
Policy Analysis for Security-Enhanced Linux∗

Beata Sarna-Starosta Scott D. Stoller

18 December 2003

Abstract

Security-Enhanced Linux (SELinux) extends Linux with a flexible mandatory access control

mechanism that enforces security policies expressed in SELinux’s policy language. Determin-

ing whether a given policy meets a site’s high-level security goals can be difficult, due to the

low-level nature of the policy language and the size and complexity of SELinux policies. We

propose a logic-programming-based approach to analysis of SELinux policies. The approach is

implemented in a tool that helps users determine whether a policy meets its goals.

1 Introduction

Security-Enhanced Linux (SELinux) is a version of Linux developed with the support of the National

Security Agency. SELinux extends Linux with a flexible mandatory-access-control mechanism.

SELinux is entering the Linux mainstream: version 2.6 of the standard Linux kernel, currently

available as a beta release, contains the SELinux module. As argued in [LS01b], the traditional

discretionary access controls in UNIX are inadequate as a foundation for highly secure systems.

Mandatory access controls are in some ways inherently more difficult to bypass than discretionary

access controls, and SELinux allows access control decisions to depend on the current role of the

user and on the particular executables and data files involved in an operation, while traditional

UNIX security mechanisms consider only user identity and ownership.

The mandatory-access-control mechanism enforces security policies expressed in a language

based on domain and type enforcement, extended with elements of role-based access control and

multi-level security. For example, SELinux can support separation-of-duty policies, containment

policies that limit the effect of compromised applications, and invocation policies that guarantee

data is processed by specified sequences of programs [LS01a].

Much of the example policy distributed with SELinux and described in [SF01, Sma03a] is

devoted to fine-grained enforcement of the principle of least privilege for operating system processes

(e.g., login processes, and daemons), server processes (e.g., web servers), and client processes (e.g.,

web browsers). Walker et al. nicely illustrate the benefits of such a policy, by describing how their

version of BSD UNIX enhanced with domain and type enforcement protects itself from Rootkit, a

hacker toolkit that attempts to overwrite system binaries [WSB+96]. SELinux can protect itself in

the same way.

∗This work is supported in part by NSF under Grants CCR-9876058 and CCR-0205376 and by ONR under Grants
N00014-01-1-0109 and N00014-02-1-0363. Address: Computer Science Dept., State University of New York at Stony
Brook, Stony Brook, NY 11794-4400. Contact author’s email: stoller@cs.sunysb.edu

1



Experiments show that the run-time overhead of SELinux’s enforcement mechanisms is low

[LS01a]. However, the difficulty of developing and managing security policies is a significant barrier

to wide-spread use of SELinux. This issue has been noted several times in the SELinux mailing

list (archived at http://www.nsa.gov/SELinux). Even after a site has developed a security policy

(e.g., by combining and customizing policy fragments, depending on the services and applications

it supports) intended to meet its security goals, determining whether the policy actually meets

those goals can be difficult, due to the low-level nature of the policy language and the size and

complexity of the policy: the SELinux example policy is thousands of lines before macro expansion

and significantly larger afterwards. This is motivating the development of policy analysis tools:

Gokyo [JEZ03, JSZ03] from IBM T. J. Watson Research Center, SLAT (Security-Enhanced Linux

Analysis Tools) [GHR03a, GHR03b] from MITRE, and Apol [Tre] from Tresys.

This paper presents a logic-programming-based approach to policy analysis, implemented in

a new tool, called PAL (Policy Analysis using Logic-Programming). PAL translates a SELinux

policy into a logic program. Simple logic programs (“queries”) are used to analyze the policy. PAL

is implemented in XSB [XSB], a logic-programming system based on tabled resolution. This logic-

programming approach has three main benefits: flexibility, efficiency, and justification of results.

Flexibility. Queries in PAL are written in a high-level, mostly declarative, general-purpose lan-

guage, namely, the logic-programming language of XSB. A wide variety of queries can be expressed

easily and concisely in this language. Use of a special-purpose (domain-specific) query language

is limiting unless the language designer foresees all of the kinds of queries that will be of interest

to users. Of course, we expect that most policy analysts will not be programmers. Users with

no programming skills can easily use a library of existing queries; by adding some syntactic sugar,

queries can be given a user-friendly syntax, like a (embedded) domain-specific language. Users with

a minimal knowledge of logic programming can create new variants of existing queries. Experienced

programmers can create new queries from scratch and, most importantly, they can do this much

faster than they could extend a system implemented in a lower-level language, such as C or C++.

Section 5 describes a variety of queries that PAL can answer; a few of them can be answered by

other existing analysis tools, but several cannot.

Efficiency. Three main aspects of PAL’s design contribute to its efficiency. First, PAL’s trans-

lation of the SELinux policy retains the policy’s structure. In particular, macros, many with

parameters, are used extensively as abstractions in the example policy. We translate macro defini-

tions into XSB rules. This avoids unnecessary expansion of macros. In effect, macros get expanded

on demand during analysis. All three of the other policy tools mentioned above work with a fully

macro-expanded version of the policy. Archer et al.’s model of SELinux in an automated theo-

rem prover preserves part of the policy structure (rule macros are expanded; other macros are not

expanded) [ALP03], but they have not developed a policy analysis infrastructure on top of their

model. PAL can also translate and analyze macro-expanded policies, so we plan to do experiments

to quantify the performance benefit of on-demand macro expansion.

2



Second, PAL benefits from XSB’s goal-directed query evaluation, which avoids exploring irrel-

evant parts of the policy. For example, when evaluating an information-flow query like “find all

types to which information can flow from type T”, parts of the information-flow graph not reachable

from T are not analyzed.

Third, we use constraints [SSR03] to handle negations efficiently. For example, a policy might

contain a statement like “allow (processes with) type src all access permissions to type target except

permissions {p1, p2}”. Similarly, a query might ask “find all information-flow paths from X to Y

that do not pass through Z”. A straightforward treatment of negation expands such a statement

into many structures (facts, nodes, edges, or whatever), one for each allowed value (permission,

type, or whatever). A constraint-based treatment of negation translates such a statement into

a single statement that uses a variable and disequality (i.e., not-equal-to) constraints. Sets of

disequality constraints are propagated during the analysis. PAL currently uses constraints for

efficient representation of queries but not yet in the representation of policies.

Justification of Results. We plan to combine PAL with work on justification in XSB [GRR02].

In general, justification shows the user the computation paths of a logic program that led to

the result. In the case of policy analysis, this will allow PAL to provide the user with feedback

(“evidence”) explaining why the policy does or does not satisfy a specified property. For example,

consider an information-flow property like “All information flow from type t0 to type t2 passes

through type t1.” If the policy violates this property, the justifier shows the user a computation

path that corresponds to a counterexample; recent work on justification in XSB supports showing

all counterexamples when a property is violated [BSLS03]. If the policy satisfies the property, the

justifier shows the user computation paths that correspond to all information-flow paths from t0 to

t2, so the user can see that they all pass through t1.

The rest of the paper is organized as follows. Section 2 compares with related work. Sections 3

and 4 describe our model of SELinux security policies and information flow, respectively. Section

5 describes a variety of queries that PAL can answer.

2 Related Work

SLAT’s model of information flow [GHR03a, GHR03b] is the basis for ours. Following SLAT, we

consider information flow between security contexts, which summarize the security-relevant status

of resources. The most significant difference between SLAT and PAL is in their query languages.

Queries to SLAT are written in a special-purpose language. A SLAT query is, roughly speaking,

a kind of regular expression that specifies the expected form of information-flow paths between two

specified security contexts. SLAT determines whether all information-flow path between those

endpoints and allowed by the policy have the specified form. If the answer is “no”, SLAT provides

a counterexample, i.e., an allowed path that does not have the specified form. SLAT queries can be

converted into finite automata that can easily be expressed as logic programs. Thus, PAL can also

answer such queries and supply counterexamples. The translation could be automated if desired.

3



PAL, unlike SLAT, can answer queries whose results are sets of security contexts, relations

between security contexts, etc. For example, PAL can answer queries like “find all security contexts

from which information can flow to security context c without passing through security context d”.

Several examples of such queries appear in Section 5.

Apol [Tre] can compute an information-flow relation and the transitive closure of that relation.

it displays those relations with a graphical user interface. Apol does not have a query language, so

it is not as flexible as SLAT or PAL. Lack of a query language also has performance implications.

For example, because there is no way for the user to indicate which aspects of the information flow

are of interest, Apol computes the transitive closure of the entire information-flow relation, even if

this is not really necessary to answer the user’s questions.

Gokyo is a tool for manipulating and graphically displaying sets of permissions, called access

control spaces. Gokyo was used to check integrity of a proposed trusted computing base (TCB)

for SELinux [JSZ03]. Integrity of the TCB holds if there is no type that can be written by a type

outside the TCB and read by a type inside the TCB, except for special cases in which a designated

trusted program sanitizes untrusted data when it enters the TCB [CW87]. Gokyo can identify

where untrusted data may enter the TCB, but it does not analyze the use of trusted program to

sanitize the data. Gokyo can also evaluate completeness of policies [JEZ03]. The idea (simplified a

bit) is that permissions that are neither allowed nor explicitly prohibited by a policy embody a kind

of ambiguity or incompleteness in the policy. Gokyo can enumerate such permissions and calculate

the number of such permissions as a fraction of all permissions. Such integrity and completeness

properties can also be expressed conveniently as logic programs and analyzed with PAL.

3 Model of SELinux Policies

SELinux associates a security context with each resource (process, file, etc.). A security context is

a tuple that identifies a user, a role, and a type.1 The notion of user is similar to that in ordinary

Linux. For example, the user in a security context associated with a file or process is the owner of

the file or process.2 The notion of role is an abstraction designed to make policies more concise.

If many users require the same permissions, a role R can be introduced, and the policy can state

that those users may enter role R, and it can (indirectly, as discussed below) associate permissions

with role R.

Types are defined in a policy to represent collections of resources with common access-control

requirements (i.e., the resources may access and be accessed by the same resources in the same

ways). For example, the SELinux example policy defines a type fixed disk device t. It assigns

to each file whose name matches /dev/hd* or /dev/sd* a security context containing this type. As

another example, the policy defines a “filesystem administrator” type fsadm t, which is associated

1It optionally also contains information relevant to multi-level-security, which we ignore hereafter, because we do
not consider any properties that depend on it.

2The SELinux module keeps track by itself of which user owns each process, etc., so the ordinary Linux mechanisms
for this do not need to be trusted for enforcement of SELinux policies.

4



with processes running one of a specified set of executables used for filesystem administration. The

policy allows fsadm t to directly access resources with type fixed disk device t. Note that a

resource has a single security context and therefore a single type. There is no notion of subtyping.

Attributes, discussed below, provide some of the convenience of subtyping.

The heart of SELinux is a security server, implemented as a kernel subsystem, that loads a

security policy at boot time and is invoked by the kernel whenever a security-relevant operation is

about to be performed. The operation is identified by two pieces of information: a class (e.g., file,

directory, process, socket) and a permission (e.g., read, unlink, signal, sendto). SELinux defines

28 classes and about 120 permissions. The security server is passed (1) the class and permission

of the requested operation, (2) the security context of the “source” of the operation (typically a

process), and (3) the security context of the “target” of the operation (the target is a resource in

the specified class). The security server decides, based on the loaded policy, whether to allow the

operation and whether to audit (i.e., log) it.

We describe several of the relations defined by a SELinux policy, ignoring the concrete syntax

of the policy language. PAL translates policies into logic programs that define these relations. Our

notation follows the logic-programming convention that literals start with a lower-case letter, and

variables start with an upper-case letter. Details of the policy language are in [Sma03a].

Role declarations define a relation role(RoleId, TypeSet). The meaning is: in every security

context, if the role component is RoleId, then the type component must be a member of TypeSet.

If a process tries to violate this requirement (e.g., by attempting to transition to a type that is

not compatible with its role), the security server will deny the attempted operation. Note that

permissions are not granted directly to roles. Roles are associated with types (as described here),

and permissions are granted to types (as described below). In our implementation, arguments

(such as TypeSet) that conceptually are sets are represented as lists, which are written with square

brackets; for example, [x, y] is a list of length two.

User declarations define a relation user(UserId, RoleSet). This means that user UserId is

allowed to assume exactly the roles in RoleSet.

Role allow rules specify allowed role transitions. They define a relation role allow(RoleSet,

NextRoleSet). This means that a process with a role in RoleSet is allowed to transition to roles in

NextRoleSet.

Type declarations introduce new types, specify a set of attributes possessed by each new type,

and specify a set of aliases for each new type. Specifically, they define a relation type(TypeId,

AliasList, AttributeList). Attributes are used (in other rules) to represent the set of types with

that attribute. For example, a rule might grant a specified permission to all types with a specified

attribute. In all of the following kinds of rules, an argument described as a set of types may actually

contain types and attributes.

Access vector rules specify which operations are allowed and whether attempted operations

(whether allowed or denied) should be audited (i.e., logged). Unless specified otherwise by an

access vector rule, all operations are denied, and denied operations are audited. Access vector rules

define a relation access vector(AVKind, SourceTypeSet, TargetTypeSet, ClassSet, PermSet).

5



If AVKind is allow, the meaning is: resources (typically processes) with type in SourceTypeSet are

allowed to perform operations in the permission set PermSet on resources whose class is in ClassSet

and with type in TargetTypeSet. If AVKind is auditallow, the meaning is the same, except that

the operation will be audited. If AVKind is dontaudit, the meaning is that such accesses are not

audited even if they are denied (dontaudit rules do not affect which accesses are allowed).

Constraints are additional conditions that must hold for an attempted operation to be al-

lowed. They relate all of the arguments to the security server. Thus, the constraints define a

relation constrain(ClassSet, PermSet, SrcType, SrcRole, SrcUser, TargetType, TargetRole,

TargetUser). For example, the SELinux example policy contains a constraint that allows only

processes with certain types to create files owned by a different user than the process.

Neverallow rules have similar structure to access vector rules, but they have the opposite mean-

ing. They define a relation neverallow(SourceTypeSet, TargetTypeSet, ClassSet, PermSet).

The meaning is that the policy should not contain access vector rules that allow the indicated

operations. This condition is checked by the checkpolicy program that comes with SELinux.

Neverallow rules help ensure that modifications to a policy do not accidentally allow dangerous

operations.

Macros are used in the SELinux example policy to define shorthand names for sets of classes,

permissions, types, and rules. A macro named MacroName that defines a set Set of classes, permis-

sions, or types has no parameters and is translated into set macros(MacroName, Set). Relations

defined in terms of set macros are used to determine membership in sets; member type in Sec-

tion 5 is an example. A macro named MacroName with parameters Params that defines a set of

parameterized rules R1, R2, . . . (i.e., Ri may contain uses of Params) is translated into

R1 :- MacroName(Params).

R2 :- MacroName(Params).

. . .

Declarations (related to multi-level security) in the policy indicate which operations are read-like

and which are write-like, in terms of the information flow they cause. They define two relations,

read like(Class, Perm) and write like(Class, Perm). An operation may be both read-like

and write-like, e.g., removing a directory, which is obviously write-like and is read-like because it

can be used to determine whether a directory is empty. An operation may be neither read-like nor

write-like (i.e., it may cause no information flow), e.g., acquiring a lock on a file.

4 Information Flow

We adopt SLAT’s notion of information flow. Detailed definitions appear in [GHR03a, GHR03b], so

we just give informal descriptions. We represent security contexts as tuples 〈T, R, U〉, where T , R,

and U represent a type, role, and user, respectively. We say that a security context 〈T, R, U〉 is con-

sistent with respect to a given policy if (1) either there exists TypeSet such that role(R,TypeSet)

holds and T is in TypeSet, or R is object r and T is not a process type, and (2) either there exists

6



RoleSet such that user(U,RoleSet) holds and R is in RoleSet, or R is object r. The special role

object r is implicitly declared by SELinux.

The authorization relation characterizes the operations allowed by a given policy. auth(C, P, T1,

R1, U1, T2, R2, U2) holds if 〈T1, R1, U1〉 and 〈T2, R2, U2〉 are consistent security contexts, and a

resource with type T1 has permission P for targets with class C and type T2, and the constraint

defined by constrain holds.

The information-flow graph characterizes information flow caused by allowed operations for a

given policy. It does not reflect possible information flow through covert channels. The nodes are

consistent security contexts. There is an edge from 〈T1, R1, U1〉 to 〈T2, R2, U2〉 labeled with 〈C, P 〉,

denoted flow trans(〈T1, R1, U1〉, C, P, 〈T2, R2, U2〉), if (i) auth(C, P, T1, R1, U1, T2, R2, U2) and

write like(C, P ) hold, or (ii) auth(C, P, T2, R2, U2, T1, R1, U1) and read like(C, P ) hold.

By default, we use the read like and write like relations defined by the policy, but other

notions of read-like and write-like may be appropriate for some queries [Tre]. For example, the

getattr operation should be classified as read-like only if file meta-data (such as last modification

time) is considered sensitive information.

Defining nodes of the information-flow graph to be security contexts is natural, but other choices

are equally reasonable. For example, omitting the user and role from each node is reasonable, be-

cause most of the interesting information-flow constraints depend only on the types. This definition,

used in Apol 1.0, leads to a smaller graph that can be analyzed faster, but which might contain spu-

rious information flows. A soon-to-be-released version of Apol [Mac03] includes a class (and a type)

in nodes. This allows their analysis to reflect the fact that information flow is not possible when

the source can write a resource of type T and class C1 and the target can read a resource of type

T and class C2 with C1 6= C2 (because the source and target are accessing different resources).3

We believe that PAL is a good platform for experimenting with different definitions of informa-

tion flow. In PAL, the implementation of the authorization relation and information-flow graph in

terms of the relations in Section 3 is about 20 lines of XSB code. Adding or removing components

of nodes requires changing only a few lines of code. We plan to evaluate some information-flow

queries with multiple definitions of information flow and compare the results.

5 Sample Queries

This section describes a variety of queries that can be handled easily using our approach. We

implemented a translator from SELinux policies to logic programs. It consists of about 1200 lines

of XSB code. It translates version 1.1 of the SELinux example policy into about 8200 lines of

XSB code. The translator was just finished slightly after the WITS’04 submission deadline (we

are grateful for permission to submit this paper slightly late), so as of this writing, we had time to

3Stephen Smalley points out that this argument needs to be amended to reflect implicit relationships between
resources of the same type and different classes (e.g., between a process and the corresponding file in /proc), and
that relying on a class distinction (rather than a type distinction) to prevent information flow is arguably a design
flaw in the policy [Sma03b].

7



try it on only a few queries, as described below. We anticipate implementing most of the following

queries in the near future. The experiments were done on a laptop with a 1.4GHz Pentium-M

processor and 512 MB RAM.

5.1 Information Flow

Information-flow queries are questions about paths in the information-flow graph. In general, we

formulate the queries as automata that accept the paths of interest. The automata are expressed

as logic programs that define relations init, final, and trans, which correspond to the initial

states, the final states, and the transition relation, respectively. The transition relation specifies

the state change that occurs when a given information-flow edge is traversed. A standard reach-

ability construction, implemented in about 25 lines of XSB code as in [SSR03], finds paths in the

information-flow graph that are accepted by the automaton.

Consider the following example from the SLAT (version 1.0.1) user manual [GHR03b]. The goal

is to check whether the SELinux example policy appropriately restricts accesses to raw disk data.

Such accesses correspond to operations on targets with type fixed disk device t. The hypothesis

is that information flow from a standard user’s security context to fixed disk device t may occur

only if the information passes through the filesystem administrator type fsadm t. Specifically,

the goal is to check whether there is an information-flow path from a security context satisfying

T =user t ∧ R=user r ∧ U 6=jadmin to a security context satisfying T =fixed disk device t

that does not pass through a security context satisfying T = fsadm t. It is easy to write an

automaton that accepts such paths. The automaton can be expressed in in a few lines of XSB

code, similar in style to [SSR03, Example 3]. PAL could be extended with a translator from a form

of regular expressions to automata; this would allow this query to be expressed in a single line, as

in SLAT. PAL indicates that the policy satisfies the property; the running time is 26 seconds. The

SLAT user manual reports a counterexample for this property. The difference in outcome appears

to be due to their use of different policy options (the example policy includes several optional parts).

We are in contact with the SLAT group to find out which options they use, and then we plan to

compare the performance of PAL and SLAT on this and other queries.

An information-flow query that cannot be expressed in SLAT’s language is: find the security

contexts from which information can flow into shadow t (which contains sensitive password-related

information). To do this in PAL, we use the standard definition of transitive information flow (note

that identifiers starting with upper-case letters are variables, and comma denotes conjunction)

transitive_flow(X,Y) :- flow_trans(X,Y).

transitive_flow(X,Y) :- flow_trans(X,Z), transitive_flow(Z,Y).

and then use the query

transitive_flow(SourceContext, [shadow_t, Role, User]).

This query causes XSB to display, one by one, all instantiations (of the variables) that satisfy the

formula. With a slight variation of the query, XSB will store all such instantiations in a list.

8



In systems containing some “trusted” types that are allowed to produce almost arbitrary infor-

mation flow, such queries will return almost all types. To avoid this, we can modify the query to

ignore paths that involve trusted types. For example: find the security contexts to which informa-

tion can flow from netscape t without passing through admin t. Such queries can easily be done

with PAL.

Sometimes we may be interested in information flow that can occur without active participation

by the “owner” of the information. This is analogous to Snyder’s notion of stealing [Sny77]. For

example, if we regard the type httpd admin t as the “owner” of information in files with type

httpd config t, we might want to find the security contexts to which information can flow from

httpd config t along paths that do not involve write-like operations performed by httpd admin t

(i.e., paths that do not contain an edge with source type httpd admin t and labeled with a write-

like operation).

5.2 Integrity

The information-flow queries in Section 5.1 are integrity properties that depend on multiple steps

of information flow. The properties in this section consider single steps of information flow.

Consider showing integrity of a proposed trusted computing base (TCB) for SELinux, expressed

as a set of trusted types, as in [JSZ03]. The following relation can be queried to find all potential

integrity violations, i.e., types OutType outside the TCB such that information can flow from

OutType to some type TCBType in the TCB. The designer can examine the potential integrity

violations, if any, to determine whether they are acceptable.

integrity_violation(TCB, TCBType, OutType) :-

flow_trans([OutType,OutRole,OutUser], Class, Perm, [TCBType,TCBRole,TCBUser]),

member_type(TCBType,TCB), not_member_type(OutType,TCB).

where member type(T, List) checks whether type T is a member of List, taking into account

macros and type attributes (since List may contain type attributes), and not member type is the

negation of member type. This property can be expressed in SLAT’s language, but SLAT produces

at most one potential violation (as a counterexample). For the TCB in [JSZ03, Table 3], PAL

processed the query in 7 seconds and returned numerous potential violations, as expected; Jaeger

et al. [JSZ03] discuss how to resolve the potential violations.

Many integrity properties have the form “no information flows from lower-integrity types to

higher-integrity types”. Instead of an explicit list of higher or lower integrity types, we may char-

acterize them by a predicate. For example, if we consider types that directly receive network input

as being more vulnerable (hence lower integrity) than others, then we might check whether infor-

mation flow is possible from those types to specified higher-integrity types, such as shadow t. Such

queries can easily be done with PAL.

Recall that neverallow rules explicitly prohibit permissions, to help ensure that policy modifica-

tions do not accidentally allow dangerous operations. To better understand what the neverallow

rules ensure, we can evaluate integrity and information-flow queries based on authorization and

9



information-flow relations that allow all operations not prohibited by neverallow. Adding support

for such queries to PAL requires only a few lines of code.

Integrity properties may assert that certain operations should be audited. For example, PAL

can easily be used to check whether all write-like operations with target type shadow t are audited.

5.3 Separation of Duty

Separation of duty is a classic security concept. “Perhaps the most basic separation of duty rule is

that any person permitted to create or certify a well-formed transaction may not be permitted to

execute it” [CW87, page 187]. In the context of SELinux, this rule can be interpreted as separation

of the types allowed to modify (e.g., write or create) executables from the types allowed to execute

those executables.

A property of this kind is described in [WSB+96, Section 3.2.1]. Daemons are notorious sources

of security vulnerabilities. To prevent compromised daemons from creating and running modified

executables (as RootKit tries to do), their policy contains no type of file for which daemons have

both execute permission and a write-like permission. We can use PAL to find such types (if any)

in a SELinux policy by examining the relation

daemon_can_execute_and_write(DaemonType, FileType) :-

is_daemon_type(DaemonType),

auth(Class, execute, DaemonType, Role1, User1, FileType, Role2, User2),

auth(Class, Perm, DaemonType, Role3, User3, FileType, Role4, User4),

write_like(Perm).

where the predicate is daemon type is true for daemon types; we defined this predicate to hold for

types whose names end with crond t, klogd t, sshd t, or syslogd t. PAL processed the query

in 8 seconds and found no violations of this property.

5.4 Completeness

Recall from Section 2 that Gokyo [JEZ03] can find permissions that are neither allowed nor explicitly

prohibited by a policy. Such permissions reflect a kind of incompleteness in the policy. To find

such permissions with PAL, we simply examine the relation

unspecified_permissions(SrcType,TargetType,Class,Perm) :-

is_type(SrcType), is_type(TargetType), is_class(Class), is_perm(Perm),

\+ auth(Class,Perm,SrcType,SrcRole,SrcUser,TargetType,TargetRole,TargetUser),

\+ never_auth(Class,Perm,SrcType,SrcRole,SrcUser,TargetType,TargetRole,TargetUser).

where is type and similar predicates are generated from declarations in the policy, never auth

is analogous to auth and indicates operations prohibited by neverallow rules, and \+ denotes

negation.

10



5.5 Sanity Checks

PAL can be used to perform simple sanity checks, in the spirit of lint. For example, a single

type should generally not be used for resources of different classes [Sma03b]. Violations of this

convention can be found by examining the following relation (note that \= means “not equal”),

type_used_with_two_classes(T,C1,C2) :-

access_vector(AVKind1, SourceTypeSet1, TargetTypeSet1, ClassSet1, PermSet1),

access_vector(AVKind2, SourceTypeSet2, TargetTypeSet2, ClassSet2, PermSet2),

member_type(T,TargetTypeSet1), member_type(T,TargetTypeSet2),

member_class(C1,ClassSet1), member_class(C2,ClassSet2), C1 \= C2.

References

[ALP03] Myla Archer, Elizabeth Leonard, and Matteo Pradella. Analyzing Security-Enhanced

Linux policy specifications. In Proc. IEEE 4th International Workshop on Policies for

Distributed Systems and Networks (POLICY), pages 158–172, June 2003.

[BSLS03] Samik Basu, Diptikalyan Saha, Yow-Jian Lin, and Scott A. Smolka. Generation of all

counter-examples for push-down systems. In Proc. 23rd IFIP WG 6.1 International

Conference on Formal Techniques for Networked and Distributed Systems (FORTE),

volume 2767 of Lecture Notes in Computer Science, pages 79–94. Springer-Verlag, 2003.

[CW87] David D. Clark and David R. Wilson. A comparison of commercial and military security

policies. In Proc. 1987 IEEE Symposium on Security and Privacy, pages 184–194. IEEE

Computer Society Press, 1987.

[GHR03a] Joshua D. Guttman, Amy L. Herzog, and John D. Ramsdell. Information flow in

operating systems: Eager formal methods. In Proc. 2003 Workshop on Issues in the

Theory of Security (WITS), 2003.

[GHR03b] Joshua D. Guttman, Amy L. Herzog, and John D. Ramsdell. SLAT: Information flow

in Security Enhanced Linux, 2003. Included in the SLAT distribution, available from

http://www.nsa.gov/SELinux.

[GRR02] Haifeng Guo, C.R. Ramakrishnan, and I.V. Ramakrishnan. Justification based on pro-

gram transformation. In Proc. 12th International Workshop on Logic-based Program

Synthesis and Transformation (LOPSTR), volume 2664 of Lecture Notes in Computer

Science, pages 158–159. Springer-Verlag, October 2002.

[JEZ03] Trent Jaeger, Antony Edwards, and Xiaolan Zhang. Policy management using access

control spaces. In ACM Transactions on Information Systems Security, August 2003.

[JSZ03] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. Analyzing integrity protection in the

SELinux example policy. In Proc. USENIX Security Symposium, August 2003.

11



[LS01a] Peter Loscocco and Stephen Smalley. Integrating flexible support for security policies

into the Linux operating system. In Proc. FREENIX Track of the 2001 USENIX Annual

Technical Conference, 2001. Available from http://www.nsa.gov/SELinux/docs.html.

[LS01b] Peter A. Loscocco and Stephen D. Smalley. Meeting critical security objectives with

Security-Enhanced Linux. In Proceedings of the 2001 Ottawa Linux Symposium, 2001.

Available from http://www.nsa.gov/SELinux/docs.html.

[Mac03] Karl MacMillan. Message to SELinux mailing list on Dec 8, 2003. Available from

http://www.nsa.gov/SELinux.

[SF01] Stephen Smalley and Timothy Fraser. A security policy configuration for the Security-

Enhanced Linux, 2001. Available from http://www.nsa.gov/SELinux/docs.html.

[Sma03a] Stephen Smalley. Configuring the SELinux policy, 2003. Available from

http://www.nsa.gov/SELinux/docs.html.

[Sma03b] Stephen Smalley. Messages to SELinux mailing list on Dec 11, 2003. Available from

http://www.nsa.gov/SELinux.

[Sny77] Lawrence Snyder. On the synthesis and analysis of protection systems. In Proc. Sixth

ACM Symposium on Operating Systems Principles (SOSP), pages 141–150. ACM Press,

1977.

[SSR03] Beata Sarna-Starosta and C. R. Ramakrishnan. Constraint-based model checking of

data-independent systems. In Proc. 5th International Conferene on Formal Engineering

Methods (ICFEM), volume 2885 of Lecture Notes in Computer Science, pages 579–598.

Springer-Verlag, 2003.

[Tre] Tresys Technology. Apol. Available from http://www.tresys.com/selinux/.

[WSB+96] Kenneth M. Walker, Daniel F. Sterne, M. Lee Badger, Michael J. Petkac, David L.

Sherman, and Karen A. Oostendorp. Confining root programs with domain and type

enforcement (DTE). In Proc. 6th USENIX UNIX Security Symposium, 1996.

[XSB] XSB. Available at http://xsb.sourceforge.net/.

12


