
First-Class Modules for HaskellMark Shields Simon Peyton JonesMi
rosoft Resear
h Cambridgefmarkshie; simonpjg�mi
rosoft.
omAbstra
tThough Haskell's module language is quite weak, its
orelanguage is highly expressive. Indeed, it is tantalisingly
loseto being able to express mu
h of the stru
ture traditionallydelegated to a seperate module language. However, the en-
odings are awkward, and some situations
an't be en
odedat all.In this paper we re�ne Haskell's
ore language to support�rst-
lass modules with many of the features of ML-stylemodules. Our proposal
leanly en
odes signatures, stru
-tures and fun
tors with the appropriate type abstra
tion andtype sharing, and supports re
ursive modules. All of thesefeatures work a
ross
ompilation units, and intera
t harmo-niously with Haskell's
lass system. Coupled with supportfor staged
omputation, we believe our proposal would be anelegant approa
h to run-time dynami
 linking of stru
tured
ode.Our work builds dire
tly upon Jones' work on parameterisedsignatures, Odersky and L�aufer's system of higher-rankedtype annotations, Russo's semanti
s of ML modules usingordinary existential and universal quanti�
ation, and Oder-sky and Zenger's work on nested types. We motivate thesystem by examples. A more formal presentation in in
ludedin the appendix.1 Introdu
tionThere are two
ompeting te
hniques for expressing the large-s
ale stru
ture of programs. The \brand leader" is the two-level approa
h, in whi
h the language has two layers: a
orelanguage, and a module language. The most sophisti
atedexample of this stru
ture is ML and its variants, but manyother languages, su
h as Haskell or Modula, take the sameform, only with weaker module languages.In the last few years, however, the
ore language of (extendedversions of) Haskell has be
ome very ri
h, to the point whereit is tantalisingly
lose to being able to
ompete in the large-s
ale-stru
ture league. If that were possible, it would of
ourse be highly desirable: it would remove the need fora se
ond language; and it would automati
ally mean thatmodules were �rst-
lass
itizens, so that fun
tors be
omeordinary fun
tions.The purpose of this paper is to show that, by bringing to-gether several separate pie
es of existing work, we
an indeedbridge this �nal gap. More spe
i�
ally, we propose severalmore-or-less orthogonal extensions to Haskell that work to-

gether towards this goal.� Re
ord types, with �elds of polymorphi
 type, dot no-tation, and the ability to use a single �eld name indistin
t re
ord types (Se
tion 2.1).� Nested type de
larations inside su
h re
ords (Se
-tion 2.3). These nested de
larations are purely syn-ta
ti
 sugar; there is nothing
ompli
ated.� First-
lass universal and existential quanti�
ation (Se
-tion 4.1). Together with re
ord types, this allows us
onveniently to express the types of (generative) fun
-tors.� A de
laration-oriented
onstru
t for opening anexistentially-quanti�ed value (Se
tion 4.2), togetherwith a notation to allow opened types to appear intype annotations (Se
tion 4.3). The standard approa
his expression-oriented, whi
h is unbearably
lumsy inpra
ti
e, whereas our
onstru
t works �ne at the toplevel (Se
tion 4.4).Taken individually, all of these ideas have been proposedbefore. Our
ontribution is to put them all together ina
oherent design for a
ore language that
an reasonably
laim to
ompete with, and in some ways improve on, theML brand leader. In parti
ular, our system treats modulestru
tures as �rst-
lass values, supports type inferen
e, andintera
ts harmoniously with Haskell's
onstrained polymor-phism. From the module point of view, it separates signa-tures from stru
tures, and o�ers type abstra
tion, generativefun
tors, type sharing, separate
ompilation, and re
ursiveand nested signatures and stru
tures. Our proposal is, at thetop-level, fairly
ompatible with Haskell's existing modulesystem (though for
larity we shall bend the syntax some-what in this paper).We present our system by a series of worked examples. Amore formal presentation may be found in the appendix.At the time of writing we have only just begun to establishthe formal properties of our system. We have, however, im-plemented a prototype
ompiler, and hope to merge theseextensions into GHC, a produ
tion Haskell
ompiler.2 Con
rete Modules as Re
ordsFollowing Jones [6℄, we en
ode interfa
es as parameterisedre
ord types, and implementations as re
ords. Haskell al-ready has some re
ord-like syntax for data
onstru
tors with

named arguments, and many Haskell implementations allowthese �elds to be assigned a polymorphi
 type. However, ourrequirements are more demanding, as we wish to share �eldnames between re
ords, and allow nested type de
larations.So we begin by introdu
ing a new form of type de
laration.2.1 Parameterised Re
ordsRe
ord types are introdu
ed (only) by expli
it de
laration,and may be parameterised:re
ord Set a f = {empty :: f aadd :: a -> f a -> f aunion :: f a -> f a -> f aasList :: f a -> [a℄}(Note that f has kind Type -> Type.) Equality betweenre
ord types is nominal rather than stru
tural. UnlikeHaskell, a single �eld name may be re-used in di�erent re
ordtypes.Re
ord terms are
onstru
ted by applying a re
ord
onstru
-tor to a set of (possibly mutually re
ursive1) bindings:intListSet :: Set Int [℄ {- inferred -}intListSet = Set {empty = [℄add = \(x :: Int) xs -> x : filter (/= x) xsunion = foldr addasList = id}Re
ord terms may be used within patterns, but we also sup-port the usual \dot notation" for �eld proje
tion:one :: [Int℄ {- inferred -}one = intListSet.asList(intListSet.add 1 intListSet.empty)As in Haskell, the type signature on a binding | su
h asone :: [Int℄ | is optional; the system will infer a type forone, but the programmer may
onstrain the type with a typesignature.Regarding a module as a re
ord allows an ML fun
tor to berepla
ed by an ordinary fun
tion. For example:re
ord EqR a = { eq :: a -> a -> Bool }mkListSet :: forall a . EqR a -> Set a [℄mkListSet eq = Set {empty = [℄add = \x xs ->x : filter (\y -> not (eq.eq x y)) xsasList = id}1This is another (
osmeti
, but important) di�eren
efrom Haskell 98 re
ords.

Sin
e \fun
tors" are ordinary fun
tions, they integratesmoothly with Haskell's type
lass me
hanism:mkListSet' :: forall a . Eq a => Set a [℄mkListSet' = Set {empty = [℄add = \x xs -> x : filter ((/=) x) xsasList = id}By using the overloaded operator (/=) we have repla
ed theexpli
it parameterisation over the re
ord EqR a with impli
itparameterisation over the
lass Eq a.Re
ord �elds may have polymorphi
 types:re
ord Monad f = {fmap :: forall a b . (a -> b) -> f a -> f bunit :: forall a . a -> f abind :: forall a b . f a -> (a -> f b) -> f b}Su
h re
ords may be
onstru
ted and taken apart in thesame way as before:listMonad :: Monad [℄ {- inferred -}listMonad = Monad {fmap = mapunit = \a -> [a℄bind = \ma f ->
on
at (map f ma)}singleton :: a -> [a℄singleton x = listMonad.unit xWe do not permit subtyping or extensibility for re
ords, de-ferring su
h extensions to future work.2.2 Type inferen
eType inferen
e in this system is problemati
. For example,
onsider:g = \m f x -> m.fmap f (m.unit x)Sin
e fmap may be a �eld name in many re
ords, the type ofm.fmap depends on the type of m | whi
h we do not know.We avoid this, and other diÆ
ulties relating to higher-rankedpolymorphism, by pla
ing imposing the binder rule: the pro-grammer must supply a type annotation for every lambda-bound, or letre
-bound, variable whose type mentions a re
ordtype
onstru
tor. With the binder rule in pla
e, it be
omeseasy to share �eld names between distin
t re
ord types. Thebinder rule is somewhat
onservative | a
lever inferen
eengine
ould sometimes do without su
h an annotation |but it ensures that the typability of a program does notdepend on the inferen
e algorithm. We dis
uss alternativeapproa
hes in Se
tion 6.In pra
ti
e, it may be tri
ky to give su
h a type annotation.In our example, the type of m is Monad �, where � is the2

type in whi
h g is polymorphi
. We provide two ways tosolve this, both of whi
h have been validated by pra
ti
alexperien
e in GHC. First, we
an suppply a type signaturefor g rather than m:g :: forall m a b .Monad m -> (a -> b) -> a -> m bg = \m f x -> m.fmap f (m.unit x)Here, we rely on the type
he
ker to propagate the typeannotation for g to an annotation for m, in the \obvious"way | this statement
an be made pre
ise, but we do notdo so here.Alternatively, g's argument m may be annotated dire
tly:g = free t in \(m :: Monad t) f x ->m.fmap f (m.unit x)Here the term free t in ... introdu
es a fresh type variablet standing for any type within the s
ope of a term. Duringtype
he
king of g, t may be instantiated to any well-kindedtype. Thus g's �rst argument may be assigned any type ofthe form Monad � for some type � . (Noti
e that t does notstand for a type argument to g!). During type inferen
e, tis simply repla
ed by a fresh uni�
ation variable. Thus g'sinferred prin
ipal type is as given above.2.3 Nested Type De
larationsModules typi
ally
ontain a mix of term-level and type-levelde
larations. Following Odersky and Zenger [13℄, we allowre
ord de
larations to
ontain nested type de
larations:re
ord BTSet a = {data BinTree = Leaf | Node BinTree a BinTreeempty :: BinTreeadd :: a -> BinTree -> BinTree}A nested type may be proje
ted from a type in mu
h thesame way as a �eld may be proje
ted from a term. Forvarious synta
ti
al reasons, we write ^ instead of the usual. to denote type proje
tion. For example, we may write:unitSet :: BTSet a -> a -> (Set a)^BinTreeunitSet set a = set.add a set.empty(^ binds stonger than type appli
ation.) Noti
e that thereis another way of writing the signature for add in the abovere
ord de
laration:add :: a -> (Set a)^BinTree -> (Set a)^BinTreeIndeed, all four ways of writing add's type signature areequivalent: referring to a type relatively (by relying on thetype de
larations
urrently in s
ope) is equivalent to refer-ring to it absolutely (by following a path from some top-levelre
ord type).

Sin
e re
ords are just another type de
laration, they mayalso be nested within other re
ords:re
ord Graph ver = {re
ord Edge = { from :: ver; to :: ver }data Rep = Rep [ver℄ [Edge℄mkGraph :: [ver℄ -> [edge℄ -> ReptransClosure :: Rep -> Rep}Wemay referen
e nested data and re
ord
onstru
tors withinterms by a similar proje
tion syntax:leaf :: forall a . (Set a)^BinTree {- inferred -}leaf = Set^Leafedge :: (Graph Int)^Edge {- inferred -}edge = Graph^Edge { from = 1; to = 2 }Noti
e that type inferen
e supplies the ne
essary type argu-ments for Set and Graph.Re
ord terms whose types
ontain nested types are
on-stru
ted in the usual way:trivGraph :: Graph () {- inferred -}trivGraph = Graph {mkGraph = \vs es ->Rep [()℄ [Edge { from = (); to = () }℄transClosure = \r -> r}As for types, data and re
ord
onstru
tors may be referredto relatively or absolutely.Our approa
h to nested types diverges from the usual treat-ment of ML-style nested modules in two
riti
al ways.Firstly, we never allow re
ord terms to
ontain type de
-larations. (Later we will allow type de
larations within top-level implementations, but this is merely a synta
ti
al
on-venien
e.) As a
onsequen
e, our system avoids entirely theneed for any dependent types, and manifestly respe
ts thephase distin
tion [3℄ between type
he
king and evaluation.The work of Odersky and Zenger [13℄ takes a similar ap-proa
h. Se
ondly, we never allow re
ord types to
ontainabstra
t types, i.e., types whi
h are named but whose def-inition is hidden. (Again, we will later allow abstra
t typede
larations within top-level interfa
es, but again this is asynta
ti
al
onvenien
e.)Together, these restri
tions mean that nested type de
lara-tions may always be
attened into a non-nested de
larations.For example, our BTSet de
laration may be rewritten:data BTSet_BinTree a= BTSet_Leaf| BTSet_Node (BTSet_BinTree a) a(BTSet_BinTree a)re
ord BTSet a = {empty :: BTSet_BinTree a
mp :: a -> a -> BTSet_Cmpadd :: a -> BTSet_BinTree a -> BTSet_BinTree a3

}Jones [6℄ advo
ates not supporting nested types on thegrounds that they may always be translated away in thismanner. We support them in our system be
ause they are
onvenient, they subsume the usual namespa
e me
hanism,and they turn out to be easily implemented.3 Abstra
t Modules and ExistentialsWe now turn our attention to one of the essential propertiesof a module language: the ability to hide implementationtypes. As we mentioned in the Introdu
tion there are twomain approa
hes to implementation hiding, whi
h we brie
yreview in this Se
tion. The
lassi
 approa
h is to use exis-tential types (Se
tion 3.1), but the approa
h that has so farbeen more su

essful in pra
ti
e, exempli�ed by ML, usesdependent sums (Se
tion 3.2).3.1 Type Abstra
tion in HaskellIn the intListSet example of Se
tion 2.1 the representationtype of sets as lists was exposed. This is bad, be
ause a
lient of the module
ould pass any list to the add operation,whereas the implementation of add will expe
t the set it ispassed to obey invariants maintained by the module (e.g.the list has no dupli
ates).It has long been re
ognised that existential quanti�
ationprovides an appropriate me
hanism for hiding su
h a repre-sentation type [11℄. Many Haskell implementations alreadysupport existential types, allowing us to write:2data AbsSet a = exists f . MkAbsSet (Set a f)intSet :: AbsSet Int {- inferred -}intSet = MkAbsSet intListSetConsider typing the binding of intSet. Within the bodyof the MkAbsSet data
onstru
tor, f is bound to [℄, and sothe appli
ation MkAbsSet intListSet is well-typed. Outsideof the AbsSet
onstru
tor, the existential quanti�er over fhides this binding3.Programs wishing to use the operations of intSet must �rst\open" the existential quanti�
ation using a
ase expres-sion:one :: [Int℄ {- inferred -}one =
ase intSet ofMkAbsSet s -> s.asList (s.add 1 s.empty)2Somewhat
onfusingly, these implementations requirethe keyword forall to be used in this situation rather thanexists.3The alert reader may be alarmed by our use of ex-istential quanti�
ation over higher-kinded type variables.Haskell uses a simple but in
omplete uni�
ation algorithmfor higher-kinded types whi
h turns out to work very well inpra
ti
e [4℄.

Typing the arm of the
ase involves
he
king thatthe term s.asList (s.add 1 s.empty) is well-typed un-der the assumption s :: Set Int F for any type
on-stru
tor F . Equivalently, we must
he
k the term\s -> s.asList (s.add 1 s.empty) has the polymorphi
type forall f . Set Int f -> �, for � a type not
ontainingf.Often we wish to manipulate implementations
ontaining ab-stra
t, but equal types, known as the \diamond import prob-lem" [9℄ in the literature. For example, assume we have afun
tion whi
h, given any implementation of sets, generatessome additional \helper" fun
tions:re
ord SetHelp a f = {unionAll :: [f a℄ -> f a}mkSetHelp :: forall a f . Set a f -> SetHelp a fmkSetHelp set = SetHelp {unionAll = foldr set.union set.empty}Now
onsider
onstru
ting some set helpers for our abstra
tintSet. Clearly we
annot simply write:intSetHelp = mkSetHelp intSeterror: Type "AbsSet Int" is in
ompatible withtype "Set Int f"One way to avoid this mismat
h between AbsSet and Setis to write a version of mkSetHelp whi
h works on abstra
tsets dire
tly:data AbsSetHelp a= exists f . MkAbsSetHelp (SetHelp a f)mkAbsSetHelp :: forall a .AbsSet a -> AbsSetHelp amkAbsSetHelp absset=
ase absset ofMkAbsSet set ->MkAbsSetHelp (mkSetHelp set)Noti
e that we had to introdu
e (another) datatype,AbsSetHelp, to hide the representation of sets in SetHelp.Using this fun
tion, we may now write:intSetHelp :: AbsSetHelp Int {- inferred -}intSetHelp = mkAbsSetHelp intSetHowever, intSet and intSetHelp may never be mixed, de-feating the whole purpose of mkAbsSetHelp:main =
ase (intSet, intSetHelp) of(MkAbsSet s, MkAbsSetHelp h) ->s.asList (h.unionAll[s.add 1 s.empty, s.add 2 s.empty℄)error: arm of
ase is insuffi
iently polymorphi
Somehow we must
onvey the information that a parti
ular4

set and its helpers share the same representation, withoutexposing the representation itself.The only solution to this problem within Haskell is to
are-fully stru
ture our program so that intSet is opened in as
ope
ontaining both the de�nition of intSetHelp, and alluses of these two terms whi
h need to share their represen-tation types:intSet = MkAbsSet intListSettwo :: forall f .Set Int f -> SetHelp Int f -> [Int℄two s h = s.asList (h.unionAll [s.add 1 s.empty,s.add 2 s.empty℄)main =
ase intSet ofMkAbsSet s -> let h = mkSetHelp sin two s hThese examples illustrate two serious drawba
ks to theexistential-type approa
h to type abstra
tion within Haskell:(i) We are for
ed to introdu
e an entirely spuriousdatatype (e.g., AbsSet) for every instan
e of type ab-stra
tion. This datatype is simply there to tell the typeinferen
e system where to expe
t existential types.(ii) More seriously, this spurious datatype must be strippedaway within a s
ope whi
h
overs all of the terms whi
hneed to share a parti
ular implementation type. Thisis awkward in large programs, and impossible if usesof an abstra
t type must be split between
ompilationunits.3.2 Type Abstra
tion in ML/OCamlThese drawba
ks have led most module language designersto abandon the simple-minded approa
h to type abstra
tionthrough existential quanti�
ation in preferen
e for strong ortranslu
ent (dependent) sums [2℄ (the later are also knownas manifest types [7℄). For example, in OCaml our abstra
tset would be des
ribed by the signature:module type SET =sigtype atype 'a fval empty : a fval add : a -> a f -> a fval union : a f -> a f -> a fval asList : a f -> a listendHere the type
onstru
tor f is a nested type of SET whi
his left abstra
t. In ML-based module languages, signaturesare not parameterised, and nested types are abstra
t by de-fault. A binding for f must be supplied in any stru
tureimplementing signature SET:module IntListSet : SET =stru
t

type a = inttype 'a f = 'a listlet empty = [℄let add = fun x xs ->x :: filter (fun y -> y <> x) xslet union = fun xs ys -> fold_right add xs yslet asList = fun xs -> xsendThe binding of f to list in IntListSet is hidden by theexpli
it signature
oer
ion. Of
ourse, the binding of a toint is also hidden, even though this is probably not intended.Sharing of abstra
t types is expressed using manifest types:module type SETHELP =sigtype atype 'a funionAll : (a f) list -> a fendmodule type MKSETHELP =fun
tor (S : SET) ->(SETHELP with type a = S.atype 'a f = 'a S.f)module MkSetHelp : MKSETHELP =fun
tor (S : SET) ->stru
ttype a = S.atype 'a f = 'a S.flet unionAll = fold_right S.unionendHere the sharing of types a and f in the argument and resultof the MkSetHelp fun
tor is made expli
it by the with
lausein the fun
tor's type.To sum up: In OCaml, all nested types are abstra
t un-less expli
itly made manifest, while in Haskell all type pa-rameters are
on
rete unless expli
itly hidden by existentialquanti�
ation.4 Putting Existentials to WorkThe dependent-sum approa
h to modular stru
ture hasproved to be very fruitful in pra
ti
e. Nevertheless, thereare strong reasons for
ontinuing to sear
h for alternatives.ML-style module systems
an be extended to support both�rst-
lass and re
ursive modules but, although the detailsfor these extensions have been worked out [17, 18℄, the re-sulting system is dauntingly
ompli
ated. Furthermore, itwould be diÆ
ult to adopt su
h a system for Haskell, be-
ause the intera
tion with Haskell's system of type
lasses isentirely un
lear. Indeed, no one has even attempted to workout the details for an ML-style module system supportingtype
lasses. Lastly, there is an un
omfortable dupli
ationof fun
tionality between a ri
h
ore language and a ri
h mod-ule language; other things being equal, it would
learly bebetter to have a single layer.5

So, instead of abandoning existentials for dependent sums,we shall ta
kle head-on the two problems we identi�ed withexistentials: the need for spurious datatypes (Se
tion 4.1),and the need to open existentials in a
ommon s
ope (Se
-tion 4.4).4.1 Type Inferen
e for Higher-ranked PolymorphismWe would like to get rid of the spurious data type AbsSetthat we were for
ed to introdu
e in Se
tion 3.1. Thedata type served to tell the type inferen
e engine whereto introdu
e existential quanti�
ation (at o

urren
es of theMkAbsSet
onstru
tor) and where to eliminate it (at
aseexpressions that mat
h MkAbsSet).Instead, we would like to be able to use existential quanti�-
ation freely within type s
hemes, without a mediating datatype. For example, we'd like to write the intSet exampledire
tly, thus:intSet :: exists f . Set Int fintSet = Set {empty = [℄add = \x xs -> x : filter ((/=) x) xsasList = id}Existential quanti�ers must now be able to o

ur in the re-sult of a fun
tion type. For example, here are the types wewould like for mkListSet and mkListSet', whi
h we saw inSe
tion 2.1:mkListSet :: forall a .EqR a -> exists f . Set a fmkListSet' :: forall a . Eq a =>exists f . Set a fThe type signature for mkListSet expresses both that we
an
onstru
t a set implementation from any equality on type a,and that for ea
h su
h equality the representation type ofthe result is abstra
t. That is to say, this type signaturemimi
s the generative fun
tor appli
ation of ML. (We shallsee in Se
tion 4.2 that our system
annot mimi
 OCaml'sappli
ative fun
tors [8℄, and instead requires all type sharingto be made manifest.)Our system supports higher-ranked signatures su
h as theseby adopting the system of type annotations of Oderskyand L�aufer [12℄. We extend the binder rule of Se
tion 2.2by requiring a type annotation on every lambda-bound, orletre
-bound, variable whose type uses existential or univer-sal quanti�
ation. (Ex
eption: in the
ase of letre
, whenthe universal quanti�
ation is at the top level, the anno-tation may be omitted, using the standard Hindley-Milnertri
k for re
ursive de�nitions.)The Odersky/L�aufer system stri
tly generalises the type in-feren
e algorithm used by those Haskell implementations al-ready supporting rank-two polymorphism. Type inferen
eredu
es to solving a set of subsumption
onstraints overtypes with mixed pre�x. For example,
onsider inferring

the type of:(\(f :: forall a . a -> Int -> a) -> f 1 2)(\x y -> x)The system dis
overs that \x y -> x has most general typeforall b
 . b ->
 -> b. Type
he
king the outer appli
a-tion redu
es to
he
kingforall b
 . b ->
 -> b � forall a . a -> Int -> awhere we write � to denote \subsumes." The
he
k pro
eedsby skolemizing the right-hand side quanti�ed variables:forall b
 . b ->
 -> b � a' -> Int -> a'where a' skolem
onstantthen freshening the left-hand-side quanti�er variables:b' ->
' -> b' � a' -> Int -> a'where a' skolem
onstantand, �nally, unifying the result. Sin
e [b' 7! a';
' 7! Int℄is a most general uni�er, the subsumption
he
k su

eeds.We must extend the system of Odersky and L�aufer in twoways. Firstly, we allow type s
hemes to arbitrarily mix uni-versal and existential quanti�ers. Though this adds no ex-pressive power4, it is a great aid when reporting type errors!The subsumption of existentials is exa
tly dual to that ofuniversals.Se
ondly, we must a

ount for Haskell's
lass
onstraints. Inparti
ular, any quanti�er may introdu
e a
onstraint, and wemay need to de
ide
onstraint entailment during subsump-tion
he
king. Consider our previous example amended toin
lude
lass
onstraints:(\(f :: forall a . Num a => a -> Int -> a) ->f 1 2)(\x y -> if x == x then x else undefined)To type
he
k the outer appli
ation, the system must de
idethe subsumption:forall b
 . Eq b => b ->
 -> b �forall a . Num a => a -> Int -> aThe Eq b
onstraint arises from the use of ==, and Num afrom the type annotation on f. The
he
k pro
eeds as be-fore, skolemizing the right-hand side quanti�ed variables,and freshening the left, to yield:Eq b' => b' ->
' -> b' � Num a' => a' -> Int -> a'where a' skolem
onstantThen the
onstraint Num a' is added to the set of \known"
onstraints:Eq b' => b' ->
' -> b' � a' -> Int -> a'assuming Num a', and a' skolem
onstant4E.g. the rank-one existential exists a . �(a)may be repla
ed by the rank-two universalforall b . (forall a . �(a) -> b) -> b.6

For the moment, the Eq b'
onstraint is ignored, and theleft- and right-hand side types are uni�ed to yield the mostgeneral uni�er [b' 7! a';
' 7! Int℄. Finally, the systemmust
he
k that Num a' `e Eq a'where `e denotes the
onstraint entailment relation. This istrue, sin
e Eq is a super
lass of Num. Hen
e the term is welltyped.We have given only illustrative examples here, but the Ap-pendix gives the te
hni
al details. This type inferen
e algo-rithm is potentially more expensive than that used by ex-isting Haskell implementations. In parti
ular, the expensiveoperations of
onstraint simpli�
ation and generalisation o
-
ur, by default, for every step of type inferen
e rather thanjust on
e per let-bound term. We plan to investigate re-�ning the inferen
e algorithm to avoid these operations asmu
h as possible.4.2 Opening ExistentialsNow that we allow existentials to appear without a medi-ating data
onstru
tor, we must �nd a repla
ement for therôle previously played by
ase. For example, re
all from theprevious se
tion that:intSet :: exists f . Set Int fAttempting to proje
t from intSet dire
tly would lead to atype error:one = intSet.asList (intSet.add 1 intSet.empty)error:
annot proje
t "empty" from term ofnon-re
ord type "exists f . Set Int f"Motivated by Russo's semanti
s for ML modules [16℄, weintrodu
e a variation of let whi
h expli
itly \opens" anyexistential quanti�ed type variables of the let-bound term:one :: [Int℄ {- inferred -}one = let open s = intSetin s.asList (s.add 1 s.empty)The keyword open indi
ates that the let-bodys.asList (s.add 1 s.empty) should be type
he
kedassuming s :: Set Int f', where f' is a fresh (skolem) type
onstant repla
ing the existentially quanti�ed f in the typeof intSet5. By opening intSet expli
itly we eliminate theexistential quanti�er on its type without
ompromising itstype abstra
tion:bad = let open s = intSetin s.add 2 [1℄error: In
ompatible types "f'" and "[℄", wheretype variable "f'" arises from open of"absIntSet"5Haskell's existing monadi
 do notation also uses a bind-ing
onstru
t whose left-hand and right-hand side types dif-fer.

Writing � to range over type and kind
ontexts, and � torange over kind
ontexts, we may write the typing rule forlet open as follows6 :� ` u : exists � . �dom(�) \ dom(�) = ;� ++�; x : � ` t : �0� ` �0 : s
heme openlet� ` let open x = u in t : �0Noti
e how the existentially quanti�ed type variables � aris-ing from u are \lifted over" the binding for x , and be
omefree (skolemized) type variables when
he
king the type of t .The side
ondition on � ensures ea
h existentially quanti�edtype variable is indeed free|alpha-
onversion may always beused to satisfy this
ondition. The
he
k that �0 is a well-formed type s
heme prevents any type variable in � fromes
aping the s
ope of x . For example, this term is ill-typed:let open s = intSetin s.emptyerror: Skolemized type "f'" introdu
ed in open of"s" es
apes s
ope of binding in type"f' Int"Without this restri
tion our system would be unsound:let f = \x -> let open y =((x, (== x)) :: exists a . (a, a -> Bool)) in yin (snd (f 1)) (fst (f True)) -- Crash!An alternative design would be to modify the typing rulefor proje
tion instead of that for let; in other words, makeexistential quanti�ers transparent to proje
tion. We preferthe present design be
ause it makes expli
it the generativenature of existential types. For example, the following termis (rightly) ill-typed, be
ause it attempts to mix sets
reatedfrom di�erent equalities on Int:inEq :: EqR Int -- Normal equality on integersz2Eq :: EqR Int -- Equality mod 2let open s1 = mkListSet intEqin let open s2 = mkListSet z2Eqin s1.asList s2.emptyerror: In
ompatible types "Set Int f1" and"Set Int f2", where type variable "f1"arises from open of "s1", and typevariable "f2" arises from open of "s2"A limitation of our approa
h is that we
annot mimi
 theappli
ative fun
tors of OCaml:let open s1 = mkListSet intEqin let open s2 = mkListSet intEqin s1.asList s2.emptyerror: ...6See Figure 14 for the a
tual rule, whi
h this only ap-proximates.7

Even though (thanks to the absen
e of side e�e
ts) s1 ands2 are observationally equivalent, the type system
onsiderstheir implementation types to be distin
t. All type sharingin our system must be manifest; even this extreme
ase isreje
ted:let open s1 = intSetin let open s2 = intSetin s1.asList s2.emptyerror: ...4.3 Type Annotations for Opened BindingsRe
all again our running example:intSet :: exists f . Set Int fone :: [Int℄ {- inferred -}one = let open s = intSetin s.asList (s.add 1 s.empty)Is it possible for the programmer to give a type signaturefor s? The trouble is that, in the body of the let, s hastype Set Int f', where f' is a fresh (skolem) type
onstant,and the programmer has no way to write su
h a thing. Yetsu
h annotations are desirable for do
umentation reasons,and will be absolutely essential when we
ome to top-levelbindings (see Se
tion 4.5).Our solution is to add a new open form of type signature,dual to the open form of term binding:one = let open s :: exists f. Set Int fopen s = intSetin s.asList (s.add 1 s.empty)The open type signature simply de
lares that s hasthe type obtained by opening (skolemizing) the typeexists f. Set Int f. The type signature for s behaves ex-a
tly like any other type signature: it is optional, and may
onstrain the type to be less polymorphi
 than the inferredtype.However, we are not done yet. Suppose we write (ratherarti�
ially):let open s :: exists f. Set Int fopen s = intSetin let t = sin s.asList (t.add 1 t.empty)How
an we give a type signature to t? We
annot say:open t :: exists f. Int -> f Intt = sbe
ause that would introdu
e a fresh skolemized type f, dis-tin
t from the one introdu
ed by the type signature for s.Instead, we want to say \t has the same type as s". Follow-ing some preliminary work of Odersky and Zenger [13℄, we

allow the programmer to say pre
isely that:t :: s!t = sThe type \x!" where x is an in-s
ope term variable, denotesthe type of x 7. This new type form
an o

ur in any type.For example,\x (y :: x!) . (x, y)has type forall a . a -> a -> (a, a), sin
e the annotationon y for
es it to have the same type as x. It is illegal to takethe type of a variable of s
heme type:id :: forall a . a -> a {- inferred -}id = \x -> x\(f :: id!) . f 1error: "id" has a type s
heme as its type, and
annot be dereferen
edEven this is not quite enough, however. Consider yet anotherversion of our example:let open s :: exists f. Set Int fopen s = intSetin let unit = \x -> s.add x s.emptyin s.asList (unit 1)How
an we write the type of unit? If s has type Set Int f ,unit has type Int -> f Int. So we need to be able to referto a
omponent of s's type. We add another new type form,thus:unit :: Int -> s!^f Intunit = \x -> s.add x s.emptyThe \^f" proje
ts the f-
omponent out of the type appli-
ation s!. As a synta
ti
al
onvenien
e we allow the type-variable names from the original de�nition of Set (ba
k inSe
tion 2.1) to be used as the \�eld names" for these typeproje
tions.These two new type forms give rise to a small algebra overtypes. For example, the following three types are all equalto Int: (Set Int [℄)^a (1)(Int, Set Int [℄)^t2^a (2)(Set Int [℄ -> Int)^arg^a (3)In (1) we know re
ord Set has a type parameter nameda, and this parameter is bound to Int in the appli
ationSet Int [℄ (re
all type appli
ation binds tighter than ^). In(2), we rely on the built-in type parameters t1, t2 et
. torefer to the su

essive type arguments of the tuple type
on-7Though this notation involves term variables in type ex-pressions, the type does not depend on the value of the termvariable, only on its type.8

stru
tor. Similarly, in (3) we rely on the built-in type pa-rameters arg and res to refer to the argument and resulttypes respe
tively of the fun
tion type
onstru
tor.We also allow a re
ord �eld to be dereferen
ed. For example:unit :: Int -> s!^empty! Intunit = \x -> s.add x s.emptyHere we say the result of unit has the same type as theempty �eld in the re
ord type denoted by s!.4.4 Opening Top-Level BindingsSo far we have not ta
kled the se
ond of the two problemswe identi�ed in Se
tion 3.1, namely that an existential mustbe opened over a s
ope that
ontains all terms that mustshare an implementation type. Indeed, we identi�ed it asthe more serious of the two problems.The design we have presented so far was
arefully
hosen tosolve this problem as well. All that is needed is to allow opento be used for top-level bindings.Consider again the intSet and intSetHelp example of Se
-tion 3.1. Our improved support for existential quanti�
ationeliminates the need for any spurious AbsSet and AbsSetHelpdatatypes. By using open, we may also both open and bindintSet in a single top-level de
laration:open intSet :: exists f . Set Int fopen intSet = intListSetIn the rest of the program, intSet has type Set Int f',where f' is a fresh skolem type
onstant.The mkSetHelp and two fun
tions remain un
hanged:mkSetHelp :: forall a f . Set a f -> SetHelp a fmkSetHelp set = SetHelp { ... }two :: forall f . Set Int f ->SetHelp Int f -> [Int℄two s h = ...With these de�nitions, we may now
reate setHelp dire
tly:setHelp = mkSetHelp intSetmain = two intSet setHelpLooking at the type of mkHelpSet we see setHelp has typeSet Int f', and thus the appli
ation of two is well-typed.In Se
tion 4.2 we mentioned that, to preserve soundness,skolemized type variables
annot es
ape the s
ope of theterm variable whi
h introdu
ed them. Sin
e the s
ope of atop-level binding is the entire program, this
he
k is unne
-essary for opened top-level signatures. This is indeed fortu-nate, sin
e separate
ompilation means that we may not beable to \see" the entire s
ope of the binding.

4.5 Top-level Interfa
es and ImplementationsHaskell's existing module system
ombines the implementa-tion of a module and its interfa
e spe
i�
ation into a sin-gle
ompilation unit. In our system we split these notions.Roughly speaking, we take a top-level interfa
e to be thebody of a parameterless re
ord type de
laration, and a top-level implementation to be the body of a re
ord, both ap-pearing in a notional \
osmi
" global s
ope.Top-level interfa
es appear in \hsi" �les. For example, �leLists.hsi
ould look something like:module Lists wheredata List a = Nil | Cons a (List a)map :: forall a b . (a -> b) -> List a -> List b... et
 ...Su
h a �le indu
es the type de
laration in the \
osmi
"s
ope:re
ord Lists = {data List a = Nil | Cons a (List a)map :: forall a b . (a -> b) -> List a-> List b... et
 ...}Top-level implementations appear in \hs" �les. Continuingthe above example, �le Lists.hs
ould resemble:module Lists wheremap = et
 ...This indu
es the \
osmi
" term de
laration:Lists :: ListsLists = Lists {map = et
 ...}In e�e
t, we simply introdu
e a term variable, Lists, intothe initial type
ontext with type Lists.Both interfa
es and implementations may import other in-terfa
es. Interfa
es supply enough type information to beable to type
he
k implementations independently and inany order. Interfa
es may be mutually re
ursive in theirtype de
larations, subje
t to the usual rule that all re
ur-sion passes through a data or re
ord
onstru
tor. Using typedereferen
ing, it is also possible to write mutually re
ursivetype signatures (see Se
tion 5.1).We must be a little more generous with \
osmi
" re
ordtype de
larations and re
ord terms in order to support openin signatures and bindings, and instan
e de
larations.88Neither of these
onstru
ts make sense within arbitraryre
ords. Allowing open anywhere leads to unsoundness forthe same reason given in Se
tion 4.2. Allowing instan
e9

For example, we may have within Lists.hsi the de
lara-tions:re
ord LazyLength a = {length :: forall b . List b -> aisGT :: Int -> a -> Bool}open lazyLength :: exists a . LazyLength ainstan
e eqList :: Eq a => Eq (List a)Here we de
lare a re
ord lazyLength
ontaining fun
tionsto
al
ulate and test an abstra
t representation of a list'slength. We also have an instan
e de
laration whi
h is namedeqList so that it may later be re
on
iled against its de�ni-tion.These de
larations must have mat
hing bindings withinLists.hs:open lazyLength = LazyLength {length = \xs -> map (_ -> ()) xsisGT = \n xs ->
ase xs ofNil -> n > 0Cons _ xs' ->if n > 0 thenisGT (n - 1) xs'else False}instan
e eqList where ...Haskell's existing module system allows top-level term andtype bindings to be hidden. Our system supports a similarme
hanism, though for brevity we do not
onsider it here.5 Working Out The DetailsIn this se
tion we
omplete our exposition by des
ribing howexistentials intera
t with re
ursion and type
lasses.5.1 Re
ursive Abstra
t TypesBeing a lazy language, Haskell allows top-level de�nitions tobe arbitrarily mutually re
ursive. In this se
tion we
onsiderhow mutual re
ursion intera
ts with our type abstra
tionme
hanism.Consider the re
ursive top-level de�nitions:re
ord Pair a b = { fst :: a; snd :: b }x :: Pair Int Boolx = Pair { fst = 1; snd = y.snd }y :: Pair Int Booly = Pair { fst = x.fst; snd = True }de
larations anywhere leads to lo
al instan
e de
larations[19℄ and would be a profound
hange to Haskell's type
lasssystem.

We now wish to hide the implementation types Int and Bool.Of
ourse, for this example its easy to
ollapse the re
ursioninto a single term:open xy :: exists a b . (Pair a b, Pair a b)open xy = let x = Pair { fst = 1; snd = y.snd }y = Pair { fst = x.fst; snd= True }in (x, y)x :: xy!^t1x = fst xyy :: xy!^t2y = snd xyHowever, this may be awkward in pra
ti
e, and impossibleif x and y must be de�ned in separate
ompilation units.A better solution is to allow type dereferen
es to be mutuallyre
ursive:open x :: exists a . Pair a (y!^b)x = Pair { fst = 1; snd = y.snd }open y :: exists b . Pair (x!^a) by = Pair { fst = x.fst; snd = True }Noti
e the type-level re
ursion of x! and y! exa
tly mir-rors the term-level re
ursion of x and y. Furthermore, evenif x and y were de�ned in separate implementation �les,both their signatures would be visible to the
ompiler withintheir respe
tive interfa
e �les. Thus these mutually re
ursivebindings may be type
he
ked in isolation.We must be a little more restri
tive on type-level re
ursionthan term-level re
ursion. For example, all of the followingbindings are reje
ted:undefined :: undefined!undefined = undefinederror: "undefined" has a
y
li
ally defined typepair :: Pair (pair!^b) (pair!^a)pair = Pair { fst = pair.snd; snd = pair.fst }error: "pair" has a
y
li
ly defined typeThey must instead be annotated in the usual way:undefined :: forall a . aundefined = undefinedpair :: forall a . Pair a apair = Pair { fst = pair.snd; snd = pair.fst }Why are the bindings for x and y a

epted, while those forundefined and pair reje
ted? Roughly speaking, though xand y are mutually re
ursive, their resulting values are fullyde�ned, and similarly their types. However, undefined andpair
ontain unde�ned elements, and hen
e their types inthose positions remain undetermined.To deal with this, we type
he
k a re
ursive binding group in�ve phases; we illustrate using the x, y example of above.10

1 The �rst phase skolemizes the existentially quanti�ed typevariables of all opened de�nitions, produ
ing an environ-ment that gives the types of x and y:x :: Pair a' (y!^b)y :: Pair (x!^a) b'Here, a' and b' are the skolem types introdu
ed to instan-tiate a and b respe
tively.2 In phase 2, all types are rewritten to avoid any use of typedereferen
e, type variable proje
tion, and �eld proje
tion.Furthermore, relative types are rewritten to a
anoni
alabsolute form. We use a normal-order (
all-by-name) eval-uation strategy so as to a

ept as many re
ursively de�nedtypes as possible. A type of the form x! is rewritten to thetype of x already in the environment (though
are mustbe taken to dete
t
y
les.)In our example, we rewrite the type of x as follows:Pair a' (y!^b)�! Pair a' ((Pair (x!^a) b')^b)�! Pair a' b'After rewriting our environment, we have:x :: Pair a' b'y :: Pair a' b'3 Next, we perform standard kind inferen
e for the types inthe new environment, whi
h for Haskell redu
es to typeinferen
e for a simply-typed lambda-
al
ulus.4 Next, we
arry out standard type inferen
e for the right-hand side of ea
h binding, in the type environment
om-puted by the earlier phases. In Haskell, type inferen
einvolves a weak form of higher-kinded kind-preserving uni-�
ation. Sin
e all relative types have been normalized toan absolute form, the equality theory on types is free.Pair { fst = 1; snd = y.snd } :: Pair Int b'Pair { fst = x.fst; snd = True} :: Pair a' Bool5 Lastly, we
he
k that ea
h right-hand side does indeedhave the
laimed existentially quanti�ed type:Pair { fst = 1; snd = y.snd }:: exists a. Pair a b'Pair { fst = x.fst; snd = True}:: exists b. Pair a' b(Noti
e that we must, of
ourse, rewrite the original exis-tential type signatures, just as in phase 2, to obtain the
laimed types.)

A
onsequen
e of rewriting types (phase 2) before kind infer-en
e (phase 3) is that our system admits some very dubiouslooking type annotations. For example:re
ord Pair a b = { fst :: a; snd :: b }strange :: (Pair, Int)^t1 Int Pair^astrange = 1In phase 2, the type annotation for strange is rewritten:(Pair, Int)^t1 Int Pair^a�! (Pair Int Pair)^a�! IntHen
e, kind inferen
e �nds nothing amiss here! We
ouldperform kind inferen
e before rewriting by augmenting thekind system with re
ord kinds, but the additional
omplexitydoes not seem justi�ed. Though
onfusing, these types areharmless.The above exposition also applies to re
ursive let bindings.The only di�eren
e is that we must ensure no skolemizedtype variables es
ape the s
ope of the term as a whole. Toensure type inferen
e remains
omplete in the presen
e ofre
ursive bindings, we require that all letre
-bound vari-ables be type annotated if any single letre
-bound variableis opened.5.2 Type Classes and ExistentialsSo far we have used existential quanti�
ation to hide every-thing about a type parameter:open intSet :: exists f . Set Int fHowever, by exploiting Haskell's type
lass system we
ansele
tively expose information about abstra
t types. For ex-ample, we
an expose that f is a fun
tor:open intSet :: exists f . Fun
tor f => Set Int fintSet = intListSetWith this signature for intSet we have two interfa
es forsets of integers. We have already been using the �rst ex-pli
it interfa
e, whi
h is simply the �elds of Set rea
hed viaproje
tion from intSet. The se
ond impli
it interfa
e is pro-vided by the overloaded operators of
lass Fun
tor. Theseoperations may be used dire
tly. For example, the followingterm has type [Int℄:intSet.asList (fmap (+ 2)(intSet.add 1 intSet.empty))Noti
e the use of the overloaded operator from the Fun
tor
lass:fmap :: forall f a b . Fun
tor f =>(a -> b) -> f a -> f bWhen type
he
king the binding of intSet, the system
he
ks that Fun
tor [℄ is satis�able, then extends the11

known
onstraint
ontext with Fun
tor f', where f' is theskolemized type
orresponding to f in the signature forintSet. Hen
e the fun
tion fmap may be instantiated attype (Int -> Int) -> f' Int -> f' Int.In Haskell, an instan
e de
laration allows the programmerto make a new data type into an instan
e of a given
lass.For example:data Age = MkAge Intinstan
e Eq Age where(==) (MkAge i) (MkAge j) = i == jOur open me
hanism also introdu
es a new data type, theskolemized type
onstant, so it makes sense to allow it, too,to be an instan
e of a
lass. For example:open absEq :: exists a . (a -> a -> Bool)absEq = ((==) :: Int -> Int -> Bool)instan
e Eq (absEq!^arg) where(==) = absEq(Re
all arg proje
ts the argument type from a fun
tiontype.)We allow
lass de
larations to appear within re
ord de
lara-tions. However, as mentioned in Se
tion 4.5, we only allowinstan
e de
larations to appear at the top-level of moduleimplementations.6 Related workOur system draws together the work of four separate sys-tems. Firstly, from Jones [6℄ work on Parameterised Sig-natures we took the idea that, at heart, a module imple-mentation is just a re
ord, and a module interfa
e is justa re
ord type with polymorphi
 �elds parameterised overall its abstra
t types. The problems of type abstra
tionand type sharing then be
ame almost trivial: we used or-dinary existential quanti�
ation to hide types, and ordinaryparametri
 polymorphism to
apture type sharing. This ap-proa
h avoided the need for dependent types, and thus au-tomati
ally respe
ted a phase distin
tion between types andterms. To further simplify matters, we disallowed anony-mous re
ords, and thus type equality for re
ord types in oursystem is nominal.Se
ondly, we adopted the annotations-based type system ofOdersky and L�aufer [12℄ to allow higher-ranked polymorphi
types to be used in
onjun
tion with type inferen
e of rank-one types. In parti
ular, this system allowed us to write ex-istential quanti�ers within the result type of fun
tions, andthus write Haskell fun
tions whi
h mimi
 ML fun
tors. Thissystem also allowed us to share �eld names of polymorphi
type between re
ords without further
ompli
ating type in-feren
e. A little
are had be taken to extend this systemwith support for Haskell's
onstrained polymorphism. Someexisting Haskell implementations support rank-two polymor-phism. Our extension of Odersky and L�aufer's system
an beseen as a natural generalisation of the existing type inferen
e

algorithm to arbitrary-ranked polymorphism. Another pos-sibility would have been to abandon Hindley/Damas/Milner-style type inferen
e in preferen
e for lo
al type inferen
e[15, 14℄. However, we felt that would have been too great a
hange for Haskell.Thirdly, we examined Russo's semanti
s for ML signaturesand stru
tures [16℄ in order to understand how the dotnotation of ML modules intera
ts with ordinary existen-tial and universal polymorphism. As a result, we re�nedHaskell's let
onstru
t so as to be able to optionally openan existentially-quanti�ed type within the s
ope of the let-binding. This new
onstru
t made it possible to a

essre
ords of existential type using the dot notation, whi
h inturn allowed re
ords of abstra
t type to be used a
ross
om-pilation units. With this re�nement in pla
e, we may viewour resear
h agenda as one of re�ning Haskell to be as ex-pressive as ML's language of semanti
 obje
ts [10℄, and arguethis is almost as
onvenient as programming in ML's modulelanguage dire
tly.Finally, we borrowed some notation (but, as it turns out,not the underlying type-theoreti
 ma
hinery) from the workof Odersky and Zenger on Nested Types [13℄. This notationallowed type annotations to
apture type sharing of abstra
ttypes by refering to the type of other term variables in s
ope.This aspe
t of our system is probably the most unusual.7 Con
lusionsWe tried to make ea
h of our re�nements as orthogonalas possible. That is to say, our proposal is not to add amonolithi
 module language to Haskell, but rather to re�neHaskell's
ore language with a number of features whi
h,taken together,
apture the desired expressiveness.The biggest de�
ien
y of our system is that programs aresubje
t to non-lo
al
hanges when making a previously
on-
rete types abstra
t. Not only must re
ord types be
hangedto parameterise over su
h types, but all uses of those re
ordtypes must be similarly
hanged to en
ode the appropriatepropagation of type information. This has long been used asa justi�
ation for the move to dependent sum-based modulesystems [3, 1℄.Most of our e�ort to date has been invested in experiment-ing with a prototype
ompiler, whi
h we have found to be aninvaluable design tool. We hope to transfer these ideas intoGHC, an industrial-strength Haskell
ompiler, over the nextfew months. At the time of writing we have only just begunto establish the usual soundness and
ompleteness proper-ties.We have also begun to explore an extension of our systemwith method
onstraints [19℄, and believe this provides an ex-pressive framework for interfa
e-oriented programming. Un-der this approa
h, the interfa
e subtyping of obje
t-orientedprogramming is emulated by the
onstraint entailment ofmethod
onstraints, and the virtual-method dispat
h of oopis emulated by terms of existential type
apturing all themethods of their interfa
e.12

A
knowledgementsWe thank Claudio Russo, Martin Odersky and the FOOLreviewers for their helpful
omments.Referen
es[1℄ K. Crary, R. Harper, and D. Dreyer. A type system forhigher-order modules. (To appear in POPL'02), Sept.2001.[2℄ R. Harper and M. Lillibridge. A type-theoreti
 approa
hto higher-order modules with sharing. In Pro
eedingsof the Twenty-First Annual ACM Symposium on Prin-
iples of Programming Languages, Portland, Oregon,pages 123{137, Portland, Oregon, Jan. 1994.[3℄ R. Harper, J. C. Mit
hell, and E. Moggi. Higher-ordermodules and the phase distin
tion. In Pro
eedings ofthe Seventeenth Annual ACM Symposium on Prin
iplesof Programming Languages, pages 341{354, 1990.[4℄ M. P. Jones. A system of
onstru
tor
lasses: Overload-ing and impli
it higher-order polymorphism. In Pro-
eedings of the ACM SIGPLAN Conferen
e on Fun
-tional Programming Languages and Computer Ar
hite
-ture (FPCA'93), Copenhagen, Denmark, 1993.[5℄ M. P. Jones. Quali�ed Types: Theory and Pra
ti
e.Distinguished Dissertations in Computer S
ien
e. Cam-bridge University Press, 1994.[6℄ M. P. Jones. Using parameterized signatures to expressmodular stru
ture. In Pro
eedings of the 23rd AnnualACM SIGPLAN-SIGACT Symposium on Prin
iples ofProgramming Languages, St. Petersburg Bea
h, Florida,pages 68{78. ACM Press, Jan. 1996.[7℄ X. Leroy. Manifest types, modules, and separate
om-pilation. In Pro
eedings of the Twenty-First AnnualACM Symposium on Prin
iples of Programming Lan-guages, Portland, Oregon, pages 109{122. ACM Press,Jan. 1994.[8℄ X. Leroy. Appli
ative fun
tors and fully transparenthigher-order modules. In Pro
eedings of the 22nd An-nual ACM SIGPLAN-SIGACT Symposium on Prin
i-ples of Programming Languages (POPL'95), San Fran-
is
o, California, pages 142{153. ACM Press, Jan. 1995.[9℄ D. B. Ma
Queen. Using dependent types to expressmodular stru
ture. Pro
eedings of the 13th ACM Sym-posium on Prin
iples of Programming Languages, St.Petersburg, USSR, pages 277{286, Jan. 1986.[10℄ R. Milner, M. Tofte, R. Harper, and D. Ma
Queen. TheDe�nition of Standard ML (Revised). The MIT Press,O
t. 1997.[11℄ J. C. Mit
hell and G. D. Plotkin. Abstra
t types haveexistential type. ACM Transa
tions on ProgrammingLanguages and Systems, 10(3):470{502, July 1988.

[12℄ M. Odersky and K. L�aufer. Putting type annotationsto work. In Pro
eedings of the 23rd Annual ACMSIGPLAN-SIGACT Symposium on Prin
iples of Pro-gramming Languages, St. Petersburg Bea
h, Florida,pages 54{67. ACM Press, Jan. 1996.[13℄ M. Odersky and C. Zenger. Nested types. In Pro
eed-ing of the Workshop on Foundations of Obje
t-OrientedLanguages (FOOL8), London, UK, Jan. 2001.[14℄ M. Odersky, C. Zenger, and M. Zenger. Colored lo-
al type inferen
e. In Pro
eedings of the 28th AnnualACM SIGPLAN-SIGACT Symposium on Prin
iples ofProgramming Languages (POPL'01), London, England,pages 41{53. ACM Press, Jan. 2001.[15℄ B. C. Pier
e and D. N. Turner. Lo
al type inferen
e.In Pro
eedings of the 25th Annual ACM SIGPLAN-SIGACT Symposium on Prin
iples of ProgrammingLanguages, San Diego, California, pages 252{265. ACMPress, Jan. 1998.[16℄ C. V. Russo. Types for Modules. PhD thesis, Depart-ment of Computer S
ien
e, The University of Edin-burgh, June 1998.[17℄ C. V. Russo. First-
lass stru
tures for Standard ML.Nordi
 Journal of Computing, 7(4):348{374, 2000.[18℄ C. V. Russo. Re
ursive stru
tures for Standard ML. InPro
eedings of the sixth ACM SIGPLAN InternationalConferen
e on Fun
tional Programming (ICFP'01),Firenze, Italy, pages 50{61, Sept. 2001.[19℄ M. Shields and S. Peyton Jones. Obje
t-orientedstyle overloading for Haskell. In First Workshop onMulti-language Infrastru
ture and Interoperability (BA-BEL'01), Firenze, Italy, Sept. 2001.A Type Che
kingThis se
tion gives a brief overview of type
he
king for anidealized Haskell with our extensions. We o�er this withoutany proofs of
orre
tness: A proper a

ount is in prepara-tion.Figure 1 presents the syntax. In
ommon with many othermodule systems, we represent names by a pair, writtenX i , ofa base name X and a stamp i . This way it is always possibleto alpha-
onvert a binder without
hanging its base name,whi
h is signi�
ant when proje
ting types and �elds. We as-sume stamps in sour
e-program names begin as 0. (A
tually,we
ould avoid stamps on
lass, term variable and instan
enames sin
e type substitution
an never
apture su
h names.However, we retain them here for uniformity.)Constru
ts marked \top-level only" may only appear withinre
ord de
laration bodies or re
ord term bodies at the out-ermost level of a program. We assume a program is a set ofunparameterised re
ord type de
larations (
orresponding toimported interfa
es) and a single re
ord term (
orrespondingto the implementation being
ompiled). In pra
ti
e, ea
h13

Type var names a; bType names A, BInstan
e names wClass names C, DTerm var names x ; yIntegers/Stamps i ; jKinds � ::= Type j � -> �0Types �; � ::= Int j � -> � j (�)j a i � j Ai � j x i!j �^a � j �^A � j �^x!Type s
hemes � ::= forall � . � => �j exists � . � => �j � -> �0j �Primitive
onstraints � ::= C i � j �^C �Constraint s
heme � ::= forall � . �0 => �Re
ord de
l bodies S ::= re
ord Ai � = { S 0 } ; Sj x i :: � ; S(top-level only) j open x i :: � ; S(top-level only) j
lass � => C i � where � ; S(top-level only) j instan
e w :: � ; Sj �Re
ord
onstru
tor P ::= Ai j P^AClass
onstru
tor Q ::= C i j P^CTerms t ; u ::= i j x i j \x i f:: �gopt . t j t uj (t) j let (x i) = u in tj let fopengopt x i f:: �gopt= u in tj (t :: �) j free � in tj P { s } j t.xj ?Qj re
ord Ai � = { S } in tRe
ord bodies s ::= fopengopt x i = t ; s(top-level only) j instan
e w i = t ; sj �Type var
ontexts � ::= �; a i : � j �Type
ontexts � ::= re
ord f�^gopt Ai � = { S };�j
lass � => f�^goptC i �where �;�j a i : �;�j x i : �;�j �Constraint
ontexts � ::= w i : �;� j �Programs prog ::= re
ord Ai = { S } ; B j { s }Figure 1: Syntaxof these elements would reside in a separate �le. To pre-serve soundness our system must reje
t any re
ord de
lara-tion whi
h shadows a top-level interfa
e name. However, weallow shadowing in all other
ontexts.Type
ontexts (ranged over by �) map type variables, re
ord

� ` � : � ,! � 0� ` Int : Type ,! Int� ` � : Type ,! �0� ` � : Type ,! � 0� ` (� -> �) : Type ,! (�0 -> � 0)� ` � : Type ,! � 0� ` (�) : Type ,! (� 0)(a i : � -> �0) 2 �� ` � : � ,! �0� ` (a i �) : �0 ,! (a i �0)(re
ord f�^gopt Ai (a i : �++ bi : �0) = { S }) 2 �� ` � : � ,! �0� ` (Ai �) : �0 -> Type ,! (f�^goptAi �0)(x i : �) 2 �� ` � : Type ,! � 0� ` x i! : Type ,! � 0� ` � : h� j � j Si(a i : �0) 2 �� ` (� a i) � : � ,! �0� ` (�^a �) : �0 ,! �0� ` � : h� j � j Si(re
ord Ai (a i : �++ bi : �0) = { S 0 }) 2 S� ` � : Type ,! � 0� ` � : � ,! �0� ` (�^A �) : �0 -> Type ,! (� 0^A �0)� ` � : h� j � j Si(x i : �) 2 S� ` � : Type ,! �0� ` (�^x!) : Type ,! �0Figure 2: Well-kinded typesnames,
lass names and term variables to their kinds, re
ordbodies,
lass bodies and type s
hemes respe
tively. All fourof these
onstru
ts have a separate name spa
e. Kind
on-texts (ranged over by �) map only type variables to kinds.We let dom(X) denote the domain of X , whether it be atype
ontext, kind
ontext, or re
ord type de
laration body.Figure 2 presents rules whi
h simultaneously kind-
he
k andrewrite a type. Types of the form �^a and �^x! are ex-panded to the types they denote. Furthermore, all relativetypes are rewritten as absolute types. This is a
hieved byre
ording, with ea
h re
ord and
lass de
laration in s
ope,an optional type pre�x denoting the s
ope at whi
h the de
-laration was introdu
ed. When a relative re
ord or
lasstype is looked-up in the environment, it is repla
ed by the14

oresponding absolute type.For example, in the de
laration:re
ord A a = {re
ord B b = { ... }x :: B Int}the relative type B Int of x is rewritten to the absolute type(A a)^B Int, sin
e the pre�x for the de
laration of B is thetype A a.Note that the re
ord de
larations within the body of a pro-gram prog have no pre�x, sin
e they are not
ontained withinany other re
ord de
laration. Hen
e we write pre�x types asf�gopt , and write � to denote the absent pre�x.Figure 3 presents supporting rules for resolving a type into are
ord. Three
omponents are derived: a substitution fromthe re
ord's type arguments to their a
tual values in thetype; the kind
ontext of the re
ord's arguments, and there
ord type de
laration body, suitably instantiated. If thegiven type is not a re
ord, a built-in re
ord is returned wherepossible. For example, given:re
ord (A a)^C b
 = { x :: (a, b,
) } 2 �we have: � ` C Int Bool : h [b 7! Int;
 7! Bool℄j b : Type;
 : Typej x :: (a, Int, Bool) iFigure 4 is the analogue of Figure 3 for primitive
onstraints,and allows the given primitive
onstraint to be resolved to a
lass. Three
omponents are derived: the super
lass
ontextof the
lass de
laration, the kind
ontext of the
lass's argu-ments, and the
lass's body type, all suitably instantiated.Figures 5 and 6 extends the kind-
he
king rules to primitive
onstraints and type s
hemes in the obvious way.The next three �gures formalize kind-
he
king re
ord typede
laration bodies. This is little involved be
ause of the
om-bination of re
ursive re
ord bodies with type skolemizationon \opened" signatures.Figure 7 gives rules for
olle
ting the skolemized type vari-ables of a re
ord body. The result is the set of these typevariables, and a rewritten body in whi
h ea
h variable sig-nature is augmented by its external type signature (whi
hwe write within bra
es). For ordinary (unopened) variables,the external type signature is identi
al to the supplied (in-ternal) type signature. For opened variables, the externaltype signature is a
opy of the supplied signature with anyoutermost existential quanti�ers removed. For example, thesignature:open x :: exists a b . C a b =>forall
 . a -> b ->
is rewritten to the signature:open x :: exists a b . C a b =>forall
 . a -> b ->

� ` � : h� j � j Si� ` Int : hId j � j �i� ` (� -> �) : h [arg 7! �; res 7! � ℄ jarg : Type; res : Type j � i� ` (�) : h [t1 7! �1; : : : ; tn 7! �n ℄ jt1 : Type; : : : ; tn : Type j � i(re
ord f�^gopt Ai a i : � = { S }) 2 �a i \ dom(�) = ;dom(S) \ dom(�) = ;j�j = j�j� ` (Ai �) : h[a i 7! �℄ j a i : � j a i 7! �℄ Si(x i : �) 2 �� ` � : h� j � j Si� ` x i! : h� j � j Si� ` � : h� j � j Si(a i : �0) 2 �� ` (� a i) � : h�0 j �0 j S 0i� ` (�^a �) : h�0 j �0 j S 0i� ` � : h� j � j Si(re
ord Ai a i : � = { S 0 }) 2 Sa i \ dom(�) = ;dom(S 0) \ dom(�) = ;j�j = j�j� ` (�^A �) : h[a i 7! �℄ j a i : � j [a i 7! �℄ S 0i� ` � : h� j � j Si(x i :: �) 2 S� ` � : h�0 j �0 j S 0i� ` (�^x!) : h�0 j �0 j S 0iFigure 3: Re
ord
orresponding to a type{ C a b => forall
 . a -> b ->
 }assuming the type variables a and b are fresh.Figure 8 shows how to extra
t both the type
ontext and
onstraint
ontext
orresponding to a re
ord body. Thisjudgement is parameterised by a type pre�x representingthe re
ord body's s
ope of de�nition. The type
ontext
ol-le
ts just the outmost de
larations of the re
ord body S .Noti
e that only the external signature of variable de
lara-tions is signi�
ant when forming type
ontexts. We re
ordthe type pre�x of the re
ord body with ea
h nested re
ordand
lass de
laration so that relative types may be rewrittento absolute types (see Figure 2). The
onstraint
ontext
ol-15

� ` � : h�0 j � j �ia j \ dom(�) = ;(
lass � => f�^gopt C i a j : � where � 0) 2 �j�j = j�j� ` C i � : h[a j 7! �℄ � j a j : � j [a j 7! �℄ � 0i� ` � : h�0 j �0 j S 0ia j \ dom(�) = ;(
lass � => C i a j : � where � 0) 2 S 0j�j = j�j� ` �^C � : h[a j 7! �℄ � j a j : � j [a j 7! �℄ � 0iFigure 4: Class
orresponding to a primitive
onstraint� ` � ,! �
onstraint(
lass � => f�^gopt C i a j : � where � 0) 2 �� ` � : � ,! �0� ` C i � ,! f�^goptC i �0
onstraint� ` � : h�0 j �0 j S 0i(
lass � => C i a j : � where � 0) 2 S 0� ` � : Type ,! � 0� ` � : � ,! �0� ` �^C � ,! � 0^C �0
onstraintFigure 5: Well-kinded primitive
onstraintsle
ts all instan
e de
larations, and all
onstraints appearingunderneath existentially quanti�ed type variables in openedsignatures. The latter are assigned arbitrary fresh namesusing the fun
tion named .For reasons whi
h will soon be
ome
lear, instan
e de
lara-tions must be added to the
onstraint
ontext with a namewhi
h
ombines both the instan
e de
laration name and thepre�x of its s
ope of de�nition. We assume
ompname issome inje
tive fun
tion from a type pre�x and an instan
ename to a
omposite instan
e name. For example:
ompname(�; w^i) = w^i
ompname(A; w^i) = A_w^iFigure 9 extends the kind
he
king judgments to re
ord bod-ies whi
h have already been rewritten by the rules of Fig-ure 7. Sin
e re
ord bodies are mutually re
ursive, and sin
etypes may de-referen
e any term variable in s
ope, whenkind-
he
king a nested re
ord body we must �rst extend thetype
ontext with the de�nitions of the re
ord body itself(suitably alpha-
onverted).We may now turn our attention to type
he
king. Figure 10presents
onstraint entailment for
lass
onstraints, whi
his entirely standard [5℄. Figure 11 present rules for de
id-ing type s
heme subsumption. They extend the system pre-sented in [12℄ to handle existential types and
onstraints.Figure 12 presents rules to expand re
ord
onstru
tors and

� ` � ,! �0 s
hemedom(�) \ dom(�) = ;8i : fv(�) \ dom(�) 6= ;� ++� ` � ,! �0
onstraint� ++� ` � ,! �0 s
heme� ` forall=exists � . � => � ,!forall=exists � . �0 => �0 s
heme� ` � ,! �00 s
heme� ` �0 ,! �000 s
heme� ` (� -> �0) ,! (�00 -> �000) s
heme� ` � ,! � 0 : Type� ` � ,! � 0 s
hemeFigure 6: Well-kinded type s
hemes� ` S ,! h�0 j S 0i skolemdom(�1) \ dom(�) = ;� ++�1 ` S1 ,! h�2 j S3i skolem� ++�2 ` S2 ,! h�3 j S4i skolem� ` re
ord Ai �1 = { S1 } ; S2 ,!h�2 ++�3 j re
ord Ai �1 = { S3 } ; S4i skolemdom(�) \ dom(�) = ;� ++� ` S ,! h�0 j S 0i skolem� ` open x i :: exists � . � => � ; S ,!h�++�0 j open x i :: exists � . � => �{ � => � } ; S 0i skolem� ` S ,! h� j S 0i skolem� ` fopengopt x i :: � ; S ,!h� j fopengopt x i :: � { � } ; S 0i skolem� ` S ,! h�0 j S 0i skolem� `
lass � => C i � where � ; S ,!h�0 j
lass � => C i � where � ; S 0i skolem� ` S ,! h� j S 0i skolem� ` instan
e w i :: � ; S ,!h� j instan
e w i :: � ; S 0i skolem� ` � ,! h� j �i skolemFigure 7: Skolemizing opened type s
hemes
lass
onstru
tors to types denoting a parti
ular re
ord or
lass. This is ne
essary be
ause re
ord and
lass
onstru
torswithin terms elide all type arguments. (Of
ourse our typeinferen
e system infers these types.)Figures 13 and 14 present the type
he
king rules. In
om-16

f�gopt ` S : h� j �ia j \ fv(f�gopt) = ;f�^goptAi a j ` S 0 : h j �0if�gopt ` S : h� j �if�gopt ` re
ord Ai a j : � = { S 0 } ; S :hre
ord f�^gopt Ai a j : � = { S 0 };� j �0 ++�if�gopt ` S : h� j �if�gopt ` fopengopt x i :: � {� => �0} ; S :hx i : �0;� j named(�) ++ �if�gopt ` S : h� j �if�gopt `
lass � => C i � where � ; S :h
lass � => f�^gopt C i � where � ;� j �if�gopt ` S : h� j �if�gopt ` instan
e w i :: � ; S :h� j
ompname(f�gopt ;w i) : �;�if�gopt ` � : h� j �iFigure 8: Extra
ting a type and
onstraint
ontext from are
ord bodymon with [12℄ we must generalise the type of nearly everysub-term, in
ontrast to Hindley/Damas/Milner-based sys-tems in whi
h only let-bound terms need be generalised.This is a

omplished using the `G judgement form. Ea
hbinding
onstru
t shadows any variables in s
ope with thesame name. In rules re
ord and newre
, we use the fun
-tion unstamp to reset to 0 the stamps of the
ontext
or-responding to the re
ord de
laration body before using itto extend the
urrent
ontext. This is be
ause the alpha-
onversion of re
ord bodies during kind
he
king is not re-
e
ted within terms, whi
h
ontinue to use names with adefault stamp of 0. Sin
e all types within the type
on-text are absolute, and we prevent the shadowing of top-levelmodule names, it is sound to shadow type de
larations inthis simple-minded way. In rule proje
t, we use the ex-ternal signature of the proje
ted variable to determine theexpression's type.Re
ord bodies are type
he
ked by the rules of Figure 15.We assume re
ord bodies are permuted to mat
h their re
ordde
laration bodies. Che
king instan
e bindings against in-stan
e de
larations is somewhat involved, as we must ensurenot only that the supplied term is of the appropriate type,but also that the super
lass
ontext of the instan
e de
lara-tion's
lass may also be satis�ed. The later
he
k requiresthe instan
e de
laration under
onstru
tion to be temporar-ily removed from the known
onstraint
ontext. This is thereason we used
ompname to form the
omposite name ofthe instan
e de
laration in Figure 8.For example, assume we have the
lass de
laration:

f�gopt j � ` S ,! S 0 re
orda j \ dom(�) = ;f�^gopt Ai a j ` S1 : h�0 j idom(�0) \ dom(�) = ;f�^gopt Ai a j j � ++ a j : �++�0 ` S1 ,! S3 re
ordf�gopt j � ` re
ord Ai a j : � = { S1 } ; S2 ,!re
ord Ai a j : � = { S3 } ; S4 re
ord� ` �1 ,! �3 s
heme� ` � ,! �0
onstraint� ` �2 ,! �4 s
hemef�gopt j � ` S ,! S 0 re
ordf�gopt j � ` fopengopt x i :: �1 {� => �2} ; S ,!fopengopt x i :: �3 {�0 => �4} ; S 0 re
orda j \ dom(�) = ;� ++ a j : � ` � ,! �0
onstraint� ++ a j : � ` � : Type ,! � 0f�gopt j � ` S ,! S 0 re
ordf�gopt j � `
lass � => C i a j : � where � ; S ,!
lass �0 => C i a j : � where � 0 ; S 0 re
orddom(�) \ dom(�) = ;� ++� ` � ,! �0
onstraint� ++� ` �0 ,! �000
onstraintf�gopt j � ` S ,! S 0 re
ordf�gopt j � ` instan
e w i :: forall � . �0 => � ; S ,!instan
e w i :: forall � . �000 => �0 ; S 0 re
ord� ` � ,! � re
ordFigure 9: Well-kinded re
ord de
laration bodies� j � `p �(w i : �) 2 �� j � `p � � j � `p �� ` � : h�0 j � j �i� j � `p �0i� j � `e �� j � `p �� j � `e � (w i : forall a j : � . �0 => �) 2 �a j \ dom(�) = ;� ` � : �� j � `e [a j 7! � ℄ �0� j � `e [a j 7! � ℄ �Figure 10: Constraint entailment
lass B a => C a where a -> Int17

� j � ` � � �0� j � ` � � �� j � ` �01 � �1� j � ` �2 � �02� j � ` (�1 -> �2) � (�01 -> �02)a i \ dom(�) = ;� ` � : �� j � ` [a i 7! � ℄ � � �0� `e [a i 7! � ℄ �� j � ` forall a i : � . � => � � �0a i \ dom(�) = ;�0 = named(�)� ++ a i : � j � ++�0 ` � � �0� j � ` exists a i : � . � => � � �0a i \ dom(�) = ;�0 = named(�)� ++ a i : � j � ++�0 ` � � �0� j � ` � � forall a i : � . � => �0a i \ dom(�) = ;� ` � : �� j � ` � � [a i 7! � ℄ �0� `e [a i 7! � ℄ �� j � ` � � exists a i : � . � => �0Figure 11: Type subsumptionthe instan
e de
laration:instan
e w :: forall a . A a => C aand the instan
e binding:instan
e w = tFurthermore, assume t has type:forall a b . A a => a -> bWe must now
he
k that (i) t mat
hes its instan
e de
lara-tion, that (ii) its type is
ompatible with that given by its
orresponding
lass de
laration, and (iii) that the super
lass
onstraints of the
lass are satis�able. Let � be the known
onstraint
ontext. With a little
unning, its possible toa

omplish all three of these tests by
he
king:�nw ` forall a b . (A a, B a) => a -> b �forall a . A a => a -> IntNoti
e that the
onstraint B a was added to the type s
hemefor t so as to
he
k (iii). This subsumption test su

eeds if

� ` P ,! �re
ord f�^gopt Ai a j : � = { S } 2 �� ` � : �� ` Ai ,! f�^gopt Ai �� ` P ,! �� ` � : h� j � j Sire
ord Ai a j : � = { S 0 } 2 S� ` � : �� ` P^A ,! �^A �� ` Q ,! �
lass � => f�^gopt C i a j : � where � 2 �� ` C i ,! forall a j : � . f�^gopt C i a => �bj \ dom(�) = ;� ++ bj : �0 ` P ,! �� ` � : h� j � j Si
lass � => C i a j : � where � 2 Sa j \ bj = ;� ` P^C ,! forall a j : �++ bj : �0 . �^C a j => �Figure 12: Expanding re
ord and
lass
onstru
tors�
ontains a
onstraint of the form:w'' :: forall a . B aIf we didn't remove w from �, the above subsumption testwould also su

eed if �
ontains a
onstraint of the form:w' :: forall a . A aThis is be
ause:w' :: forall a . A a; w :: forall a . A a => C a `e B aTo avoid this
ir
ularity problem, we must temporarily re-move the instan
e de
laration we are trying to type
he
kfrom the known
onstraint
ontext.Finally, Figure 16 shows how to type
he
k an entire pro-gram. We �rst split the program into a re
ord type de
-laration body and a single term. The re
ord de
larationbody is then skolemized, kind
he
ked, and the result usedto
onstru
t the initial type
ontext. The term is then type
he
ked assuming that, for ea
h interfa
e A, a variable Aof type A is in s
ope. Sin
e the term must
orrespond toan implementation, we require it has the appropriate re
ordtype.For brevity we have not formalized three aspe
ts of the sys-tem. Firstly, we must dete
t
y
li
 types su
h as:x :: x!This is easily a
hieved by keeping tra
k of how many timesea
h variable has been dereferen
ed while rewriting a given18

� j � `G t : �dom(�) \ dom(�) = ;� ++� j �
onstraint�0 = named(�)� ++� j � ++ �0 ` t : � gen� j � `G t : forall � . � => �� j � ` t : � ,! Tint� j � ` i : Int(x i : �) 2 � var� j � ` x i : �� ` � : Type�nx i ; x i : � j � `G t : � abs� j � ` \x i . t : (� -> �)� ` �0 s
heme�nx i ; x i : �0 j � `G t : � aabs� j � ` \x i::�0 . t : (�0 -> �)� j � `G u : �1� j � `G t : �2� j � ` �2 � (�3 -> �4)� j � ` �1 � �3 app� j � ` t u : �4� j � `G t : �� j � ` � � � tup� j � ` (t) : (�)� j � `G u : �0� j � ` �0 � (�)�nx i ++ x i : � j � ` t : � lettup� j � ` let (x i) = u in t : �� j � `G u : �0�nx i ; x i : �0 j � ` t : � let� j � ` let x i = u in t : �� ` �1 ,! �2 s
heme� j � `G u : �3� j � ` �3 � �2�nx i ; x i : �2 j � ` t : �4 alet� j � ` let x i :: �1 = u in t : �4Figure 13: Well-typed terms (part 1 of 2)

type. Se
ondly, we must prevent top-level interfa
e namesfrom being shadowed, and must disallow the expli
it
on-stru
tion of a re
ord using a top-level interfa
e
onstru
tor:module A wherere
ord A = { ... } -- illegala = A { ... } -- illegalFinally, we have not formalized abstra
t top-level types.These are handled by augmenting the interfa
e with the lo
altype de
larations of the implementation. Abstra
t top-leveltypes named in the interfa
e are simply overwritten by their
on
rete de
laration given in the implementation. The onlysubtlety is
he
king the two type de
larations have equalkinds.Type inferen
e for our system has been for-malized as a Haskell program, available fromhttp://www.
se.ogi.edu/~mbs. This is easily transliter-ated into a more familiar presentation as a set of indu
tiverelations.

19

� j � `G u : exists � . � => �0dom(�) \ dom(�) = ;�0 = named(�)�nx i ++�; x i : �0 j � ++�0 ` t : �� ` � s
heme openlet� j � ` let open x i = u in t : ��1 = exists � . � => �2dom(�) \ dom(�) = ;� ++� ` � ,! �0
onstraint� ++� ` �2 ,! �3 s
heme� j � `G u : �4� j � ` �4 � exists � . �0 => �3�0 = named(�0)�nx i ++�; x i : �3 j � ++�0 ` t : �5� ` �5 s
heme aopenlet� j � ` let open x i :: �1 = u in t : �5� ` �1 ,! �2 s
heme� j � `G t : �3� j � ` �3 � �2 annot� j � ` (t :: �1) : �2a \ dom(�) = ;� ` � : �� j � ` [a i 7! �℄ t : � free� j � ` free a i : � in t : �� ` P ,! �� ` � : h� j � j Si� ` S : h�0 j �i�00 = unstamp(�0)� j �ndom(�00) ++ �00 j � ` s : S re
ord� j � ` P { s } : �� j � `G t : �1� j � ` �1 � �� ` � : h� j � j Si(fopengopt x i :: �2 {� => �3}) 2 S proje
t� j � ` t.x : �3� ` Q ,! �
lass� j � ` ?Q : �Ai 62 dom(�)dom(�) \ dom(�) = ;� ++� ` S ,! h� j S 0i skolem� ` S 0 : h�0 j �i�00 = unstamp(�0)� j �ndom(�00) ++�++ �00 ` S 0 ,! S 00 re
ord�; re
ord Ai � = { S 00 } j � ` t : �� ` � s
heme newre
� j � ` re
ord Ai � = { S } in t : �Figure 14: Well-typed terms (part 2 of 2)

f�gopt j � j � ` s : Sf�gopt j � j � ` s : Sf�gopt j � j � ` s : (re
ord Ai � = { S 0 } ; S)f�gopt j � j � ` s : Sf�gopt j � j � ` s : (
lass � => C i � where � ; S)� j � `G t : �3� j � ` �3 � �1f�gopt j � j � ` s : Sf�gopt j � j � ` (fopengopt x i = t ; s) :(fopengopt x i :: �1 {� => �2} ; S)a j \ dom(�) = ;� ++ a j : � ` � : h�00 j � j � 0i�1 = forall a j : � . �0 => � 0� j � `G t : �2�2 = forall bj : �0 . �000 => � 00bj \ dom(�) = ;� ++ bj : �0 ` � : �� ++ bj : �0 ` �0 : �[a j 7! �℄ � 0 = [bj 7! �0℄ � 00�4 = forall bj : �0 . �000 ++ [a j 7! �℄ �00 => � 00� j �n
ompname(f�gopt ;w i) ` �4 � �1f�gopt j � j � ` s : Sf�gopt j � j � ` (instan
e w i = t ; s) :(instan
e w i :: forall a j : � . �0 => � ; S)f�gopt j � j � ` � : �Figure 15: Well-typed re
ord bodies
` prog toplevel� ` re
ord Ai = { S } ,! h� j S 0i skolem� ` S 0 : h� j i� j �++� ` S 0 ,! S 00 re
ord� ` S 00 : h�0 j �i�++ �0 ++Ai : Ai j � `G B j { s } : B j` re
ord Ai = { S } ; B j { s } toplevelFigure 16: Well-formed programs20

