
First-Class Modules for HaskellMark Shields Simon Peyton JonesMirosoft Researh Cambridgefmarkshie; simonpjg�mirosoft.omAbstratThough Haskell's module language is quite weak, its orelanguage is highly expressive. Indeed, it is tantalisingly loseto being able to express muh of the struture traditionallydelegated to a seperate module language. However, the en-odings are awkward, and some situations an't be enodedat all.In this paper we re�ne Haskell's ore language to support�rst-lass modules with many of the features of ML-stylemodules. Our proposal leanly enodes signatures, stru-tures and funtors with the appropriate type abstration andtype sharing, and supports reursive modules. All of thesefeatures work aross ompilation units, and interat harmo-niously with Haskell's lass system. Coupled with supportfor staged omputation, we believe our proposal would be anelegant approah to run-time dynami linking of struturedode.Our work builds diretly upon Jones' work on parameterisedsignatures, Odersky and L�aufer's system of higher-rankedtype annotations, Russo's semantis of ML modules usingordinary existential and universal quanti�ation, and Oder-sky and Zenger's work on nested types. We motivate thesystem by examples. A more formal presentation in inludedin the appendix.1 IntrodutionThere are two ompeting tehniques for expressing the large-sale struture of programs. The \brand leader" is the two-level approah, in whih the language has two layers: a orelanguage, and a module language. The most sophistiatedexample of this struture is ML and its variants, but manyother languages, suh as Haskell or Modula, take the sameform, only with weaker module languages.In the last few years, however, the ore language of (extendedversions of) Haskell has beome very rih, to the point whereit is tantalisingly lose to being able to ompete in the large-sale-struture league. If that were possible, it would ofourse be highly desirable: it would remove the need fora seond language; and it would automatially mean thatmodules were �rst-lass itizens, so that funtors beomeordinary funtions.The purpose of this paper is to show that, by bringing to-gether several separate piees of existing work, we an indeedbridge this �nal gap. More spei�ally, we propose severalmore-or-less orthogonal extensions to Haskell that work to-

gether towards this goal.� Reord types, with �elds of polymorphi type, dot no-tation, and the ability to use a single �eld name indistint reord types (Setion 2.1).� Nested type delarations inside suh reords (Se-tion 2.3). These nested delarations are purely syn-tati sugar; there is nothing ompliated.� First-lass universal and existential quanti�ation (Se-tion 4.1). Together with reord types, this allows usonveniently to express the types of (generative) fun-tors.� A delaration-oriented onstrut for opening anexistentially-quanti�ed value (Setion 4.2), togetherwith a notation to allow opened types to appear intype annotations (Setion 4.3). The standard approahis expression-oriented, whih is unbearably lumsy inpratie, whereas our onstrut works �ne at the toplevel (Setion 4.4).Taken individually, all of these ideas have been proposedbefore. Our ontribution is to put them all together ina oherent design for a ore language that an reasonablylaim to ompete with, and in some ways improve on, theML brand leader. In partiular, our system treats modulestrutures as �rst-lass values, supports type inferene, andinterats harmoniously with Haskell's onstrained polymor-phism. From the module point of view, it separates signa-tures from strutures, and o�ers type abstration, generativefuntors, type sharing, separate ompilation, and reursiveand nested signatures and strutures. Our proposal is, at thetop-level, fairly ompatible with Haskell's existing modulesystem (though for larity we shall bend the syntax some-what in this paper).We present our system by a series of worked examples. Amore formal presentation may be found in the appendix.At the time of writing we have only just begun to establishthe formal properties of our system. We have, however, im-plemented a prototype ompiler, and hope to merge theseextensions into GHC, a prodution Haskell ompiler.2 Conrete Modules as ReordsFollowing Jones [6℄, we enode interfaes as parameterisedreord types, and implementations as reords. Haskell al-ready has some reord-like syntax for data onstrutors with



named arguments, and many Haskell implementations allowthese �elds to be assigned a polymorphi type. However, ourrequirements are more demanding, as we wish to share �eldnames between reords, and allow nested type delarations.So we begin by introduing a new form of type delaration.2.1 Parameterised ReordsReord types are introdued (only) by expliit delaration,and may be parameterised:reord Set a f = {empty :: f aadd :: a -> f a -> f aunion :: f a -> f a -> f aasList :: f a -> [a℄}(Note that f has kind Type -> Type.) Equality betweenreord types is nominal rather than strutural. UnlikeHaskell, a single �eld name may be re-used in di�erent reordtypes.Reord terms are onstruted by applying a reord onstru-tor to a set of (possibly mutually reursive1) bindings:intListSet :: Set Int [℄ {- inferred -}intListSet = Set {empty = [℄add = \(x :: Int) xs -> x : filter (/= x) xsunion = foldr addasList = id}Reord terms may be used within patterns, but we also sup-port the usual \dot notation" for �eld projetion:one :: [Int℄ {- inferred -}one = intListSet.asList(intListSet.add 1 intListSet.empty)As in Haskell, the type signature on a binding | suh asone :: [Int℄ | is optional; the system will infer a type forone, but the programmer may onstrain the type with a typesignature.Regarding a module as a reord allows an ML funtor to bereplaed by an ordinary funtion. For example:reord EqR a = { eq :: a -> a -> Bool }mkListSet :: forall a . EqR a -> Set a [℄mkListSet eq = Set {empty = [℄add = \x xs ->x : filter (\y -> not (eq.eq x y)) xsasList = id}1This is another (osmeti, but important) di�erenefrom Haskell 98 reords.

Sine \funtors" are ordinary funtions, they integratesmoothly with Haskell's type lass mehanism:mkListSet' :: forall a . Eq a => Set a [℄mkListSet' = Set {empty = [℄add = \x xs -> x : filter ((/=) x) xsasList = id}By using the overloaded operator (/=) we have replaed theexpliit parameterisation over the reord EqR a with impliitparameterisation over the lass Eq a.Reord �elds may have polymorphi types:reord Monad f = {fmap :: forall a b . (a -> b) -> f a -> f bunit :: forall a . a -> f abind :: forall a b . f a -> (a -> f b) -> f b}Suh reords may be onstruted and taken apart in thesame way as before:listMonad :: Monad [℄ {- inferred -}listMonad = Monad {fmap = mapunit = \a -> [a℄bind = \ma f -> onat (map f ma)}singleton :: a -> [a℄singleton x = listMonad.unit xWe do not permit subtyping or extensibility for reords, de-ferring suh extensions to future work.2.2 Type infereneType inferene in this system is problemati. For example,onsider:g = \m f x -> m.fmap f (m.unit x)Sine fmap may be a �eld name in many reords, the type ofm.fmap depends on the type of m | whih we do not know.We avoid this, and other diÆulties relating to higher-rankedpolymorphism, by plaing imposing the binder rule: the pro-grammer must supply a type annotation for every lambda-bound, or letre-bound, variable whose type mentions a reordtype onstrutor. With the binder rule in plae, it beomeseasy to share �eld names between distint reord types. Thebinder rule is somewhat onservative | a lever infereneengine ould sometimes do without suh an annotation |but it ensures that the typability of a program does notdepend on the inferene algorithm. We disuss alternativeapproahes in Setion 6.In pratie, it may be triky to give suh a type annotation.In our example, the type of m is Monad �, where � is the2



type in whih g is polymorphi. We provide two ways tosolve this, both of whih have been validated by pratialexperiene in GHC. First, we an suppply a type signaturefor g rather than m:g :: forall m a b .Monad m -> (a -> b) -> a -> m bg = \m f x -> m.fmap f (m.unit x)Here, we rely on the type heker to propagate the typeannotation for g to an annotation for m, in the \obvious"way | this statement an be made preise, but we do notdo so here.Alternatively, g's argument m may be annotated diretly:g = free t in \(m :: Monad t) f x ->m.fmap f (m.unit x)Here the term free t in ... introdues a fresh type variablet standing for any type within the sope of a term. Duringtype heking of g, t may be instantiated to any well-kindedtype. Thus g's �rst argument may be assigned any type ofthe form Monad � for some type � . (Notie that t does notstand for a type argument to g!). During type inferene, tis simply replaed by a fresh uni�ation variable. Thus g'sinferred prinipal type is as given above.2.3 Nested Type DelarationsModules typially ontain a mix of term-level and type-leveldelarations. Following Odersky and Zenger [13℄, we allowreord delarations to ontain nested type delarations:reord BTSet a = {data BinTree = Leaf | Node BinTree a BinTreeempty :: BinTreeadd :: a -> BinTree -> BinTree}A nested type may be projeted from a type in muh thesame way as a �eld may be projeted from a term. Forvarious syntatial reasons, we write ^ instead of the usual. to denote type projetion. For example, we may write:unitSet :: BTSet a -> a -> (Set a)^BinTreeunitSet set a = set.add a set.empty(^ binds stonger than type appliation.) Notie that thereis another way of writing the signature for add in the abovereord delaration:add :: a -> (Set a)^BinTree -> (Set a)^BinTreeIndeed, all four ways of writing add's type signature areequivalent: referring to a type relatively (by relying on thetype delarations urrently in sope) is equivalent to refer-ring to it absolutely (by following a path from some top-levelreord type).

Sine reords are just another type delaration, they mayalso be nested within other reords:reord Graph ver = {reord Edge = { from :: ver; to :: ver }data Rep = Rep [ver℄ [Edge℄mkGraph :: [ver℄ -> [edge℄ -> ReptransClosure :: Rep -> Rep}Wemay referene nested data and reord onstrutors withinterms by a similar projetion syntax:leaf :: forall a . (Set a)^BinTree {- inferred -}leaf = Set^Leafedge :: (Graph Int)^Edge {- inferred -}edge = Graph^Edge { from = 1; to = 2 }Notie that type inferene supplies the neessary type argu-ments for Set and Graph.Reord terms whose types ontain nested types are on-struted in the usual way:trivGraph :: Graph () {- inferred -}trivGraph = Graph {mkGraph = \vs es ->Rep [()℄ [Edge { from = (); to = () }℄transClosure = \r -> r}As for types, data and reord onstrutors may be referredto relatively or absolutely.Our approah to nested types diverges from the usual treat-ment of ML-style nested modules in two ritial ways.Firstly, we never allow reord terms to ontain type de-larations. (Later we will allow type delarations within top-level implementations, but this is merely a syntatial on-veniene.) As a onsequene, our system avoids entirely theneed for any dependent types, and manifestly respets thephase distintion [3℄ between type heking and evaluation.The work of Odersky and Zenger [13℄ takes a similar ap-proah. Seondly, we never allow reord types to ontainabstrat types, i.e., types whih are named but whose def-inition is hidden. (Again, we will later allow abstrat typedelarations within top-level interfaes, but again this is asyntatial onveniene.)Together, these restritions mean that nested type delara-tions may always be attened into a non-nested delarations.For example, our BTSet delaration may be rewritten:data BTSet_BinTree a= BTSet_Leaf| BTSet_Node (BTSet_BinTree a) a(BTSet_BinTree a)reord BTSet a = {empty :: BTSet_BinTree amp :: a -> a -> BTSet_Cmpadd :: a -> BTSet_BinTree a -> BTSet_BinTree a3



}Jones [6℄ advoates not supporting nested types on thegrounds that they may always be translated away in thismanner. We support them in our system beause they areonvenient, they subsume the usual namespae mehanism,and they turn out to be easily implemented.3 Abstrat Modules and ExistentialsWe now turn our attention to one of the essential propertiesof a module language: the ability to hide implementationtypes. As we mentioned in the Introdution there are twomain approahes to implementation hiding, whih we brieyreview in this Setion. The lassi approah is to use exis-tential types (Setion 3.1), but the approah that has so farbeen more suessful in pratie, exempli�ed by ML, usesdependent sums (Setion 3.2).3.1 Type Abstration in HaskellIn the intListSet example of Setion 2.1 the representationtype of sets as lists was exposed. This is bad, beause alient of the module ould pass any list to the add operation,whereas the implementation of add will expet the set it ispassed to obey invariants maintained by the module (e.g.the list has no dupliates).It has long been reognised that existential quanti�ationprovides an appropriate mehanism for hiding suh a repre-sentation type [11℄. Many Haskell implementations alreadysupport existential types, allowing us to write:2data AbsSet a = exists f . MkAbsSet (Set a f)intSet :: AbsSet Int {- inferred -}intSet = MkAbsSet intListSetConsider typing the binding of intSet. Within the bodyof the MkAbsSet data onstrutor, f is bound to [℄, and sothe appliation MkAbsSet intListSet is well-typed. Outsideof the AbsSet onstrutor, the existential quanti�er over fhides this binding3.Programs wishing to use the operations of intSet must �rst\open" the existential quanti�ation using a ase expres-sion:one :: [Int℄ {- inferred -}one = ase intSet ofMkAbsSet s -> s.asList (s.add 1 s.empty)2Somewhat onfusingly, these implementations requirethe keyword forall to be used in this situation rather thanexists.3The alert reader may be alarmed by our use of ex-istential quanti�ation over higher-kinded type variables.Haskell uses a simple but inomplete uni�ation algorithmfor higher-kinded types whih turns out to work very well inpratie [4℄.

Typing the arm of the ase involves heking thatthe term s.asList (s.add 1 s.empty) is well-typed un-der the assumption s :: Set Int F for any type on-strutor F . Equivalently, we must hek the term\s -> s.asList (s.add 1 s.empty) has the polymorphitype forall f . Set Int f -> �, for � a type not ontainingf.Often we wish to manipulate implementations ontaining ab-strat, but equal types, known as the \diamond import prob-lem" [9℄ in the literature. For example, assume we have afuntion whih, given any implementation of sets, generatessome additional \helper" funtions:reord SetHelp a f = {unionAll :: [f a℄ -> f a}mkSetHelp :: forall a f . Set a f -> SetHelp a fmkSetHelp set = SetHelp {unionAll = foldr set.union set.empty}Now onsider onstruting some set helpers for our abstratintSet. Clearly we annot simply write:intSetHelp = mkSetHelp intSeterror: Type "AbsSet Int" is inompatible withtype "Set Int f"One way to avoid this mismath between AbsSet and Setis to write a version of mkSetHelp whih works on abstratsets diretly:data AbsSetHelp a= exists f . MkAbsSetHelp (SetHelp a f)mkAbsSetHelp :: forall a .AbsSet a -> AbsSetHelp amkAbsSetHelp absset= ase absset ofMkAbsSet set ->MkAbsSetHelp (mkSetHelp set)Notie that we had to introdue (another) datatype,AbsSetHelp, to hide the representation of sets in SetHelp.Using this funtion, we may now write:intSetHelp :: AbsSetHelp Int {- inferred -}intSetHelp = mkAbsSetHelp intSetHowever, intSet and intSetHelp may never be mixed, de-feating the whole purpose of mkAbsSetHelp:main = ase (intSet, intSetHelp) of(MkAbsSet s, MkAbsSetHelp h) ->s.asList (h.unionAll[s.add 1 s.empty, s.add 2 s.empty℄)error: arm of ase is insuffiiently polymorphiSomehow we must onvey the information that a partiular4



set and its helpers share the same representation, withoutexposing the representation itself.The only solution to this problem within Haskell is to are-fully struture our program so that intSet is opened in asope ontaining both the de�nition of intSetHelp, and alluses of these two terms whih need to share their represen-tation types:intSet = MkAbsSet intListSettwo :: forall f .Set Int f -> SetHelp Int f -> [Int℄two s h = s.asList (h.unionAll [s.add 1 s.empty,s.add 2 s.empty℄)main = ase intSet ofMkAbsSet s -> let h = mkSetHelp sin two s hThese examples illustrate two serious drawbaks to theexistential-type approah to type abstration within Haskell:(i) We are fored to introdue an entirely spuriousdatatype (e.g., AbsSet) for every instane of type ab-stration. This datatype is simply there to tell the typeinferene system where to expet existential types.(ii) More seriously, this spurious datatype must be strippedaway within a sope whih overs all of the terms whihneed to share a partiular implementation type. Thisis awkward in large programs, and impossible if usesof an abstrat type must be split between ompilationunits.3.2 Type Abstration in ML/OCamlThese drawbaks have led most module language designersto abandon the simple-minded approah to type abstrationthrough existential quanti�ation in preferene for strong ortransluent (dependent) sums [2℄ (the later are also knownas manifest types [7℄). For example, in OCaml our abstratset would be desribed by the signature:module type SET =sigtype atype 'a fval empty : a fval add : a -> a f -> a fval union : a f -> a f -> a fval asList : a f -> a listendHere the type onstrutor f is a nested type of SET whihis left abstrat. In ML-based module languages, signaturesare not parameterised, and nested types are abstrat by de-fault. A binding for f must be supplied in any strutureimplementing signature SET:module IntListSet : SET =strut

type a = inttype 'a f = 'a listlet empty = [℄let add = fun x xs ->x :: filter (fun y -> y <> x) xslet union = fun xs ys -> fold_right add xs yslet asList = fun xs -> xsendThe binding of f to list in IntListSet is hidden by theexpliit signature oerion. Of ourse, the binding of a toint is also hidden, even though this is probably not intended.Sharing of abstrat types is expressed using manifest types:module type SETHELP =sigtype atype 'a funionAll : (a f) list -> a fendmodule type MKSETHELP =funtor (S : SET) ->(SETHELP with type a = S.atype 'a f = 'a S.f)module MkSetHelp : MKSETHELP =funtor (S : SET) ->struttype a = S.atype 'a f = 'a S.flet unionAll = fold_right S.unionendHere the sharing of types a and f in the argument and resultof the MkSetHelp funtor is made expliit by the with lausein the funtor's type.To sum up: In OCaml, all nested types are abstrat un-less expliitly made manifest, while in Haskell all type pa-rameters are onrete unless expliitly hidden by existentialquanti�ation.4 Putting Existentials to WorkThe dependent-sum approah to modular struture hasproved to be very fruitful in pratie. Nevertheless, thereare strong reasons for ontinuing to searh for alternatives.ML-style module systems an be extended to support both�rst-lass and reursive modules but, although the detailsfor these extensions have been worked out [17, 18℄, the re-sulting system is dauntingly ompliated. Furthermore, itwould be diÆult to adopt suh a system for Haskell, be-ause the interation with Haskell's system of type lasses isentirely unlear. Indeed, no one has even attempted to workout the details for an ML-style module system supportingtype lasses. Lastly, there is an unomfortable dupliationof funtionality between a rih ore language and a rih mod-ule language; other things being equal, it would learly bebetter to have a single layer.5



So, instead of abandoning existentials for dependent sums,we shall takle head-on the two problems we identi�ed withexistentials: the need for spurious datatypes (Setion 4.1),and the need to open existentials in a ommon sope (Se-tion 4.4).4.1 Type Inferene for Higher-ranked PolymorphismWe would like to get rid of the spurious data type AbsSetthat we were fored to introdue in Setion 3.1. Thedata type served to tell the type inferene engine whereto introdue existential quanti�ation (at ourrenes of theMkAbsSet onstrutor) and where to eliminate it (at aseexpressions that math MkAbsSet).Instead, we would like to be able to use existential quanti�-ation freely within type shemes, without a mediating datatype. For example, we'd like to write the intSet examplediretly, thus:intSet :: exists f . Set Int fintSet = Set {empty = [℄add = \x xs -> x : filter ((/=) x) xsasList = id}Existential quanti�ers must now be able to our in the re-sult of a funtion type. For example, here are the types wewould like for mkListSet and mkListSet', whih we saw inSetion 2.1:mkListSet :: forall a .EqR a -> exists f . Set a fmkListSet' :: forall a . Eq a =>exists f . Set a fThe type signature for mkListSet expresses both that we anonstrut a set implementation from any equality on type a,and that for eah suh equality the representation type ofthe result is abstrat. That is to say, this type signaturemimis the generative funtor appliation of ML. (We shallsee in Setion 4.2 that our system annot mimi OCaml'sappliative funtors [8℄, and instead requires all type sharingto be made manifest.)Our system supports higher-ranked signatures suh as theseby adopting the system of type annotations of Oderskyand L�aufer [12℄. We extend the binder rule of Setion 2.2by requiring a type annotation on every lambda-bound, orletre-bound, variable whose type uses existential or univer-sal quanti�ation. (Exeption: in the ase of letre, whenthe universal quanti�ation is at the top level, the anno-tation may be omitted, using the standard Hindley-Milnertrik for reursive de�nitions.)The Odersky/L�aufer system stritly generalises the type in-ferene algorithm used by those Haskell implementations al-ready supporting rank-two polymorphism. Type infereneredues to solving a set of subsumption onstraints overtypes with mixed pre�x. For example, onsider inferring

the type of:(\(f :: forall a . a -> Int -> a) -> f 1 2)(\x y -> x)The system disovers that \x y -> x has most general typeforall b  . b ->  -> b. Type heking the outer applia-tion redues to hekingforall b  . b ->  -> b � forall a . a -> Int -> awhere we write � to denote \subsumes." The hek proeedsby skolemizing the right-hand side quanti�ed variables:forall b  . b ->  -> b � a' -> Int -> a'where a' skolem onstantthen freshening the left-hand-side quanti�er variables:b' -> ' -> b' � a' -> Int -> a'where a' skolem onstantand, �nally, unifying the result. Sine [b' 7! a'; ' 7! Int℄is a most general uni�er, the subsumption hek sueeds.We must extend the system of Odersky and L�aufer in twoways. Firstly, we allow type shemes to arbitrarily mix uni-versal and existential quanti�ers. Though this adds no ex-pressive power4, it is a great aid when reporting type errors!The subsumption of existentials is exatly dual to that ofuniversals.Seondly, we must aount for Haskell's lass onstraints. Inpartiular, any quanti�er may introdue a onstraint, and wemay need to deide onstraint entailment during subsump-tion heking. Consider our previous example amended toinlude lass onstraints:(\(f :: forall a . Num a => a -> Int -> a) ->f 1 2)(\x y -> if x == x then x else undefined)To type hek the outer appliation, the system must deidethe subsumption:forall b  . Eq b => b ->  -> b �forall a . Num a => a -> Int -> aThe Eq b onstraint arises from the use of ==, and Num afrom the type annotation on f. The hek proeeds as be-fore, skolemizing the right-hand side quanti�ed variables,and freshening the left, to yield:Eq b' => b' -> ' -> b' � Num a' => a' -> Int -> a'where a' skolem onstantThen the onstraint Num a' is added to the set of \known"onstraints:Eq b' => b' -> ' -> b' � a' -> Int -> a'assuming Num a', and a' skolem onstant4E.g. the rank-one existential exists a . �(a)may be replaed by the rank-two universalforall b . (forall a . �(a) -> b) -> b.6



For the moment, the Eq b' onstraint is ignored, and theleft- and right-hand side types are uni�ed to yield the mostgeneral uni�er [b' 7! a'; ' 7! Int℄. Finally, the systemmust hek that Num a' `e Eq a'where `e denotes the onstraint entailment relation. This istrue, sine Eq is a superlass of Num. Hene the term is welltyped.We have given only illustrative examples here, but the Ap-pendix gives the tehnial details. This type inferene algo-rithm is potentially more expensive than that used by ex-isting Haskell implementations. In partiular, the expensiveoperations of onstraint simpli�ation and generalisation o-ur, by default, for every step of type inferene rather thanjust one per let-bound term. We plan to investigate re-�ning the inferene algorithm to avoid these operations asmuh as possible.4.2 Opening ExistentialsNow that we allow existentials to appear without a medi-ating data onstrutor, we must �nd a replaement for therôle previously played by ase. For example, reall from theprevious setion that:intSet :: exists f . Set Int fAttempting to projet from intSet diretly would lead to atype error:one = intSet.asList (intSet.add 1 intSet.empty)error: annot projet "empty" from term ofnon-reord type "exists f . Set Int f"Motivated by Russo's semantis for ML modules [16℄, weintrodue a variation of let whih expliitly \opens" anyexistential quanti�ed type variables of the let-bound term:one :: [Int℄ {- inferred -}one = let open s = intSetin s.asList (s.add 1 s.empty)The keyword open indiates that the let-bodys.asList (s.add 1 s.empty) should be type hekedassuming s :: Set Int f', where f' is a fresh (skolem) typeonstant replaing the existentially quanti�ed f in the typeof intSet5. By opening intSet expliitly we eliminate theexistential quanti�er on its type without ompromising itstype abstration:bad = let open s = intSetin s.add 2 [1℄error: Inompatible types "f'" and "[℄", wheretype variable "f'" arises from open of"absIntSet"5Haskell's existing monadi do notation also uses a bind-ing onstrut whose left-hand and right-hand side types dif-fer.

Writing � to range over type and kind ontexts, and � torange over kind ontexts, we may write the typing rule forlet open as follows6 :� ` u : exists � . �dom(�) \ dom(�) = ;� ++�; x : � ` t : �0� ` �0 : sheme openlet� ` let open x = u in t : �0Notie how the existentially quanti�ed type variables � aris-ing from u are \lifted over" the binding for x , and beomefree (skolemized) type variables when heking the type of t .The side ondition on � ensures eah existentially quanti�edtype variable is indeed free|alpha-onversion may always beused to satisfy this ondition. The hek that �0 is a well-formed type sheme prevents any type variable in � fromesaping the sope of x . For example, this term is ill-typed:let open s = intSetin s.emptyerror: Skolemized type "f'" introdued in open of"s" esapes sope of binding in type"f' Int"Without this restrition our system would be unsound:let f = \x -> let open y =((x, (== x)) :: exists a . (a, a -> Bool)) in yin (snd (f 1)) (fst (f True)) -- Crash!An alternative design would be to modify the typing rulefor projetion instead of that for let; in other words, makeexistential quanti�ers transparent to projetion. We preferthe present design beause it makes expliit the generativenature of existential types. For example, the following termis (rightly) ill-typed, beause it attempts to mix sets reatedfrom di�erent equalities on Int:inEq :: EqR Int -- Normal equality on integersz2Eq :: EqR Int -- Equality mod 2let open s1 = mkListSet intEqin let open s2 = mkListSet z2Eqin s1.asList s2.emptyerror: Inompatible types "Set Int f1" and"Set Int f2", where type variable "f1"arises from open of "s1", and typevariable "f2" arises from open of "s2"A limitation of our approah is that we annot mimi theappliative funtors of OCaml:let open s1 = mkListSet intEqin let open s2 = mkListSet intEqin s1.asList s2.emptyerror: ...6See Figure 14 for the atual rule, whih this only ap-proximates.7



Even though (thanks to the absene of side e�ets) s1 ands2 are observationally equivalent, the type system onsiderstheir implementation types to be distint. All type sharingin our system must be manifest; even this extreme ase isrejeted:let open s1 = intSetin let open s2 = intSetin s1.asList s2.emptyerror: ...4.3 Type Annotations for Opened BindingsReall again our running example:intSet :: exists f . Set Int fone :: [Int℄ {- inferred -}one = let open s = intSetin s.asList (s.add 1 s.empty)Is it possible for the programmer to give a type signaturefor s? The trouble is that, in the body of the let, s hastype Set Int f', where f' is a fresh (skolem) type onstant,and the programmer has no way to write suh a thing. Yetsuh annotations are desirable for doumentation reasons,and will be absolutely essential when we ome to top-levelbindings (see Setion 4.5).Our solution is to add a new open form of type signature,dual to the open form of term binding:one = let open s :: exists f. Set Int fopen s = intSetin s.asList (s.add 1 s.empty)The open type signature simply delares that s hasthe type obtained by opening (skolemizing) the typeexists f. Set Int f. The type signature for s behaves ex-atly like any other type signature: it is optional, and mayonstrain the type to be less polymorphi than the inferredtype.However, we are not done yet. Suppose we write (ratherarti�ially):let open s :: exists f. Set Int fopen s = intSetin let t = sin s.asList (t.add 1 t.empty)How an we give a type signature to t? We annot say:open t :: exists f. Int -> f Intt = sbeause that would introdue a fresh skolemized type f, dis-tint from the one introdued by the type signature for s.Instead, we want to say \t has the same type as s". Follow-ing some preliminary work of Odersky and Zenger [13℄, we

allow the programmer to say preisely that:t :: s!t = sThe type \x!" where x is an in-sope term variable, denotesthe type of x 7. This new type form an our in any type.For example,\x (y :: x!) . (x, y)has type forall a . a -> a -> (a, a), sine the annotationon y fores it to have the same type as x. It is illegal to takethe type of a variable of sheme type:id :: forall a . a -> a {- inferred -}id = \x -> x\(f :: id!) . f 1error: "id" has a type sheme as its type, andannot be dereferenedEven this is not quite enough, however. Consider yet anotherversion of our example:let open s :: exists f. Set Int fopen s = intSetin let unit = \x -> s.add x s.emptyin s.asList (unit 1)How an we write the type of unit? If s has type Set Int f ,unit has type Int -> f Int. So we need to be able to referto a omponent of s's type. We add another new type form,thus:unit :: Int -> s!^f Intunit = \x -> s.add x s.emptyThe \^f" projets the f-omponent out of the type appli-ation s!. As a syntatial onveniene we allow the type-variable names from the original de�nition of Set (bak inSetion 2.1) to be used as the \�eld names" for these typeprojetions.These two new type forms give rise to a small algebra overtypes. For example, the following three types are all equalto Int: (Set Int [℄)^a (1)(Int, Set Int [℄)^t2^a (2)(Set Int [℄ -> Int)^arg^a (3)In (1) we know reord Set has a type parameter nameda, and this parameter is bound to Int in the appliationSet Int [℄ (reall type appliation binds tighter than ^). In(2), we rely on the built-in type parameters t1, t2 et. torefer to the suessive type arguments of the tuple type on-7Though this notation involves term variables in type ex-pressions, the type does not depend on the value of the termvariable, only on its type.8



strutor. Similarly, in (3) we rely on the built-in type pa-rameters arg and res to refer to the argument and resulttypes respetively of the funtion type onstrutor.We also allow a reord �eld to be dereferened. For example:unit :: Int -> s!^empty! Intunit = \x -> s.add x s.emptyHere we say the result of unit has the same type as theempty �eld in the reord type denoted by s!.4.4 Opening Top-Level BindingsSo far we have not takled the seond of the two problemswe identi�ed in Setion 3.1, namely that an existential mustbe opened over a sope that ontains all terms that mustshare an implementation type. Indeed, we identi�ed it asthe more serious of the two problems.The design we have presented so far was arefully hosen tosolve this problem as well. All that is needed is to allow opento be used for top-level bindings.Consider again the intSet and intSetHelp example of Se-tion 3.1. Our improved support for existential quanti�ationeliminates the need for any spurious AbsSet and AbsSetHelpdatatypes. By using open, we may also both open and bindintSet in a single top-level delaration:open intSet :: exists f . Set Int fopen intSet = intListSetIn the rest of the program, intSet has type Set Int f',where f' is a fresh skolem type onstant.The mkSetHelp and two funtions remain unhanged:mkSetHelp :: forall a f . Set a f -> SetHelp a fmkSetHelp set = SetHelp { ... }two :: forall f . Set Int f ->SetHelp Int f -> [Int℄two s h = ...With these de�nitions, we may now reate setHelp diretly:setHelp = mkSetHelp intSetmain = two intSet setHelpLooking at the type of mkHelpSet we see setHelp has typeSet Int f', and thus the appliation of two is well-typed.In Setion 4.2 we mentioned that, to preserve soundness,skolemized type variables annot esape the sope of theterm variable whih introdued them. Sine the sope of atop-level binding is the entire program, this hek is unne-essary for opened top-level signatures. This is indeed fortu-nate, sine separate ompilation means that we may not beable to \see" the entire sope of the binding.

4.5 Top-level Interfaes and ImplementationsHaskell's existing module system ombines the implementa-tion of a module and its interfae spei�ation into a sin-gle ompilation unit. In our system we split these notions.Roughly speaking, we take a top-level interfae to be thebody of a parameterless reord type delaration, and a top-level implementation to be the body of a reord, both ap-pearing in a notional \osmi" global sope.Top-level interfaes appear in \hsi" �les. For example, �leLists.hsi ould look something like:module Lists wheredata List a = Nil | Cons a (List a)map :: forall a b . (a -> b) -> List a -> List b... et ...Suh a �le indues the type delaration in the \osmi"sope:reord Lists = {data List a = Nil | Cons a (List a)map :: forall a b . (a -> b) -> List a-> List b... et ...}Top-level implementations appear in \hs" �les. Continuingthe above example, �le Lists.hs ould resemble:module Lists wheremap = ...... et ...This indues the \osmi" term delaration:Lists :: ListsLists = Lists {map = ...... et ...}In e�et, we simply introdue a term variable, Lists, intothe initial type ontext with type Lists.Both interfaes and implementations may import other in-terfaes. Interfaes supply enough type information to beable to type hek implementations independently and inany order. Interfaes may be mutually reursive in theirtype delarations, subjet to the usual rule that all reur-sion passes through a data or reord onstrutor. Using typedereferening, it is also possible to write mutually reursivetype signatures (see Setion 5.1).We must be a little more generous with \osmi" reordtype delarations and reord terms in order to support openin signatures and bindings, and instane delarations.88Neither of these onstruts make sense within arbitraryreords. Allowing open anywhere leads to unsoundness forthe same reason given in Setion 4.2. Allowing instane9



For example, we may have within Lists.hsi the delara-tions:reord LazyLength a = {length :: forall b . List b -> aisGT :: Int -> a -> Bool}open lazyLength :: exists a . LazyLength ainstane eqList :: Eq a => Eq (List a)Here we delare a reord lazyLength ontaining funtionsto alulate and test an abstrat representation of a list'slength. We also have an instane delaration whih is namedeqList so that it may later be reoniled against its de�ni-tion.These delarations must have mathing bindings withinLists.hs:open lazyLength = LazyLength {length = \xs -> map (\_ -> ()) xsisGT = \n xs -> ase xs ofNil -> n > 0Cons _ xs' ->if n > 0 thenisGT (n - 1) xs'else False}instane eqList where ...Haskell's existing module system allows top-level term andtype bindings to be hidden. Our system supports a similarmehanism, though for brevity we do not onsider it here.5 Working Out The DetailsIn this setion we omplete our exposition by desribing howexistentials interat with reursion and type lasses.5.1 Reursive Abstrat TypesBeing a lazy language, Haskell allows top-level de�nitions tobe arbitrarily mutually reursive. In this setion we onsiderhow mutual reursion interats with our type abstrationmehanism.Consider the reursive top-level de�nitions:reord Pair a b = { fst :: a; snd :: b }x :: Pair Int Boolx = Pair { fst = 1; snd = y.snd }y :: Pair Int Booly = Pair { fst = x.fst; snd = True }delarations anywhere leads to loal instane delarations[19℄ and would be a profound hange to Haskell's type lasssystem.

We now wish to hide the implementation types Int and Bool.Of ourse, for this example its easy to ollapse the reursioninto a single term:open xy :: exists a b . (Pair a b, Pair a b)open xy = let x = Pair { fst = 1; snd = y.snd }y = Pair { fst = x.fst; snd= True }in (x, y)x :: xy!^t1x = fst xyy :: xy!^t2y = snd xyHowever, this may be awkward in pratie, and impossibleif x and y must be de�ned in separate ompilation units.A better solution is to allow type dereferenes to be mutuallyreursive:open x :: exists a . Pair a (y!^b)x = Pair { fst = 1; snd = y.snd }open y :: exists b . Pair (x!^a) by = Pair { fst = x.fst; snd = True }Notie the type-level reursion of x! and y! exatly mir-rors the term-level reursion of x and y. Furthermore, evenif x and y were de�ned in separate implementation �les,both their signatures would be visible to the ompiler withintheir respetive interfae �les. Thus these mutually reursivebindings may be type heked in isolation.We must be a little more restritive on type-level reursionthan term-level reursion. For example, all of the followingbindings are rejeted:undefined :: undefined!undefined = undefinederror: "undefined" has a ylially defined typepair :: Pair (pair!^b) (pair!^a)pair = Pair { fst = pair.snd; snd = pair.fst }error: "pair" has a ylily defined typeThey must instead be annotated in the usual way:undefined :: forall a . aundefined = undefinedpair :: forall a . Pair a apair = Pair { fst = pair.snd; snd = pair.fst }Why are the bindings for x and y aepted, while those forundefined and pair rejeted? Roughly speaking, though xand y are mutually reursive, their resulting values are fullyde�ned, and similarly their types. However, undefined andpair ontain unde�ned elements, and hene their types inthose positions remain undetermined.To deal with this, we typehek a reursive binding group in�ve phases; we illustrate using the x, y example of above.10



1 The �rst phase skolemizes the existentially quanti�ed typevariables of all opened de�nitions, produing an environ-ment that gives the types of x and y:x :: Pair a' (y!^b)y :: Pair (x!^a) b'Here, a' and b' are the skolem types introdued to instan-tiate a and b respetively.2 In phase 2, all types are rewritten to avoid any use of typedereferene, type variable projetion, and �eld projetion.Furthermore, relative types are rewritten to a anonialabsolute form. We use a normal-order (all-by-name) eval-uation strategy so as to aept as many reursively de�nedtypes as possible. A type of the form x! is rewritten to thetype of x already in the environment (though are mustbe taken to detet yles.)In our example, we rewrite the type of x as follows:Pair a' (y!^b)�! Pair a' ((Pair (x!^a) b')^b)�! Pair a' b'After rewriting our environment, we have:x :: Pair a' b'y :: Pair a' b'3 Next, we perform standard kind inferene for the types inthe new environment, whih for Haskell redues to typeinferene for a simply-typed lambda-alulus.4 Next, we arry out standard type inferene for the right-hand side of eah binding, in the type environment om-puted by the earlier phases. In Haskell, type infereneinvolves a weak form of higher-kinded kind-preserving uni-�ation. Sine all relative types have been normalized toan absolute form, the equality theory on types is free.Pair { fst = 1; snd = y.snd } :: Pair Int b'Pair { fst = x.fst; snd = True} :: Pair a' Bool5 Lastly, we hek that eah right-hand side does indeedhave the laimed existentially quanti�ed type:Pair { fst = 1; snd = y.snd }:: exists a. Pair a b'Pair { fst = x.fst; snd = True}:: exists b. Pair a' b(Notie that we must, of ourse, rewrite the original exis-tential type signatures, just as in phase 2, to obtain thelaimed types.)

A onsequene of rewriting types (phase 2) before kind infer-ene (phase 3) is that our system admits some very dubiouslooking type annotations. For example:reord Pair a b = { fst :: a; snd :: b }strange :: (Pair, Int)^t1 Int Pair^astrange = 1In phase 2, the type annotation for strange is rewritten:(Pair, Int)^t1 Int Pair^a�! (Pair Int Pair)^a�! IntHene, kind inferene �nds nothing amiss here! We ouldperform kind inferene before rewriting by augmenting thekind system with reord kinds, but the additional omplexitydoes not seem justi�ed. Though onfusing, these types areharmless.The above exposition also applies to reursive let bindings.The only di�erene is that we must ensure no skolemizedtype variables esape the sope of the term as a whole. Toensure type inferene remains omplete in the presene ofreursive bindings, we require that all letre-bound vari-ables be type annotated if any single letre-bound variableis opened.5.2 Type Classes and ExistentialsSo far we have used existential quanti�ation to hide every-thing about a type parameter:open intSet :: exists f . Set Int fHowever, by exploiting Haskell's type lass system we anseletively expose information about abstrat types. For ex-ample, we an expose that f is a funtor:open intSet :: exists f . Funtor f => Set Int fintSet = intListSetWith this signature for intSet we have two interfaes forsets of integers. We have already been using the �rst ex-pliit interfae, whih is simply the �elds of Set reahed viaprojetion from intSet. The seond impliit interfae is pro-vided by the overloaded operators of lass Funtor. Theseoperations may be used diretly. For example, the followingterm has type [Int℄:intSet.asList (fmap (+ 2)(intSet.add 1 intSet.empty))Notie the use of the overloaded operator from the Funtorlass:fmap :: forall f a b . Funtor f =>(a -> b) -> f a -> f bWhen type heking the binding of intSet, the systemheks that Funtor [℄ is satis�able, then extends the11



known onstraint ontext with Funtor f', where f' is theskolemized type orresponding to f in the signature forintSet. Hene the funtion fmap may be instantiated attype (Int -> Int) -> f' Int -> f' Int.In Haskell, an instane delaration allows the programmerto make a new data type into an instane of a given lass.For example:data Age = MkAge Intinstane Eq Age where(==) (MkAge i) (MkAge j) = i == jOur open mehanism also introdues a new data type, theskolemized type onstant, so it makes sense to allow it, too,to be an instane of a lass. For example:open absEq :: exists a . (a -> a -> Bool)absEq = ((==) :: Int -> Int -> Bool)instane Eq (absEq!^arg) where(==) = absEq(Reall arg projets the argument type from a funtiontype.)We allow lass delarations to appear within reord delara-tions. However, as mentioned in Setion 4.5, we only allowinstane delarations to appear at the top-level of moduleimplementations.6 Related workOur system draws together the work of four separate sys-tems. Firstly, from Jones [6℄ work on Parameterised Sig-natures we took the idea that, at heart, a module imple-mentation is just a reord, and a module interfae is justa reord type with polymorphi �elds parameterised overall its abstrat types. The problems of type abstrationand type sharing then beame almost trivial: we used or-dinary existential quanti�ation to hide types, and ordinaryparametri polymorphism to apture type sharing. This ap-proah avoided the need for dependent types, and thus au-tomatially respeted a phase distintion between types andterms. To further simplify matters, we disallowed anony-mous reords, and thus type equality for reord types in oursystem is nominal.Seondly, we adopted the annotations-based type system ofOdersky and L�aufer [12℄ to allow higher-ranked polymorphitypes to be used in onjuntion with type inferene of rank-one types. In partiular, this system allowed us to write ex-istential quanti�ers within the result type of funtions, andthus write Haskell funtions whih mimi ML funtors. Thissystem also allowed us to share �eld names of polymorphitype between reords without further ompliating type in-ferene. A little are had be taken to extend this systemwith support for Haskell's onstrained polymorphism. Someexisting Haskell implementations support rank-two polymor-phism. Our extension of Odersky and L�aufer's system an beseen as a natural generalisation of the existing type inferene

algorithm to arbitrary-ranked polymorphism. Another pos-sibility would have been to abandon Hindley/Damas/Milner-style type inferene in preferene for loal type inferene[15, 14℄. However, we felt that would have been too great ahange for Haskell.Thirdly, we examined Russo's semantis for ML signaturesand strutures [16℄ in order to understand how the dotnotation of ML modules interats with ordinary existen-tial and universal polymorphism. As a result, we re�nedHaskell's let onstrut so as to be able to optionally openan existentially-quanti�ed type within the sope of the let-binding. This new onstrut made it possible to aessreords of existential type using the dot notation, whih inturn allowed reords of abstrat type to be used aross om-pilation units. With this re�nement in plae, we may viewour researh agenda as one of re�ning Haskell to be as ex-pressive as ML's language of semanti objets [10℄, and arguethis is almost as onvenient as programming in ML's modulelanguage diretly.Finally, we borrowed some notation (but, as it turns out,not the underlying type-theoreti mahinery) from the workof Odersky and Zenger on Nested Types [13℄. This notationallowed type annotations to apture type sharing of abstrattypes by refering to the type of other term variables in sope.This aspet of our system is probably the most unusual.7 ConlusionsWe tried to make eah of our re�nements as orthogonalas possible. That is to say, our proposal is not to add amonolithi module language to Haskell, but rather to re�neHaskell's ore language with a number of features whih,taken together, apture the desired expressiveness.The biggest de�ieny of our system is that programs aresubjet to non-loal hanges when making a previously on-rete types abstrat. Not only must reord types be hangedto parameterise over suh types, but all uses of those reordtypes must be similarly hanged to enode the appropriatepropagation of type information. This has long been used asa justi�ation for the move to dependent sum-based modulesystems [3, 1℄.Most of our e�ort to date has been invested in experiment-ing with a prototype ompiler, whih we have found to be aninvaluable design tool. We hope to transfer these ideas intoGHC, an industrial-strength Haskell ompiler, over the nextfew months. At the time of writing we have only just begunto establish the usual soundness and ompleteness proper-ties.We have also begun to explore an extension of our systemwith method onstraints [19℄, and believe this provides an ex-pressive framework for interfae-oriented programming. Un-der this approah, the interfae subtyping of objet-orientedprogramming is emulated by the onstraint entailment ofmethod onstraints, and the virtual-method dispath of oopis emulated by terms of existential type apturing all themethods of their interfae.12
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Type var names a; bType names A, BInstane names wClass names C, DTerm var names x ; yIntegers/Stamps i ; jKinds � ::= Type j � -> �0Types �; � ::= Int j � -> � j ( � )j a i � j Ai � j x i!j �^a � j �^A � j �^x!Type shemes � ::= forall � . � => �j exists � . � => �j � -> �0j �Primitive onstraints � ::= C i � j �^C �Constraint sheme � ::= forall � . �0 => �Reord del bodies S ::= reord Ai � = { S 0 } ; Sj x i :: � ; S(top-level only) j open x i :: � ; S(top-level only) j lass � => C i � where � ; S(top-level only) j instane w :: � ; Sj �Reord onstrutor P ::= Ai j P^AClass onstrutor Q ::= C i j P^CTerms t ; u ::= i j x i j \x i f:: �gopt . t j t uj ( t ) j let ( x i ) = u in tj let fopengopt x i f:: �gopt= u in tj (t :: �) j free � in tj P { s } j t.xj ?Qj reord Ai � = { S } in tReord bodies s ::= fopengopt x i = t ; s(top-level only) j instane w i = t ; sj �Type var ontexts � ::= �; a i : � j �Type ontexts � ::= reord f�^gopt Ai � = { S };�j lass � => f�^goptC i �where �;�j a i : �;�j x i : �;�j �Constraint ontexts � ::= w i : �;� j �Programs prog ::= reord Ai = { S } ; B j { s }Figure 1: Syntaxof these elements would reside in a separate �le. To pre-serve soundness our system must rejet any reord delara-tion whih shadows a top-level interfae name. However, weallow shadowing in all other ontexts.Type ontexts (ranged over by �) map type variables, reord

� ` � : � ,! � 0� ` Int : Type ,! Int� ` � : Type ,! �0� ` � : Type ,! � 0� ` (� -> �) : Type ,! (�0 -> � 0)� ` � : Type ,! � 0� ` ( � ) : Type ,! ( � 0 )(a i : � -> �0) 2 �� ` � : � ,! �0� ` (a i �) : �0 ,! (a i �0)(reord f�^gopt Ai (a i : �++ bi : �0) = { S }) 2 �� ` � : � ,! �0� ` (Ai �) : �0 -> Type ,! (f�^goptAi �0)(x i : �) 2 �� ` � : Type ,! � 0� ` x i! : Type ,! � 0� ` � : h� j � j Si(a i : �0) 2 �� ` (� a i) � : � ,! �0� ` (�^a �) : �0 ,! �0� ` � : h� j � j Si(reord Ai (a i : �++ bi : �0) = { S 0 }) 2 S� ` � : Type ,! � 0� ` � : � ,! �0� ` (�^A �) : �0 -> Type ,! (� 0^A �0)� ` � : h� j � j Si(x i : �) 2 S� ` � : Type ,! �0� ` (�^x!) : Type ,! �0Figure 2: Well-kinded typesnames, lass names and term variables to their kinds, reordbodies, lass bodies and type shemes respetively. All fourof these onstruts have a separate name spae. Kind on-texts (ranged over by �) map only type variables to kinds.We let dom(X ) denote the domain of X , whether it be atype ontext, kind ontext, or reord type delaration body.Figure 2 presents rules whih simultaneously kind-hek andrewrite a type. Types of the form �^a and �^x! are ex-panded to the types they denote. Furthermore, all relativetypes are rewritten as absolute types. This is ahieved byreording, with eah reord and lass delaration in sope,an optional type pre�x denoting the sope at whih the de-laration was introdued. When a relative reord or lasstype is looked-up in the environment, it is replaed by the14



oresponding absolute type.For example, in the delaration:reord A a = {reord B b = { ... }x :: B Int}the relative type B Int of x is rewritten to the absolute type(A a)^B Int, sine the pre�x for the delaration of B is thetype A a.Note that the reord delarations within the body of a pro-gram prog have no pre�x, sine they are not ontained withinany other reord delaration. Hene we write pre�x types asf�gopt , and write � to denote the absent pre�x.Figure 3 presents supporting rules for resolving a type into areord. Three omponents are derived: a substitution fromthe reord's type arguments to their atual values in thetype; the kind ontext of the reord's arguments, and thereord type delaration body, suitably instantiated. If thegiven type is not a reord, a built-in reord is returned wherepossible. For example, given:reord (A a)^C b  = { x :: (a, b, ) } 2 �we have: � ` C Int Bool : h [b 7! Int;  7! Bool℄j b : Type;  : Typej x :: (a, Int, Bool) iFigure 4 is the analogue of Figure 3 for primitive onstraints,and allows the given primitive onstraint to be resolved to alass. Three omponents are derived: the superlass ontextof the lass delaration, the kind ontext of the lass's argu-ments, and the lass's body type, all suitably instantiated.Figures 5 and 6 extends the kind-heking rules to primitiveonstraints and type shemes in the obvious way.The next three �gures formalize kind-heking reord typedelaration bodies. This is little involved beause of the om-bination of reursive reord bodies with type skolemizationon \opened" signatures.Figure 7 gives rules for olleting the skolemized type vari-ables of a reord body. The result is the set of these typevariables, and a rewritten body in whih eah variable sig-nature is augmented by its external type signature (whihwe write within braes). For ordinary (unopened) variables,the external type signature is idential to the supplied (in-ternal) type signature. For opened variables, the externaltype signature is a opy of the supplied signature with anyoutermost existential quanti�ers removed. For example, thesignature:open x :: exists a b . C a b =>forall  . a -> b -> is rewritten to the signature:open x :: exists a b . C a b =>forall  . a -> b -> 

� ` � : h� j � j Si� ` Int : hId j � j �i� ` (� -> �) : h [arg 7! �; res 7! � ℄ jarg : Type; res : Type j � i� ` ( � ) : h [t1 7! �1; : : : ; tn 7! �n ℄ jt1 : Type; : : : ; tn : Type j � i(reord f�^gopt Ai a i : � = { S }) 2 �a i \ dom(�) = ;dom(S) \ dom(�) = ;j�j = j�j� ` (Ai �) : h[a i 7! �℄ j a i : � j a i 7! �℄ Si(x i : �) 2 �� ` � : h� j � j Si� ` x i! : h� j � j Si� ` � : h� j � j Si(a i : �0) 2 �� ` (� a i) � : h�0 j �0 j S 0i� ` (�^a �) : h�0 j �0 j S 0i� ` � : h� j � j Si(reord Ai a i : � = { S 0 }) 2 Sa i \ dom(�) = ;dom(S 0) \ dom(�) = ;j�j = j�j� ` (�^A �) : h[a i 7! �℄ j a i : � j [a i 7! �℄ S 0i� ` � : h� j � j Si(x i :: �) 2 S� ` � : h�0 j �0 j S 0i� ` (�^x!) : h�0 j �0 j S 0iFigure 3: Reord orresponding to a type{ C a b => forall  . a -> b ->  }assuming the type variables a and b are fresh.Figure 8 shows how to extrat both the type ontext andonstraint ontext orresponding to a reord body. Thisjudgement is parameterised by a type pre�x representingthe reord body's sope of de�nition. The type ontext ol-lets just the outmost delarations of the reord body S .Notie that only the external signature of variable delara-tions is signi�ant when forming type ontexts. We reordthe type pre�x of the reord body with eah nested reordand lass delaration so that relative types may be rewrittento absolute types (see Figure 2). The onstraint ontext ol-15



� ` � : h�0 j � j �ia j \ dom(�) = ;(lass � => f�^gopt C i a j : � where � 0) 2 �j�j = j�j� ` C i � : h[a j 7! �℄ � j a j : � j [a j 7! �℄ � 0i� ` � : h�0 j �0 j S 0ia j \ dom(�) = ;(lass � => C i a j : � where � 0) 2 S 0j�j = j�j� ` �^C � : h[a j 7! �℄ � j a j : � j [a j 7! �℄ � 0iFigure 4: Class orresponding to a primitive onstraint� ` � ,! � onstraint(lass � => f�^gopt C i a j : � where � 0) 2 �� ` � : � ,! �0� ` C i � ,! f�^goptC i �0 onstraint� ` � : h�0 j �0 j S 0i(lass � => C i a j : � where � 0) 2 S 0� ` � : Type ,! � 0� ` � : � ,! �0� ` �^C � ,! � 0^C �0 onstraintFigure 5: Well-kinded primitive onstraintslets all instane delarations, and all onstraints appearingunderneath existentially quanti�ed type variables in openedsignatures. The latter are assigned arbitrary fresh namesusing the funtion named .For reasons whih will soon beome lear, instane delara-tions must be added to the onstraint ontext with a namewhih ombines both the instane delaration name and thepre�x of its sope of de�nition. We assume ompname issome injetive funtion from a type pre�x and an instanename to a omposite instane name. For example:ompname(�; w^i) = w^iompname(A; w^i) = A_w^iFigure 9 extends the kind heking judgments to reord bod-ies whih have already been rewritten by the rules of Fig-ure 7. Sine reord bodies are mutually reursive, and sinetypes may de-referene any term variable in sope, whenkind-heking a nested reord body we must �rst extend thetype ontext with the de�nitions of the reord body itself(suitably alpha-onverted).We may now turn our attention to type heking. Figure 10presents onstraint entailment for lass onstraints, whihis entirely standard [5℄. Figure 11 present rules for deid-ing type sheme subsumption. They extend the system pre-sented in [12℄ to handle existential types and onstraints.Figure 12 presents rules to expand reord onstrutors and

� ` � ,! �0 shemedom(�) \ dom(�) = ;8i : fv(�) \ dom(�) 6= ;� ++� ` � ,! �0 onstraint� ++� ` � ,! �0 sheme� ` forall=exists � . � => � ,!forall=exists � . �0 => �0 sheme� ` � ,! �00 sheme� ` �0 ,! �000 sheme� ` (� -> �0) ,! (�00 -> �000) sheme� ` � ,! � 0 : Type� ` � ,! � 0 shemeFigure 6: Well-kinded type shemes� ` S ,! h�0 j S 0i skolemdom(�1) \ dom(�) = ;� ++�1 ` S1 ,! h�2 j S3i skolem� ++�2 ` S2 ,! h�3 j S4i skolem� ` reord Ai �1 = { S1 } ; S2 ,!h�2 ++�3 j reord Ai �1 = { S3 } ; S4i skolemdom(�) \ dom(�) = ;� ++� ` S ,! h�0 j S 0i skolem� ` open x i :: exists � . � => � ; S ,!h�++�0 j open x i :: exists � . � => �{ � => � } ; S 0i skolem� ` S ,! h� j S 0i skolem� ` fopengopt x i :: � ; S ,!h� j fopengopt x i :: � { � } ; S 0i skolem� ` S ,! h�0 j S 0i skolem� ` lass � => C i � where � ; S ,!h�0 j lass � => C i � where � ; S 0i skolem� ` S ,! h� j S 0i skolem� ` instane w i :: � ; S ,!h� j instane w i :: � ; S 0i skolem� ` � ,! h� j �i skolemFigure 7: Skolemizing opened type shemeslass onstrutors to types denoting a partiular reord orlass. This is neessary beause reord and lass onstrutorswithin terms elide all type arguments. (Of ourse our typeinferene system infers these types.)Figures 13 and 14 present the type heking rules. In om-16



f�gopt ` S : h� j �ia j \ fv(f�gopt) = ;f�^goptAi a j ` S 0 : h j �0if�gopt ` S : h� j �if�gopt ` reord Ai a j : � = { S 0 } ; S :hreord f�^gopt Ai a j : � = { S 0 };� j �0 ++�if�gopt ` S : h� j �if�gopt ` fopengopt x i :: � {� => �0} ; S :hx i : �0;� j named(�) ++ �if�gopt ` S : h� j �if�gopt ` lass � => C i � where � ; S :hlass � => f�^gopt C i � where � ;� j �if�gopt ` S : h� j �if�gopt ` instane w i :: � ; S :h� j ompname(f�gopt ;w i) : �;�if�gopt ` � : h� j �iFigure 8: Extrating a type and onstraint ontext from areord bodymon with [12℄ we must generalise the type of nearly everysub-term, in ontrast to Hindley/Damas/Milner-based sys-tems in whih only let-bound terms need be generalised.This is aomplished using the `G judgement form. Eahbinding onstrut shadows any variables in sope with thesame name. In rules reord and newre, we use the fun-tion unstamp to reset to 0 the stamps of the ontext or-responding to the reord delaration body before using itto extend the urrent ontext. This is beause the alpha-onversion of reord bodies during kind heking is not re-eted within terms, whih ontinue to use names with adefault stamp of 0. Sine all types within the type on-text are absolute, and we prevent the shadowing of top-levelmodule names, it is sound to shadow type delarations inthis simple-minded way. In rule projet, we use the ex-ternal signature of the projeted variable to determine theexpression's type.Reord bodies are type heked by the rules of Figure 15.We assume reord bodies are permuted to math their reorddelaration bodies. Cheking instane bindings against in-stane delarations is somewhat involved, as we must ensurenot only that the supplied term is of the appropriate type,but also that the superlass ontext of the instane delara-tion's lass may also be satis�ed. The later hek requiresthe instane delaration under onstrution to be temporar-ily removed from the known onstraint ontext. This is thereason we used ompname to form the omposite name ofthe instane delaration in Figure 8.For example, assume we have the lass delaration:

f�gopt j � ` S ,! S 0 reorda j \ dom(�) = ;f�^gopt Ai a j ` S1 : h�0 j idom(�0) \ dom(�) = ;f�^gopt Ai a j j � ++ a j : �++�0 ` S1 ,! S3 reordf�gopt j � ` reord Ai a j : � = { S1 } ; S2 ,!reord Ai a j : � = { S3 } ; S4 reord� ` �1 ,! �3 sheme� ` � ,! �0 onstraint� ` �2 ,! �4 shemef�gopt j � ` S ,! S 0 reordf�gopt j � ` fopengopt x i :: �1 {� => �2} ; S ,!fopengopt x i :: �3 {�0 => �4} ; S 0 reorda j \ dom(�) = ;� ++ a j : � ` � ,! �0 onstraint� ++ a j : � ` � : Type ,! � 0f�gopt j � ` S ,! S 0 reordf�gopt j � ` lass � => C i a j : � where � ; S ,!lass �0 => C i a j : � where � 0 ; S 0 reorddom(�) \ dom(�) = ;� ++� ` � ,! �0 onstraint� ++� ` �0 ,! �000 onstraintf�gopt j � ` S ,! S 0 reordf�gopt j � ` instane w i :: forall � . �0 => � ; S ,!instane w i :: forall � . �000 => �0 ; S 0 reord� ` � ,! � reordFigure 9: Well-kinded reord delaration bodies� j � `p �(w i : �) 2 �� j � `p � � j � `p �� ` � : h�0 j � j �i� j � `p �0i� j � `e �� j � `p �� j � `e � (w i : forall a j : � . �0 => �) 2 �a j \ dom(�) = ;� ` � : �� j � `e [a j 7! � ℄ �0� j � `e [a j 7! � ℄ �Figure 10: Constraint entailmentlass B a => C a where a -> Int17



� j � ` � � �0� j � ` � � �� j � ` �01 � �1� j � ` �2 � �02� j � ` (�1 -> �2) � (�01 -> �02)a i \ dom(�) = ;� ` � : �� j � ` [a i 7! � ℄ � � �0� `e [a i 7! � ℄ �� j � ` forall a i : � . � => � � �0a i \ dom(�) = ;�0 = named(�)� ++ a i : � j � ++�0 ` � � �0� j � ` exists a i : � . � => � � �0a i \ dom(�) = ;�0 = named(�)� ++ a i : � j � ++�0 ` � � �0� j � ` � � forall a i : � . � => �0a i \ dom(�) = ;� ` � : �� j � ` � � [a i 7! � ℄ �0� `e [a i 7! � ℄ �� j � ` � � exists a i : � . � => �0Figure 11: Type subsumptionthe instane delaration:instane w :: forall a . A a => C aand the instane binding:instane w = tFurthermore, assume t has type:forall a b . A a => a -> bWe must now hek that (i) t mathes its instane delara-tion, that (ii) its type is ompatible with that given by itsorresponding lass delaration, and (iii) that the superlassonstraints of the lass are satis�able. Let � be the knownonstraint ontext. With a little unning, its possible toaomplish all three of these tests by heking:�nw ` forall a b . (A a, B a) => a -> b �forall a . A a => a -> IntNotie that the onstraint B a was added to the type shemefor t so as to hek (iii). This subsumption test sueeds if

� ` P ,! �reord f�^gopt Ai a j : � = { S } 2 �� ` � : �� ` Ai ,! f�^gopt Ai �� ` P ,! �� ` � : h� j � j Sireord Ai a j : � = { S 0 } 2 S� ` � : �� ` P^A ,! �^A �� ` Q ,! �lass � => f�^gopt C i a j : � where � 2 �� ` C i ,! forall a j : � . f�^gopt C i a => �bj \ dom(�) = ;� ++ bj : �0 ` P ,! �� ` � : h� j � j Silass � => C i a j : � where � 2 Sa j \ bj = ;� ` P^C ,! forall a j : �++ bj : �0 . �^C a j => �Figure 12: Expanding reord and lass onstrutors� ontains a onstraint of the form:w'' :: forall a . B aIf we didn't remove w from �, the above subsumption testwould also sueed if � ontains a onstraint of the form:w' :: forall a . A aThis is beause:w' :: forall a . A a; w :: forall a . A a => C a `e B aTo avoid this irularity problem, we must temporarily re-move the instane delaration we are trying to type hekfrom the known onstraint ontext.Finally, Figure 16 shows how to type hek an entire pro-gram. We �rst split the program into a reord type de-laration body and a single term. The reord delarationbody is then skolemized, kind heked, and the result usedto onstrut the initial type ontext. The term is then typeheked assuming that, for eah interfae A, a variable Aof type A is in sope. Sine the term must orrespond toan implementation, we require it has the appropriate reordtype.For brevity we have not formalized three aspets of the sys-tem. Firstly, we must detet yli types suh as:x :: x!This is easily ahieved by keeping trak of how many timeseah variable has been dereferened while rewriting a given18



� j � `G t : �dom(�) \ dom(�) = ;� ++� j � onstraint�0 = named(�)� ++� j � ++ �0 ` t : � gen� j � `G t : forall � . � => �� j � ` t : � ,! Tint� j � ` i : Int(x i : �) 2 � var� j � ` x i : �� ` � : Type�nx i ; x i : � j � `G t : � abs� j � ` \x i . t : (� -> �)� ` �0 sheme�nx i ; x i : �0 j � `G t : � aabs� j � ` \x i::�0 . t : (�0 -> �)� j � `G u : �1� j � `G t : �2� j � ` �2 � (�3 -> �4)� j � ` �1 � �3 app� j � ` t u : �4� j � `G t : �� j � ` � � � tup� j � ` ( t ) : ( � )� j � `G u : �0� j � ` �0 � ( � )�nx i ++ x i : � j � ` t : � lettup� j � ` let ( x i ) = u in t : �� j � `G u : �0�nx i ; x i : �0 j � ` t : � let� j � ` let x i = u in t : �� ` �1 ,! �2 sheme� j � `G u : �3� j � ` �3 � �2�nx i ; x i : �2 j � ` t : �4 alet� j � ` let x i :: �1 = u in t : �4Figure 13: Well-typed terms (part 1 of 2)

type. Seondly, we must prevent top-level interfae namesfrom being shadowed, and must disallow the expliit on-strution of a reord using a top-level interfae onstrutor:module A wherereord A = { ... } -- illegala = A { ... } -- illegalFinally, we have not formalized abstrat top-level types.These are handled by augmenting the interfae with the loaltype delarations of the implementation. Abstrat top-leveltypes named in the interfae are simply overwritten by theironrete delaration given in the implementation. The onlysubtlety is heking the two type delarations have equalkinds.Type inferene for our system has been for-malized as a Haskell program, available fromhttp://www.se.ogi.edu/~mbs. This is easily transliter-ated into a more familiar presentation as a set of indutiverelations.
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� j � `G u : exists � . � => �0dom(�) \ dom(�) = ;�0 = named(�)�nx i ++�; x i : �0 j � ++�0 ` t : �� ` � sheme openlet� j � ` let open x i = u in t : ��1 = exists � . � => �2dom(�) \ dom(�) = ;� ++� ` � ,! �0 onstraint� ++� ` �2 ,! �3 sheme� j � `G u : �4� j � ` �4 � exists � . �0 => �3�0 = named(�0)�nx i ++�; x i : �3 j � ++�0 ` t : �5� ` �5 sheme aopenlet� j � ` let open x i :: �1 = u in t : �5� ` �1 ,! �2 sheme� j � `G t : �3� j � ` �3 � �2 annot� j � ` (t :: �1) : �2a \ dom(�) = ;� ` � : �� j � ` [a i 7! �℄ t : � free� j � ` free a i : � in t : �� ` P ,! �� ` � : h� j � j Si� ` S : h�0 j �i�00 = unstamp(�0)� j �ndom(�00) ++ �00 j � ` s : S reord� j � ` P { s } : �� j � `G t : �1� j � ` �1 � �� ` � : h� j � j Si(fopengopt x i :: �2 {� => �3}) 2 S projet� j � ` t.x : �3� ` Q ,! � lass� j � ` ?Q : �Ai 62 dom(�)dom(�) \ dom(�) = ;� ++� ` S ,! h� j S 0i skolem� ` S 0 : h�0 j �i�00 = unstamp(�0)� j �ndom(�00) ++�++ �00 ` S 0 ,! S 00 reord�; reord Ai � = { S 00 } j � ` t : �� ` � sheme newre� j � ` reord Ai � = { S } in t : �Figure 14: Well-typed terms (part 2 of 2)

f�gopt j � j � ` s : Sf�gopt j � j � ` s : Sf�gopt j � j � ` s : (reord Ai � = { S 0 } ; S)f�gopt j � j � ` s : Sf�gopt j � j � ` s : (lass � => C i � where � ; S)� j � `G t : �3� j � ` �3 � �1f�gopt j � j � ` s : Sf�gopt j � j � ` (fopengopt x i = t ; s) :(fopengopt x i :: �1 {� => �2} ; S)a j \ dom(�) = ;� ++ a j : � ` � : h�00 j � j � 0i�1 = forall a j : � . �0 => � 0� j � `G t : �2�2 = forall bj : �0 . �000 => � 00bj \ dom(�) = ;� ++ bj : �0 ` � : �� ++ bj : �0 ` �0 : �[a j 7! �℄ � 0 = [bj 7! �0℄ � 00�4 = forall bj : �0 . �000 ++ [a j 7! �℄ �00 => � 00� j �nompname(f�gopt ;w i ) ` �4 � �1f�gopt j � j � ` s : Sf�gopt j � j � ` (instane w i = t ; s) :(instane w i :: forall a j : � . �0 => � ; S)f�gopt j � j � ` � : �Figure 15: Well-typed reord bodies
` prog toplevel� ` reord Ai = { S } ,! h� j S 0i skolem� ` S 0 : h� j i� j �++� ` S 0 ,! S 00 reord� ` S 00 : h�0 j �i�++ �0 ++Ai : Ai j � `G B j { s } : B j` reord Ai = { S } ; B j { s } toplevelFigure 16: Well-formed programs20


