
CENTRO PER LA RICERCA

SCIENTIFICA E TECNOLOGICA

38050 Povo (Trento), Italy
Tel.: +39 0461 314312
Fax: +39 0461 302040
e−mail: prdoc@itc.it − url: http://www.itc.it

CONFORMANT PLANNING VIA
MODEL CHECKING

Cimatti A., Roveri M.

August 1999

Technical Report # 9908−02

 Istituto Trentino di Cultura, 1999

LIMITED DISTRIBUTION NOTICE

This report has been submitted for
publication outside of ITC and will probably be copyrighted if accepted for publication. It has been
issued as a Technical Report for
early dissemination of its contents. In view of the transfert of copy right to
the outside publisher, its
distribution outside of ITC prior
to publication should be limited to peer communications and specific
requests. After outside publication,
material will be available only in
the form authorized by the copyright owner.

Conformant Planning via Model Che
kingAlessandro Cimatti1 and Mar
o Roveri1;21 ITC-irst, Via Sommarive 18, 38055 Povo, Trento, Italy,2 DSI, University of Milano, Via Comeli
o 39, 20135 Milano, Italyf
imatti,roverig�irst.it
.itAbstra
t. Conformant planning is the problem of �nding a sequen
eof a
tions that is guaranteed to a
hieve the goal for any possible initialstate and nondeterministi
 behavior of the planning domain. In this pa-per we present a new approa
h to
onformant planning. We propose analgorithm that returns the set of all
onformant plans of minimal lengthif the problem admits a solution, otherwise it returns with failure. Ourwork is based on the planning via model
he
king paradigm, and relieson symboli
 te
hniques su
h as Binary De
ision Diagrams to
ompa
tlyrepresent and eÆ
iently analyze the planning domain. The algorithm,
alled
mbp, has been implemented in the mbp planner.
mbp is stri
tlymore expressive than the state of the art
onformant planner
gp. Fur-thermore, an experimental evaluation suggests that
mbp is able to dealwith un
ertainties more eÆ
iently than
gp.1 Introdu
tionThe planning via model
he
king [5, 8, 7, 9℄ paradigm is based on the interpre-tation of a planning domain as a �nite state automaton [5℄. A high level a
tionlanguage, AR [10℄, is used to des
ribe
omplex, nondeterministi
 domains withmultiple initial states, and a
tions with
onditional and un
ertain e�e
ts. Sym-boli
 representation and exploration te
hniques on the style of symboli
 model
he
king [3, 15℄, based on the use of Binary De
ision Diagrams (bdds) [2℄, allowfor eÆ
ient planning in nondeterministi
 domains. The planning algorithm pre-sented in [8℄ allows to �nd strong plans, i.e.
onditional (
ontingent) plans whi
hare guaranteed to a
hieve the goal for any initial state and any possible nonde-terministi
 evolution of the domain. The algorithms de�ned in [7℄ and in [9℄ alsoallow for the generation of iterative trial-and-error strategies.The work in [8, 7, 9℄ rely on the hypothesis of
omplete run-time observability.That is, the status of the world after the exe
ution of a (possibly nondetermin-isti
) a
tion is assumed to be
ompletely observable. The derived plans
an be(heavily)
onditioned to run-time observations. However, in many real world sit-uations, sensorial information may be
ostly or unavailable, and te
hniques areneeded to deal with in
omplete run-time observability. In this work we extendthe planning via model
he
king paradigm by proposing a new algorithm for
onformant planning, i.e. the problem of �nding a plan a
hieving the goal forany possible
ontingen
y in total absen
e of run-time information. Sin
e no in-formation is available at run time, the plan
an not be
onditioned to run-timeobservation, and thus it must be a sequen
e of a
tions, i.e. a
lassi
al plan. Dif-ferently from the
lassi
al planning problem, however, here a sequen
e of a
tions
an result in (many) di�erent exe
utions, depending on the initial state and on

the di�erent un
ertain out
omes of a
tions. This makes
onformant planningmu
h harder than
lassi
al planning.The
onformant planning algorithm is appli
able to
omplex planning do-mains, with
onditional a
tions, un
ertainty in the initial state and in the out-
omes of a
tions. The algorithm is
omplete, i.e. it returns with failure if andonly if the problem admits no
onformant solution. If a solution exists, it re-turns all
onformant plans of minimal length. The algorithm has been imple-mented in mbp (Model Based Planner) [5, 8, 7℄, a planner developed on top ofthe NuSMV [4℄ model
he
ker, and an experimental analysis has been
arriedout. The experimental results show that the algorithm
an solve rather
omplexproblems, and
ompares ni
ely with the state of the art
onformant planner
gp [19℄. In parti
ular, it is able to express and solve problems with un
ertaine�e
ts of a
tions, whi
h
an not be expressed in
gp. Furthermore, di�erentlyfrom
gp, our algorithm is not dire
tly related to the number of initial statesand un
ertainties in a
tion e�e
ts, and
an plan rather eÆ
iently in highly non-deterministi
 domains.This paper is stru
tured as follows. In se
tion 2 we present some ne
essaryba
kground. In se
tion 3 we des
ribe the algorithm, and in se
tion 4 we presentthe experimental results. In se
tion 5 we draw the
on
lusions and dis
uss somefuture resear
h.2 Ba
kgroundA planning domain is a 4-tuple D = (F ;S;A;R), where F is the (�nite) set of
uents (atomi
 propositions), S � 2F is the set of states, A is the (�nite) setof a
tions, and R � S � A � S is the transition relation. Intuitively, a stateis identi�ed with the set of propositions holding in it. R(s; �; s0) holds i� whenexe
uting the a
tion � in the state s the state s0 is a possible out
ome. An a
tion� is not appli
able in s i� there is no state s0 su
h that R(s; �; s0) holds. Ana
tion � has an un
ertain out
ome in s if there are two distin
t states s0 ands00 su
h that R(s; �; s0) and R(s; �; s00). In the following we assume a planningdomain D is given. We say that an a
tion � is appli
able in the set of states Sif it is appli
able to every state of S. The result of exe
uting an a
tion � in theset of states S (also
alled the image of S under �), written Exe
[�℄(S), is theset of all possible out
omes of the exe
ution of � in any state of S, i.e.Exe
[�℄(S) _= fs0 j R(s; �; s0) with s 2 SgIf s is a state, we write Exe
[�℄(s) instead of Exe
[�℄(fsg). The weak preimageof a set of states S under the a
tion �, written WPreImage [�℄(S), is the set ofall states where the exe
ution of �
an lead to S. In symbols,WPreImage [�℄(S) _= fs j R(s; �; s0) with s0 2 SgWe
all this set weak preimage to stress the fa
t that, for every state in it,rea
hing S when exe
uting � is possible but not ne
essary. The strong preimageof a set S under the a
tion �, written SPreImage [�℄(S), is the set of all stateswhere � is appli
able and every possible exe
ution is in S. I.e.,SPreImage[�℄(S) _= fs j ; 6= Exe
[�℄(s) � Sg

Armed

In_2

not In_1

Armed

In_1

not In_2

In_1

not In_2

not Armed not Armed

not In_1

In_2

Dunk_1,
Dunk_2

Dunk_1,
Dunk_2

Dunk_1 Dunk_2

Dunk_2 Dunk_1

Fig. 1. The automaton for the BT domainIn this paper we
onsider plans to be sequen
es of a
tions. We use � for the0-length plan, � to denote an a
tion, � and � to denote plans, and �; � for plan
on
atenation. The appli
ability set of a plan is the set of states from whi
h we
an exe
ute any pre�x of the plan without ending up in a state where the restof the plan is not appli
able. The exe
ution of a plan in a set of states is the setof \�nal" states of the possible exe
ution tra
es from any of the initial states.De�nition 1 (Appli
ability set of a Plan). Let � be a plan. The appli
abilityset of �, written Appl [�℄, is a subset of S de�ned as follows:1. Appl [�℄ = S;2. Appl [�℄ = fs j Exe
[�℄(s) 6= ;g;3. Appl [�; �℄ = fs j s 2 Appl [�℄; and Exe
[�℄(s) � Appl [�℄g;De�nition 2 (Plan Exe
ution). Let S be a �nite set of states. Let � be aplan for D. The exe
ution of � in S, written Exe
[�℄(S), is de�ned as:1. Exe
[�℄(S) = S;2. Exe
[�℄(S) = fs0 j s 2 S; and R(s; �; s0)g;3. Exe
[�;�℄(S) = Exe
[�℄(Exe
[�℄(S));The
lassi
al example used to illustrate
onformant planning is the bomb inthe toilet (BT) problem. Figure 1 depi
ts the
orresponding automaton. Thereare two pa
kages, and one of them
ontains an armed bomb. It is possible to dunkeither pa
kage in the toilet (a
tions Dunk1 and Dunk2). Dunking the pa
kage
ontaining the bomb has the e�e
t of disarming the bomb, while dunking theother pa
kage has no e�e
t. Initially the bomb is armed, but there is un
ertaintyin the initial
on�guration sin
e it is not known where the bomb is (dashed linestates). We want to �nd a
onformant solution to the problem of disarming thebomb, i.e. a sequen
e of a
tions that will disarm the bomb for all initial states.In this
ase, there are two possible
onformant plans of length 2, namely dunkingboth pa
kages in either order.A planning probelm is a triple (D; Init;Goal), where D is the planning do-main, and Init and Goal are nonempty sets of states of D. In the following, when
lear from the
ontext, we omit the domain from a planning problem. A formal
hara
terization of
onformant planning
an be given as follows.

In_1

not In_2

not Armed

In_1

not In_2

not Armed

In_1

not In_2

not Armed
Dunk_1

Dunk_2

Dunk_1

Dunk_2

not Armed

not In_1

In_2

not Armed

not In_1

In_2

not Armed

not In_1

In_2

Dunk_1

Dunk_2

Armed

In_2

not In_1

Armed

In_2

not In_1

Armed

In_1

not In_2

Armed

In_1

not In_2

LEVEL 2 LEVEL 1 LEVEL 0

Dunk_2

Dunk_1

ε
Dunk_2

Dunk_1

Dunk_2

Dunk_1

Dunk_2

Dunk_1

Dunk_2; Dunk_1

Dunk_1; Dunk_2

Dunk_2

Dunk_1

Fig. 2. Solving the BT problemDe�nition 3 (Conformant Plan). The plan � is a
onformant plan for (a
onformant solution to) the planning problem (D; Init;Goal) i� Init � Appl [�℄,and Exe
[�℄(Init) � Goal.In words, a plan � is a
onformant solution to a planning problem (Init;Goal)if two
onditions are satis�ed. First, � must be appli
able in Init, i.e. afterexe
uting any pre�x of � in any of the initial states, the remaining plan isalways appli
able. Se
ond, all the states resulting from the exe
ution of � in Initmust be goal states.3 The Conformant Planning AlgorithmThe
onformant planning algorithm uses as data stru
tures states-plan (SP)tables, of the form SPT = f(S1:�1) : : : (Sn:�n)g where, for i = 1; : : : ; n, Si is aset of states, �i is a sequen
e of a
tions, and �i 6= �j for all j 6=i. We
all (Si:�i)a states-plan pair, and Si the set of states indexed by �i. When no ambiguityarises, we write SPT(�i) for Si. The intuition is that �i is a
onformant solutionfor any planning problem (S;Goal), with S � Si. Thus we
all Si
onforman
eset of �i in SPT.The algorithm pro
eeds ba
kwards, from the goal to the initial states. It per-forms a breadth �rst sear
h, building at ea
h step
onformant plans of in
reasinglength. The status of the sear
h (a level) is represented by a SP table,
ontainingplans of the same length. The SP tables are stored in an array, SPTarr, SPTarr[i℄being the SP table
orresponding to the i-th level of sear
h.Figure 2 des
ribes how the algorithm solves the BT problem. The goal statesare depi
ted with a thi
k solid line. A SP pair is depi
ted as states en
ir
led by adashed line, annotated by the indexing plan. The SP table at level 0, SPTarr[0℄,is f(Goal:�)g, i.e. the set of goal states indexed by the 0-length plan �. (Noti
ethat � is a
onformant solution to every problem with goal set Goal and initialstates
ontained in Goal.) The SP table at level 1, SPTarr[1℄,
ontains two SPpairs with (overlapping) sets of states indexed by the length 1 plans Dunk1 and

fun
tion ConformantPlan(Init,Goal)0 begin1 i = 0;2 SPTarr[0℄ := f (Goal. �) g;3 Plans = GetPlans(Init; SPTarr[0℄);4 while ((SPTarr[i℄ 6= ;) ^ (P lans = ;)) do5 i := i + 1;6 SPTarr[i℄ := ConformantPreimage(SPTarr[i-1℄);7 SPTarr[i℄ := ConformantPrune(SPTarr; i);8 Plans := GetPlans(Init; SPTarr[i℄);9 done10 if (SPTarr[i℄ = ;) then11 return Fail;12 else return Plans;13 end Fig. 3. The
onformant planning algorithm.Dunk2. The set indexed by Dunk1, SPTarr[1℄(Dunk1),
ontains all states whereDunk1 is appli
able and all possible resulting states are in Goal. Noti
e that forall the states in this set, Dunk1 leads to the goal. Thus, Dunk1 is a
onformantplan for every subset of SPTarr[1℄(Dunk1). However, neither of the SP pairs oflength 1
orresponds to a
onformant solution to our problem, be
ause neitherof the
orresponding
onforman
e sets
ontains all the initial states. Noti
e alsothat, under the hypothesis of
omplete observability, after one step the StrongPlanning pro
edure presented in [8℄ would return a
onditional plan spe
ify-ing to exe
ute only one a
tion, i.e. dunk exa
tly the pa
kage
ontaining thebomb. At level 2, SPTarr[2℄
ontains two SP pairs
orresponding to the plansDunk1;Dunk2 and Dunk2;Dunk1. Both the
orresponding sets of states
on-tain all the initial states (thi
k dashed line). This means that for all initial stateseither plan is appli
able and will result in a goal state. Thus, we have found two
onformant plans for the BT problem. These plans are
onformant for any
hoi
eof the initial states. SPTarr[2℄ does not
ontain all possible plans of length 2.Dunk1;Dunk1 and Dunk2;Dunk2 are not present. The reason is that, for ea
hi, SPTarr[2℄(Dunki;Dunki) would not di�er from SPTarr[1℄(Dunki). In otherwords, Dunki;Dunki is subsumed by Dunki, and
an be pruned. In general,if the expansion of a further level only results in no plans or plans whi
h aresubsumed by shorter plans, then the algorithm terminates
on
luding that theproblem admits no
onformant plan.3.1 Set-theoreti
 viewThe
onformant planning algorithm ConformantPlan(Init,Goal), presentedin Figure 3, takes in input a planning problem in form of the set of statesInit and Goal. It returns Fail if and only if the problem admits no
onformantsolution. If a
onformant plan exists, ConformantPlan(Init;Goal) returns theset of all the
onformant plans of minimal length.The algorithm pro
eeds as follows, by �lling the array of SP tables SPTarr.First it
he
ks if there are plans of length 0, i.e. if � is a solution. The fun
tion

GetPlans, given a SP table and a set of (initial) states,
omputes the set of allpossible
onformant plans
ontained in the SP table.GetPlans(Init;SPT) _= f� j there exists (S:�) 2 SPT and Init � Sg (1)If no
onformant plan of length i exists ((P lans = ;) in line 4), then we enterthe loop, and build
onformant plans of in
reasing length (lines 5 to 8). Theiteration terminates (line 4) when either a plan is found (P lans 6= ;), or thespa
e of
onformant plans has been
ompletely explored (SPTarr[i℄ = ;).At ea
h iteration, the fun
tion ConformantPreimage is
alled to build anew SP table,
ontaining
onformant plans of length i, extending the
onformantplans of length i� 1
ontained in SPTarr[i� 1℄.ConformantPreimage(SPT) _= (2)f(S : �;�) j there exists (S0:�) 2 SPT; and S = SPreImage [�℄(S0) 6= ;gThe resulting SP table is then stored in the i-th position of SPTarr. The fun
tionConformantPrune is responsible to remove from the newly generated SPtable the plans whi
h are either subsumed by other plans of the same length, orby plans present in the SP tables built at previous steps. It takes in input thearray of SP tables SPTarr, and an index of the
urrent step.ConformantPrune(SPTarr; i) _=f(S0:�0) 2 SPTarr[i℄ jthere is no (S:�) 2 SPTarr[i℄ su
h that � 6= �0 and S0 (S; (3)and for all j < i; there is no (S:�) 2 SPTarr[j℄:(S0 � S)gThe termination of the algorithm follows from the
alls to ConformantPrune,whi
h guarantee that the set of explored
onforman
e sets is monotoni
ally in-
reasing, and thus a �x point is eventually rea
hed when a plan does not exist(given the �niteness of the domain). The optimality of the algorithm followsfrom the breadth-�rst style of the sear
h.3.2 Symboli
 representationFrom a
on
eptual point of view the algorithm of Figure 3 is rather simple.The problem is how to implement it eÆ
iently. The basi
 idea, mutuated fromsymboli
 model
he
king [15, 3℄, is to represent the sets to be
omputed (e.g.sets of states, SP tables) symboli
ally, by means of propositional and quanti�edboolean formulae (QBF). These formulae, in turn, are represented and eÆ
ientlymanipulated as bdds. In the rest of this se
tion we reinterpret the algorithm interms of manipulation of propositional formulae. The issues related to bdds aredis
ussed in the next se
tion.We have a ve
tor x of (distin
t) boolean variables,
alled state variables,used to en
ode sets of states. For instan
e, for the BT problem, the variables inx
ould be Armed, In1 and In2. A state
orresponds to a
omplete assignmentto the variables in x. The assignment f(Armed:>)(In1:>)(In2:?)g (we write >

and ? for the true and false truth values)
orresponds to the state where thebomb is in pa
kage 1, and armed. We use formulae as representatives of the set oftheir models. Thus, a propositional formula in the variables in x, written �(x),represents the set of the states
orresponding to the assignments whi
h make� true. For instan
e, the formula :Armed represents the set of goal states, i.e.the states where the bomb is not armed. The formula Armed ^ (In1 $:In2)represents the set of initial states.Another ve
tor of a
tion variables, ���, is used to represent a
tions. For theBT problem, with a sequential en
oding (i.e. assuming that only one a
tion
anbe exe
uted at ea
h time), we
an use one boolean variable A
t, where the as-signment f(A
t:>)g represents the a
tion Dunk1, and the assignment f(A
t:?)grepresents the a
tion Dunk2. A formula (x;���) represents a relation betweenstates and a
tions (e.g., a universal plan, or an appli
ability
ondition). The for-mula Armed^A
t spe
i�es a relation holding between a
tion Dunk1, and everystate where Armed holds.Transitions are 3-tuples
ontaining a state (the initial state of the transi-tion), an a
tion (the a
tion being exe
uted), and a state (the resulting state ofthe transition). To represent the �nal state of transitions we use an additionalve
tor of (next) state variables x0. The transition relation of the automaton
or-responding to the planning domain is thus represented by a formula R(x;���;x0),ea
h satisfying assignment of whi
h represents a parti
ular transition.In order to represent SP tables, we need a way to represent plans. A planof length i is represented as an assignment to the ve
tors of plan variables,���1; : : : ;���i, where ea
h ve
tor of variables ���n ranges over a
tions, and representsthe n-th a
tion of a plan. For the BT problem, the assignment f(A
t1:>)(A
t2:?)grepresents the plan Dunk1;Dunk2. The formula :A
t1 represents the set of thetwo plans of length 2 Dunk2;Dunk1 and Dunk2;Dunk2, sin
e it imposes no
onstraint on the se
ond a
tion. In the following we assume that the variablesin x;x0;���;���1; : : : ;���i are all distin
t. An SP table
ontaining plans of length i isrepresented by a formula in the state variables x and plan variables���;���1; : : : ;���i.Using a symboli
 representation, we exploit the fa
t that if a variable v doesnot o

ur in �, then it is irrelevant for the truth value of �: any satisfying assign-ment of � where the truth value of v is reversed is still a satisfying assignment.In general, the
ardinality of the set represented by a given formula has a multi-plying fa
tor of two to the power of the number of variables whi
h do not o

urin the formula. This explains why a symboli
 representation
an have a dramati
improvement over an expli
it-state (enumerative) representation.In the following we des
ribe in terms of propositional and QBF transfor-mations some of the operations of the algorithm. The
omplete des
ription
anbe found in [6℄. We indi
ate with �[v0=v℄ the parallel substitution (also
alled\shifting") in the formula � of the variables in ve
tor v with the (
orrespond-ing) variables in v0. The
omputation of ConformantPreimage(SPT),
anbe des
ribed as follows (where SPT is the SP table in input, representing plans

of length i� 1):ConformantPreimage(SPT) _= (4)(8x0:(R(x;���;x0)! SPT(x;���i�1; : : : ;���1)[x0=x℄) ^ 9x0:R(x;���;x0))[���i=���℄The free variables of the resulting formula are the
urrent state variables x andthe plan variables ���i; : : : ;���1. The a
tion variables ��� in R are renamed to planvariables ���i. The next state variables in R and in SPTarr (resulting from theshifting of x to x0) are universally quanti�ed away. Ea
h set of assignmentssatisfying (4) and agreeing on the values assigned to plan variables represents arelation between a set of states and a plan of length i, i.e. a SP pair.GetPlans extra
ts the assignments to plan variables su
h that the
orre-sponding set
ontains the initial states. In symbols,GetPlans(Init;SPT) _= 8x:(Init(x)! SPT(x;���i; : : : ;���1)) (5)4 Experimental resultsIn this se
tion we dis
uss some implementational issues, and present some resultsof the experimental evaluation (all the details are given in [6℄). The
onformantplanning algorithm was implemented in mbp. mbp is based on the NuSMVmodel
he
ker, is written in C, and uses the CUDD [20℄ state-of-the-art bddpa
kage. mbp takes in input planning domains des
ribed in AR [10℄, generatesthe
orresponding symboli
 representation, and
an apply di�erent planning al-gorithms to the spe
i�ed planning problems. In the following we
all
mbp the
onformant planning algorithm implemented in mbp.The
onformant planners whi
h are most signi�
ant for
omparison with
mbp are
gp [19℄ andQbfPlan [17℄.
gp extends the ideas of GraphPlan [1℄to deal with un
ertainty. Basi
ally, a planning graph is built of every possiblesequen
e of possible worlds, and
onstraints among planning graphs are prop-agated to ensure
onforman
e. We
onsider
gp the state of the art in
onfor-mant planning.
gp was shown to outperform several other planners su
h asBuridan [16℄ and UDTPOP [14℄ (see [19℄ for a detailed
omparison).QbfPlan is (our name for) the planning system by Rintanen. QbfPlangeneralizes the idea of SAT-based planning [12, 13, 11℄ to nondeterministi
 do-mains, by en
oding problems in QBF. Given a bound on the length of the plan,�rst a QBF en
oding of the problem is generated, and then a QBF solver [18℄is
alled. If no solution is found, a new en
oding for a longer plan must be gen-erated and solved. QbfPlan is interesting for
omparison, sin
e it relies on asymboli
 representation based on QBF (although it di�ers from
mbp in manyother ways).Both
gp andQbfPlan are in
omplete, i.e.
an not
on
lude that a planningproblem has no
onformant solutions.
mbp, on the other hand, thanks to thepruning step, is
omplete, i.e. it
an dis
over whether no solution exists. In theexperimental evaluation, for a fair
omparison,
mbp was run by disabling thepruning primitives.

mbp
gpjPj #P. jBDDj Time jLj TimeBT(2) 2 2 3 0.000 1 0.000BT(4) 4 24 37 0.000 1 0.000BT(6) 6 720 287 0.020 1 0.010BT(8) 8 40320 1337 0.150 1 0.020BT(10) 10 3628800 7919 1.330 1 0.020
mbp
gpjPj #P. jBDDj Time jLj TimeBTC(2) 3 2 11 0.010 3 0.000BTC(3) 5 6 28 0.010 5 0.010BTC(4) 7 24 102 0.010 7 0.030BTC(5) 9 120 225 0.050 9 0.130BTC(6) 11 720 483 0.160 11 0.860BTC(7) 13 5040 1005 0.520 13 2.980BTC(8) 15 40320 2773 1.850 15 13.690BTC(9) 17 362880 5876 6.020 17 41.010BTC(10) 19 3628800 12336 16.020 19 157.590

QbfPlanBTC(6) BTC(10)jPj Time jPj Time1 0.00 1 0.022 0.01 2 0.033 0.26 3 0.784 0.63 4 2.305 1.53 5 4.876 2.82 6 8.907 6.80 7 22.618 14.06 8 52.729 35.59 9 156.1210 93.34 10 410.8611 (+) 2.48 11 1280.8813 3924.9614 |: : : : : :18 |19 (+) 16.84Table 1. Results for the BT and BTC problems.
mbp is stri
tly more expressive than
gp, whi
h
an handle un
ertaintyonly in the initial state (although [19℄ des
ribes how the approa
h
an be ex-tended to a
tions with un
ertain e�e
ts). The
omparison with
gp was
arriedout only on the
ases with un
ertainty on the initial
ondition. QbfPlan is ableto handle a
tions with un
ertain e�e
ts. This is done by introdu
ing auxiliary(
hoi
e) variables, the assignments to whi
h
orrespond to the di�erent possibleout
omes of a
tions. These variables need to be quanti�ed universally to ensure
onforman
e of the solution. However, the en
oding generator of QbfPlan hasML
ode as its input format. The
omparison with QbfPlan is limited to the(few) problems for whi
h the en
odings already existed.For
mbp and
gp, all the examples were run by setting a limit to the depthof the sear
h. Sin
e mbp uses a serial en
oding, the limit
orresponds to themaximum length of the plan. In
gp, the limit is on the number of levels in theplanning graph. The
hosen limit was enough to �nd a solution for the testedproblems in both systems. Di�erently from e.g. Bla
kBox [11℄, QbfPlan doesnot have a heuristi
 to guess the \right" length of the plan. Given a limit inthe length of the plan, it generates all the en
odings up to the spe
i�ed length,and repeatedly
alls the QBF de
ider on en
odings of in
reasing length untila plan is found. We spe
i�ed as limit the length of the shortest solution. bddbased
omputations are known to be sensitive to a number of fa
tors, su
h asthe ordering of variables. For all the examples reported here,
mbp used a �xedordering strategy: a
tion variables were positioned at the top, then plan vari-ables, and state variables. Variables of a given kind were interleaved with the
orresponding auxiliary variables (e.g. x with x0, ���i with ���i). Dynami
 variablereordering was disabled. The tests were performed on an Intel 300MhZ Pentium-II, 512MB RAM, running Linux.
gp is implemented in LISP, and was
ompiledand run under Allegro CL 4.3 [Linux/X86;R1℄. CPU time was limited to 7200se
 (two hours) for ea
h test. In the following tables, unless otherwise spe
i�ed,we write | for a test that was not
ompleted within the above time limit.The evaluation was performed by running the systems on a number of pa-

Low Un
. Mid Un
. High Un
.bmt

mbp
gp
mbp
gp
mbp
gp(p,t) IS jPj #P. jBDDj Time jLj Time IS Time jLj Time IS Time jLj Time(2,2) 2 2 4 15 0.000 1 0.000 4 0.000 2 0.010 8 0.000 2 0.030(3,2) 3 4 48 70 0.010 3 0.020 6 0.010 3 0.040 12 0.020 4 13.560(4,2) 4 6 768 268 0.040 3 0.030 8 0.060 4 0.460 16 0.090 4 145.830(5,2) 5 8 15360 662 0.180 5 1.390 10 0.260 5 13,180 20 0.340 4 |(6,2) 6 10 368640 1499 0.640 5 3.490 12 0.830 5 | 24 1.150(7,2) 7 12 1.03e7 3250 2.100 7 508.510 14 2.780 28 3.390(8,2) 8 14 3.30e8 8357 7.960 7 918.960 16 10.380 32 12.330(9,2) 9 16 1.18e10 17944 22.820 7 | 18 30.370 36 35.510(10,2) 10 18 4.75e11 37968 72.730 20 87.370 40 121.740(2,4) 2 2 24 31 0.000 1 0.000 8 0.010 1 0.020 32 0.010 2 1.610(3,4) 3 3 144 122 0.030 1 0.010 12 0.050 2 0.290 48 0.150 2 8.690(4,4) 4 4 576 426 0.100 1 0.010 16 0.320 2 0.730 64 0.840 2 32.190(5,4) 5 6 57600 1985 0.680 3 0.500 20 1.610 2 | 80 3.420 3 |(6,4) 6 8 5806080 5905 3.350 3 1.160 24 6.900 96 12.650(7,4) 7 10 6.58e08 14939 14.210 3 2.410 28 23.090 112 40.410(8,4) 8 12 8.44e10 40237 77.420 3 8.540 32 232.150 128 932.820(9,4) 9 | | | 4 | 36 | 144 |(10,4) 10 160(2,6) 2 2 60 56 0.010 1 0.010 16 0.010 1 0.200 128 0.090 2 337.604(3,6) 3 3 720 423 0.090 1 0.010 24 0.080 1 0.830 192 1.040 2 1459.110(4,6) 4 4 8640 1879 0.510 1 0.040 32 1.190 2 30.630 256 6.460 2 5643.450(5,6) 5 5 86400 6137 3.080 1 0.060 40 12.260 2 30.140 320 40.770 2 |(6,6) 6 6 518400 14265 17.490 1 0.100 48 118.600 2 57.300 384 1819.520(7,6) 7 8 2.03e08 67489 5939.520 3 211.720 56 | 2 | 448 |(8,6) 8 | | | 3 1015.160 64 512(9,6) 9 3 3051.990 72 576(10,6) 10 2 | 80 640Table 2. Results for the BMTC problemsrameterized problem domains. The �rst
lass of problems we ta
kled is based onthe
lassi
al bomb in the toilet problem, BT(p), where p is the parametri
 num-ber of pa
kages. The results for the BT problems are shown in Table 1 (upperleft). The
olumns relative to
mbp are the length of the plan (jPj), the numberof plans (#P.), the size of the bdd representing the set of
onformant solutions(jBDDj), and the run time needed for sear
hing the automaton (expressed inse
onds). The
olumns relative to
gp are the number of levels in the planninggraphs, and the
omputation time needed for the sear
h. For the BT problem
gp is almost insensitive to the problem size, and outperforms
mbp. One reasonfor this is that
gp inherits from GraphPlan the ability to deal with parallela
tions eÆ
iently, and the BT problem is intrinsi
ally parallel (the depth of theplanning graph is always one, i.e. all pa
kages
an be dunked in parallel).We
all BTC(p) the extension where dunking a pa
kage (always)
logs thetoilet, and
ushing
an remove the
logging. The results for this problems areshown in Table 1. Sin
e the BTC does not allow for parallel a
tions, the impa
tof the depth of the plan length be
omes signi�
ant, and
mbp outperforms
gp.The performan
e of QbfPlan is reported in the rightmost table, only for the 6and 10 pa
kage problems. Noti
e that ea
h line reports the time needed to de
idewhether there is a plan of length i. QbfPlan is outperformed both by
gp andby
mbp. QbfPlan does not exploit the
omputations performed to analyzeprevious levels, and thus needs to restart from s
rat
h problems of in
reasinglength. In the rest of the
omparison we do not
onsider QbfPlan.

mbp
gpjPj #P. jBDDj Time jLj TimeRING(2) 5 2 10 0.010 3 0.070RING(3) 8 2 23 0.030 4 |RING(4) 11 2 35 0.060RING(5) 14 2 47 0.320RING(6) 17 2 59 1.460RING(7) 20 2 71 7.190RING(8) 23 2 83 35.380RING(9) 26 2 95 167.690

gp on RING(5)IS jLj Time jLj Time1 5 0.010 9 0.0202 5 0.060 9 0.1404 5 0.420 9 1.9508 5 6.150 9 359.68016 5 | 9 |Table 3. Results for the RING problems.The next
lass of problems,
alled BMTC(p,t), is the generalization of theBTC problem to the
ase of multiple toilets. The results are reported in Table 2.(IS is the number of initial states.) In the �rst
lass of tests (\Low Un
ertainty"
olumns), the only un
ertainty is the position of the bomb, while toilets areknown to be not
logged. The basi
 feature of the problem is that it be
omesmore parallelizable when the number of toilets in
reases.
gp is able to fullyexploit this feature, while
mbp su�ers be
ause of its serial en
oding. Withmany toilets
gp outperforms
mbp. However, the behavior of
gp degrades assoon as more than 5 levels in the planning graph need to be explored. Considerthe results for the BMTC(6,2) and BMCT(7,2) problems. Noti
e also that
mbp�nds all the 10321920
onformant solutions to BMTC(7,2) in 2.100 se
onds.The \Mid" and \High"
olumns show the results in presen
e of more un
er-tainty in the initial state. In the se
ond [third, respe
tively℄
lass of tests, thestatus of every other [every, resp.℄ toilet
an be either
logged or non
logged.This in
reases the number of possible initial states. The results show that
mbpis mu
h less sensitive to the number of initial states,
gp is almost unable tosolve what were trivial problems.We
onsidered another
lass of problems, where we have a ring of rooms,ea
h of them with a window, whi
h
an be either open,
losed or lo
ked. Therobot
an move (either
lo
kwise or
ounter
lo
kwise),
lose the window of theroom where it is, and lo
k it if
losed. The goal is to have all windows lo
ked. Inthe problem RING(r), where r is the number of rooms, the position of windowsobeys the law of inertia, i.e. it remains un
hanged unless
hanged by an a
tionof the robot. The un
ertainty in the initial states
an be both in the positionof the robot, and in the status of the windows. The maximum number of initialstates is r�3r,
orresponding to full un
ertainty on the position of the robot andon the status of ea
h window. The results, in the
ase of maximum un
ertainty,are reported in on the left in Table 3. On the right, we plot (for the RING(5)problem) the dependen
y of
gp on the number of initial states
ombined withthe number of levels to be explored (di�erent goals were provided whi
h requirethe exploration of di�erent levels).Finally, we
onsidered problems with full un
ertainty in a
tion e�e
ts, whi
h
an not be expressed in
gp. In the BTUC(p),
logging is an un
ertain out
omeof dunking a pa
kage. In the URING(r), at ea
h time instant, ea
h window
anopen or
lose nondeterministi
ally if it is not lo
ked. The results are reportedin Table 4. The run times are lower than in the inertial
ases, this is due to thefa
t that there is no need to represent the e�e
ts of the law of inertia.

mbpjPj #P. jBDDj TimeBTUC(2) 3 2 11 0.000BTUC(3) 5 6 28 0.000BTUC(4) 7 24 102 0.020BTUC(5) 9 120 225 0.050BTUC(6) 11 720 483 0.170BTUC(7) 13 5040 1005 0.530BTUC(8) 15 40320 2773 1.830BTUC(9) 17 362880 5876 6.020BTUC(10) 19 3628800 12336 17.730

mbpjPj #P. jBDDj TimeURING(2) 5 2 10 0.000URING(3) 8 2 23 0.010URING(4) 11 2 35 0.030URING(5) 14 2 47 0.080URING(6) 17 2 59 0.200URING(7) 20 2 71 0.530URING(8) 23 2 83 1.370URING(9) 26 2 95 4.600URING(10) 29 2 107 14.320Table 4. Results for the BTUC and URING problems.5 Con
lusions and Future WorkIn this paper we presented a new algorithm for
onformant planning. The al-gorithm is appli
able to
omplex planning domains, with
onditional a
tions,un
ertainty in the initial state and in the out
omes of a
tions, and nondetermin-isti

hanges in the environment. The algorithm returns the set of all
onformantplans of minimal length, if a solution to the planning problem exists. Otherwise,it terminates with failure. This work relies on and extends the planning via sym-boli
 model
he
king paradigm presented in [5, 8, 7, 9℄. The algorithm has beendesigned to be implemented eÆ
iently taking full advantage of the symboli
representation based on bdd. The experimental results show that the algorithmis able to solve rather
omplex problems, and
ompares ni
ely with the stateof the art
onformant planner
gp, and with QbfPlan. First,
mbp is
om-plete, i.e. it is able to de
ide whether a
onformant plan exists. Se
ond,
mbpis stri
tly more expressive than
gp, as it allows for un
ertainty in the a
tione�e
ts. Furthermore,
gp su�ers from the enumerative nature of its algorithm,and its qualitative behavior seem to depend heavily on the number of possiblesituations to be
onsidered. The experimental evaluation suggests that
mbp isable to deal with un
ertainties more eÆ
iently than
gp.A �rst dire
tion of future a
tivity is the investigation of parallel en
odings.
mbp inherits from mbp a serial en
oding, and is thus outperformed by
gpin problems with a high degree of parallelizability (e.g. when multiple toiletsare available). Furthermore, optimization te
hniques typi
al of symboli
 model
he
king, su
h as partitioning te
hniques [3℄,
ould be used to redu
e the
ompu-tational
ost of relational produ
ts and pruning. We have also developed anotheralgorithm for
onformant planning, based on a forward (rather than ba
kward)traversal of the state spa
e. Another dire
tion of future resear
h in
ludes itsexperimental evaluation, and its integration with the ba
kward algorithm pre-sented in this paper. Finally,
onformant planning via model
he
king will beextended to deal with the general
ase of planning under partial observability.Referen
es1. Avrim L. Blum and Merri
k L. Furst. Fast planning through planning graphanalysis. Arti�
ial Intelligen
e 1{2, 90:279{298, 1997.2. R. E. Bryant. Graph-Based Algorithms for Boolean Fun
tion Manipulation. IEEETransa
tions on Computers, C-35(8):677{691, August 1986.

3. J. R. Bur
h, E. M. Clarke, K. L. M
Millan, D. L. Dill, and L. J. Hwang. Sym-boli
 Model Che
king: 1020 States and Beyond. Information and Computation,98(2):142{170, June 1992.4. A. Cimatti, E.M. Clarke, F. Giun
higlia, and M. Roveri. NuSMV: a new Symboli
Model Veri�er. In N. Halbwa
hs and D. Peled, editors, Pro
eedings Eleventh Con-feren
e on Computer-Aided Veri�
ation (CAV'99), number 1633 in Le
ture Notesin Computer S
ien
e, pages 495{499, Trento, Italy, July 1999. Springer.5. A. Cimatti, E. Giun
higlia, F. Giun
higlia, and P. Traverso. Planning via ModelChe
king: A De
ision Pro
edure for AR. In S. Steel and R. Alami, editors, Pro-
eeding of the Fourth European Conferen
e on Planning, number 1348 in LNAI,pages 130{142, Toulouse, Fran
e, September 1997. Springer-Verlag.6. A. Cimatti and M. Roveri. Conformant Planning via Model Che
king. Te
hni
alReport 9908-02, ITC-IRST, Trento, Italy, August 1999.7. A. Cimatti, M. Roveri, and P. Traverso. Automati
 OBDD-based Generation ofUniversal Plans in Non-Deterministi
 Domains. In Pro
eeding of the FifteenthNational Conferen
e on Arti�
ial Intelligen
e (AAAI-98), Madison, Wis
onsin,1998. AAAI-Press.8. A. Cimatti, M. Roveri, and P. Traverso. Strong Planning in Non-Deterministi
Domains via Model Che
king. In Pro
eeding of the Fourth International Conferen
eon Arti�
ial Intelligen
e Planning Systems (AIPS-98), Carnegie Mellon University,Pittsburgh, USA, June 1998. AAAI-Press.9. M. Daniele, P. Traverso, and M. Y. Vardi. Strong Cy
li
 Planning Revisited. InSusanne Biundo, editor, Pro
eeding of the Fifth European Conferen
e on Planning.Durham, UK, September 1999. Springer-Verlag.10. E. Giun
higlia, G. N. Kartha, and V. Lifs
hitz. Representing a
tion: Indetermina
yand rami�
ations. Arti�
ial Intelligen
e, 95(2):409{438, 1997.11. H. Kautz and B. Selman. BLACKBOX: A New Approa
h to the Appli
ationof Theorem Proving to Problem Solving. In Working notes of the Workshop onPlanning as Combinatorial Sear
h, Pittsburgh, PA, USA, June 1998.12. Henry A. Kautz, David M
Allester, and Bart Selman. En
oding Plans in Propo-sitional Logi
. In Pro
. KR-96, 1996.13. Henry A. Kautz and Bart Selman. Pushing the Envelope: Planning, PropositionalLogi
, and Sto
hasti
 Sear
h. In Pro
. AAAI-96, 1996.14. Ni
holas Kushmeri
k, Steve Hanks, and Daniel S. Weld. An algorithm for proba-bilisti
 planning. Arti�
ial Intelligen
e, 76(1-2):239{286, September 1995.15. K.L. M
Millan. Symboli
 Model Che
king. Kluwer A
ademi
 Publ., 1993.16. M. Peot. De
ision-Theoreti
 Planning. PhD thesis, Dept. Engineering-E
onomi
Systems | Stanford University, 1998.17. J. Rintanen. Constru
ting
onditional plans by a theorem-prover. Journal ofArti�
ial Intellegen
e Resear
h, 1999. A

epted for publi
ation.18. J. Rintanen. Improvements to the Evaluation of Quanti�ed Boolean Formulae. In16th Iinternational Joint Conferen
e on Arti�
ial Intelligen
e. Morgan KaufmannPublishers, August 1999. To appear.19. David E. Smith and Daniel S. Weld. Conformant graphplan. In Pro
eedings ofthe 15th National Conferen
e on Arti�
ial Intelligen
e (AAAI-98) and of the 10thConferen
e on Innovative Appli
ations of Arti�
ial Intelligen
e (IAAI-98), pages889{896, Menlo Park, July 26{30 1998. AAAI Press.20. F. Somenzi. CUDD: CU De
ision Diagram pa
kage | release 2.1.2. Department ofEle
tri
al and Computer Engineering | University of Colorado at Boulder, April1997.

