and an interface
— e.g., a mathematical program may wish to make use of an external implementation of
floating point values and associated operations. In this setting, the abstract datatype has no
constructors or elimination rule, but simply a set of functions (with Epigram types). This
would require us to think about the structure of a module system for Epigram, perhaps
following some of the ideas of the recently introduced Coq module system [Chr04].

An effect of the forcing optimisation is that it changes the shape of a data type [Jay96].
The shape of a data type refers to its structure and the “holes” where data can be inserted.
The forcing optimisation changes Fin to a type with a constructor of no arguments, and a
constructor with a recursive argument. This resulting shape of Fin is the same as that of N;
it follows that optimisations which apply to N ought to apply to Fin too — we could, for
example, reasonably store Fin as a GMP integer. We might even be able to go further with
Fin, since its upper bound is known from the type, and store it as a machine integer. Note
also that the value environments in Chapter 4’s interpreter have the same shape as Vect after
forcing and detagging. If we have a low level implementation of Vect (for example as a block
of memory), a low level implementation of value environments follows. We saw in Chapter
6 that this also leads to projection functions for Vect and ValEnv having the same G-code.
Low level implementation of a lookup function on Vect (for example, by directly inspecting
the ith location in a block of memory) ought therefore to lead to a low level implementation
of a lookup function on value environments. This kind of optimisation should take place at
the RunTT level; if constructors are represented not by their names, but by an index into a
jump table of ι-reductions, such optimisations become easier to identify.

The implementation described in this thesis uses well understood technology, but with
known limitations. According to Santos, an implementation based on λ-lifting suffers a run-
time penalty compared with one which can deal with free variables [San95]. The G-machine
is perhaps not abstract enough; there are too many low level details, such as the use of a
stack for local variables, which may not map as directly as we might hope onto a real CPU.
Such limitations are dealt with in recent implementations of GHC [Pey92, PMR99, SMG+99]
and can be adapted to a dependently typed language in a similar way to the adaptation of
the G-machine in this thesis. While the results of this thesis show that a dependently typed
programming language is feasible to implement, we would ultimately like to have a complete
implementation giving us a real execution platform for comparison with other languages.

Appendix A

Compiling vTail

The vTail function, which returns the tail of a non-empty vector, has a simple definition
which hides a complex elaboration:

let v : Vect A (s n)
vTail v : Vect A n

vTail v ⇐ case v
vTail (a::v) 7→ v

By examining the input type Vect A (s n) we see that ε is an impossible case, since it has
the type VectA0 which does not convert with the input type. This much is clear to see, but
how does the elaboration mechanism know that vTail (a::v) is the only case and how does
it produce a valid term in TT?

A.1 vTail elaboration – a first attempt

A first attempt at elaborating the definition of vTail into TT meets with some difficulties.
Applying Vect-Case to v immediately and filling in the case for a::v , the resulting term,
still leaving out the implicit arguments A and n:

vTail 7→ λA :?. λn :N. λv :Vect A (s n).
Vect-Case v (Target)
(λk :N.λv :Vect A k .Vect A n) (Motive)
(2 : Vect A n) (Method for ε)
(λk :N.λA :?.λv :Vect A k .v) (Method for ::)

This attempt runs into trouble with the case for ε. The metavariable to fill in is the
method for this case and we have neither a value of type Vect A n nor a means of making
one. Somehow the information that this case is impossible has been lost — the simple reason
for this is that the motive of the elimination is not expressive enough. If we include this
information in the motive then we retain enough information to fill in the case.

200

Appendix A. Compiling vTail 201

To do this, we construct proofs of equalities which must hold and pass them into the
motive; this is the basis of the elimination with a motive technique [McB00b].

A.2 vTail elaboration – second attempt

The first step in elaborating vTail is not to apply the elimination rule, but rather to modify
the input to be a vector of length k along with a proof that k = sn. This proof then becomes
part of the motive which results in the case for the empty vector being passed a proof that
0 = sn. This is clearly a contradiction from which we can construct an element of the empty
type. From here, we can prove anything, including an impossible case.

To introduce the equality proof we wrap the body of the definition inside a λ abstraction
applied to the proof:

vTail 7→ λA :?. λn :N. λv :Vect A (s n).
(λk :N. λv :Vect A k .

λP :∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n.

P (s n) v (refl (s n)))
n v (2 : ∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n)

The goal we are left with on applying this proof, ∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n,
has the same meaning as the type of vTail, namely that any vectors to which it applies
must be of non zero length, with the difference that the proof is passed explicitly, rather
than implicit in the type.

We now define the helper function, vTailAux.

vTailAux : ∀n :N. ∀A :?. ∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n
vTailAux 7→ λn :N. λA :?. λk :N. λv :Vect A k .

Vect-Case v
(λk :N.λv :Vect A k .(s n = k)→ Vect A n)
(2 : (s n = 0)→ Vect A n)
(λk :N.λa :A.λv :Vect A k .2 : (s n = s k)→ Vect A n)

The motive now holds the equality proof which means that we have enough information
to eliminate the ε case. We write an auxiliary function to show that s n = 0 gives us an
element of the empty type.

dMotive : ∀n :N. ?

dMotive 7→ λn :N.N-Case n (∀n :N.?) False (λk :N.True)

discriminate : ∀n :N. ∀p :s n = 0. False

discriminate 7→ λn :N. λp :s n = 0.

= -elim N (s n) p dMotive ()

dMotive computes the return type for discriminate. If the second item in the equality is
0, then we return an element of the empty type, otherwise we return an element of the unit

Appendix A. Compiling vTail 202

type. Since = -elim only requires a method for when the second item is equal to the first,
this means we only need provide an element of True to complete the proof – but since we
know the second element is zero, the empty type is returned.

Now that we have an element of the empty type we can prove anything, so it is trivial
to construct the element of Vect A n required in the ε case:

emptyCase : ∀A :?. ∀n :N. (s n = 0)→ Vect A n
emptyCase 7→ λA :?. λn :N. λp :s n = 0.

False-Elim (discriminate n p) (Vect A n)

Filling in the hole for the ε case, this leaves us with the :: case:

vTailAux : ∀n :N. ∀A :?. ∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n
vTailAux 7→ λn :N. λA :?. λk :N. λv :Vect A k .

Vect-Case v
(λk :N.λv :Vect A k .(s n = k)→ Vect A n)
(emptyCase A n)
(λk :N.λa :A.λv :Vect A k .2 : (s n = s k)→ Vect A n)

The :: case requires a function from s n = s k → k = n and rewriting with = -elim to
complete the proof. We use S inj : ∀n,m :N. s n = s m → n = m and eq sym : ∀A :
?. ∀x , y : A. x = y → y = x to rewrite the equality, and define the case for :: with the
following function, consCase:

consCase : ∀A :?. ∀n :N. ∀k :N. Vect A k → (s n = s k)→ Vect A n
consCase 7→ λA :?. λn :N. λk :N. λv :Vect A k . λp :k = n.

= -elim N k n (S inj k n (eq sym N n k p)) (λn :N. Vect A n) v

Then we can complete the definition of vTailAux:

vTailAux : ∀n :N. ∀A :?. ∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n
vTailAux 7→ λn :N. λA :?. λk :N. λv :Vect A k .

Vect-Case A k v
(λk :N.λv :Vect A k .(s n = k)→ Vect A n)
(emptyCase n)
(λk :N. λa :A. λv :Vect A k . consCase A n k)

Finally, we can use this helper function to fill in the hole in vTail:

vTail 7→ λA :?. λn :N. λv :Vect A (s n).
(λk :N. λv :Vect A k .

λP :∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n.

P (s n) v (refl (s n)))
n v (vTailAux n A)

The complete definition of vTail is rather complex although the machinery required
to produce this is added automatically by the compiler. The user need not worry about

Appendix A. Compiling vTail 203

the details of this machinery but it is important for ensuring function totality that this
machinery is there.

A.3 Building Supercombinators

For quick reference, the full elaborated definition of vTail is given in figure A.1, with the
functions in the order in which they will be compiled. We will take each one in turn and
consider its compilation into optimised supercombinators, in the presence of forcing of the
Vect (but not detagging, or collapsing of equality proofs, since I would like to focus attention
on the optimisation of vTail in isolation).

dMotive : ∀n :N. ?
dMotive 7→ λn :N. N-Case n (∀n :N. ?) False (λk :N. True)
discriminate : ∀n :N. ∀p :s n = 0. False
discriminate 7→ λn :N. λp :s n = 0.

= -elim N (s n) p dMotive ()
emptyCase : ∀A :?. ∀n :N. (s n = 0)→ Vect A n
emptyCase 7→ λA :?. λn :N. λp :s n = 0.

False-Elim (discriminate n p) (Vect A n)
consCase : ∀A :?. ∀n :N. ∀k :N. Vect A k → (s n = s k)→ Vect A n
consCase 7→ λA :?. λn :N. λk :N. λv :Vect A k . λp :k = n.

= -elim N k n (S inj k n (eq sym N n k p)) (λn :N. Vect A n) v
vTailAux : ∀n :N. ∀A :?. ∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n
vTailAux 7→ λn :N. λA :?. λk :N. λv :Vect A k .

Vect-Case A k v
(λk :N. λv :Vect A k . (s n = k)→ Vect A n)
(emptyCase A n)
(λk :N. λa :A. λv :Vect A k . consCase A n k v)

vTail 7→ λA :?. λn :N. λv :Vect A (s n).
(λk :N. λv :Vect A k .
λP :∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n.
P (s n) v (refl (s n)))
n v (vTailAux n A)

Figure A.1: Elaborated vTail

A.3.1 dMotive and discriminate

dMotive 7→ λn :N. N-Case n (∀n :N. ?) False (λk :N. True)
discriminate 7→ λn :N. λp :s n = 0.

= -elim N (s n) p dMotive ()

Appendix A. Compiling vTail 204

dMotive is the motive for the elimination applied by discriminate, so we will take
these two functions together.

dMotive initially compiles to the following set of supercombinators:

dMotive 7→ λn. N-Case n dMotive1 False dMotive2

dMotive1 7→ λn. ?

dMotive2 7→ λk . True

Inlining of N-Case results in the following single supercombinator:

dMotive 7→ λn. case n of
0〈〉 ; False

s〈k〉 ; True

discriminate is straightforward, given dMotive:

discriminate 7→ λn; p. = -elim N s〈n〉 p dMotive ()

However, we observe that discriminate returns an element of the empty type; this is
clearly impossible. The function therefore collapses as follows:

discriminate 7→ λn; p. Impossible

A further transformation is applied to remove the two arguments which are unused in
the body of discriminate. The supercombinators we generate are summarised in figure
A.2, and the substitution rules in figure A.3.

dMotive 7→ λn. case n of
0〈〉 ; False
s〈k〉 ; True

discriminate′ 7→ Impossible
discriminate 7→ λn; p. discriminate′

Figure A.2: Compilation of discriminate and dMotive

Jdiscriminate n pK =⇒ discriminate′

Jdiscriminate′K =⇒ Impossible

Figure A.3: Substitution rules for discriminate and dMotive

A.3.2 emptyCase

emptyCase is defined in ExTT as follows:

emptyCase : ∀A :?. ∀n :N. (s n = 0)→ Vect A n
emptyCase 7→ λA :?. λn :N. λp :s n = 0.

False-Elim (discriminate n p) (Vect A n)

Appendix A. Compiling vTail 205

Building a supercombinator definition for emptyCase initially gives:

emptyCase 7→ λA;n; p. False-Elim (discriminate n p) (Vect A n)

False-Elim expects an argument in the empty type; therefore it can never be evaluated,
so this function can never be evaluated. We therefore collapse it to the supercombinator
definitions in figure A.4, with substitutions as in figure A.5.

emptyCase′ 7→ Impossible
emptyCase 7→ λA;n; p. emptyCase′

Figure A.4: Compilation of emptyCase

JemptyCase A n pK =⇒ emptyCase′

JemptyCase′K =⇒ Impossible

Figure A.5: Substitution rules for emptyCase

A.3.3 consCase

consCase is defined in ExTT as follows:

consCase 7→ λA :?. λn :N. λk :N. λv :Vect A k . λp :k = n.

= -elim N k n (S inj k n (eq sym N n k p)) (λn :N. Vect A n) v

Building a supercombinator definition for consCase initially gives:

consCase 7→ λA;n; k ; v ; p.

= -elim N k n (S inj k n (eq sym N n k p)) (consCase1 A) v
consCase1 7→ λA;n. Vect A n

After elimination unfolding and inlining, we get:

consCase 7→ λA;n; k ; v ; p. case p of
refl〈n ′〉 ; v

Since case expressions with only one branch can be trivially reduced to that branch (since
the scrutinee will always be in canonical form), this definition reduces to that in figure A.6,
with the obvious inlining and argument removal substitutions in figure A.7

consCase 7→ λA;n; k ; v ; p. v

Figure A.6: Compilation of consCase

Appendix A. Compiling vTail 206

JconsCase A n k v pK =⇒ consCase′ v
JconsCase′ vK =⇒ v

Figure A.7: Substitution rules for consCase

A.3.4 vTailAux

vTailAux is where most of the work is done; it is defined in ExTT as follows:

vTailAux : ∀n :N. ∀A :?. ∀k :N. ∀v :Vect A k . (s n = k)→ Vect A n
vTailAux 7→ λn :N. λA :?. λk :N. λv :Vect A k .

Vect-Case A k v
(λk :N. λv :Vect A k . (s n = k)→ Vect A n)
(emptyCase A n)
(λk :N. λa :A. λv :Vect A k . consCase A n k v)

Building supercombinator definitions for vTailAux initially gives:

vTailAux 7→ λn;A; k ; v . Vect-Case A k v (vTailAux1 A n)
(emptyCase A n) (vTailAux2 A n)

vTailAux1 7→ λA;n; k ; v ; p. Vect A n
vTailAux2 7→ λA;n; k ; a; v . consCase A n k v

After inlining of Vect-Case we get the following:

vTailAux 7→ λn;A; k ; v . case v of
ε〈〉 ; emptyCase A n
::〈x , xs〉 ; vTailAux2 A n (n!0) (v !0) (v !1)

vTailAux2 is now inlinable as it is fully applied, and a small definition. There is now
no more which can be done to transform this function; it returns a function which expects
an equality proof, which is to be passed through to emptyCase and consCase. We do
consider vTailAux a good candidate for inlining, however. The definition and substitutions
are given in figures A.8 and A.9.

vTailAux 7→ λn;A; k ; v . case v of
ε〈〉 ; emptyCase A n
::〈x , xs〉 ; consCase A n (n!0)(v !1)

Figure A.8: Compilation of vTailAux

Appendix A. Compiling vTail 207

JvTailAux n A k vK =⇒ case v of
ε〈〉 ; emptyCase A n
::〈x , xs〉 ; consCase A n (n!0) (v !1)

Figure A.9: Substitution rules for vTailAux

A.3.5 vTail

vTail, the top level function, is defined in ExTT as follows:

vTail 7→ λA :?. λn :N. λv :Vect A (s n).
(λk :N. λv :Vect A k .

λP :∀n :N. ∀v :Vect A k . (s n = k)→ Vect A n.

P (s n) v (refl (s n)))
n v (vTailAux n A)

Before we start compiling to supercombinators, we notice that this function β-reduces
to the following:

vTail 7→ λA :?. λn :N. λv :Vect A (s n).
(vTailAux n A (s n) v (refl (s n)))

Building supercombinator definitions for vTail from this simplified definition gives:

vTail 7→ λA;n; v . vTailAux n A s〈n〉 v refl〈s〈n〉〉

The substitution rules built from vTailAux tell us that vTailAux is inlinable. Applying
this, we get:

vTail 7→ λA;n; v . (case v of
ε〈〉 ; emptyCase A n
::〈x , xs〉 ; consCase A n (n!0) (v !1))

refl〈s〈n〉〉
That is, the result of the case is applied to the equality proof. The proof can be lifted

into each branch of the case expression — this is to make each branch as fully applied as
possible. We get:

vTail 7→ λA;n; v . case v of
ε〈〉 ; emptyCase A n refl〈s〈n〉〉
::〈x , xs〉 ; consCase A n (n!0) (v !1) refl〈s〈n〉〉

Now we have inlining available on each branch. Applying the inlining substitution for
emptycase (section A.3.2) and for consCase (section A.3.3) gives:

vTail 7→ λA;n; v . case v of
ε〈〉 ; Impossible
::〈x , xs〉 ; (v !1)

Appendix A. Compiling vTail 208

This is what we expected all along! The ε case branch has been explicitly marked as
impossible to reach. We can go even further, and remove the Impossible branch, which
results in a case expression with only one possibility.

vTail 7→ λA;n; v . case v of
::〈x , xs〉 ; (v !1)

Having only one possibility, there is no need to test what v is — we already know! As
it is a total function, there is no possibility of an error case and the type specifies which
is the only case that can apply. Figure A.10 gives the final supercombinator for vTail —
effectively, all it does is move a pointer to the next cell, just as we would have hoped. There
are, incidentally, also two unused arguments which can be dropped in a fully applied call to
vTail.

vTail′ 7→ λv . (v !1)
vTail 7→ λA;n; v . vTail′ v

Figure A.10: Compilation of vTail

A.4 G-code

Given this definition of vTail, the resulting G-code is extremely simple. vTail′ is inlined,
making the RunTT definition of vTail the following:

vTail 7→ λA;n; v . (v !1)

Compilation to G-code of vTail and vTail′ is given in figure A.11. We see that execution
of this function consists of evaluating the argument to canonical form, projecting out the
first argument and then evaluating that argument to canonical form. In practice, the inlining
of vTail′ and analysis of the G-code sequences produced will often mean that many of the
evaluations are not necessary, since the variable is already in canonical form.

vTail :
SJλv . (v !1)K =⇒ PUSH 0; EVAL; PROJ 1; EVAL; UPDATE 2; RET 1

vTail′ :
SJλA;n; v . (v !1)K =⇒ PUSH 0; EVAL; PROJ 1; EVAL; UPDATE 4; RET 3

Figure A.11: G-code for vTail and vTail′

Appendix B

Typechecking ExTT

In this appendix, I give proofs that typechecking for ExTT terms built from TT by the
forcing and detagging optimisations is equivalent to typechecking the original TT terms.
In the presentation that follows, we will distinguish between TT and ExTT judgments by
annotating the turnstile. Where there is no ambiguity, I will omit the annotation.

B.1 Typechecking Algorithms

It is standard [Hue89, Coq96] to implement checking the judgment Γ
TT

` a : A by checking
that A is a type, inferring a type B for the term a and testing by conversion whether it
matches the proposed type A. i.e. we check the following:

• Γ
TT

` A TT=⇒ X ³ ?n

• Γ
TT

` a TT=⇒ B

• Γ
TT

` A
TT' B

Since we assume Church Rosser holds for TT, conversion can be implemented as follows:

Γ
TT

` a ' b if Γ
TT

` a ¤ c and Γ
TT

` b ¤ d and Γ
TT

` c ≡ d

In practice, we take c and d as the normal forms of a and b respectively.
Figure B.1 gives a type synthesis algorithm for TT. It is standard that the TT inference

algorithm is sound and complete for TT.
We seek to show that the corresponding methods of inference for ExTT may be used to

solve the checking problem in TT, as follows:

• JΓK
Ex

` JAK Ex=⇒ X
Ex³ ?n

• JΓK
Ex

` JaK Ex=⇒ B

209

Appendix B. Typechecking ExTT 210

Γ ` valid
Γ ` ?n =⇒ ?n+1

Γ ` valid x : S ∈ Γ
Γ ` x =⇒ S

(Similarly for c, D, D-Elim)
Γ ` valid x : S 7→ s ∈ Γ

Γ ` x =⇒ S
Γ ` f =⇒ X ³ ∀x :S . T Γ ` s =⇒ S ′ Γ ` S ' S ′

Γ ` f s =⇒ let x : S ′ 7→ s in T

Γ; x : S ` e =⇒ T Γ ` ∀x :S . T =⇒ X ³ ?n

Γ ` λx :S . e =⇒ ∀x :S . T
Γ; x : S ` T =⇒ X ³ ?n Γ ` S =⇒ X ′ ³ ?n

Γ ` ∀x :S . T =⇒ ?n

Γ ` S =⇒ X ³ ?n Γ ` e1 =⇒ S ′ Γ ` S ' S ′

Γ; x : S 7→ e1 ` e2 =⇒ T Γ; x : S 7→ e1 ` T =⇒ X ′ ³ ?n

Γ ` let x : S 7→ e1 in e2 =⇒ let x : S 7→ e1 in T

Figure B.1: Type synthesis for TT

• JΓK
Ex

` JAK Ex' B

Figure B.2 gives a type synthesis algorithm for ExTT.
An optimisation J·K from TT to ExTT is admissible at compile-time if it satisfies the

following three properties:

Property 1. If JΓK
Ex

` JaK Ex=⇒ B then ∃A. Γ
TT

` a TT=⇒ A and Γ
TT

` A
TT' |B |

Property 2. If Γ
TT

` a TT=⇒ A then ∃B .

JΓK
Ex

` JaK Ex=⇒ B and

JΓK
Ex

` B
Ex' JAK and

JΓK
Ex

` B Ex=⇒ X ³ ?n

Property 3. If JΓK
Ex

` JAK Ex' B then Γ
TT

` A ' |B |

These properties state that if an optimised term is well-typed in ExTT, then the original
term must also be well-typed in TT such that its TT type converts with the unmarked ExTT

type. Therefore if these properties hold, we never have to typecheck TT terms and can rely
on typechecking the marked terms.

Assuming that these properties hold for an optimisation, we can show the soundness and
completeness of the ExTT typechecking algorithm by the following theorems (Note that we
use Γ ` x =⇒ A ' A′ as a shorthand for Γ ` x =⇒ A,Γ ` A ' A′).

Appendix B. Typechecking ExTT 211

Γ ` valid
Γ ` ?n =⇒ ?n+1

Γ ` valid x : S ∈ Γ
Γ ` x =⇒ S

(Similarly for c, D, D-Elim)
Γ ` valid x : S 7→ s ∈ Γ

Γ ` x =⇒ S
Γ ` f =⇒ X ³ ∀x :S . T Γ ` s =⇒ S ′ Γ ` S ' S ′

Γ ` f s =⇒ let x : S ′ 7→ s in T

Γ ` f =⇒ X ³ ∀{x :S}. T Γ ` s =⇒ S ′ Γ ` S ' S ′
Γ ` f {s} =⇒ let x : S ′ 7→ s in T

Γ ` valid {f} : ∀x :S . T ∈ Γ Γ ` s =⇒ S ′ Γ ` S ' S ′
Γ ` {f} s =⇒ let x : S ′ 7→ s in T

Γ ` valid {f} : ∀{x :S}. T ∈ Γ Γ ` s =⇒ S ′ Γ ` S ' S ′
Γ ` {f} {s} =⇒ let x : S ′ 7→ s in T

Γ; x : S ` e =⇒ T Γ ` ∀x :S . T =⇒ ?n

Γ ` λx :S . e =⇒ ∀x :S . T
Γ; x : S ` T =⇒ X ³ ?n Γ ` S =⇒ X ′ ³ ?n

Γ ` ∀x :S . T =⇒ ?n

Γ ` S =⇒ X ³ ?n Γ ` e1 =⇒ S ′ Γ ` S ' S ′

Γ; x : S 7→ e1 ` e2 =⇒ T Γ; x : S 7→ e1 ` T =⇒ X ′ ³ ?n

Γ ` let x : S 7→ e1 in e2 =⇒ let x : S 7→ e1 in T

Figure B.2: Type synthesis for ExTT

Theorem B.1 (Soundness of ExTT for typechecking TT). If JΓK
Ex

` JAK Ex=⇒ X ³ ?n

and JΓK
Ex

` JaK Ex=⇒ B and JΓK
Ex

` JAK Ex' B then Γ
TT

` a TT=⇒ A′
TT' A and Γ

TT

` A TT=⇒ X ′ ³ ?n.

Proof. JΓK
Ex

` JaK Ex=⇒ B shows that ∃A′. Γ ` a TT=⇒ A′ and Γ ` A′
TT' |B |, by Property 1.

Also, by Property 3, JΓK
Ex

` JAK Ex' B shows that Γ ` A
TT' |B |.

Hence, Γ ` A
TT' A′, so Γ ` a TT=⇒ A′

TT' A.

JΓK
Ex

` JAK Ex=⇒ X ³ ?n shows that ∃X ′. Γ ` A TT=⇒ X ′ and Γ ` X ′ TT' |X |, by Property

1, and since |?n| = ?n then Γ
TT

` A TT=⇒ X ′ ³ ?n.

Theorem B.2 (Completeness of ExTT for typechecking TT). If Γ
TT

` a TT=⇒ A then

JΓK
Ex

` JAK Ex=⇒ X ³ ?n and JΓK
Ex

` JaK Ex=⇒ B and JΓK
Ex

` JAK Ex' B.

Proof. By Property 2.

We show in this appendix that the forcing and detagging optimisations of Chapter 4
satisfy Properties 1 to 3, and hence that typechecking an ExTT term produced by these

Appendix B. Typechecking ExTT 212

optimisations gives a sound and complete typechecking algorithm for TT.

B.2 The Forcing Optimisation

Forcing is given in full in figure B.3. The translations are on well-scoped terms, i.e. all
variables are declared or defined in the context:

J?nK =⇒ ?n

JxK =⇒ x
JDK =⇒ D
JD-ElimK =⇒ D-Elim
Jf sK =⇒ Jf K JsK
J∀x :S . T K =⇒ ∀x :JSK. JT K
Jλx :S . eK =⇒ λx :JSK. JeK
Jlet x : S 7→ v in eK =⇒ let q : JSK 7→ JvK in JeK
JcK =⇒ λ~a :J~AK. λ~y :D J~iK. c ~a{V} ~y

where V is the set of concretely forceable variables in ~a
a{V} =⇒ {a} if a ∈ V
a{V} =⇒ a otherwise

Figure B.3: The forcing optimisation

Correspondingly, the types of c and D-Elim are modified in the forced context so that
marked arguments are expected in forced argument position. Forcing of a context is given
in figure B.4:

JEK =⇒ E
JΓ; x : SK =⇒ JΓK; x : JSK
JΓ; c : ∀~a : ~A. ∀~y : ~Y . D~sK =⇒ JΓK; c : ∀~a : ~A{V}. ∀~y : ~Y . D J~sK

where V is the set of concretely forceable variables in ~a
∀a :A{V} =⇒ ∀{a :A} if a ∈ V
∀a :A{V} =⇒ ∀a :A otherwise

JΓ; e : S 7→ sK =⇒ JΓK; x : JSK 7→ JsK

Figure B.4: Forcing a context

B.2.1 Equivalence of Reduction

The following theorem shows that a reduction step in TT either maps to a reduction step
in ExTT, or does nothing (since the reduction takes place inside a marked term).

Lemma B.3. If Γ
TT

` a
TT
¤1 b then either Γ

Ex

` JaK Ex≡ JbK or ∃c. JΓK
Ex

` JaK Ex
¤ c and c

Ex≡ JbK.

Appendix B. Typechecking ExTT 213

Proof Sketch. By the structure of a, and the definition of the forcing optimisation. The
contractions available in all cases are the same for JaK and a, except in the case of con-
structor application, where some arguments may be marked. In this case, either there is no
reduction in ExTT (because it takes place inside a marked argument) or (after β-reductions
of arguments) there is an equivalent reduction in ExTT inside another argument. Since the
reduction rules for ExTT correspond to those for TT, this reduction must be equivalent to
the TT reduction.

Due to this property, if a term a has a normal form b in TT, then JaK has a normal form
c in ExTT such that JbK Ex≡ c.

Corollary B.4. If Γ
TT

` S
Ex' T then JΓK

Ex

` JSK Ex' JT K.

Proof. Trivial, by Lemma B.3.

B.2.2 Equivalence of Typechecking for Forcing

Lemma B.5. Γ
TT

` a
TT' |JaK|

Proof. Trivial, since we have η-conversion. The proof is by induction on the typing judgment.

• Case a = c. Then JcK =⇒ λ~a :J~AK. λ~y :D J~iK. c ~a{V} ~y .

Removing the marks yields λ~a :
∣∣∣J~AK

∣∣∣ . λ~y :D
∣∣∣J~iK

∣∣∣ . c ~a ~y , which is η-convertible with c.

• All other cases are provable trivially by induction.

Lemma B.6. If JΓK
Ex

` S
Ex' T then Γ

TT

` |S | TT' |T |.

Proof. By induction on the typing judgement for normal forms of S and T . Take a = nf(S)
and b = nf(T) (where nf gives a normal form in ExTT).

The possible normal forms are:

• ?n

• x

• λx :S . e, where S , e are normal forms.

• ∀x :S . T , where S ,T are normal forms.

• c ~a ~y , where ~a, ~y are normal forms or of the form {t}, and t is any term.

If the outermost constructors differ, conversion does not hold, so we consider the cases

where a and b are of the same form. In each case, we can assume that JΓK
Ex

` a
Ex' b.

Appendix B. Typechecking ExTT 214

• Case a = ?i and b = ?j . Then |a| = ?i and |b| = ?j , so conversion holds in both
systems if i = j .

• Case a = x and b = x ′. Then |a| = x and |b| = x ′. If JΓK
Ex

` x
Ex≡ x ′ then JΓK

Ex

` x
TT≡ x ′

so conversion holds.

• Case a = λx :S . e and b = λx :S ′. e ′. Then |a| = λx : |S | . |e| and |b| = λx : |S ′| . |e ′|.

By induction, if JΓK
Ex

` S
Ex' S ′ then Γ

TT

` |S | TT' |S ′| and if JΓ; x : SK :
Ex

` e
Ex' e ′ then

Γ; x : S
TT

` |e| TT' |e ′|, so conversion holds in TT if it holds in ExTT.

• Case a = ∀x :S .T and b = ∀x :S ′.T ′. Then |a| = ∀x : |S | . |T | and |b| = ∀x : |S ′| . |T ′|.

By induction, if JΓK
Ex

` S
Ex' S ′ then Γ

TT

` |S | TT' |S ′| and if JΓ; x : SK
Ex

` T
Ex' T ′ then

Γ; x : S
TT

` |T | TT' |T ′|, so conversion holds in TT if it holds in ExTT.

• Case a = c ~a ~y and b = c ~b ~z . Then |a| = c ~a ′ ~y ′ and |b| = c′ ~b′ ~z ′, where, as before:

– ai = Ja ′iK if a ′i is not concretely forceable.

– ai = {a ′i} if a ′i is concretely forceable.

– bi = Jb′iK if b′i is not concretely forceable.

– bi = {b′i} if b′i is concretely forceable.

– yi = Jy ′iK.
– zi = Jz ′iK.

Synthesising types of a and b we get:

– JΓK
Ex

` a Ex=⇒ D~s for some ~s.

– JΓK
Ex

` b Ex=⇒ D′ ~t for some ~t .

JΓK
Ex

` a
Ex' b if and only if the constructors are identical, i.e. c

Ex≡ c′, and corresponding
arguments are convertible. For each argument, due to the forcing optimisation, either
both ai and bi will be marked, or neither.

– If neither are marked, then if JΓK
Ex

` ai
Ex' bi then Γ

TT

` |ai| TT' |bi| by induction.

As Γ
TT

` |ai| TT' a ′i and Γ
TT

` |bi| TT' b′i, then Γ
TT

` a ′i
TT' b′i.

– If both are marked, then it is because they are concretely forceable arguments.
Hence, by Lemma 4.2, they are also forceable. By the definition of forceable, this
means the arguments are determined by their indices, which are already in the
context since the terms are well-scoped. Hence the conversion check has already
been made.

Appendix B. Typechecking ExTT 215

Theorem B.7 (Property 1 for forcing). If JΓK
Ex

` JaK Ex=⇒ B then ∃A. Γ
TT

` a TT=⇒ A and

Γ
TT

` A
TT' |B |

Proof. By induction on the typing judgment, ∆
Ex

` b Ex=⇒ B , where ∀Γ, a, ∆ = JΓK and
b = JaK. In each case, we synthesise B and find that there is appropriate A such that

Γ
TT

` A
TT' |B |.

• Case b = ?n. Then B = ?n+1. We must have a = ?n, so take A = ?n+1.

• Case b = x . Then B = S if:

– x : S ∈ ∆ or

– x : S 7→ e ∈ ∆

So if ∆ = JΓK we must have

– x : S ′ ∈ Γ or

– x : S ′ 7→ e ∈ Γ

where S = JS ′K.

So take A = S ′, and by Lemma B.5, S ′
TT' |S |, so Γ

TT

` A
TT' |B |.

• Cases b = D, b = D-Elim, b = c similarly to b = x .

• Case b = ∀x :S . T . Then a = ∀x :S ′. T ′ where S = JS ′K and T = JT ′K.

If ∆
Ex

` S Ex=⇒ X ³ ?n and ∆; x : S
Ex

` T Ex=⇒ Y ³ ?n then B = ?n.

Then by induction:

– ∆
Ex

` S Ex=⇒ X ³ ?n gives i.h.

∀Γ, a. ∆ = JΓK,S = JaK, ∃A. Γ
TT

` a TT=⇒ A and Γ
TT

` A ' |X |
– ∆; x : S

Ex

` T Ex=⇒ Y ³ ?n gives i.h.
∀Γ, b. ∆; x : S = JΓK,T = JbK,
∃B . Γ

TT

` b TT=⇒ B and Γ
TT

` B
TT' |Y |

So Γ
TT

` S ′ TT=⇒ A ' ?n and Γ; x : |S |′
TT

` T ′ TT=⇒ B
TT' ?n. So Γ

TT

` A
TT' |B |.

• Case b = let x : S 7→ v in e. Then a = let x : S ′ 7→ v ′ in e ′ where S = JS ′K, v = Jv ′K
and e = Je ′K.

If ∆
Ex

` S Ex=⇒ X ³ ?n, ∆
Ex

` v Ex=⇒ S ′′, ∆
Ex

` S
Ex' S ′′, ∆; x : S 7→ v

Ex

` e Ex=⇒ T and

∆; x : S 7→ v
Ex

` T Ex=⇒ X ′ ³ ?n then B = let x : S 7→ v in T .

Then by induction:

Appendix B. Typechecking ExTT 216

– ∆
Ex

` S Ex=⇒ X ³ ?n gives i.h.

∀Γ, a. ∆ = JΓK,S = JaK, ∃A. Γ
TT

` a TT=⇒ A and Γ
TT

` A ' |X |.

– ∆
Ex

` v Ex=⇒ S ′′ gives i.h.

∀Γ, b. ∆ = JΓK, v = JbK, ∃B . Γ
TT

` b TT=⇒ B and Γ
TT

` B ' |S ′′|.

– ∆; x : S 7→ v
Ex

` e Ex=⇒ T gives i.h.
∀Γ, c. ∆; x : S 7→ v = JΓK, e = JcK,
∃C . Γ

TT

` c TT=⇒ C and Γ
TT

` C
TT' |T |.

So Γ
TT

` S ′′ TT=⇒ |X |, Γ
TT

` v ′ TT=⇒ |S ′′| and Γ; x : |S |
TT

` e ′ TT=⇒ |T |. Then

A = let x : |S ′′| 7→ v ′ in |T | if Γ
TT

` |v ′| TT' v (which holds by lemma B.5) and
Γ ` |S ′′| TT' |S | (which holds by lemma B.6).

• Case b = f s. Then a = f ′ s ′ where f = Jf ′K and s = Js ′K.

If ∆
Ex

` f Ex=⇒ X ³ ∀x :S . T and ∆
Ex

` s Ex=⇒ S ′ and ∆
Ex

` S
Ex' S ′ then

B = let x : S ′ 7→ Js ′K in T .

Then by induction:

– ∆
Ex

` f Ex=⇒ X ³ ∀x :S . T gives i.h.

∀Γ, a. ∆ = JΓK, f = JaK,∃A. Γ
TT

` a TT=⇒ A and A
TT' |X |

– ∆
Ex

` s Ex=⇒ S ′ gives i,h.

∀Γ, b. ∆ = JΓK, s = JbK, ∃B . Γ
TT

` b TT=⇒ B and B
TT' |S ′|

So Γ
TT

` f ′ TT=⇒ A
TT' |X |³ ∀x : |S | . |T | and Γ

TT

` s ′ TT=⇒ B
TT' |S ′|.

Then A = let x : |S ′| 7→ s ′ in |T |, if |S | TT' |S ′|.

By Lemma B.6, if JΓK
Ex

` S
Ex' S ′ then Γ

TT

` |S | TT' |S ′|.
So A = let x : |S ′| 7→ s ′ in |T |,
B = let x : S ′ 7→ Js ′K in T ,

and therefore Γ
TT

` A
TT' |B |, by Lemma B.5.

• Case b = f {s}. Then a = f ′ x where f = Jf ′K, x = s and x ∈ Γ, since the forcing
optimisation only places variable names in {·}.

If ∆
Ex

` f Ex=⇒ X ³ ∀x :S . T and ∆
Ex

` s Ex=⇒ S ′ and ∆
Ex

` S
Ex' S ′ then

B = let x : S ′ 7→ s in T .

Then by induction:

– ∆
Ex

` f Ex=⇒ X ³ ∀x :S . T gives i.h.

∀Γ, a. ∆ = JΓK, f = JaK,∃A. Γ
TT

` a TT=⇒ A and A
TT' |X |

Appendix B. Typechecking ExTT 217

So Γ
TT

` f ′ TT=⇒ A
TT' |X |³ ∀x : |S | . |T |.

If x : S ′ ∈ ∆, then x : |S ′| ∈ Γ.

Then A = let x : |S ′| 7→ s in |T |, and A
TT' |B |.

• Case b = {f} s does not arise by forcing.

• Case b = {f} {s} does not arise by forcing.

• Case b = λx :S . e. If ∆; x : S
Ex

` e Ex=⇒ T and ∆
Ex

` ∀x :S . T Ex=⇒ ?n then
B = ∀x :S . T .

Then either:

– a = λx :S ′. e ′ where S = JS ′K and e = Je ′K.
Then by induction:

∗ ∆; x : S
Ex

` e Ex=⇒ T gives i.h.

∀Γ, a. ∆; x : S = JΓK, e = JaK,∃A. Γ
TT

` a TT=⇒ A and Γ
TT

` A
TT' |T |

∗ ∆
Ex

` ∀x :S . T =⇒ ?n gives i.h.

∀Γ, b. ∆ = JΓK,∀x :S . T = JbK, ∃B . Γ
TT

` b TT=⇒ B and Γ
TT

` B
TT' |?n|.

So Γ; x : S ′
TT

` e ′ TT=⇒ A
TT' |T | and Γ

TT

` λx :S ′. e ′ TT=⇒ ∀x :S ′. |T |.
|S | TT' S ′, so take A = ∀x : |S | . |T |, and Γ

TT

` A
TT' |B |.

– a = c if b = λ~a : ~A. λ~y : ~Y . c ~a{V} ~y .

Then ∆
Ex

` b Ex=⇒ ∀~a : ~A. ∀~y : ~Y . let ~a : ~A 7→ ~a in let ~y : ~Y 7→ ~y in D~s
and Γ ` a TT=⇒ ∀~a : ~A′. ∀~y : ~Y ′. D~s ′, by lookup in Γ.

Since ∆ = JΓK, ~A = J~A′K and ~Y = J~Y ′K.
By Lemma B.5,

∣∣∣~A
∣∣∣ = ~A′,

∣∣∣~Y
∣∣∣ = ~Y ′ and |~s| = ~s ′, so

Γ
TT

`
∣∣∣∀~a : ~A. ∀~y : ~Y . let ~a : ~A 7→ ~a in let ~y : ~Y 7→ ~y in D~s

∣∣∣ TT' ∀~a : ~A′. ∀~y : ~Y ′. D~s ′

and take A = ∀~a : ~A′. ∀~y : ~Y ′. D~s ′ and
B = ∀~a : ~A. ∀~y : ~Y . let ~a : ~A 7→ ~a in let ~y : ~Y 7→ ~y in D~s

Theorem B.8 (Property 2 for forcing). If Γ
TT

` a TT=⇒ A then ∃B .

JΓK
Ex

` JaK Ex=⇒ B and

JΓK
Ex

` B
Ex' JAK and

JΓK
Ex

` B Ex=⇒ X ³ ?n

Appendix B. Typechecking ExTT 218

Proof. By induction on the TT typing judgement, Γ
TT

` a TT=⇒ A. In each case, we synthesise

A and find appropriate B such that JΓK
Ex

` B
Ex' JAK.

• Case a = ?n. Then JaK = ?n. So take A = ?n+1 and B = ?n+1.

• Case a = x . Then JaK = x .

Then A = S if:

– x : S ∈ Γ or

– x : S 7→ e ∈ Γ

So if ∆ = JΓK we must have

– x : S ′ ∈ ∆ or

– x : S ′ 7→ e ∈ ∆

where S ′ = JSK.

Take A = S and B = S ′, so by definition JΓK
Ex

` B
Ex' JAK.

• Case a = D, a = D-Elim. Similarly to a = x .

• Case a = c. Then JaK = λ~a : ~A. λ~y : ~Y . c ~a{V} ~y .

Γ
TT

` a TT=⇒ ∀~a : ~A. ∀~y : ~Y . D~s, by lookup of c in Γ.

If ∆ = JΓK then ∆
Ex

` JaK Ex=⇒ ∀~a :J~AK.∀~y :J~Y K. let~a : ~A 7→ ~a in let~y : ~Y 7→ ~y inD J~s ′K.
Take A = ∀~a : ~A. ∀~y : ~Y . D~s and
B = ∀~a :J~AK. ∀~y :J~Y K. let~a : ~A 7→ ~a in let~y : ~Y 7→ ~y in D J~s ′K
so by definition JΓK

Ex

` B
Ex' JAK.

• Case a = f s. Then JaK = Jf K JsK.

If Γ
TT

` f TT=⇒ X ³ ∀x :S . T

and Γ
TT

` s TT=⇒ S ′ and Γ
TT

` S
TT' S ′

then Γ
TT

` f s TT=⇒ let x : S ′ 7→ s in T .

By induction:

– Γ
TT

` f TT=⇒ X ³ ∀x :S . T gives i.h.

∀Γ, b. ∆ = JΓK, b = Jf K,∃B . ∆
Ex

` b Ex=⇒ B and ∆
Ex

` B
Ex' J∀x :S . T K and

∆
Ex

` B Ex=⇒ X ⇓ ?n

– Γ
TT

` s TT=⇒ S ′ gives i.h.

∀Γ, b.∆ = JΓK, b = JsK,∃B .∆
Ex

` b Ex=⇒ Band∆
Ex

` B
Ex' JS ′Kand∆

Ex

` B Ex=⇒ X ⇓ ?n

Appendix B. Typechecking ExTT 219

So JΓK
Ex

` Jf K Ex=⇒ X
Ex' J∀x :S . T K.

JΓK
Ex

` JsK Ex=⇒ Y
Ex' JS ′K.

If JΓK
Ex

` JSK Ex' JS ′K then JΓK
Ex

` Jf K JsK Ex=⇒ let x : JS ′K 7→ JsK in JT K.

JΓK
Ex

` JSK Ex' JS ′K holds by Corollary B.4, so take
A = let x : S ′ 7→ s in T and

B = let x : JS ′K 7→ JsK in JT K, hence JΓK
Ex

` B
Ex' JAK.

• Case a = ∀x :S . T . Then JaK = ∀x :JSK. JT K.

If Γ
TT

` S TT=⇒ ?n and Γ; x : S
TT

` T TT=⇒ ?n then

Γ
TT

` ∀x :S . T TT=⇒ ?n.

By induction:

– Γ
TT

` S TT=⇒ ?n gives i.h.

∀Γ, b.∆ = JΓK, b = JSK,∃B .∆
Ex

` b Ex=⇒ Band∆
Ex

` B
Ex' ?nand∆

Ex

` B Ex=⇒ X ³ ?n.

– Γ; x : S
TT

` T TT=⇒ ?n gives i.h.

∀Γ, b. ∆ = JΓK; x : JSK, b = JT K,∃B . ∆
Ex

` b Ex=⇒ B and ∆
Ex

` B
Ex' ?n and

∆
Ex

` B Ex=⇒ X ³ ?n.

So JΓK
Ex

` ∀x :JSK. JT K Ex=⇒ ?n.

So we take A = ?n and B = ?n.

• Case a = let x : S 7→ v in e. Then JaK = let x : JSK 7→ JvK in JeK.

If Γ
TT

` S TT=⇒ X ³ ?n and Γ
TT

` v TT=⇒ S ′ and Γ
TT

` S
TT' S ′ and

Γ; x : S 7→ v
TT

` e TT=⇒ T and Γ; x : S 7→ v
TT

` T TT=⇒ X ′ ³ ?n then
A = let x : S 7→ v in T .

By induction:

– Γ
TT

` S TT=⇒ ?n gives i.h.

∀Γ, b.∆ = JΓK, b = JSK,∃B .∆
Ex

` b Ex=⇒ Band∆
Ex

` B
Ex' ?nand∆

Ex

` B Ex=⇒ X ³ ?n.

– Γ
TT

` v TT=⇒ S ′ gives i.h.

∀Γ, b. ∆ = JΓK, b = JvK, ∃B . ∆
Ex

` b Ex=⇒ B and ∆
Ex

` B
Ex' JS ′K and

∆
Ex

` B Ex=⇒ X ³ ?n.

– Γ; x : S 7→ v
TT

` e TT=⇒ T gives i.h.

∀Γ, b. ∆ = JΓK; x : JSK 7→ JvK, b = JeK,∃B . ∆
Ex

` b Ex=⇒ B and

∆
Ex

` B
Ex' JT K and ∆

Ex

` B Ex=⇒ X ³ ?n.

Appendix B. Typechecking ExTT 220

So B = let x : JSK 7→ JvK in JT K if Γ
TT

` JSK TT' JS ′K (which holds by Corollary B.4).

• Case a = λx :S . e. Then JaK = λx :JSK. JeK.

If Γ; x : S
TT

` e TT=⇒ T and Γ
TT

` ∀x :S .T TT=⇒ X ³ ?n then Γ
TT

` λx :S .e TT=⇒ ∀x :S .T .

By induction:

– Γ; x : S
TT

` e TT=⇒ T gives i.h.

∀Γ, b. ∆ = JΓK; x : JSK, b = JeK,∃B . ∆
Ex

` b Ex=⇒ B and ∆
Ex

` B
Ex' JT K and

∆
Ex

` B Ex=⇒ X ³ ?n.

So JΓK
Ex

` λx :JSK. JeK Ex=⇒ ∀x :JSK. JT K, if JΓK
Ex

` ∀x :JSK. JT K Ex=⇒ ?n.

JΓK; x : JSK
Ex

` JT K Ex=⇒ ?n, by i.h. and JΓK
Ex

` JSK Ex=⇒ ?n holds if JΓK; x : JSK valid.

So take A = ∀x :S . T and B = ∀x :JSK. JT K.

Theorem B.9 (Property 3 for forcing). If JΓK
Ex

` JAK Ex' B then Γ
TT

` A ' |B |

Proof. By Lemma B.6, Γ
TT

` |JAK| TT' |B |.
Then by Lemma B.5, Γ

TT

` A
TT' |B |.

B.3 The Detagging Optimisation

Detagging is given in full in figure B.5. The translations are on well-scoped terms, i.e. all
variables are declared or defined in the context:

J?nK =⇒ ?n

JxK =⇒ x
JDK =⇒ D
JD-ElimK =⇒ D-Elim
Jf sK =⇒ Jf K JsK
J∀x :S . T K =⇒ ∀x :JSK. JT K
Jλx :S . eK =⇒ λx :JSK. JeK
Jlet x : S 7→ v in eK =⇒ let q : JSK 7→ JvK in JeK
JcK =⇒ λ~a :J~AK. λ~y :D J~iK. {c} ~a{V} ~y if D is concretely detaggable.
JcK =⇒ λ~a :J~AK. λ~y :D J~iK. c ~a{V} ~y otherwise.

where V is the set of concretely forceable variables in ~a
a{V} =⇒ {a} if a ∈ V
a{V} =⇒ a otherwise

Figure B.5: The detagging optimisationg

Appendix B. Typechecking ExTT 221

As with forcing, detagging is applied across a context, with the types of c and D-Elim

modified accordingly. Detagging of a context is given in figure B.6:

JEK =⇒ E
JΓ; c : ∀~a : ~A. ∀~y : ~Y . D~sK =⇒ JΓK; {c} : ∀~a : ~A{V}. ∀~y : ~Y . D J~sK if D is concretely detaggable
JΓ; c : ∀~a : ~A. ∀~y : ~Y . D~sK =⇒ JΓK; c : ∀~a : ~A{V}. ∀~y : ~Y . D J~sK otherwise

where V is the set of concretely forceable variables in ~a
∀a :A{V} =⇒ ∀{a :JAK} if a ∈ V
∀a :A{V} =⇒ ∀a :JAK otherwise

JΓ; x : SK =⇒ JΓK; x : JSK
JΓ; e : S 7→ sK =⇒ JΓK; x : JSK 7→ JsK

Figure B.6: Detagging a context

B.3.1 Equivalence of Typechecking for Detagging

Lemma B.10. Γ
TT

` a
TT' |JaK|

Proof. Trivial, since we have η-conversion. The proof is by induction on the typing judgment.

• Case a = c. Then JcK =⇒ λ~a :J~AK. λ~y :D J~iK. c ~a{V} ~y or
JcK =⇒ λ~a :J~AK. λ~y :D J~iK. {c} ~a{V} ~y , depending whether c’s type is detaggable.

Either way, removing the marks yields λ~a : ~A. λ~y :D~i . c~a ~y , which is η-convertible with
c.

• All other cases are provable trivially by induction.

Lemma B.11. If JΓK
Ex

` S ,T : V and JΓK
Ex

` S
Ex' T then Γ

TT

` |S | TT' |T |.

Proof. Similarly to Lemma B.6, except that there is an additional normal form possible,
and hence an additional case:

• {c} ~a ~y , where ~a, ~y are normal forms or of the form {t}, and t is any term.

• Case a = {c} ~a ~y and b = {c′} ~b ~z . Then |a| = c ~a ′ ~y ′ and |b| = c′ ~b′ ~z ′, where:

– ai = Ja ′iK if a ′i is not concretely forceable.

– ai = {a ′i} if a ′i is concretely forceable.

– bi = Jb′iK if b′i is not concretely forceable.

– bi = {b′i} if b′i is concretely forceable.

– yi = Jy ′iK.

Appendix B. Typechecking ExTT 222

– zi = Jz ′iK.

Synthesising types of a and b we get:

– JΓK
Ex

` a Ex=⇒ D~s for some ~s.

– JΓK
Ex

` b Ex=⇒ D′ ~t for some ~t .

Since JΓK
Ex

` a, b : V , we know D
Ex≡ D′.

JΓK
Ex

` a
Ex' b if and only if the constructors are identical, i.e. c

Ex≡ c′, and corresponding
arguments are convertible. Conversion holds for marked arguments as in Lemma B.6.
So we now show that if we are comparing marked constructors, they must be the same
constructor.

By the definition of detaggable, marked constructors are determined by their indices,
which are already in the context since the terms are well-scoped. Hence an equivalent
conversion check has already been made.

Theorem B.12 (Property 1 for detagging). If JΓK
Ex

` JaK Ex=⇒ B then

∃A. Γ
TT

` a TT=⇒ A and Γ
TT

` A
TT' |B |

Proof. By induction on the typing judgment, ∆
Ex

` b Ex=⇒ B , where ∀Γ, a, ∆ = JΓK and

b = JaK. In each case, we find appropriate A and B such that Γ
TT

` A
TT' |B |. Cases are as

Theorem B.7 except:

• Case b = {f} s. Then a = f ′ s ′ where s = Js ′K and f ′ ∈ Γ, since the detagging
optimisation only marks constructor names in function position.

If {f} : ∀x :S . T ∈ ∆ and ∆
Ex

` s Ex=⇒ S ′ and ∆
Ex

` S
Ex' S ′ then

∆
Ex

` {f} s Ex=⇒ let x : S ′ 7→ s in T , so B = let x : S ′ 7→ s in T .

By induction:

– ∆
Ex

` s Ex=⇒ S ′ gives i.h.

∀Γ, a. ∆ = JΓK, s = JaK, ∃A. Γ
TT

` a TT=⇒ A and A
TT' |S ′|

So Γ
TT

` s ′ TT=⇒ A
TT' |S ′| and if {f} : ∀x :S . T ∈ ∆ then f : ∀x : |S | . |T | ∈ Γ.

So A = let x : |S ′| 7→ s ′ in |T | if Γ
TT

` |S | TT' |S ′|.

Since JΓK
Ex

` valid, S ,S ′ : ?n. Then by Lemma B.11, if JΓK
Ex

` S ,S ′ : ?n and

JΓK
Ex

` S
Ex' S ′ then Γ

TT

` |S | TT' |S ′|, and so we now have Γ
TT

` A
TT' |B |.

Appendix B. Typechecking ExTT 223

• Case b = {f} {s}. Then a = f ′ x where s = x , x ∈ Γ and f ′ ∈ Γ.

If {f} : ∀{x :S}. T ∈ ∆ and ∆
Ex

` s Ex=⇒ S ′ and ∆
Ex

` S
Ex' S ′ then

∆
Ex

` {f} {s} Ex=⇒ let x : S ′ 7→ s in T , so B = let x : S ′ 7→ s in T .

If {f} : ∀x :S . T ∈ ∆ then f : ∀x : |S | . |T | ∈ Γ.

If x : S ′ ∈ ∆, then x : |S ′| ∈ Γ.

Then A = letx : |S ′| 7→ s in |T |, if Γ
TT

` |S | TT' |S ′| (by Lemma B.11) so Γ
TT

` A
TT' |B |.

Theorem B.13 (Property 2 for detagging). If Γ
TT

` a TT=⇒ A then ∃B .

JΓK
Ex

` JaK Ex=⇒ B and

JΓK
Ex

` B
Ex' JAK and

JΓK
Ex

` B Ex=⇒ X ³ ?n

Proof. By induction on the TT typing judgment. Cases are as for Theorem B.8, except:

• Case a = c. Then either

– JaK = λ~a : ~A. λ~y : ~Y . c ~a{V} ~y or

– JaK = λ~a : ~A. λ~y : ~Y . {c} ~a{V} ~y

Γ
TT

` a TT=⇒ ∀~a : ~A. ∀~y : ~Y . D~s, by lookup of c in Γ.

If ∆ = JΓK then ∆
Ex

` JaK Ex=⇒ ∀~a :J~AK.∀~y :J~Y K. let~a : ~A 7→ ~a in let~y : ~Y 7→ ~y inD J~s ′K,
whether or not c is marked.

Take A = ∀~a : ~A. ∀~y : ~Y . D~s and
B = ∀~a :J~AK. ∀~y :J~Y K. let~a : ~A 7→ ~a in let~y : ~Y 7→ ~y in D J~s ′K
so by definition JΓK

Ex

` B
Ex' JAK.

Theorem B.14 (Property 3 for detagging). If JΓK
Ex

` JAK Ex' B then Γ
TT

` A ' |B |

Proof. By Lemma B.11, Γ
TT

` |JAK| TT' |B |.
Then by Lemma B.10, Γ

TT

` A
TT' |B |.

Appendix C

An Implementation of

Normalisation By Evaluation

In this appendix I give an implementation in Haskell of normalisation by evaluation for
ExTT, first with the core terms then adding inductive families and ι-schemes. Since ExTT

has η-conversion, we will be producing η-long normal forms; that is, all names are fully
applied. This implementation is based on ideas of Filinski [Fil01] and discussion with Conor
McBride.

Recall that the technique of normalisation by evaluation (figure C.1) is to build a meta-
level representation of the term, then reify it back to an object level representation of normal
forms and finally to revert to the representation of terms.

C.1 Representation of terms

C.1.1 Representing Well Typed Terms

Leaving aside the representation of inductive families and ι-schemes for the moment, we
can represent well-typed terms in ExTT with the Haskell data structure in figure C.2, called
Term. The scope of a binding is represented explicitly in Term, using Scope. The purpose of
this is to be able to distinguish by type between closed terms (of type Term) and terms with
free variables (of type Scope Term). Local variables are de Bruijn indexed [dB72]; there is
no explicit name bound in the term. The index represents the number of bindings since the
variable was bound — zero represents the most recently bound variable.

Remark: String is not necessarily the best choice for representing variable names, al-
though it is adequate for our purposes here. It may be better to use a representation which
distinguishes scope, for example, or distinguishes between machine generated names and
user supplied names. [MM04a] details the issues involved.

224

Appendix C. An Implementation of Normalisation By Evaluation 225

ExTT Term

ExTT Term

Normal Form Haskell Value

Haskell Value
eval

quote

forget

Meta level evaluation

Meta LevelObject Level

Figure C.1: Normalisation By Evaluation

C.1.2 Representing Normal Forms

There are two stages to the normalisation by evaluation process; translating from the object
level to the meta-level, then translating back again. First, we build a model of the term in
the meta-language using a function called eval. Then we reify the meta-level representation
as a syntactic representation of the object language using a function called quote.

An important structure in this process is the representation of normal forms. These
can be represented both semantically (i.e., the representation in the meta-language) and
syntactically (i.e., the representation of normal forms in the object language). We declare
a datatype Model, given in figure C.3, which is parametrised over a scope former, of kind
* -> *. This parametrisation means that the scope of a binding can be represented in
several ways, allowing us to build semantic as well as syntactic representations of values in
the same framework. We build a semantic representation by using a function rather than a
data constructor as a scope former.

Normal forms are split into two possible cases, the ready (or canonical) terms which are
already in normal form and the blocked terms which could possibly be reduced further if
given additional arguments. Blocked terms consist of a head term (with its type, which will
be used to direct η-expansion) and a spine which holds the arguments applied to the head
term. The data type which represents the spine is simply a list where new items are added
to the end, rather then the beginning. We implement fmap, splength and append functions
for spines as in figure C.4, corresponding to map, length and ++ on ordinary lists..

Appendix C. An Implementation of Normalisation By Evaluation 226

data Term = V Int -- de Bruijn indexed variable
| P Name -- Global name
| App Term Term -- Function application
| Lam Term (Scope Term) -- Lambda binding
| Let Term Term (Scope Term) -- Let binding
| Pi Term (Scope Term) -- Pi binding
| Const Const -- Constant

newtype Scope x = Sc x
data Const = Type Int
type Name = String

Figure C.2: Representation of ExTT terms

infix 1 :::
data thing ::: type = thing ::: type

data Model s = R (Ready s)
| B (Blocked ::: (Model s)) (Spine (Model s))

data Ready s = RLam (Model s) (s (Model s))
| RPi (Model s) (s (Model s))
| RConst Const

data Blocked = BV Int

data Spine x = Empty | Snoc (Spine x) x

Figure C.3: Representation of normal forms

Representing normal forms in this way prevents us from inadvertently creating a term
which is not in normal form, for example we cannot construct a λ-binding applied to an argu-
ment as a normal form since only blocked terms can have arguments applied to them. That
is, we use the type system to help us avoid errors by creating a more precise representation
for normal forms.

C.1.3 Representing Scope

Model is parametrised over s which, when instantiated, indicates how to represent scope.
As well as Scope, I introduce a second representation for the scope of a binding, Kripke
(figure C.5).

Scope represents the scope of a binding syntactically; a Model Scope is therefore a syn-
tactic representation of normal forms with an obvious forgetful map back to Term.

Kripke, on the other hand, is a Kripke-style semantic representation of values (possible

Appendix C. An Implementation of Normalisation By Evaluation 227

instance Functor Spine where
fmap f Empty = Empty
fmap f (Snoc xs x) = Snoc (fmap f xs) (f x)

splength :: Spine a -> Int
splength Empty = 0
splength (Snoc s v) = 1+splength s

append :: Spine a -> Spine a -> Spine a
append xs Empty = xs
append xs (Snoc ys y) = Snoc (append xs ys) y

Figure C.4: Utility functions for Spine

newtype Kripke x = Kr (Weakening -> x -> x, Weakening)
newtype Weakening = Wk Int

Figure C.5: Kripke declaration

world semantics — there are many possible values but given more information, i.e. the
function argument, we can decide which value applies). This scope former takes a Haskell
function to evaluate the body of the scope when passed a Weakening and the value to
substitute in the body. The weakening is an integer which is used to handle de Bruijn
indices correctly — when we go under a binder the index 0 refers to the most recently
introduced variable, and all variables above the binder are weakened by 1.
Remark: Using de Bruijn levels, rather than de Bruijn indices, would eliminate the need
for the weakening [Fil99, Fil01]. However, this makes it harder to manipulate terms directly
and so we prefer to use de Bruijn indices.

We now have two representations for normal forms, called values in the semantic case
(because they represent a value in the meta-language) and normals in the syntactic case
(because they represent normal forms directly), with type synonyms declared for conve-
nience, as in figure C.6.

type Value = Model Kripke
type Normal = Model Scope

Figure C.6: Normal form type synonyms

To implement the normalisation function we have three operations to define — an evalu-

ation function to convert a term to its meta-language representation, a quotation function
which converts the meta-language’s semantic representation to a syntactic representation
(reification) and finally, it is often useful to have a forgetful map which converts the syn-
tactic normal form back to the original representation of well-typed terms (it is a forgetful

Appendix C. An Implementation of Normalisation By Evaluation 228

map because it forgets the additional information that the term is in normal form).

The evaluation function keeps a local context, Env, to keep track of variable bindings.
This is represented as a list of values. The global context for the normalisation operation,
Ctxt, is a lookup table from names to typed Values (i.e. Value:::Value) — all global
definitions are stored as a normal form, built from their TT definitions. Initially, we have a
table of definitions, Defs, which is a lookup table from names to typed Terms. I will take
as an invariant of the normalisation operation that all names which are used are guaranteed
to be defined in the context. Where the terms are well-typed and there are no names which
are not bound to terms (for example, axioms) this will always be the case. Env and Ctxt

are declared as in figure C.7. Figure C.8 shows the declarations of the evaluation, quotation
and forgetful map functions.

type Defs = [(Name,(Term ::: Term))]
newtype Env = Env [Value]
type Ctxt = [(Name,(Value ::: Value)]

Figure C.7: Environment and global context

eval :: Ctxt -> Env -> Term -> Value
quote :: Value -> Normal
forget :: Normal -> Term

Figure C.8: Normalisation functions

The context, Ctxt, is built from the TT definitions, Defs, using the mkCtxt function,
which creates the Value representing each definition from the original Term:

mkctxt :: Defs -> Ctxt -> Ctxt

mkctxt [] acc = acc

mkctxt ((n,v:::t):xs) acc

= mkctxt xs ((n, (eval acc (Env []) v) ::: eval acc (Env []) t):acc)

C.2 The evaluation function “eval”

We write eval, the function which translates from well-typed terms to a semantic represen-
tation of terms, by case analysis on the input term. The complete definition, for TT but
without inductive families and ι-reduction, is shown in figure C.9.

Two cases are straightforward, these being the evaluation of constants and de Bruijn
indexed variables. Evaluation of constants is a direct mapping to normal form and evaluation
of variables involves looking up the value in the context. This implements δ-reduction:

Appendix C. An Implementation of Normalisation By Evaluation 229

eval :: Ctxt -> Env -> Term -> Value
eval ctxt g (Const c) = R (RConst c)
eval ctxt (Env g) (V n) = g!!n
eval ctxt g (P x) = case lookup x ctxt of

(Just (v ::: t)) -> v
eval ctxt g (Lam t (Sc b)) = R (RLam (eval ctxt g t)

(Kr (\w x -> eval (x:weaken w g) b,Wk 0)))
eval ctxt g (Pi t (Sc b)) = R (RPi (eval ctxt g t)

(Kr (\w x -> eval (x:weaken w g) b,Wk 0)))
eval ctxt (Env g) (Let v t (Sc b))

= eval ctxt (Env (eval ctxt (Env g) v):g) b
eval ctxt g (App f a) = apply (eval ctxt g f) (eval ctxt g a)

apply :: Value -> Value -> Value
apply (R (RLam t (Kr (f,w)))) v = f w v
apply (B b s) v = B b (Snoc s v)

Figure C.9: eval definition for TT without inductive families

eval ctxt g (Const c) = R (RConst c)

eval ctxt (Env g) (V n) = g!!n

Evaluation of global names involves looking them up in the global context Ctxt, substi-
tuting the body for the name. Since the context stores normal forms, no further work is
required to produce a Value:

eval ctxt g (P x) = case lookup x ctxt of

(Just (v ::: t)) -> v

β-reduction lies at the heart of the normalisation algorithm and so the Lam and Pi

cases are where the real work takes place. These cases involve building up an appropriate
semantic representation of the scope of the normal form, so that we use the meta-language’s
implementation of substitution.

eval ctxt g (Lam t (Sc b)) = R (RLam (eval ctxt g t)

(Kr (\w x -> eval (x:weaken w g) b,Wk 0)))

eval ctxt g (Pi t (Sc b)) = R (RPi (eval ctxt g t)

(Kr (\w x -> eval (x:weaken w g) b,Wk 0)))

In each of these cases the scope of the binding is a function which adds the argument to
the local context, weakening the values already in the context by the given weakening, then
evaluates the body of the lambda binding in this new context. Thanks to Haskell’s lazy
evaluation semantics, this function is not executed yet and will not be until requested by
the quote function. In this way we rely on Haskell’s substitution mechanism to perform the

Appendix C. An Implementation of Normalisation By Evaluation 230

substitution rather than implementing it ourselves. Implementation of the weaken function
is by recursion over Value, incrementing any variables in the value by the weakening.

Evaluation of a let binding is similar, except that we already know the value which is to
be added to the environment. We continue by evaluating the scope, with the bound value
added to the environment. This implements the contextual closure rule:

eval ctxt (Env g) (Let v t (Sc b))

= eval ctxt (Env (eval ctxt (Env g) v):g) b

Finally, we have the function application case. This evaluates the function and its argu-
ment and uses a helper function to perform the application.

eval ctxt g (App f a) = apply (eval ctxt g f) (eval ctxt g a)

The apply function checks whether the function is a lambda binding, and if so applies the
function in its scope. If the function is a blocked application, we simply add the argument
to the spine of that blocked application. When adding ι-schemes this will become more
important, since adding an extra argument may make the blocked term reducible, specifically
in the cases where it makes a constructor or elimination rule fully applied.

apply :: Value -> Value -> Value

apply (R (RLam t (Kr (f,w)))) v = f w v

apply (B b s) v = B b (Snoc s v)

C.3 The quotation function “quote”

The quote function takes a semantic representation of a term and translates it back to a
syntactic representation. In the process, the meta-language reduces the semantic represen-
tation to normal form, hence the quote function produces syntactic normal forms, Normal,
from their semantic representations, Value. This involves traversing the term and evaluating
any unevaluated scope functions with an appropriate weakening and argument. We define
a type class, in figure C.10, for quotable terms. While this is a very general class definition,
there are two advantages to using a class rather than simply defining a function:

• It allows the name quote to be overloaded for each part of the Model structure.

• We may at some stage wish to extend the class definition to include extra features
such as name generation (say, to map de Bruijn indexed local variables back to the
user’s chosen name).

This class definition relies on multi parameter type classes and functional dependencies,
non-standard features of Haskell available in the Glasgow Haskell Compiler and some other

Appendix C. An Implementation of Normalisation By Evaluation 231

class Quote x y | x -> y where
quote :: x -> y

Figure C.10: Type class for quote

instance Quote Value Normal where
quote (R r) = R (quote r)
quote (B (b ::: t) s) = B (b ::: quote t) (fmap quote s)

instance Quote (Ready Kripke) (Ready Scope) where
quote (RConst c) = RConst c
quote (RLam t s) = RLam (quote t) (syntactify t s)
quote (RPi t s) = RPi (quote t) (syntactify t s)

syntactify :: Value -> Kripke Value -> Scope Normal
syntactify t (Kr (f,w))

= (Sc (quote (f (weaken w (Wk 1)) (B ((BV 0) ::: t) Empty))))

Figure C.11: The quote operation on Value

implementations. The instance definition which converts values into syntactic normal forms
is given in figure C.11.

The function syntactify is a helper function for this operation which applies the func-
tion representing the scope to an appropriate value. Since we don’t know what the argument
is as the function is not fully applied, the appropriate argument is naturally the de Bruijn
index 0, standing for the most recently bound variable. The function f evaluates the scope
of a binding passed to syntactify. Since this function evaluates under a binder, the context
in which the scope is evaluated is weakened by 1, meaning that variables which were bound
on a higher level are referred to correctly.

In this case, no further work is required to produce an η-long normal form, since there
are no blocked names to expand.

C.4 The forgetful map “forget”

Having used a more precise data structure to create the normal form of a term, it is often
helpful to be able to return the normal form as a Term itself. This is the purpose of the
forget function which maps a syntactic normal form to the equivalent Term.

Again forget is defined using a type class, in figure C.12, which allows the name to be
overloaded for each part of the Model structure.

forget is a straightforward traversal of normal forms, the only difficulty being that
functions are applied to only one argument, rather than an entire spine. To deal with this
we use a helper function makeApp. The instance definitions which create a Term from a

Appendix C. An Implementation of Normalisation By Evaluation 232

class Forget x y | x -> y where
forget :: x -> y

Figure C.12: Type class for forget

Normal are given in figure C.13.

instance Forget Normal Term where
forget (B (b ::: t) s) = makeApp (forget b) (fmap forget s)
forget (R r) = forget r

instance Forget Blocked Term where
forget (BV i) = V i

instance Forget (Ready Scope) Term where
forget (RLam t (Sc s)) = Lam (forget t) (Sc (forget sc))
forget (RPi t (Sc s)) = Pi (forget t) (Sc (forget sc))
forget (RConst c) = Const c

makeApp f Empty = f
makeApp f (Snoc xs x) = App (makeApp f xs) x

Figure C.13: The forgetful map from Normal to Term

C.5 Adding ι-schemes

The normalisation function presented so far gives the basic details of normalisation by
evaluation. To make the system useful however, we would like data structures and some way
of choosing between different code branches. Chapter 2 described inductive families and their
elimination rules — in this section we will see how elimination rules can be implemented in
a normalisation by evaluation setting. This requires adding a representation of constructor
forms and elimination rules to the term language.

C.5.1 Constructors

A constructor form is simply a global name applied to some arguments; we can already
represent this in the term language. Unlike function names, however, they do not map to a
definition, but rather are used to direct ι-reduction. We therefore modify the definition of
Defs. A name maps to either a function definition (Fun Term), a construtor with its arity
(Con Int) or a type constructor with its arity (TyCon Int). The new definiition of Defs is
shown in figure C.14.

Appendix C. An Implementation of Normalisation By Evaluation 233

data NameDef = Fun Term
| Con Int
| TyCon Int

type Defs = [(Name,(NameDef ::: Term))]

Figure C.14: Adding constructor definitions

An elimination rule can only be reduced when given a fully applied constructor. We
therefore add constructor names and type constructors to the blocked normal forms (for
constructors which are not fully applied) and to the ready normal forms (for those which
are fully applied). These additions are shown in figure C.15.

data Blocked = ...
| BCon Name Int
| BTyCon Name Int

data Ready s = ...
| RCon Name (Spine (Model s))
| RTyCon Name (Spine (Model s))

Figure C.15: Adding constructors to normal forms

The fully applied constructors also store the values to which they are applied; this is
convenient for implementing elimination rules which access the arguments of a constructor.

There are situations where it might be useful to add further information to constructor
names. An integer tag on the constructor can act as a reference into a lookup table of
ι-reductions. This is the representation chosen by several graph reduction systems to speed
up choice of reduction, including early implementations of the G-machine [Pey87, PL92]. In-
stead of a tag, a function pointer can be used to directly point to the code for the ι-scheme,
which is the approach taken by the STG machine [Pey92]. We choose the straightforward
representation of the name and arguments here because of the approach we take to imple-
menting elimination rules.

As before, we use a function mkctxt to build a context from the list of definitions.
Function definitions map to Values as before. Constructor names also map to Values; a
constructor of zero arity is fully applied so we build a ready form, otherwise we build a
blocked form.

C.5.2 Elimination Rules

Elimination rules are generated from a user defined data type, rather than by the user
directly. Syntactically, an elimination rule is simply a name; however, semantically, there
must be an implementation of its pattern matching behaviour. For this reason, we do not

Appendix C. An Implementation of Normalisation By Evaluation 234

mkctxt :: Defs -> Ctxt -> Ctxt
mkctxt [] acc = acc
mkctxt ((n,(Fun v):::t):xs) acc

= mkctxt xs ((n, (eval acc (Env []) v) ::: eval acc (Env []) t):acc)
mkctxt ((n,(Con 0):::t):xs) acc

= mkctxt xs ((n, R (RCon n Empty) ::: eval acc (Env []) t):acc)
mkctxt ((n,(Con i):::t):xs) acc

= mkctxt xs ((n, B ((BCon n i) ::: ty) Empty ::: ty):acc)
where ty = eval acc (Env []) t

mkctxt ((n,(TyCon 0):::t):xs) acc
= mkctxt xs ((n, R (RTyCon n Empty) ::: eval acc (Env []) t):acc)

mkctxt ((n,(TyCon i):::t):xs) acc
= mkctxt xs ((n, B ((BTyCon n i) ::: ty) Empty ::: ty):acc)

where ty = eval acc (Env []) t

Figure C.16: Building a context of Values with constructors

represent ι-schemes directly as terms, but rather as a function implementing that rule’s
behaviour.

An elimination rule takes a number of arguments and if it is possible to apply the rule to
those arguments, returns the Value representing the result of elimination. If not, evaluation
cannot proceed. The Haskell type describing this behaviour is:

type ElimRule = Spine Value -> Maybe Value

For each data type, there is a function of type ElimRule which defines its ι-schemes.
We do not add elimination rules to the term language; they are represented by their names,
which are bound in the global context to a Value.

In the language of normal forms, it may be that we have an elimination operator which
cannot be applied, either because it has too few arguments or because its target is not in
canonical form. A value is in canonical form if it cannot be reduced further; that is, it is
ready rather than blocked. For data types, this means that the target is a fully applied
constructor. For this reason, we add elimination rules to the blocked normal forms, as in
figure C.17. We keep the name of the elimination rule as well as its implementation, so that
we can implement the forgetful map back to Terms if the elimination rule cannot be reduced.

type ElimRule = Spine Value -> Maybe Value

data Blocked = ...
| BElim (ElimRule,Name)

Figure C.17: Adding elimination rules to normal forms

We extend NameDef to map a name to an implementation of an elimination rules, and
extend mkctxt accordingly, as in figure C.18. Elimination rules are represented in pattern

Appendix C. An Implementation of Normalisation By Evaluation 235

matching form (Patterns) and compiled to an implementation (ElimRule) using mkelim,
although we will not go into the details of this representation here.

data NameDef = ...
| Elim Patterns

mkctxt ((n,(Elim p):::t):xs) acc
= mkctxt xs ((n, B ((BElim (mkelim p,n)) ::: ty) Empty ::: ty):acc)

where ty = eval acc (Env []) t

Figure C.18: Adding elimination rules to Defs

C.5.3 Evaluation of Elimination Operators

It now remains to define cases of eval, quote and forget for constructors and elimination
operators. The complete definition of eval is given in figure C.19. The only addition is in
the apply helper function, since constructor and elimination rules are evaluated by looking
their values up in the context. When applying a blocked constructor to an argument, we
check whether the constructor is now fully applied; if so, we create a ready term, otherwise
we simply add the argument to the spine.

apply (B ((BCon n i) ::: ty) s) v

| splength (Snoc s v) = i = R (RCon n (Snoc s v))

| otherwise = B ((BTyCon n i) ::: ty) (Snoc s v)

apply (B ((BTyCon n i) ::: ty) s) v

| splength (Snoc s v) = i = R (RTyCon n (Snoc s v))

| otherwise = B ((BTyCon n i) ::: ty) (Snoc s v)

Whenever an argument is added to a blocked elimination rule, we try to apply the
elimination rule to its arguments by applying its ElimRule function. If this produces a
value we continue, otherwise we retain the blocked term.

apply (B ((BElim (e,x)) ::: ty) s) v

= case e (Snoc s v) of

Nothing -> (B ((BElim (e,x)) ::: ty) (Snoc s v))

Just v -> v

For quotation, no extra work is required for blocked constructors since they are not
parametric in their scope. The complete definition, with constructors and ι-reduction, is
shown in figure C.20. The addition to the previous definition is for fully applied constructors,
which are quoted as follows:

quote (RCon n s) = RCon n (fmap quote s)

quote (RTyCon n s) = RTyCon n (fmap quote s)

Appendix C. An Implementation of Normalisation By Evaluation 236

eval :: Ctxt -> Env -> Term -> Value
eval ctxt g (Const c) = R (RConst c)
eval ctxt (Env g) (V n) = g!!n
eval ctxt g (P x) = case lookup x ctxt of

(Just (v ::: t)) -> v
eval ctxt g (Lam t (Sc b)) = R (RLam (eval ctxt g t)

(Kr (\w x -> eval (x:weaken w g) b,Wk 0)))
eval ctxt g (Pi t (Sc b)) = R (RPi (eval ctxt g t)

(Kr (\w x -> eval (x:weaken w g) b,Wk 0)))
eval ctxt (Env g) (Let v t (Sc b))

= eval ctxt (Env (eval ctxt (Env g) v):g) b
eval ctxt g (App f a) = apply (eval ctxt g f) (eval ctxt g a)

apply :: Ctxt -> Value -> Value -> Value
apply (R (RLam t (Kr (f,w)))) v = f w v
apply (B ((BCon n i) ::: ty) s) v

| splength (Snoc s v) = i = R (RCon n (Snoc s v))
| otherwise = B ((BTyCon n i) ::: ty) (Snoc s v)

apply (B ((BTyCon n i) ::: ty) s) v
| splength (Snoc s v) = i = R (RTyCon n (Snoc s v))
| otherwise = B ((BTyCon n i) ::: ty) (Snoc s v)

apply (B ((BElim (e,x)) ::: ty) s) v
= case e (Snoc s v) of

Nothing -> (B ((BElim (e,x)) ::: ty) (Snoc s v))
Just v -> v

apply (B b s) v = B b (Snoc s v)

Figure C.19: Complete eval definition, with ι-reduction

The forget operation is also relatively straightforward since most of the work, dealing
with the spine, has already been done. The complete definition is shown in figure C.21.
Forgetting blocked constructors is a straightforward map to the Term constructors:

forget (BCon n i) = P n

forget (BTyCon n i) = P n

When we forget an elimination rule which could not be applied, we get back the name
of the rule, rather than its implementation:

forget (BElim (e,x)) = P x

Forgetting fully applied constructors deals with application of the spine in a similar way
to the spine of blocked applications, using makeApp:

forget (RCon n s) = makeApp (Con n (splength s)) (fmap forget s)

forget (RTyCon n s) = makeApp (TyCon n (splength s)) (fmap forget s)

Appendix C. An Implementation of Normalisation By Evaluation 237

instance Quote Value Normal where
quote (R r) = R (quote r)
quote (B (b ::: t) s) = B (b ::: quote t) (fmap quote s)

instance Quote (Ready Kripke) (Ready Scope) where
quote (RConst c) = RConst c
quote (RLam t s) = RLam (quote t) (syntactify t s)
quote (RPi t s) = RPi (quote t) (syntactify t s)
quote (RCon n s) = RCon n (fmap quote s)
quote (RTyCon n s) = RTyCon n (fmap quote s)

syntactify :: Value -> Kripke Value -> Scope Normal
syntactify t (Kr (f,w))

= (Sc (quote (f (weaken w (Wk 1)) (B ((BV 0) ::: t) Empty))))

Figure C.20: The quote operation on Value, with constructors

C.5.4 Quotation to η-long normal form

Now that we have added constructors, the final step is quotation to η-long normal form,
implementated as in figure C.22. This is type directed; we quote a term/type pair, and
η-expand all elements of function type. At the top level it is fairly straightforward; if we
have a function type, we make sure the term is a λ form:

quote (v ::: (R (RPi ty (Kr (f,w)))))

= (R (RLam (quote ty) (Sc (quote ((apply v v0) ::: f w v0)))))

where v0 = (B ((BV 0) ::: ty) Empty)

If we have a blocked application, we have the type of the head symbol, which we use
to direct the quotation of the arguments in the spine. The spine holds the arguments
backwards, which is slightly inconvenient, but not difficult to deal with:

quote ((B (bl ::: ty) sp) ::: _)

= B (bl ::: quote ty) (fst (qspine sp))

where qspine Empty = (Empty, ty)

qspine (Snoc sp v) | (sp’, R (RPi t (Kr (f,w)))) <- qspine sp

= (Snoc sp’ (quote (v ::: t)), f w (v0 t))

v0 t = (B ((BV 0) ::: t) Empty)

C.5.5 Example — Natural Numbers

The natural number data type and its ι-scheme were defined as below in Chapter 2:

Appendix C. An Implementation of Normalisation By Evaluation 238

instance Forget Normal Term where
forget (B (b ::: t) s) = makeApp (forget b) (fmap forget s)
forget (R r) = forget r

instance Forget Blocked Term where
forget (BV i) = V i
forget (BCon n i) = P n
forget (BTyCon n i) = P n
forget (BElim (e,x)) = P x

instance Forget (Ready Scope) Term where
forget (RLam t (Sc s)) = Lam (forget t) (Sc (forget sc))
forget (RPi t (Sc s)) = Pi (forget t) (Sc (forget sc))
forget (RConst c) = Const c
forget (RCon n s) = makeApp (Con n (splength s)) (fmap forget s)
forget (RTyCon n s) = makeApp (TyCon n (splength s)) (fmap forget s)

makeApp f Empty = f
makeApp f (Snoc xs x) = App (makeApp f xs) x

Figure C.21: The forgetful map from Normal to Term, with constructors and ι-reduction

data N : ?
where

0 : N
n : N
s n : N

N-Elim 0 P m0 ms ; m0

N-Elim (s k) P m0 ms ; ms k (N-Elim k P m0 ms)

The constructor names are represented in Defs as follows:

[("O",Con 0),("s",Con 1)]

For the elimination operator, we define a function of type ElimRule which takes a spine
of the arguments and returns a value if reduction is possible. Reduction is possible when
the spine contains the correct number of arguments (four in the case of N-Elim) and the
argument in the target position is in canonical form.

For N-Elim, we can define such a function by hand, as below. There are two cases in
which the function can produce a value. These are when the target matches a fully applied
instance of either constructor and the other arguments, P , m0 and ms are present. In any
other case, no reduction is possible.

natelim (Snoc (Snoc (Snoc (Snoc Empty x) P) mZ) mS) = case x of

(R (RCon "O" Empty)) -> return mZ

(R (RCon "s" (Snoc Empty n))) ->

return (apply (apply mS n) (B (BElim (natelim,"natelim"))

(Snoc (Snoc (Snoc (Snoc Empty n) P) mZ) mS)))

Appendix C. An Implementation of Normalisation By Evaluation 239

instance Quote (Value ::: Value) Normal where
quote (v ::: (R (RPi ty (Kr (f,w)))))

= (R (RLam (quote ty) (Sc (quote ((apply v v0) ::: f w v0)))))
where v0 = (B ((BV 0) ::: ty) Empty)

quote ((B (bl ::: ty) sp) ::: _)
= B (bl ::: quote ty) (fst (qspine sp))

where qspine Empty = (Empty, ty)
qspine (Snoc sp v) | (sp’, R (RPi t (Kr (f,w)))) <- qspine sp

= (Snoc sp’ (quote (v ::: t)), f w (v0 t))
v0 t = (B ((BV 0) ::: t) Empty)

quote (v ::: t) = quote v

Figure C.22: Quotation to η-long normal form

_ -> Nothing

natelim _ _ = Nothing

C.6 Building Elimination Rules

Of course, we cannot hard code elimination rules for all inductive families — although doing
so may be an optimisation for some commonly used families like N, we would like a more
general way of evaluating eliminations. For an inductive family D, we would like a general
method of constructing a function of type Spine Value -> Maybe Value representing its
elimination rule D-Elim, defined by the following general scheme in pattern matching style:

D-Elim~s (c1 ~a1 ~y1) P ~m ; ι1

. . .

D-Elim~s (cn ~an ~yn) P ~m ; ιn

An elimination rule is reducible if the target is in canonical form (that is, there is an
RCon at the head) and it has been passed the right number of arguments — that is, the
length of the spine equals the arity of the elimination rule.

So, given an arity, the location of the target on the spine, and a list of reductions (mapping
from constructor name to a function which produces a Value, given a local context), we can
build a generic implementation of an elimination rule, shown in figure C.23.

The function checks that the spine it is given is the correct length; if not, it cannot proceed:

genElim a c rs sp

| splength sp < a = Nothing

If the spine has the appropriate number of arguments, we try to apply the appropriate
ι-scheme. reduce is a helper operation which takes the target, and the spine with the
constructor removed:

Appendix C. An Implementation of Normalisation By Evaluation 240

genElim :: Int -> Int -> [(Name,(Gamma -> Value))] ->
Spine Value -> Maybe Value

genElim a c rs sp
| splength sp < a = Nothing
| otherwise = reduce (sp!!c) (remove c sp rs)

reduce (R (RCon n as)) sp rs
= do v <- lookup n as

return v (Env (as ‘append‘ sp))
reduce _ sp rs = Nothing

Figure C.23: Complete definition of genElim

genElim a c rs sp

| otherwise = reduce (sp!!c) (remove c sp rs)

reduce (R (RCon n as)) sp rs

= do v <- lookup n as

return v (Env (as ‘append‘ sp))

reduce _ sp rs = Nothing

How does this help? We can use genElim to build any reduction rule from its arity,
target and ι-schemes. For each constructor ci of D, such that ci ~a ~y : D ~s, we build a
function representing the ι-scheme for that constructor, with motive P and methods ~m,
following the ideas of [CL99]:

λ~s;~a;~y ;P ; ~m. ιi

The arity of the elimination rule a is calculated from the number of indices of the type
(s) and the number of constructors (n); a = s +n +2, the extra 2 accounting for the target
and motive. The position of the constructor in the argument list, c, is given by the number
of indices; c = s.

The reductions, rs, are given by constructing a map such that ci maps to ιi; ιi is
typechecked so that local variables are represented by the appropriate de Bruijn index.
Then the function implementing the elimination rule for D is given by:

D-Elim = genElim a c rs

We can build natelim in this way as follows:

natZ g = eval g (V 0)

natS g = eval g (App (App (V 0) (V 3))

(App (App (App (App

(P "natelim") (V 3)) (V 2)) (V 1)) (V 0)))

natelim = genElim 4 0 [("O",natZ), ("S",natS)]

Appendix C. An Implementation of Normalisation By Evaluation 241

The de Bruijn indices in the reductions of this rule refer to the Values passed through
in the local context g. Hence, there are no lambdas; the variables have already been bound.

C.7 Conversion Using Normalisation by Evaluation

We have implemented normalisation by evaluation to support the conversion test, which is
required for typechecking in an implementation of TT. It is useful to be able to run arbitrary
terms within the system during program development (as with Coq’s Eval tactic) but we
are interested in efficient evaluation primarily to speed up the conversion check.

Usually, we would reduce to weak head-normal form when typechecking, as in Coquand’s
algorithm [Coq96], because this is more efficient in the case where terms differ at the head; it
does not require the evaluation to finish when we already know that two terms do not convert.
We can however take advantage of Haskell’s lazy evaluation to ensure that normalisation
does not continue longer than necessary and write the conversion check on Normals rather
than weak head-normal forms. This conversion check is simply a check for syntactic equality
since the terms in question cannot be reduced further.

The efficiency of performing the conversion check this way relies on lazy evaluation. The
equality check between two terms in normal form proceeds by checking the head of each
term and if there are differences, returning false immediately. Only if the heads are the
same does the body need to be evaluated and the quote function run on the scope.

The main disadvantage to this approach is that normalisation expands definitions by
δ-reduction. For example, we know that plus ' plus because the function names match.
Using normalisation by evaluation for the conversion check, we expand the names and check
whether the definitions match. With small definitions, this does not appear to be a big over-
head and we would expect it in general to be outweighed by the efficiency of normalisation
by evaluation as compared to other approaches such as the Krivine machine. As we begin
to implement larger programs in Epigram, however, it may be wise to rethink this strategy
and implement a more efficient technique, perhaps based on Grégoire and Leroy’s compiled
strong reduction [GL02].

Note that there is more work to be done on both the theory and practice of normalisa-
tion by evaluation for dependent type systems. We would like to do some experiments to
determine how efficient normalisation by evaluation is compared with other approaches such
as the Krivine Machine and compiled strong reduction. Also, we do not yet have a proof of
correctness of normalisation by evaluation for a dependent type system.

Appendix D

G-Machine Implementation

Details

The G-machine is written in C++, using the Boehm and Demers garbage collector [BDXH01].
It is not implemented with efficiency as a primary concern (in particular because more re-
cent abstract machine designs such as the STG machine [Pey92] are more efficient) but
rather with clarity and ease of results generation. This appendix gives an outline of the
implementation.

D.1 Heap Nodes

Heap nodes are represented with a C++ class Value, with subclasses for each node type.
Value itself is derived from gc cleanup which allows garbage collection, and causes the
destructor to be called when the structure is no longer accessible. The only interface function
we require is canonical which returns whether a node can not be reduced further, although
in practice we add functions for display and debugging purposes.

class Value : public gc_cleanup {

public:

virtual bool canonical() = 0;

...

};

Application nodes contain a pointer to the function and its argument.

class AppNode : public Value

{

public:

242

Appendix D. G-Machine Implementation Details 243

AppNode(Value* f, Value* a);

virtual bool canonical() { return false; }

...

private:

Value *m_f, *m_a;

};

Function nodes cannot be reduced further. They contain a pointer to the code implementing
the function. Each function itself returns a code pointer, which is used to implement tail
recursion (by returning the address of the function to call next).

typedef void*(*func)();

class FunNode : public Value

{

public:

FunNode(func f);

virtual bool canonical() { return true; }

...

private:

func m_fun;

int m_arity;

};

Constructor nodes contain a tag and an array of their arguments. On construction, the
arguments are taken from the stack. We know, from the design of ExTT, that constructors
are always fully applied, so there is no need to take into account arguments which may be
added later.

class ConNode : public Value

{

public:

ConNode(int m_tag, int arity);

virtual bool canonical() { return true; }

....

private:

int m_tag;

Value **m_args;

};

Tuple nodes represent detagged constructors, and as such are implemented like ConNode,
but without a tag.

Appendix D. G-Machine Implementation Details 244

class TupNode : public Value

{

public:

TupNode(int arity);

virtual bool canonical() { return true; }

....

private:

Value **m_args;

};

D.2 Machine State

The G-machine state is a tuple 〈C ,S ,G ,E ,D〉, holding the code, stack, heap, environment
and dump respectively. Each of these components are implemented as follows:

• Code is simply C++ code. References to code within the G-machine are implemented
by function pointers.

• The stack is represented as an array of Value pointers, together with pointers to the
base and the top of the stack.

• The heap is managed by the Boehm-Demers garbage collector, with local variables
and the stack holding pointers to Values in the garbage collected heap.

• The environment is handled by the C++ compiler; each supercombinator becomes a
C++ function, so mapping functions to code can be achieved by means of a function
pointer.

• The dump is effectively a call stack, and can therefore be managed by the C++ call
stack. Nevertheless, we also need to remember the stack state at the time the call was
made, via the following DumpItem structure:

struct DumpItem {

Value** stack_base;

Value** stack_ptr;

};

We therefore maintain a stack of DumpItem pointers, and whenever a heap node is
evaluated, record the current stack state.

Appendix D. G-Machine Implementation Details 245

D.3 Evaluation

Each G-machine instruction is implemented by a C++ function, and so each supercombi-
nator is translated to a sequence of C++ function calls. Of these, most are straightforward
direct implementations of the operational semantics. The main difficulty is with tail calls,
which are implemented using a trick similar to the “tiny interpreter” described in [Pey92].
Each function returns a pointer to the code block to which it would like to jump, rather
than calling it.

void run(func cont) {

while(cont!=NULL) {

cont = (*cont)();

}

}

In a real implementation designed to get the most out of the target machine, we might
prefer to use a portable assembly language, such as C-- [PRR99] as the target language,
rather than C or C++, reserving C or C++ for some of the higher level details of the run-
time system. C-- in particular has useful features such as a lightweight calling convention,
tail recursion and multiple return values, giving low level control without having to worry
about the details of different architectures.

Bibliography

[AC99] Lennart Augustsson and Magnus Carlsson. An exercise in dependent types:
A well-typed interpreter. http://www.cs.chalmers.se/~augustss/cayenne/,
1999.

[Acz77] Peter Aczel. An introduction to inductive definitions. In J. Barwise, editor,
Handbook of Mathematical Logic. North Holland, 1977.

[AHS95] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical re-
construction of a reduction free normalization proof. In David Pitt, David E.
Rydeheard, and Peter Johnstone, editors, Category Theory and Computer Sci-
ence, volume 953 of LNCS, pages 182–199, 1995.

[AJ89] Lennart Augustsson and Thomas Johnsson. Parallel graph reduction with the
〈ν, g〉-machine. In Functional Programming Languages and Computer Architec-
ture. ACM Press, 1989.

[Alt93] Thorsten Altenkirch. Constructions, Inductive Types and Strong Normalization.
PhD thesis, University of Edinburgh, November 1993.

[App92] Andrew W. Appel. Compiling With Continuations. Cambridge University
Press, 1992.

[ASU86] Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers — Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

[Aug84] Lennart Augustsson. A compiler for Lazy ML. In Proceedings of the ACM
Symposium on Lisp and Functional Programming, pages 218–227, August 1984.

[Aug85] Lennart Augustsson. Compiling pattern matching. In Jean-Pierre Jouannaud,
editor, Functional Programming Languages and Computer Architecture, pages
368–381. Springer-Verlag, September 1985.

[Aug98] Lennart Augustsson. Cayenne - a language with dependent types. In Interna-
tional Conference on Functional Programming, pages 239–250, 1998.

246

BIBLIOGRAPHY 247

[Bar84] Henk Barendregt. The Lambda Calculus, Its Syntax and Semantics. North-
Holland, 1984.

[BC01] Ana Bove and Venanzio Capretta. Nested general recursion and partiality in
type theory. In Theorem Proving In Higher Order Logics: 14th International
Conferences, TPHOLS 2001, volume 2152 of LNCS, pages 121–135. Springer–
Verlag, September 2001.

[BC03] Ana Bove and Venanzio Capretta. Modelling general recursion in type theory,
February 2003. Under consideration for publication in Math. Struct. in Comp.
Science. Draft, DCS, CTH — INRIA, Sophia Antipolis, France.

[BDXH01] Hans-J. Boehm, Alan J. Demers, Xerox Corporation Silicon Graphic,
and Hewlett-Packard Company. A garbage collector for C and C++.
http://www.hpl.hp.com/personal/Hans_Boehm/gc/, 2001.

[Ber96] Stefano Berardi. Pruning simply typed lambda terms. Journal of Logic and
Computation, 6(5):663–681, 1996.

[Ber98] Daniel J. Bernstein. Multidigit multiplication for mathematicians. Advances in
Applied Mathematics, 1998.

[BES98] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normalization by
evaluation. In Prospects for Hardware Foundations 1998, LNCS, pages 117–137,
1998.

[BJ96] Urban Boquist and Thomas Johnsson. The GRIN project: A highly optimis-
ing back end for lazy functional languages. In Implementation of Functional
Languages, pages 58–84, 1996.

[BMM04] Edwin Brady, Conor McBride, and James McKinna. Inductive families need not
store their indices. In Stefano Berardi, Mario Coppo, and Ferruccio Damiani,
editors, Types for Proofs and Programs 2003, volume 3085, pages 115–129.
Springer, 2004.

[BMZ02] Yves Bertot, Nicolas Magaud, and Paul Zimmerman. A proof of GMP square
root. Journal of Automated Reasoning, 29:225–252, 2002.

[Boq99] Urban Boquist. Code Optimisation Techniques for Lazy Functional Languages.
PhD thesis, Chalmers University of Technology, April 1999.

[Bov02a] Ana Bove. General Recursion in Type Theory. PhD thesis, Chalmers University
of Technology, November 2002.

[Bov02b] Ana Bove. Mutual general recursion in type theory. Technical report, Depart-
ment of Computing Science, Chalmers University of Technology, May 2002.

BIBLIOGRAPHY 248

[BS91] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation func-
tional for typed λ-calculus. In R. Vemuri, editor, Proceedings of the Sixth An-
nual IEEE Symposium on Logic in Computer Science, pages 203–211. IEEE
Computer Society Press, 1991.

[Bur69] Rod Burstall. Proving properties of programs by structural induction. Com-
puter Journal, 12(1):41–48, 1969.

[C+86] Robert L. Constable et al. Implementing Mathematics with the NuPrl Proof
Development System. Prentice-Hall, NJ, 1986.

[Cap02] Venanzio Capretta. Abstraction and Computation. PhD thesis, Katholieke
Universiteit Nijmegen, 2002.

[Car88] Luca Cardelli. Phase distinctions in type theory. Manuscript, 1988.

[CF58] Haskell B. Curry and Robert Feys. Combinatory Logic, volume 1. North Hol-
land, 1958.

[CH00] Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random
testing of Haskell programs. In International Conference on Functional Pro-
gramming, 2000.

[Chr04] Jacek Chrzaszcz. Modules in Coq are and will be correct. In Stefano Berardi,
Mario Coppo, and Ferruccio Damiani, editors, Types for Proofs and Programs
2003, volume 3085. Springer, 2004.

[Chu41] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press,
1941.

[CL99] Paul Callaghan and Zhaohui Luo. Implementation techniques for inductive
types in Plastic. In Thierry Coquand, Peter Dybjer, Bengt Nordström, and
Jan Smith, editors, Types for Proofs and Programs, volume 1956 of LNCS,
pages 94–113. Springer-Verlag, 1999.

[CL01] Paul Callaghan and Zhaohui Luo. An implementation of LF with coercive
subtyping and universes. Journal of Automated Reasoning, 27(1):3–27, 2001.

[CL02] Dave Clarke and Andres Löh. Generic haskell, specifically. In Jeremy Gibbons
and Johan Jeuring, editors, Proceedings of the IFIP TC2 Working Conference
on Generic Programming, pages 21–48. Kluwer Academic Publishers, 2002.

[CO01] Olga Caprotti and Martijn Oostdijk. How to formally and efficiently prove
prime(2999). Symbolic Computation and Automated Reasoning, pages 114–125,
2001.

BIBLIOGRAPHY 249

[Coq92] Thierry Coquand. Pattern matching with dependent types. Available from
http://www.cs.chalmers.se/~coquand/type.html, 1992.

[Coq96] Thierry Coquand. An algorithm for type-checking dependent types. Science of
Computer Programming, 26(1-3):167–177, 1996.

[Coq01] Coq Development Team. The Coq proof assistant — reference manual.
http://coq.inria.fr/, 2001.

[CP85] Chris Clack and Simon Peyton Jones. Strictness analysis - a practical ap-
proach. In Jean-Pierre Jouannaud, editor, Functional Programming Languages
and Computer Hardware, pages 35–49. Springer-Verlag, September 1985.

[Dan98] Olivier Danvy. Functional unparsing. Journal of Functional Programming,
8(6):621–625, 1998.

[dB72] N.G. de Bruijn. Lambda calculus notation with nameless dummies. Indaga-
tiones Mathematicae, 34:381–392, 1972.

[dB91] N.G. de Bruijn. Telescoping mappings in typed lambda calculus. Information
and Computation, 91(2):189–204, April 1991.

[Dyb94] Peter Dybjer. Inductive families. Formal Aspects Of Computing, 6:440–465,
1994.

[Enn03] Robert Ennals. Adaptive Evaluation of Non-Strict Programs. PhD thesis, King’s
College, University of Cambridge, December 2003.

[EP00] Martin Erwig and Simon Peyton Jones. Pattern guards and transformational
patterns. Haskell Workshop, 2000.

[EP03] Robert Ennals and Simon Peyton Jones. Optimistic evaluation — an adaptive
evaluation strategy for non-strict programs. In International Conference on
Functional Programming, pages 287–298, March 2003.

[FI00] Daniel Fridlender and Mia Indrika. Do we need dependent types? Journal of
Functional Programming, 10(4):409–415, 2000.

[Fil99] Andrzej Filinski. A semantic account of type-directed partial evaluation. In
G. Nadathur, editor, International Conference on Principles and Practice of
Declarative Programming, volume 1702 of LNCS, pages 378–395. Springer-
Verlag, 1999.

[Fil01] Andrzej Filinski. Normalization by evaluation for the computational lambda-
calculus. In Typed Lambda Calculi and Applications: 5th International Confer-
ence, TLCA 2001, volume 2044 of LNCS, pages 151–165. Springer-Verlag, May
2001.

BIBLIOGRAPHY 250

[FM01] Fabrice Le Fessant and Luc Maranget. Optimizing pattern matching. In Inter-
national Conference on Functional Programming, pages 26–37, 2001.

[FW87] John Fairbairn and Stuart Wray. TIM – a simple lazy abstract machine to ex-
ecute supercombinators. In Functional Programming Languages and Computer
Architecture, volume 274 of LNCS, pages 34–45. Springer-Verlag, 1987.

[G+04] Torbjörn Granlund et al. The GNU Multiple Precision arithmetic library 4.1.3
— manual. Available from http://www.swox.com/gmp/manual/, 2004.

[Geu93] Herman Geuvers. Logic and Type Systems. PhD thesis, Katholieke Universiteit
Nijmegen, 1993.

[GHC03] The GHC Team. The Glasgow Haskell Compiler User’s Guide, Version 6.0,
2003.

[Gim94] Eduardo Giménez. Codifying guarded definitions with recursive schemes. In
Proceedings of TYPES 1994, pages 39–59, 1994.

[GL02] Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong
reduction. In International Conference on Functional Programming, pages 235–
246, 2002.

[Gog94] Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD
thesis, University of Edinburgh, 1994.

[Gol00] Mayer Goldberg. An adequate and efficient left associated binary numeral
system in the λ-calculus. Journal of Functional Programming, 10(6), 2000.

[Gra03] Paul Graham. The hundred year language. Available from
http://www.paulgraham.com/, April 2003. Keynote address at PyCon
2003.

[Hal01] Thomas Hallgren. Alfa users’ guide. Available from
http://www.cs.chalmers.se/~hallgren/Alfa/, 2001.

[Hin03] Ralf Hinze. Fun with phantom types. In Jeremy Gibbons and Oege de Moor,
editors, The Fun Of Programming, Cornerstones of Computing, pages 245–262.
Palgrave, March 2003.

[HJJ82] Peter Henderson, Geraint Jones, and Simon Jones. The LispKit manual. Oxford
University Computing Laboratory, 1982.

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional
type analysis. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 130 – 141, 1995.

BIBLIOGRAPHY 251

[HMP96] Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional back-ends
within the lambda-sigma calculus. Technical report, INRIA, November 1996.

[Hoa62] C.A.R. Hoare. Quicksort. Computer Journal, 5(1):10–15, 1962.

[How80] William A. Howard. The formulae-as-types notion of construction. In
Jonathan P. Seldin and J. Roger Hindley, editors, To H.B.Curry: Essays on
combinatory logic, lambda calculus and formalism. Academic Press, 1980. A
reprint of an unpublished manuscript from 1969.

[HP91] Robert Harper and Randy Pollack. Type checking with universes. Theoretical
Computer Science, 89(1):107–136, 1991.

[Hue89] Gérard Huet. The constructive engine. In R. Narasimhan, editor, A Perspective
in Theoreticak Computer Science, pages 38–69. World Scientific Publishing,
1989. Commemorative Volume for Gift Siromoney.

[Hug84] John Hughes. The design and implementation of programming languages. PhD
thesis, Programming Research Group, Oxford, September 1984.

[Hug91] John Hughes, editor. Functional programming Languages and Computer Archi-
tecture, volume 523 of LNCS. Springer-Verlag, 1991.

[IBM54] IBM Applied Science Division. Specifications for the IBM mathematical formula
translating system, FORTRAN, November 1954.

[Jay96] Barry Jay. Shape in computing. ACM Computing Surveys, 28(2):355–357, 1996.

[JG95] Barry Jay and Neil Ghani. The virtues of eta-expansion. Journal of Functional
Programming, 5(2):135–154, 1995.

[Joh84] Thomas Johnsson. Efficient compilation of lazy evaluation. SIGPLAN Notices,
19(6):58–69, June 1984.

[Joh85] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equa-
tions. In Jean-Pierre Jouannaud, editor, Functional Programming Languages
and Computer Architecture, pages 190–203. Springer-Verlag, September 1985.

[Jon94] Mark P. Jones. The implementation of the gofer functional programming sys-
tem. Technical Report YALEU/DCS/RR-1030, Yale University, May 1994.

[Knu69] Donald E. Knuth. The Art of Computer Programming - Seminumerical Algo-
rithms, volume 2. Addison Wesley, 1969.

[KO63] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers by automata.
Soviet Physics-Doklady, 7:595–596, 1963.

BIBLIOGRAPHY 252

[Lan64] P.J. Landin. The mechanical evaluation of expressions. Computer Journal,
6:308–320, 1964.

[Lan66] P.J. Landin. The next 700 programming languages. Communications of the
ACM, 9(3), March 1966.

[Ler02] Xavier Leroy. The Objective Caml system release 3.06.
http://caml.inria.fr/ocaml/htmlman/, August 2002.

[Let02] Pierre Letouzey. A new extraction for Coq. In Herman Geuvers and Freek
Wiedijk, editors, Types for proofs and programs, LNCS. Springer, 2002.

[LP92] Zhaohui Luo and Robert Pollack. Lego proof development system: User’s
manual. Technical report, Department of Computer Science, University of Ed-
inburgh, 1992.

[LS00] Yanhong A. Liu and Scott D. Stoller. From recursion to iteration: What are
the optimizations? In Partial Evaluation and Semantic-Based Program Manip-
ulation, pages 73–82, 2000.

[Luo94] Zhaohui Luo. Computation and Reasoning – A Type Theory for Computer
Science. International Series of Monographs on Computer Science. OUP, 1994.

[Mag94] Lena Magnusson. The implementation of ALF – A Proof Editor based on
Martin-Löf’s Monomorphic Type Theory with Explicit Substitutions. PhD the-
sis, Chalmers University of Technology, Göteborg, 1994.

[Mag03] Nicolas Magaud. Changement de Representation des données dans le Calcul
de Constructions. PhD thesis, Université de Nice - Sophia Antipolis, October
2003.

[MB01] Nicolas Magaud and Yves Bertot. Changing data structures in type theory: A
study of natural numbers. In Paul Callaghan, Zhaohui Luo, James McKinna,
and Robert Pollack, editors, Types For Proofs And Programs 2000, pages 181–
196. Springer, 2001.

[McB00a] Conor McBride. Dependently Typed Functional Programs and their proofs. PhD
thesis, University of Edinburgh, May 2000.

[McB00b] Conor McBride. Elimination with a motive. In Paul Callaghan, Zhaohui Luo,
James McKinna, and Robert Pollack, editors, Types for Proofs and Programs,
pages 197–216. Springer, 2000.

[McB02] Conor McBride. Faking it – simulating dependent types in Haskell. Journal of
Functional Programming, 12(4+5):375–392, 2002.

BIBLIOGRAPHY 253

[McB04] Conor McBride. Epigram: Practical programming with dependent types. Lec-
ture Notes, International Summer School on Advanced Functional Program-
ming, 2004.

[McC60] John McCarthy. Recursive functions of symbolic expressions and their compu-
tation by machine. Communications of the ACM, 3(4):184–195, 1960.

[Mit94] Kevin Mitchell. Multiple values in Standard ML. Technical Report 94-312,
LFCS, Dept of Computer Science, University of Edinburgh, 1994.

[Mit03] John C. Mitchell. Concepts in Programming Languages. Cambridge University
Press, 2003.

[ML71] Per Martin-Löf. An intuitionistic theory of types, 1971.

[ML75] Per Martin-Löf. An intuitionistic theory of types: predicative part. In H. Rose
and J.C. Shepherdson, editors, Logic Colloquium ’73. North-Holland, 1975.

[ML85] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1985.

[MM04a] Conor McBride and James McKinna. I am not a number, I am a free variable.
In Proceedings of the ACM SIGPLAN Haskell Workshop, 2004.

[MM04b] Conor McBride and James McKinna. The view from the left. Journal of
Functional Programming, 14(1):69–111, 2004.

[MSD01] David R. Musser, Atul Saini, and Gillmer J. Derge. The STL Tutorial and Ref-
erence Guide: C++ Programming with the Standard Template Library. Addison
Wesley, 2001.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Defini-
tion of Standard ML — Revised. MIT Press, 1997.

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
typed assembly language. ACM Transactions on Programming Languages and
Systems, 21(3):528–569, May 1999.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A
proof assistant for higher order logic, volume 2283 of LNCS. Springer-Verlag,
March 2002.

[Oka99] Chris Okasaki. Red-black trees in a functional setting. Journal of Functional
Programming, 9(4):471–477, May 1999.

[P+02] Simon Peyton Jones et al. Haskell 98 language and libraries — the revised
report. Available from http://www.haskell.org/, December 2002.

BIBLIOGRAPHY 254

[Par92] Will Partain. The nofib benchmark suite of Haskell programs. In J. Launchbury
and P.L. Sansom, editors, Functional Programming, Workshops in Computing.
Springer Verlag, 1992.

[Pey87] Simon Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice-Hall, 1987.

[Pey92] Simon Peyton Jones. Implementing lazy functional languages on stock hard-
ware – the Spineless Tagless G-machine. Journal of Functional Programming,
2(2):127–202, April 1992.

[PL91a] Simon Peyton Jones and John Launchbury. Unboxed values as first class citizens
in a non-strict functional language. In Hughes [Hug91], pages 636–666.

[PL91b] Simon Peyton Jones and David Lester. A modular fully lazy lambda lifter in
Haskell. Software Practice and Experience, 21(5):479–506, May 1991.

[PL92] Simon Peyton Jones and David Lester. Implementing Functional Languages -
A Tutorial. Prentice Hall International, 1992.

[PM89] Christine Paulin-Mohring. Extraction de programmes dans le Calcul des Con-
structions. PhD thesis, Paris 7, 1989.

[PM02] Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell Com-
piler inliner. Journal of Functional Programming, 12(4):393–434, September
2002.

[PMR99] Simon Peyton Jones, Simon Marlow, and Alastair Reid.
The STG runtime system (revised). Available from
http://www.haskell.org/ghc/documentation.html, February 1999.

[PNO97] Simon Peyton Jones, Thomas Nordin, and Dino Oliva. C–: A portable assembly
language. In C Clack, editor, Workshop on Implementing Functional Languages,
St Andrews. Springer-Verlag, 1997.

[PRR99] Simon Peyton Jones, Norman Ramsey, and Fermin Reig. C–: a portable assem-
bly language that supports garbage collection, 1999. Invited talk at PPDP’99.

[PS98] Simon Peyton Jones and André L. M. Santos. A transformation-based optimiser
for Haskell. Science of Computer Programming, 32:3–47, 1998.

[PWW04] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich. Wobbly
types: type inference for generalised algebraic data types, 2004. Submitted
to POPL 2005.

BIBLIOGRAPHY 255

[Röj95] Niklas Röjemo. Highlights from nhc: A space efficient Haskell compiler. In
Functional Programming Languages and Computer Architecture, pages 282–292,
1995.

[San95] André Lúıs de Medeiros Santos. Compilation By Transformation In Non-Strict
Functional Languages. PhD thesis, University of Glasgow, 1995.

[SMG+99] Julian Seward, Simon Marlow, Andy Gill, Sigbjorn Finne, and Simon Pey-
ton Jones. Architecture of the Haskell execution platform. Available from
http://www.haskell.org/ghc/documentation.html, July 1999. Version 6.

[SNvP91] Sjaak Smetsers, Eric Nöcker, John van Groningen, and Rinus Plasmeijer. Gen-
erating efficient code for lazy functional languages. In Hughes [Hug91], pages
592–617.

[SR00] Kevin Scott and Norman Ramsey. When do match-compilation heuristics mat-
ter? Technical Report CS-2000-13, Department of Computer Science, Univer-
sity of Virginia, May 2000.

[Ste77] Guy L. Steele Jr. Lambda : The ultimate goto, 1977. MIT AI Memo 443.

[TT01] Andrew Tolmach and The GHC Team. An external representation for the GHC
core language, September 2001.

[Tur79] David Turner. A new implementation technique for applicative languages. Soft-
ware – Practice and Experience, 9:31–49, 1979.

[Tur96] David Turner. Elementary strong functional programming. In First Interna-
tional Symposium on Functional Programming Languages in Education, Ni-
jmegen, Netherlands, December 1995., number 1022 in LNCS, pages 1–13.
Springer, 1996.

[Wad84] Philip Wadler. Listlessness is better than laziness: Lazy evaluation and garbage
collection at compile-time. In Proceedings of the 1984 ACM Symposium on LISP
and functional programming, pages 45–52, 1984.

[Wad87] Philip Wadler. Views: A way for pattern matching to cohabit with data abstrac-
tion. In Steve Munchnik, editor, Proceedings, 14th Symposium on Principles of
Programming Languages, pages 307–312. Association for Computing Machinery,
1987.

[Wad90] Philip Wadler. Deforestation: Transforming programs to eliminate trees. The-
oretical Computer Science, 73:231–248, 1990.

[WBBL99] Jon Whittle, Alan Bundy, Richard J. Boulton, and Helen Lowe. An ML editor
based on proofs-as-programs. In Automated Software Engineering, pages 166–
173, 1999.

BIBLIOGRAPHY 256

[WF03] Mitchell Wand and Daniel P. Friedman. On the correctness and efficiency of
the Krivine machine. Submitted for publication, October 2003.

[Xi98] Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Depart-
ment of Mathematical Sciences, Carnegie Mellon University, December 1998.

[Xi99a] Hongwei Xi. Dead code elimination through dependent types. In The First
International Workshop on Practical Aspects of Declarative Languages, pages
228–242, San Antonio, January 1999.

[Xi99b] Hongwei Xi. Dependently Typed Data Structures. In Proceedings of Workshop
of Algorithmic Aspects of Advanced Programming Languages (WAAAPL ’99),
pages 17–32, Paris, September 1999.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through de-
pendent types. In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 249–257, Montreal, June 1998.

Index

Active, 175
Adequacy of TT, 30
Array bounds checking, 38

β-contraction, 21
β-reduction

As an optimisation, 168
BigNumber, 146
Binary numbers, 138

Addition, 142
Multiplication, 143
Successor, 141

By operator ⇐, 36

case, 37
Cayenne, 3
Church Rosser Theorem, 30
Closed term, 58
Closure, 58
Collapsible, 104

Concretely, 105
Collapsing optimisation, 104
Combinators, 61
Compare, 49
Compilation, 57

Of ExTT, 108
Of TT, 71

Compilation by transformation, 167
Constructor, 24

Run-time representation, 62
Conversion, 22, 241

TT, 22
Cumulativity, 31

TT, 31

D-Case, 28
D-Elim, 26
D-Memo, 42
D-Rec, 42

Optimisation, 171
D-View, 49
data declaration, 34
de Bruijn indices, 224
Dead code, 81, 183
δ-reduction, 21
Dependent pair, 46
Dependent types, 3

Benefits, 7
Detaggable, 98

Concretely, 99
Detagging optimisation, 100, 220
DList, 124
DML, 4
Domain predicates, 51, 121

As views, 52
Collapsibility, 122
Optimisation, 187
Optimisation of, 123

elim, 36
Elimination rules

Method, 26
Elimination operators, 26
Elimination rules, 26

Compilation scheme, 111, 152
In RunTT, 66, 109

257

INDEX 258

Iteration, 153
Motive, 26
Repeated arguments, 85
Target, 26

Elimination unfolding, 168
Eliminator, 26, 36, 40

Derived, 42
Non-dependent, 49
User defined, 41

envlookup

Optimisation, 189
epats, 99
Epigram, 5

Core language, 19
Equality, 28

Heterogeneous, 30
Martin-Löf, 29

η-contraction, 21
ExTT

Extensions for number representation,
150

Properties, 91
Syntax, 90

fact, 159
Optimisation, 160

False, 38
False-Elim, 180
Fin, 39
Forceable, 94

Concretely, 95
Forcing optimisation, 96, 212
Full laziness, 64

G-code, 58
G-machine, 58, 67–76

Compilation scheme, 71
Dependently typed, 74
Extensions for ExTT, 116
Extensions for number representation,

157

Operational semantics, 70
Representation of values, 67
State, 68

gcd, 120
GRIN, 59

Implicit arguments, 24
Inductive datatypes, 5, 23

Declaration, 23, 25, 34
Families, 25
Indices, 25
Parameters, 24, 27

Inlining, 173
D-Case, 173

interp, 131
Interpreter

interp, 131
Language, 128
Optimisation, 132
Representation, 129
Type environments, 129
Typing rules, 128

ι-reduction, 26
ι-schemes, 26

Alternative implementations, 89
Respectfulness, 87
Respectfulness at Run-time, 103
Standard implementation, 88
Well-definedness, 87
Well-definedness at Run-time, 103

Krivine machine, 58

Labelled types, 33
Typing rules, 33

lambda-calculus
Implementation in Epigram, 124

let declaration, 35
List, 24
lookup, 39

Optimisation, 187

INDEX 259

Method, 26
Motive, 26

N, 23
Inefficiency, 80, 137
Purposes, 137

No-operations, 179
Normal form, 22
Normalisation by evaluation, 56

Applications, 56
Evaluation, 228, 235
Implementation, 241
ι-schemes, 232
Quotation, 231, 236

Number representation
Correctness, 163
GMP, 149
In Epigram, 138
Typechecking, 156

Optimisation
Collapsing, 104
Dead code, 183
Detagging, 100, 220
Elimination unfolding, 168
False-Elim, 180
Forcing, 96, 212
Inlining, 173
N, 151
No-operations, 179
Rewriting Labelled Types, 169
Unused Arguments, 175

Optimisation from TT to ExTT, 92

Passive, 175
pats, 95
Pattern matching, 6, 37

Compilation, 109
Semantics, 87
Syntax, 86

Primitive types, 136

Program extraction, 59
Program transformations, 167
project, 110

rec, 43
Respectfulness, 87, 103
Rewriting Labelled Types, 169
ρ-reduction, 33
RunTT, 62, 108

Scrutinee, 62
SECD machine, 58
Σ type, 46
So, 123
STG machine, 59
Strict positivity, 26
Strong normalisation, 10, 30
Subject reduction, 30
Supercombinators, 61

Tail recursion, 75
Target, 26
True, 38
TT, 19

Contraction schemes, 21
Syntax, 20
Typing rules, 23

Types, 2
Checking, 22, 32
Dependent, 3
Synthesis, 22

Uniqueness of types, 30
Universes, 20, 31

Tarski style, 130
Unused Arguments, 175

Vect, 25
Elaboration, 84
ι-schemes, 84

view, 49
Views, 47

INDEX 260

For termination, 52
vTail, 37

Elaboration, 38, 200
G-code, 208
RunTT, 208

Weak head-normal form, 22
weaken, 179
Well-definedness, 87, 103
With rule |, 44
Word, 139

