
CENTRO PER LA RICERCA

SCIENTIFICA E TECNOLOGICA

38050 Povo (Trento), Italy
Tel.: +39 0461 314312
Fax: +39 0461 302040
e−mail: prdoc@itc.it − url: http://www.itc.it

CONFORMANT PLANNING VIA
MODEL CHECKING

Cimatti A., Roveri M.

August 1999

Technical Report # 9908−02

 Istituto Trentino di Cultura, 1999

LIMITED DISTRIBUTION NOTICE

This report has been submitted for
publication outside of ITC and will probably be copyrighted if accepted for publication. It has been
issued as a Technical Report for
early dissemination of its contents. In view of the transfert of copy right to
the outside publisher, its
distribution outside of ITC prior
to publication should be limited to peer communications and specific
requests. After outside publication,
material will be available only in
the form authorized by the copyright owner.

Conformant Planning via Model ChekingAlessandro Cimatti1 and Maro Roveri1;21 ITC-irst, Via Sommarive 18, 38055 Povo, Trento, Italy,2 DSI, University of Milano, Via Comelio 39, 20135 Milano, Italyfimatti,roverig�irst.it.itAbstrat. Conformant planning is the problem of �nding a sequeneof ations that is guaranteed to ahieve the goal for any possible initialstate and nondeterministi behavior of the planning domain. In this pa-per we present a new approah to onformant planning. We propose analgorithm that returns the set of all onformant plans of minimal lengthif the problem admits a solution, otherwise it returns with failure. Ourwork is based on the planning via model heking paradigm, and relieson symboli tehniques suh as Binary Deision Diagrams to ompatlyrepresent and eÆiently analyze the planning domain. The algorithm,alled mbp, has been implemented in the mbp planner. mbp is stritlymore expressive than the state of the art onformant planner gp. Fur-thermore, an experimental evaluation suggests that mbp is able to dealwith unertainties more eÆiently than gp.1 IntrodutionThe planning via model heking [5, 8, 7, 9℄ paradigm is based on the interpre-tation of a planning domain as a �nite state automaton [5℄. A high level ationlanguage, AR [10℄, is used to desribe omplex, nondeterministi domains withmultiple initial states, and ations with onditional and unertain e�ets. Sym-boli representation and exploration tehniques on the style of symboli modelheking [3, 15℄, based on the use of Binary Deision Diagrams (bdds) [2℄, allowfor eÆient planning in nondeterministi domains. The planning algorithm pre-sented in [8℄ allows to �nd strong plans, i.e. onditional (ontingent) plans whihare guaranteed to ahieve the goal for any initial state and any possible nonde-terministi evolution of the domain. The algorithms de�ned in [7℄ and in [9℄ alsoallow for the generation of iterative trial-and-error strategies.The work in [8, 7, 9℄ rely on the hypothesis of omplete run-time observability.That is, the status of the world after the exeution of a (possibly nondetermin-isti) ation is assumed to be ompletely observable. The derived plans an be(heavily) onditioned to run-time observations. However, in many real world sit-uations, sensorial information may be ostly or unavailable, and tehniques areneeded to deal with inomplete run-time observability. In this work we extendthe planning via model heking paradigm by proposing a new algorithm foronformant planning, i.e. the problem of �nding a plan ahieving the goal forany possible ontingeny in total absene of run-time information. Sine no in-formation is available at run time, the plan an not be onditioned to run-timeobservation, and thus it must be a sequene of ations, i.e. a lassial plan. Dif-ferently from the lassial planning problem, however, here a sequene of ationsan result in (many) di�erent exeutions, depending on the initial state and on

the di�erent unertain outomes of ations. This makes onformant planningmuh harder than lassial planning.The onformant planning algorithm is appliable to omplex planning do-mains, with onditional ations, unertainty in the initial state and in the out-omes of ations. The algorithm is omplete, i.e. it returns with failure if andonly if the problem admits no onformant solution. If a solution exists, it re-turns all onformant plans of minimal length. The algorithm has been imple-mented in mbp (Model Based Planner) [5, 8, 7℄, a planner developed on top ofthe NuSMV [4℄ model heker, and an experimental analysis has been arriedout. The experimental results show that the algorithm an solve rather omplexproblems, and ompares niely with the state of the art onformant plannergp [19℄. In partiular, it is able to express and solve problems with unertaine�ets of ations, whih an not be expressed in gp. Furthermore, di�erentlyfrom gp, our algorithm is not diretly related to the number of initial statesand unertainties in ation e�ets, and an plan rather eÆiently in highly non-deterministi domains.This paper is strutured as follows. In setion 2 we present some neessarybakground. In setion 3 we desribe the algorithm, and in setion 4 we presentthe experimental results. In setion 5 we draw the onlusions and disuss somefuture researh.2 BakgroundA planning domain is a 4-tuple D = (F ;S;A;R), where F is the (�nite) set ofuents (atomi propositions), S � 2F is the set of states, A is the (�nite) setof ations, and R � S � A � S is the transition relation. Intuitively, a stateis identi�ed with the set of propositions holding in it. R(s; �; s0) holds i� whenexeuting the ation � in the state s the state s0 is a possible outome. An ation� is not appliable in s i� there is no state s0 suh that R(s; �; s0) holds. Anation � has an unertain outome in s if there are two distint states s0 ands00 suh that R(s; �; s0) and R(s; �; s00). In the following we assume a planningdomain D is given. We say that an ation � is appliable in the set of states Sif it is appliable to every state of S. The result of exeuting an ation � in theset of states S (also alled the image of S under �), written Exe[�℄(S), is theset of all possible outomes of the exeution of � in any state of S, i.e.Exe[�℄(S) _= fs0 j R(s; �; s0) with s 2 SgIf s is a state, we write Exe[�℄(s) instead of Exe[�℄(fsg). The weak preimageof a set of states S under the ation �, written WPreImage [�℄(S), is the set ofall states where the exeution of � an lead to S. In symbols,WPreImage [�℄(S) _= fs j R(s; �; s0) with s0 2 SgWe all this set weak preimage to stress the fat that, for every state in it,reahing S when exeuting � is possible but not neessary. The strong preimageof a set S under the ation �, written SPreImage [�℄(S), is the set of all stateswhere � is appliable and every possible exeution is in S. I.e.,SPreImage[�℄(S) _= fs j ; 6= Exe[�℄(s) � Sg

Armed

In_2

not In_1

Armed

In_1

not In_2

In_1

not In_2

not Armed not Armed

not In_1

In_2

Dunk_1,
Dunk_2

Dunk_1,
Dunk_2

Dunk_1 Dunk_2

Dunk_2 Dunk_1

Fig. 1. The automaton for the BT domainIn this paper we onsider plans to be sequenes of ations. We use � for the0-length plan, � to denote an ation, � and � to denote plans, and �; � for planonatenation. The appliability set of a plan is the set of states from whih wean exeute any pre�x of the plan without ending up in a state where the restof the plan is not appliable. The exeution of a plan in a set of states is the setof \�nal" states of the possible exeution traes from any of the initial states.De�nition 1 (Appliability set of a Plan). Let � be a plan. The appliabilityset of �, written Appl [�℄, is a subset of S de�ned as follows:1. Appl [�℄ = S;2. Appl [�℄ = fs j Exe[�℄(s) 6= ;g;3. Appl [�; �℄ = fs j s 2 Appl [�℄; and Exe[�℄(s) � Appl [�℄g;De�nition 2 (Plan Exeution). Let S be a �nite set of states. Let � be aplan for D. The exeution of � in S, written Exe[�℄(S), is de�ned as:1. Exe[�℄(S) = S;2. Exe[�℄(S) = fs0 j s 2 S; and R(s; �; s0)g;3. Exe[�;�℄(S) = Exe[�℄(Exe[�℄(S));The lassial example used to illustrate onformant planning is the bomb inthe toilet (BT) problem. Figure 1 depits the orresponding automaton. Thereare two pakages, and one of them ontains an armed bomb. It is possible to dunkeither pakage in the toilet (ations Dunk1 and Dunk2). Dunking the pakageontaining the bomb has the e�et of disarming the bomb, while dunking theother pakage has no e�et. Initially the bomb is armed, but there is unertaintyin the initial on�guration sine it is not known where the bomb is (dashed linestates). We want to �nd a onformant solution to the problem of disarming thebomb, i.e. a sequene of ations that will disarm the bomb for all initial states.In this ase, there are two possible onformant plans of length 2, namely dunkingboth pakages in either order.A planning probelm is a triple (D; Init;Goal), where D is the planning do-main, and Init and Goal are nonempty sets of states of D. In the following, whenlear from the ontext, we omit the domain from a planning problem. A formalharaterization of onformant planning an be given as follows.

In_1

not In_2

not Armed

In_1

not In_2

not Armed

In_1

not In_2

not Armed
Dunk_1

Dunk_2

Dunk_1

Dunk_2

not Armed

not In_1

In_2

not Armed

not In_1

In_2

not Armed

not In_1

In_2

Dunk_1

Dunk_2

Armed

In_2

not In_1

Armed

In_2

not In_1

Armed

In_1

not In_2

Armed

In_1

not In_2

LEVEL 2 LEVEL 1 LEVEL 0

Dunk_2

Dunk_1

ε
Dunk_2

Dunk_1

Dunk_2

Dunk_1

Dunk_2

Dunk_1

Dunk_2; Dunk_1

Dunk_1; Dunk_2

Dunk_2

Dunk_1

Fig. 2. Solving the BT problemDe�nition 3 (Conformant Plan). The plan � is a onformant plan for (aonformant solution to) the planning problem (D; Init;Goal) i� Init � Appl [�℄,and Exe[�℄(Init) � Goal.In words, a plan � is a onformant solution to a planning problem (Init;Goal)if two onditions are satis�ed. First, � must be appliable in Init, i.e. afterexeuting any pre�x of � in any of the initial states, the remaining plan isalways appliable. Seond, all the states resulting from the exeution of � in Initmust be goal states.3 The Conformant Planning AlgorithmThe onformant planning algorithm uses as data strutures states-plan (SP)tables, of the form SPT = f(S1:�1) : : : (Sn:�n)g where, for i = 1; : : : ; n, Si is aset of states, �i is a sequene of ations, and �i 6= �j for all j 6=i. We all (Si:�i)a states-plan pair, and Si the set of states indexed by �i. When no ambiguityarises, we write SPT(�i) for Si. The intuition is that �i is a onformant solutionfor any planning problem (S;Goal), with S � Si. Thus we all Si onformaneset of �i in SPT.The algorithm proeeds bakwards, from the goal to the initial states. It per-forms a breadth �rst searh, building at eah step onformant plans of inreasinglength. The status of the searh (a level) is represented by a SP table, ontainingplans of the same length. The SP tables are stored in an array, SPTarr, SPTarr[i℄being the SP table orresponding to the i-th level of searh.Figure 2 desribes how the algorithm solves the BT problem. The goal statesare depited with a thik solid line. A SP pair is depited as states enirled by adashed line, annotated by the indexing plan. The SP table at level 0, SPTarr[0℄,is f(Goal:�)g, i.e. the set of goal states indexed by the 0-length plan �. (Notiethat � is a onformant solution to every problem with goal set Goal and initialstates ontained in Goal.) The SP table at level 1, SPTarr[1℄, ontains two SPpairs with (overlapping) sets of states indexed by the length 1 plans Dunk1 and

funtion ConformantPlan(Init,Goal)0 begin1 i = 0;2 SPTarr[0℄ := f (Goal. �) g;3 Plans = GetPlans(Init; SPTarr[0℄);4 while ((SPTarr[i℄ 6= ;) ^ (P lans = ;)) do5 i := i + 1;6 SPTarr[i℄ := ConformantPreimage(SPTarr[i-1℄);7 SPTarr[i℄ := ConformantPrune(SPTarr; i);8 Plans := GetPlans(Init; SPTarr[i℄);9 done10 if (SPTarr[i℄ = ;) then11 return Fail;12 else return Plans;13 end Fig. 3. The onformant planning algorithm.Dunk2. The set indexed by Dunk1, SPTarr[1℄(Dunk1), ontains all states whereDunk1 is appliable and all possible resulting states are in Goal. Notie that forall the states in this set, Dunk1 leads to the goal. Thus, Dunk1 is a onformantplan for every subset of SPTarr[1℄(Dunk1). However, neither of the SP pairs oflength 1 orresponds to a onformant solution to our problem, beause neitherof the orresponding onformane sets ontains all the initial states. Notie alsothat, under the hypothesis of omplete observability, after one step the StrongPlanning proedure presented in [8℄ would return a onditional plan speify-ing to exeute only one ation, i.e. dunk exatly the pakage ontaining thebomb. At level 2, SPTarr[2℄ ontains two SP pairs orresponding to the plansDunk1;Dunk2 and Dunk2;Dunk1. Both the orresponding sets of states on-tain all the initial states (thik dashed line). This means that for all initial stateseither plan is appliable and will result in a goal state. Thus, we have found twoonformant plans for the BT problem. These plans are onformant for any hoieof the initial states. SPTarr[2℄ does not ontain all possible plans of length 2.Dunk1;Dunk1 and Dunk2;Dunk2 are not present. The reason is that, for eahi, SPTarr[2℄(Dunki;Dunki) would not di�er from SPTarr[1℄(Dunki). In otherwords, Dunki;Dunki is subsumed by Dunki, and an be pruned. In general,if the expansion of a further level only results in no plans or plans whih aresubsumed by shorter plans, then the algorithm terminates onluding that theproblem admits no onformant plan.3.1 Set-theoreti viewThe onformant planning algorithm ConformantPlan(Init,Goal), presentedin Figure 3, takes in input a planning problem in form of the set of statesInit and Goal. It returns Fail if and only if the problem admits no onformantsolution. If a onformant plan exists, ConformantPlan(Init;Goal) returns theset of all the onformant plans of minimal length.The algorithm proeeds as follows, by �lling the array of SP tables SPTarr.First it heks if there are plans of length 0, i.e. if � is a solution. The funtion

GetPlans, given a SP table and a set of (initial) states, omputes the set of allpossible onformant plans ontained in the SP table.GetPlans(Init;SPT) _= f� j there exists (S:�) 2 SPT and Init � Sg (1)If no onformant plan of length i exists ((P lans = ;) in line 4), then we enterthe loop, and build onformant plans of inreasing length (lines 5 to 8). Theiteration terminates (line 4) when either a plan is found (P lans 6= ;), or thespae of onformant plans has been ompletely explored (SPTarr[i℄ = ;).At eah iteration, the funtion ConformantPreimage is alled to build anew SP table, ontaining onformant plans of length i, extending the onformantplans of length i� 1 ontained in SPTarr[i� 1℄.ConformantPreimage(SPT) _= (2)f(S : �;�) j there exists (S0:�) 2 SPT; and S = SPreImage [�℄(S0) 6= ;gThe resulting SP table is then stored in the i-th position of SPTarr. The funtionConformantPrune is responsible to remove from the newly generated SPtable the plans whih are either subsumed by other plans of the same length, orby plans present in the SP tables built at previous steps. It takes in input thearray of SP tables SPTarr, and an index of the urrent step.ConformantPrune(SPTarr; i) _=f(S0:�0) 2 SPTarr[i℄ jthere is no (S:�) 2 SPTarr[i℄ suh that � 6= �0 and S0 (S; (3)and for all j < i; there is no (S:�) 2 SPTarr[j℄:(S0 � S)gThe termination of the algorithm follows from the alls to ConformantPrune,whih guarantee that the set of explored onformane sets is monotonially in-reasing, and thus a �x point is eventually reahed when a plan does not exist(given the �niteness of the domain). The optimality of the algorithm followsfrom the breadth-�rst style of the searh.3.2 Symboli representationFrom a oneptual point of view the algorithm of Figure 3 is rather simple.The problem is how to implement it eÆiently. The basi idea, mutuated fromsymboli model heking [15, 3℄, is to represent the sets to be omputed (e.g.sets of states, SP tables) symbolially, by means of propositional and quanti�edboolean formulae (QBF). These formulae, in turn, are represented and eÆientlymanipulated as bdds. In the rest of this setion we reinterpret the algorithm interms of manipulation of propositional formulae. The issues related to bdds aredisussed in the next setion.We have a vetor x of (distint) boolean variables, alled state variables,used to enode sets of states. For instane, for the BT problem, the variables inx ould be Armed, In1 and In2. A state orresponds to a omplete assignmentto the variables in x. The assignment f(Armed:>)(In1:>)(In2:?)g (we write >

and ? for the true and false truth values) orresponds to the state where thebomb is in pakage 1, and armed. We use formulae as representatives of the set oftheir models. Thus, a propositional formula in the variables in x, written �(x),represents the set of the states orresponding to the assignments whih make� true. For instane, the formula :Armed represents the set of goal states, i.e.the states where the bomb is not armed. The formula Armed ^ (In1 $:In2)represents the set of initial states.Another vetor of ation variables, ���, is used to represent ations. For theBT problem, with a sequential enoding (i.e. assuming that only one ation anbe exeuted at eah time), we an use one boolean variable At, where the as-signment f(At:>)g represents the ation Dunk1, and the assignment f(At:?)grepresents the ation Dunk2. A formula (x;���) represents a relation betweenstates and ations (e.g., a universal plan, or an appliability ondition). The for-mula Armed^At spei�es a relation holding between ation Dunk1, and everystate where Armed holds.Transitions are 3-tuples ontaining a state (the initial state of the transi-tion), an ation (the ation being exeuted), and a state (the resulting state ofthe transition). To represent the �nal state of transitions we use an additionalvetor of (next) state variables x0. The transition relation of the automaton or-responding to the planning domain is thus represented by a formula R(x;���;x0),eah satisfying assignment of whih represents a partiular transition.In order to represent SP tables, we need a way to represent plans. A planof length i is represented as an assignment to the vetors of plan variables,���1; : : : ;���i, where eah vetor of variables ���n ranges over ations, and representsthe n-th ation of a plan. For the BT problem, the assignment f(At1:>)(At2:?)grepresents the plan Dunk1;Dunk2. The formula :At1 represents the set of thetwo plans of length 2 Dunk2;Dunk1 and Dunk2;Dunk2, sine it imposes noonstraint on the seond ation. In the following we assume that the variablesin x;x0;���;���1; : : : ;���i are all distint. An SP table ontaining plans of length i isrepresented by a formula in the state variables x and plan variables���;���1; : : : ;���i.Using a symboli representation, we exploit the fat that if a variable v doesnot our in �, then it is irrelevant for the truth value of �: any satisfying assign-ment of � where the truth value of v is reversed is still a satisfying assignment.In general, the ardinality of the set represented by a given formula has a multi-plying fator of two to the power of the number of variables whih do not ourin the formula. This explains why a symboli representation an have a dramatiimprovement over an expliit-state (enumerative) representation.In the following we desribe in terms of propositional and QBF transfor-mations some of the operations of the algorithm. The omplete desription anbe found in [6℄. We indiate with �[v0=v℄ the parallel substitution (also alled\shifting") in the formula � of the variables in vetor v with the (orrespond-ing) variables in v0. The omputation of ConformantPreimage(SPT), anbe desribed as follows (where SPT is the SP table in input, representing plans

of length i� 1):ConformantPreimage(SPT) _= (4)(8x0:(R(x;���;x0)! SPT(x;���i�1; : : : ;���1)[x0=x℄) ^ 9x0:R(x;���;x0))[���i=���℄The free variables of the resulting formula are the urrent state variables x andthe plan variables ���i; : : : ;���1. The ation variables ��� in R are renamed to planvariables ���i. The next state variables in R and in SPTarr (resulting from theshifting of x to x0) are universally quanti�ed away. Eah set of assignmentssatisfying (4) and agreeing on the values assigned to plan variables represents arelation between a set of states and a plan of length i, i.e. a SP pair.GetPlans extrats the assignments to plan variables suh that the orre-sponding set ontains the initial states. In symbols,GetPlans(Init;SPT) _= 8x:(Init(x)! SPT(x;���i; : : : ;���1)) (5)4 Experimental resultsIn this setion we disuss some implementational issues, and present some resultsof the experimental evaluation (all the details are given in [6℄). The onformantplanning algorithm was implemented in mbp. mbp is based on the NuSMVmodel heker, is written in C, and uses the CUDD [20℄ state-of-the-art bddpakage. mbp takes in input planning domains desribed in AR [10℄, generatesthe orresponding symboli representation, and an apply di�erent planning al-gorithms to the spei�ed planning problems. In the following we all mbp theonformant planning algorithm implemented in mbp.The onformant planners whih are most signi�ant for omparison withmbp are gp [19℄ andQbfPlan [17℄. gp extends the ideas of GraphPlan [1℄to deal with unertainty. Basially, a planning graph is built of every possiblesequene of possible worlds, and onstraints among planning graphs are prop-agated to ensure onformane. We onsider gp the state of the art in onfor-mant planning. gp was shown to outperform several other planners suh asBuridan [16℄ and UDTPOP [14℄ (see [19℄ for a detailed omparison).QbfPlan is (our name for) the planning system by Rintanen. QbfPlangeneralizes the idea of SAT-based planning [12, 13, 11℄ to nondeterministi do-mains, by enoding problems in QBF. Given a bound on the length of the plan,�rst a QBF enoding of the problem is generated, and then a QBF solver [18℄is alled. If no solution is found, a new enoding for a longer plan must be gen-erated and solved. QbfPlan is interesting for omparison, sine it relies on asymboli representation based on QBF (although it di�ers from mbp in manyother ways).Both gp andQbfPlan are inomplete, i.e. an not onlude that a planningproblem has no onformant solutions. mbp, on the other hand, thanks to thepruning step, is omplete, i.e. it an disover whether no solution exists. In theexperimental evaluation, for a fair omparison, mbp was run by disabling thepruning primitives.

mbp gpjPj #P. jBDDj Time jLj TimeBT(2) 2 2 3 0.000 1 0.000BT(4) 4 24 37 0.000 1 0.000BT(6) 6 720 287 0.020 1 0.010BT(8) 8 40320 1337 0.150 1 0.020BT(10) 10 3628800 7919 1.330 1 0.020mbp gpjPj #P. jBDDj Time jLj TimeBTC(2) 3 2 11 0.010 3 0.000BTC(3) 5 6 28 0.010 5 0.010BTC(4) 7 24 102 0.010 7 0.030BTC(5) 9 120 225 0.050 9 0.130BTC(6) 11 720 483 0.160 11 0.860BTC(7) 13 5040 1005 0.520 13 2.980BTC(8) 15 40320 2773 1.850 15 13.690BTC(9) 17 362880 5876 6.020 17 41.010BTC(10) 19 3628800 12336 16.020 19 157.590

QbfPlanBTC(6) BTC(10)jPj Time jPj Time1 0.00 1 0.022 0.01 2 0.033 0.26 3 0.784 0.63 4 2.305 1.53 5 4.876 2.82 6 8.907 6.80 7 22.618 14.06 8 52.729 35.59 9 156.1210 93.34 10 410.8611 (+) 2.48 11 1280.8813 3924.9614 |: : : : : :18 |19 (+) 16.84Table 1. Results for the BT and BTC problems.mbp is stritly more expressive than gp, whih an handle unertaintyonly in the initial state (although [19℄ desribes how the approah an be ex-tended to ations with unertain e�ets). The omparison with gp was arriedout only on the ases with unertainty on the initial ondition. QbfPlan is ableto handle ations with unertain e�ets. This is done by introduing auxiliary(hoie) variables, the assignments to whih orrespond to the di�erent possibleoutomes of ations. These variables need to be quanti�ed universally to ensureonformane of the solution. However, the enoding generator of QbfPlan hasML ode as its input format. The omparison with QbfPlan is limited to the(few) problems for whih the enodings already existed.For mbp and gp, all the examples were run by setting a limit to the depthof the searh. Sine mbp uses a serial enoding, the limit orresponds to themaximum length of the plan. In gp, the limit is on the number of levels in theplanning graph. The hosen limit was enough to �nd a solution for the testedproblems in both systems. Di�erently from e.g. BlakBox [11℄, QbfPlan doesnot have a heuristi to guess the \right" length of the plan. Given a limit inthe length of the plan, it generates all the enodings up to the spei�ed length,and repeatedly alls the QBF deider on enodings of inreasing length untila plan is found. We spei�ed as limit the length of the shortest solution. bddbased omputations are known to be sensitive to a number of fators, suh asthe ordering of variables. For all the examples reported here, mbp used a �xedordering strategy: ation variables were positioned at the top, then plan vari-ables, and state variables. Variables of a given kind were interleaved with theorresponding auxiliary variables (e.g. x with x0, ���i with ���i). Dynami variablereordering was disabled. The tests were performed on an Intel 300MhZ Pentium-II, 512MB RAM, running Linux. gp is implemented in LISP, and was ompiledand run under Allegro CL 4.3 [Linux/X86;R1℄. CPU time was limited to 7200se (two hours) for eah test. In the following tables, unless otherwise spei�ed,we write | for a test that was not ompleted within the above time limit.The evaluation was performed by running the systems on a number of pa-

Low Un. Mid Un. High Un.bmt mbp gp mbp gp mbp gp(p,t) IS jPj #P. jBDDj Time jLj Time IS Time jLj Time IS Time jLj Time(2,2) 2 2 4 15 0.000 1 0.000 4 0.000 2 0.010 8 0.000 2 0.030(3,2) 3 4 48 70 0.010 3 0.020 6 0.010 3 0.040 12 0.020 4 13.560(4,2) 4 6 768 268 0.040 3 0.030 8 0.060 4 0.460 16 0.090 4 145.830(5,2) 5 8 15360 662 0.180 5 1.390 10 0.260 5 13,180 20 0.340 4 |(6,2) 6 10 368640 1499 0.640 5 3.490 12 0.830 5 | 24 1.150(7,2) 7 12 1.03e7 3250 2.100 7 508.510 14 2.780 28 3.390(8,2) 8 14 3.30e8 8357 7.960 7 918.960 16 10.380 32 12.330(9,2) 9 16 1.18e10 17944 22.820 7 | 18 30.370 36 35.510(10,2) 10 18 4.75e11 37968 72.730 20 87.370 40 121.740(2,4) 2 2 24 31 0.000 1 0.000 8 0.010 1 0.020 32 0.010 2 1.610(3,4) 3 3 144 122 0.030 1 0.010 12 0.050 2 0.290 48 0.150 2 8.690(4,4) 4 4 576 426 0.100 1 0.010 16 0.320 2 0.730 64 0.840 2 32.190(5,4) 5 6 57600 1985 0.680 3 0.500 20 1.610 2 | 80 3.420 3 |(6,4) 6 8 5806080 5905 3.350 3 1.160 24 6.900 96 12.650(7,4) 7 10 6.58e08 14939 14.210 3 2.410 28 23.090 112 40.410(8,4) 8 12 8.44e10 40237 77.420 3 8.540 32 232.150 128 932.820(9,4) 9 | | | 4 | 36 | 144 |(10,4) 10 160(2,6) 2 2 60 56 0.010 1 0.010 16 0.010 1 0.200 128 0.090 2 337.604(3,6) 3 3 720 423 0.090 1 0.010 24 0.080 1 0.830 192 1.040 2 1459.110(4,6) 4 4 8640 1879 0.510 1 0.040 32 1.190 2 30.630 256 6.460 2 5643.450(5,6) 5 5 86400 6137 3.080 1 0.060 40 12.260 2 30.140 320 40.770 2 |(6,6) 6 6 518400 14265 17.490 1 0.100 48 118.600 2 57.300 384 1819.520(7,6) 7 8 2.03e08 67489 5939.520 3 211.720 56 | 2 | 448 |(8,6) 8 | | | 3 1015.160 64 512(9,6) 9 3 3051.990 72 576(10,6) 10 2 | 80 640Table 2. Results for the BMTC problemsrameterized problem domains. The �rst lass of problems we takled is based onthe lassial bomb in the toilet problem, BT(p), where p is the parametri num-ber of pakages. The results for the BT problems are shown in Table 1 (upperleft). The olumns relative to mbp are the length of the plan (jPj), the numberof plans (#P.), the size of the bdd representing the set of onformant solutions(jBDDj), and the run time needed for searhing the automaton (expressed inseonds). The olumns relative to gp are the number of levels in the planninggraphs, and the omputation time needed for the searh. For the BT problemgp is almost insensitive to the problem size, and outperforms mbp. One reasonfor this is that gp inherits from GraphPlan the ability to deal with parallelations eÆiently, and the BT problem is intrinsially parallel (the depth of theplanning graph is always one, i.e. all pakages an be dunked in parallel).We all BTC(p) the extension where dunking a pakage (always) logs thetoilet, and ushing an remove the logging. The results for this problems areshown in Table 1. Sine the BTC does not allow for parallel ations, the impatof the depth of the plan length beomes signi�ant, and mbp outperforms gp.The performane of QbfPlan is reported in the rightmost table, only for the 6and 10 pakage problems. Notie that eah line reports the time needed to deidewhether there is a plan of length i. QbfPlan is outperformed both by gp andby mbp. QbfPlan does not exploit the omputations performed to analyzeprevious levels, and thus needs to restart from srath problems of inreasinglength. In the rest of the omparison we do not onsider QbfPlan.

mbp gpjPj #P. jBDDj Time jLj TimeRING(2) 5 2 10 0.010 3 0.070RING(3) 8 2 23 0.030 4 |RING(4) 11 2 35 0.060RING(5) 14 2 47 0.320RING(6) 17 2 59 1.460RING(7) 20 2 71 7.190RING(8) 23 2 83 35.380RING(9) 26 2 95 167.690
gp on RING(5)IS jLj Time jLj Time1 5 0.010 9 0.0202 5 0.060 9 0.1404 5 0.420 9 1.9508 5 6.150 9 359.68016 5 | 9 |Table 3. Results for the RING problems.The next lass of problems, alled BMTC(p,t), is the generalization of theBTC problem to the ase of multiple toilets. The results are reported in Table 2.(IS is the number of initial states.) In the �rst lass of tests (\Low Unertainty"olumns), the only unertainty is the position of the bomb, while toilets areknown to be not logged. The basi feature of the problem is that it beomesmore parallelizable when the number of toilets inreases. gp is able to fullyexploit this feature, while mbp su�ers beause of its serial enoding. Withmany toilets gp outperforms mbp. However, the behavior of gp degrades assoon as more than 5 levels in the planning graph need to be explored. Considerthe results for the BMTC(6,2) and BMCT(7,2) problems. Notie also that mbp�nds all the 10321920 onformant solutions to BMTC(7,2) in 2.100 seonds.The \Mid" and \High" olumns show the results in presene of more uner-tainty in the initial state. In the seond [third, respetively℄ lass of tests, thestatus of every other [every, resp.℄ toilet an be either logged or non logged.This inreases the number of possible initial states. The results show that mbpis muh less sensitive to the number of initial states, gp is almost unable tosolve what were trivial problems.We onsidered another lass of problems, where we have a ring of rooms,eah of them with a window, whih an be either open, losed or loked. Therobot an move (either lokwise or ounterlokwise), lose the window of theroom where it is, and lok it if losed. The goal is to have all windows loked. Inthe problem RING(r), where r is the number of rooms, the position of windowsobeys the law of inertia, i.e. it remains unhanged unless hanged by an ationof the robot. The unertainty in the initial states an be both in the positionof the robot, and in the status of the windows. The maximum number of initialstates is r�3r, orresponding to full unertainty on the position of the robot andon the status of eah window. The results, in the ase of maximum unertainty,are reported in on the left in Table 3. On the right, we plot (for the RING(5)problem) the dependeny of gp on the number of initial states ombined withthe number of levels to be explored (di�erent goals were provided whih requirethe exploration of di�erent levels).Finally, we onsidered problems with full unertainty in ation e�ets, whihan not be expressed in gp. In the BTUC(p), logging is an unertain outomeof dunking a pakage. In the URING(r), at eah time instant, eah window anopen or lose nondeterministially if it is not loked. The results are reportedin Table 4. The run times are lower than in the inertial ases, this is due to thefat that there is no need to represent the e�ets of the law of inertia.

mbpjPj #P. jBDDj TimeBTUC(2) 3 2 11 0.000BTUC(3) 5 6 28 0.000BTUC(4) 7 24 102 0.020BTUC(5) 9 120 225 0.050BTUC(6) 11 720 483 0.170BTUC(7) 13 5040 1005 0.530BTUC(8) 15 40320 2773 1.830BTUC(9) 17 362880 5876 6.020BTUC(10) 19 3628800 12336 17.730
mbpjPj #P. jBDDj TimeURING(2) 5 2 10 0.000URING(3) 8 2 23 0.010URING(4) 11 2 35 0.030URING(5) 14 2 47 0.080URING(6) 17 2 59 0.200URING(7) 20 2 71 0.530URING(8) 23 2 83 1.370URING(9) 26 2 95 4.600URING(10) 29 2 107 14.320Table 4. Results for the BTUC and URING problems.5 Conlusions and Future WorkIn this paper we presented a new algorithm for onformant planning. The al-gorithm is appliable to omplex planning domains, with onditional ations,unertainty in the initial state and in the outomes of ations, and nondetermin-isti hanges in the environment. The algorithm returns the set of all onformantplans of minimal length, if a solution to the planning problem exists. Otherwise,it terminates with failure. This work relies on and extends the planning via sym-boli model heking paradigm presented in [5, 8, 7, 9℄. The algorithm has beendesigned to be implemented eÆiently taking full advantage of the symbolirepresentation based on bdd. The experimental results show that the algorithmis able to solve rather omplex problems, and ompares niely with the stateof the art onformant planner gp, and with QbfPlan. First, mbp is om-plete, i.e. it is able to deide whether a onformant plan exists. Seond, mbpis stritly more expressive than gp, as it allows for unertainty in the atione�ets. Furthermore, gp su�ers from the enumerative nature of its algorithm,and its qualitative behavior seem to depend heavily on the number of possiblesituations to be onsidered. The experimental evaluation suggests that mbp isable to deal with unertainties more eÆiently than gp.A �rst diretion of future ativity is the investigation of parallel enodings.mbp inherits from mbp a serial enoding, and is thus outperformed by gpin problems with a high degree of parallelizability (e.g. when multiple toiletsare available). Furthermore, optimization tehniques typial of symboli modelheking, suh as partitioning tehniques [3℄, ould be used to redue the ompu-tational ost of relational produts and pruning. We have also developed anotheralgorithm for onformant planning, based on a forward (rather than bakward)traversal of the state spae. Another diretion of future researh inludes itsexperimental evaluation, and its integration with the bakward algorithm pre-sented in this paper. Finally, onformant planning via model heking will beextended to deal with the general ase of planning under partial observability.Referenes1. Avrim L. Blum and Merrik L. Furst. Fast planning through planning graphanalysis. Arti�ial Intelligene 1{2, 90:279{298, 1997.2. R. E. Bryant. Graph-Based Algorithms for Boolean Funtion Manipulation. IEEETransations on Computers, C-35(8):677{691, August 1986.

3. J. R. Burh, E. M. Clarke, K. L. MMillan, D. L. Dill, and L. J. Hwang. Sym-boli Model Cheking: 1020 States and Beyond. Information and Computation,98(2):142{170, June 1992.4. A. Cimatti, E.M. Clarke, F. Giunhiglia, and M. Roveri. NuSMV: a new SymboliModel Veri�er. In N. Halbwahs and D. Peled, editors, Proeedings Eleventh Con-ferene on Computer-Aided Veri�ation (CAV'99), number 1633 in Leture Notesin Computer Siene, pages 495{499, Trento, Italy, July 1999. Springer.5. A. Cimatti, E. Giunhiglia, F. Giunhiglia, and P. Traverso. Planning via ModelCheking: A Deision Proedure for AR. In S. Steel and R. Alami, editors, Pro-eeding of the Fourth European Conferene on Planning, number 1348 in LNAI,pages 130{142, Toulouse, Frane, September 1997. Springer-Verlag.6. A. Cimatti and M. Roveri. Conformant Planning via Model Cheking. TehnialReport 9908-02, ITC-IRST, Trento, Italy, August 1999.7. A. Cimatti, M. Roveri, and P. Traverso. Automati OBDD-based Generation ofUniversal Plans in Non-Deterministi Domains. In Proeeding of the FifteenthNational Conferene on Arti�ial Intelligene (AAAI-98), Madison, Wisonsin,1998. AAAI-Press.8. A. Cimatti, M. Roveri, and P. Traverso. Strong Planning in Non-DeterministiDomains via Model Cheking. In Proeeding of the Fourth International Confereneon Arti�ial Intelligene Planning Systems (AIPS-98), Carnegie Mellon University,Pittsburgh, USA, June 1998. AAAI-Press.9. M. Daniele, P. Traverso, and M. Y. Vardi. Strong Cyli Planning Revisited. InSusanne Biundo, editor, Proeeding of the Fifth European Conferene on Planning.Durham, UK, September 1999. Springer-Verlag.10. E. Giunhiglia, G. N. Kartha, and V. Lifshitz. Representing ation: Indeterminayand rami�ations. Arti�ial Intelligene, 95(2):409{438, 1997.11. H. Kautz and B. Selman. BLACKBOX: A New Approah to the Appliationof Theorem Proving to Problem Solving. In Working notes of the Workshop onPlanning as Combinatorial Searh, Pittsburgh, PA, USA, June 1998.12. Henry A. Kautz, David MAllester, and Bart Selman. Enoding Plans in Propo-sitional Logi. In Pro. KR-96, 1996.13. Henry A. Kautz and Bart Selman. Pushing the Envelope: Planning, PropositionalLogi, and Stohasti Searh. In Pro. AAAI-96, 1996.14. Niholas Kushmerik, Steve Hanks, and Daniel S. Weld. An algorithm for proba-bilisti planning. Arti�ial Intelligene, 76(1-2):239{286, September 1995.15. K.L. MMillan. Symboli Model Cheking. Kluwer Aademi Publ., 1993.16. M. Peot. Deision-Theoreti Planning. PhD thesis, Dept. Engineering-EonomiSystems | Stanford University, 1998.17. J. Rintanen. Construting onditional plans by a theorem-prover. Journal ofArti�ial Intellegene Researh, 1999. Aepted for publiation.18. J. Rintanen. Improvements to the Evaluation of Quanti�ed Boolean Formulae. In16th Iinternational Joint Conferene on Arti�ial Intelligene. Morgan KaufmannPublishers, August 1999. To appear.19. David E. Smith and Daniel S. Weld. Conformant graphplan. In Proeedings ofthe 15th National Conferene on Arti�ial Intelligene (AAAI-98) and of the 10thConferene on Innovative Appliations of Arti�ial Intelligene (IAAI-98), pages889{896, Menlo Park, July 26{30 1998. AAAI Press.20. F. Somenzi. CUDD: CU Deision Diagram pakage | release 2.1.2. Department ofEletrial and Computer Engineering | University of Colorado at Boulder, April1997.

