CENTRO PER LA RICERCA
SCIENTIFICA E TECNOLOGICA

38050 Povo (Trento), Italy

Tel.: +39 0461 314312

Fax: +39 0461 302040

e—mail: prdoc@itc.it — url: http://www.itc.it

CONFORMANT PLANNING VIA
MODEL CHECKING

Cimatti A., Roveri M.

August 1999

Technical Report # 9908-02

O Istituto Trentino di Cultura, 1999

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of ITC and will probably be copyrighted if accepted for publication. It has been
issued as a Technical Report for early dissemination of its contents. In view of the transfert of copy right to the outside publisher, its
distribution outside of ITC priorto publication should be limited to peer communications and specific requests. After outside publication,
material will be available only in the form authorized by the copyright owner.

Conformant Planning via Model Checking

Alessandro Cimatti' and Marco Roveri!?

! ITC-1rsT, Via Sommarive 18, 38055 Povo, Trento, Italy,
2 DSI, University of Milano, Via Comelico 39, 20135 Milano, Ttaly
{cimatti,roveri}@irst.itc.it

Abstract. Conformant planning is the problem of finding a sequence
of actions that is guaranteed to achieve the goal for any possible initial
state and nondeterministic behavior of the planning domain. In this pa-
per we present a new approach to conformant planning. We propose an
algorithm that returns the set of all conformant plans of minimal length
if the problem admits a solution, otherwise it returns with failure. Our
work is based on the planning via model checking paradigm, and relies
on symbolic techniques such as Binary Decision Diagrams to compactly
represent and efficiently analyze the planning domain. The algorithm,
called cMmBP, has been implemented in the MBP planner. CMBP is strictly
more expressive than the state of the art conformant planner cGp. Fur-
thermore, an experimental evaluation suggests that CMBP is able to deal
with uncertainties more efficiently than cGp.

1 Introduction

The planning via model checking [5,8,7,9] paradigm is based on the interpre-
tation of a planning domain as a finite state automaton [5]. A high level action
language, AR [10], is used to describe complex, nondeterministic domains with
multiple initial states, and actions with conditional and uncertain effects. Sym-
bolic representation and exploration techniques on the style of symbolic model
checking [3,15], based on the use of Binary Decision Diagrams (BDDs) [2], allow
for efficient planning in nondeterministic domains. The planning algorithm pre-
sented in [8] allows to find strong plans, i.e. conditional (contingent) plans which
are guaranteed to achieve the goal for any initial state and any possible nonde-
terministic evolution of the domain. The algorithms defined in [7] and in [9] also
allow for the generation of iterative trial-and-error strategies.

The work in [8, 7, 9] rely on the hypothesis of complete run-time observability.
That is, the status of the world after the execution of a (possibly nondetermin-
istic) action is assumed to be completely observable. The derived plans can be
(heavily) conditioned to run-time observations. However, in many real world sit-
uations, sensorial information may be costly or unavailable, and techniques are
needed to deal with incomplete run-time observability. In this work we extend
the planning via model checking paradigm by proposing a new algorithm for
conformant planning, i.e. the problem of finding a plan achieving the goal for
any possible contingency in total absence of run-time information. Since no in-
formation is available at run time, the plan can not be conditioned to run-time
observation, and thus it must be a sequence of actions, i.e. a classical plan. Dif-
ferently from the classical planning problem, however, here a sequence of actions
can result in (many) different executions, depending on the initial state and on

the different uncertain outcomes of actions. This makes conformant planning
much harder than classical planning.

The conformant planning algorithm is applicable to complex planning do-
mains, with conditional actions, uncertainty in the initial state and in the out-
comes of actions. The algorithm is complete, i.e. it returns with failure if and
only if the problem admits no conformant solution. If a solution exists, it re-
turns all conformant plans of minimal length. The algorithm has been imple-
mented in MBP (Model Based Planner) [5,8,7], a planner developed on top of
the NuSMV [4] model checker, and an experimental analysis has been carried
out. The experimental results show that the algorithm can solve rather complex
problems, and compares nicely with the state of the art conformant planner
cGp [19]. In particular, it is able to express and solve problems with uncertain
effects of actions, which can not be expressed in c¢Gp. Furthermore, differently
from cGP, our algorithm is not directly related to the number of initial states
and uncertainties in action effects, and can plan rather efficiently in highly non-
deterministic domains.

This paper is structured as follows. In section 2 we present some necessary
background. In section 3 we describe the algorithm, and in section 4 we present
the experimental results. In section 5 we draw the conclusions and discuss some
future research.

2 Background

A planning domain is a 4-tuple D = (F,S, A, R), where F is the (finite) set of
fluents (atomic propositions), S C 27 is the set of states, A is the (finite) set
of actions, and R C S x A x § is the transition relation. Intuitively, a state
is identified with the set of propositions holding in it. R(s, @, s') holds iff when
executing the action « in the state s the state s’ is a possible outcome. An action
a is not applicable in s iff there is no state s’ such that R(s,a,s’) holds. An
action a has an uncertain outcome in s if there are two distinct states s’ and
s" such that R(s,a,s") and R(s,a,s”). In the following we assume a planning
domain D is given. We say that an action « is applicable in the set of states S
if it is applicable to every state of S. The result of executing an action « in the
set of states S (also called the image of S under «), written Ezec[a](S), is the
set of all possible outcomes of the execution of « in any state of S, i.e.

Ezec[a](S) = {s' | R(s,a,s") with s € S}
If s is a state, we write Ezec[a](s) instead of Ezec[a]({s}). The weak preimage

of a set of states S under the action «, written WPreImage[a](S), is the set of
all states where the execution of @ can lead to S. In symbols,

WPrelmage[a](S) = {s | R(s,q,s") with s' € S}
We call this set weak preimage to stress the fact that, for every state in it,
reaching S when executing « is possible but not necessary. The strong preimage

of a set S under the action «, written SPreImage[a](S), is the set of all states
where « is applicable and every possible execution is in S. lLe.,

SPrelmage[a](S) = {s | 0 # FEzecla](s) C S}

Armed
In_1

notIn_1

not In_2 In_2
Dunk_1 Dunk_2|
not Armed not Armed
In_1 notIn_1
not In_2 In_2
Dunk_1, Dunk_1,
Dunk_2 Dunk_2

Fig. 1. The automaton for the BT domain
In this paper we consider plans to be sequences of actions. We use € for the
0-length plan, a to denote an action, 7 and p to denote plans, and 7; p for plan
concatenation. The applicability set of a plan is the set of states from which we
can execute any prefix of the plan without ending up in a state where the rest
of the plan is not applicable. The execution of a plan in a set of states is the set
of “final” states of the possible execution traces from any of the initial states.

Definition 1 (Applicability set of a Plan). Let 7 be a plan. The applicability
set of m, written Appl[r], is a subset of S defined as follows:

1. Applle] = S;
2. Appl[a] = {s | Ezecla](s) # 0};
3. Appllas p] = {s | s € Appl[a], and Ezec[a](s) C Appllp};

Definition 2 (Plan Execution). Let S be a finite set of states. Let m be a
plan for D. The execution of w in S, written Ezec[n](S), is defined as:

1. Execle](S) = S;
2. Ezecla](S)={s"|s€S, and R(s,a,s")};
3. Ezecla;w|(S) = Ezxec[r](Ezecla](S));

The classical example used to illustrate conformant planning is the bomb in
the toilet (BT) problem. Figure 1 depicts the corresponding automaton. There
are two packages, and one of them contains an armed bomb. It is possible to dunk
either package in the toilet (actions Dunk; and Dunks). Dunking the package
containing the bomb has the effect of disarming the bomb, while dunking the
other package has no effect. Initially the bomb is armed, but there is uncertainty
in the initial configuration since it is not known where the bomb is (dashed line
states). We want to find a conformant solution to the problem of disarming the
bomb, i.e. a sequence of actions that will disarm the bomb for all initial states.
In this case, there are two possible conformant plans of length 2, namely dunking
both packages in either order.

A planning probelm is a triple (D, Init, Goal), where D is the planning do-
main, and Init and Goal are nonempty sets of states of D. In the following, when
clear from the context, we omit the domain from a planning problem. A formal
characterization of conformant planning can be given as follows.

"E)unkfl; Dunk_2

Armed
In_1
not In_2

owkz | Armed

Dunk_1 |

not Armed [P not Armed Vo i not Armed !
| Dunk_1 L | 1 Dunk 1 ! !

In_1 - = T In_1 - = T In_1 1
- i ! Dunk_2 Vo ! Dunk_2 I I
not In_2 ! | o notIn_2 . ! not In_2 |
— [e~ Vo ! !
not Armed U bunka ' not Armed |1 Dunk_2 ' not Armed '
notin_1 L = T notin_1 T notin_1 !
' Dunk_2 I i ' Dunk_1 | |

In 2 L Lo In_2 |
€

Armed

not In_1

| In_2 |

,,,,,,,,,,,,,,,,,

ft LEVEL 2 T f LEVEL 1 T ft LEVEL 0 T

Fig. 2. Solving the BT problem
Definition 3 (Conformant Plan). The plan 7 is a conformant plan for (a
conformant solution to) the planning problem (D, Init, Goal) iff Init C Appl[r],
and Ezxec|n](Init) C Goal.

In words, a plan 7 is a conformant solution to a planning problem (Init, Goal)
if two conditions are satisfied. First, # must be applicable in Init, i.e. after
executing any prefix of 7 in any of the initial states, the remaining plan is
always applicable. Second, all the states resulting from the execution of 7 in Init
must, be goal states.

3 The Conformant Planning Algorithm

The conformant planning algorithm uses as data structures states-plan (SP)
tables, of the form SPT = {(Sy.m1)...(S,.7,)} where, for i = 1,... ,n, S; is a
set of states, 7; is a sequence of actions, and m; # m; for all j#£i. We call (S;.7;)
a states-plan pair, and S; the set of states indexed by ;. When no ambiguity
arises, we write SPT(w;) for S;. The intuition is that 7; is a conformant solution
for any planning problem (S, Goal), with S C S;. Thus we call S; conformance
set of w; in SPT.

The algorithm proceeds backwards, from the goal to the initial states. It per-
forms a breadth first search, building at each step conformant plans of increasing
length. The status of the search (a level) is represented by a SP table, containing
plans of the same length. The SP tables are stored in an array, SPTarr, SP Tarr]i]
being the SP table corresponding to the i-th level of search.

Figure 2 describes how the algorithm solves the BT problem. The goal states
are depicted with a thick solid line. A SP pair is depicted as states encircled by a
dashed line, annotated by the indexing plan. The SP table at level 0, SPTarr{0],
is {(Goal.€)}, i.e. the set of goal states indexed by the O-length plan e. (Notice
that € is a conformant solution to every problem with goal set Goal and initial
states contained in Goal.) The SP table at level 1, SPTarr[1], contains two SP
pairs with (overlapping) sets of states indexed by the length 1 plans Dunk; and

function CONFORMANTPLAN (Init, Goal)

0 begin

1 1= 0;

2 SPTarr[0] :={ (Goal. €) };

3 Plans = GETPLANS(Init, SPTarr{0]);

4 while ((SPTarr(i] # 0) A (Plans = 0)) do

5 ti=1 4+ 1;

6 SPTarr[i] := CONFORMANTPREIMAGE (SPTarr[i-1]);
7 SPTarr[i] := CONFORMANTPRUNE(SPTarr,i);
8 Plans := GETPLANS(Init, SPTarr(i]);

9 done

10 if (SPTarr(i] = 0) then

11 return Fail;

12 else return Plans;

13 end

Fig. 3. The conformant planning algorithm.

Dunks. The set indexed by Dunk,, SPTarr{1](Dunk,), contains all states where
Dunk; is applicable and all possible resulting states are in Goal. Notice that for
all the states in this set, Dunk; leads to the goal. Thus, Dunk; is a conformant
plan for every subset of SPTarr[1](Dunk,). However, neither of the SP pairs of
length 1 corresponds to a conformant solution to our problem, because neither
of the corresponding conformance sets contains all the initial states. Notice also
that, under the hypothesis of complete observability, after one step the Strong
Planning procedure presented in [8] would return a conditional plan specify-
ing to execute only one action, i.e. dunk exactly the package containing the
bomb. At level 2, SPTarr{2] contains two SP pairs corresponding to the plans
Dunky; Dunks and Dunks; Dunk;. Both the corresponding sets of states con-
tain all the initial states (thick dashed line). This means that for all initial states
either plan is applicable and will result in a goal state. Thus, we have found two
conformant plans for the BT problem. These plans are conformant for any choice
of the initial states. SPTarr[2] does not contain all possible plans of length 2.
Dunky; Dunk, and Dunks; Dunks are not present. The reason is that, for each
i, SPTarr2)(Dunk;; Dunk;) would not differ from SPTarr{1](Dunk;). In other
words, Dunk;; Dunk; is subsumed by Dunk;, and can be pruned. In general,
if the expansion of a further level only results in no plans or plans which are
subsumed by shorter plans, then the algorithm terminates concluding that the
problem admits no conformant plan.

3.1 Set-theoretic view

The conformant planning algorithm CONFORMANTPLAN(Init,Goal), presented
in Figure 3, takes in input a planning problem in form of the set of states
Init and Goal. It returns Fail if and only if the problem admits no conformant
solution. If a conformant plan exists, CONFORMANTPLAN(Init, Goal) returns the
set of all the conformant plans of minimal length.

The algorithm proceeds as follows, by filling the array of SP tables SPTarr.

First it checks if there are plans of length 0, i.e. if € is a solution. The function

GETPLANS, given a SP table and a set of (initial) states, computes the set of all
possible conformant plans contained in the SP table.

GETPLANS(Init, SPT) = {7 | there exists (S.r) € SPT and InitC S} (1)

If no conformant plan of length i exists ((Plans = ()) in line 4), then we enter
the loop, and build conformant plans of increasing length (lines 5 to 8). The
iteration terminates (line 4) when either a plan is found (Plans # @), or the
space of conformant plans has been completely explored (SPTarr{i] = 0).

At each iteration, the function CONFORMANTPREIMAGE is called to build a
new SP table, containing conformant plans of length i, extending the conformant
plans of length i — 1 contained in SPTarri — 1].

CONFORMANTPREIMAGE(SPT) = (2)
{(S . a;7) | there exists (S'.w) € SPT, and S = SPrelmage[a](S') # 0}

The resulting SP table is then stored in the i-th position of SPTarr. The function
CONFORMANTPRUNE is responsible to remove from the newly generated SP
table the plans which are either subsumed by other plans of the same length, or
by plans present in the SP tables built at previous steps. It takes in input the
array of SP tables SPTarr, and an index of the current step.

CONFORMANTPRUNE(SPTarr,i) =
{(S'.7") € SPTarrli] |
there is no (S.w) € SPTarrli] such that # # 7" and S' C S, (3)
and for all j <i, there is no (S.w) € SPTarr{j].(S' C S)}

The termination of the algorithm follows from the calls to CONFORMANTPRUNE,
which guarantee that the set of explored conformance sets is monotonically in-
creasing, and thus a fix point is eventually reached when a plan does not exist
(given the finiteness of the domain). The optimality of the algorithm follows
from the breadth-first style of the search.

3.2 Symbolic representation

From a conceptual point of view the algorithm of Figure 3 is rather simple.
The problem is how to implement it efficiently. The basic idea, mutuated from
symbolic model checking [15,3], is to represent the sets to be computed (e.g.
sets of states, SP tables) symbolically, by means of propositional and quantified
boolean formulae (QBF). These formulae, in turn, are represented and efficiently
manipulated as BDDs. In the rest of this section we reinterpret the algorithm in
terms of manipulation of propositional formulae. The issues related to BDDs are
discussed in the next section.

We have a vector x of (distinct) boolean variables, called state variables,
used to encode sets of states. For instance, for the BT problem, the variables in
x could be Armed, Iny and In,. A state corresponds to a complete assignment
to the variables in x. The assignment {(Armed.T)(In;.T)(Iny.L)} (we write T

and L for the true and false truth values) corresponds to the state where the
bomb is in package 1, and armed. We use formulae as representatives of the set of
their models. Thus, a propositional formula in the variables in x, written ¢(x),
represents the set of the states corresponding to the assignments which make
¢ true. For instance, the formula —Armed represents the set of goal states, i.e.
the states where the bomb is not armed. The formula Armed A (Iny < —In2)
represents the set of initial states.

Another vector of action variables, a, is used to represent actions. For the
BT problem, with a sequential encoding (i.e. assuming that only one action can
be executed at each time), we can use one boolean variable Act, where the as-
signment {(Act.T)} represents the action Dunk;, and the assignment {(Act. L)}
represents the action Dunks. A formula (x,a) represents a relation between
states and actions (e.g., a universal plan, or an applicability condition). The for-
mula Armed A Act specifies a relation holding between action Dunk;, and every

state where Armed holds.

Transitions are 3-tuples containing a state (the initial state of the transi-
tion), an action (the action being executed), and a state (the resulting state of
the transition). To represent the final state of transitions we use an additional
vector of (next) state variables x’. The transition relation of the automaton cor-
responding to the planning domain is thus represented by a formula R(x,a,x’)

each satisfying assignment of which represents a particular transition.

3

In order to represent SP tables, we need a way to represent plans. A plan
of length i is represented as an assignment to the vectors of plan variables,
ai, ... ,a;, where each vector of variables a,, ranges over actions, and represents
the n-th action of a plan. For the BT problem, the assignment {(Act;.T)(Acty. L)}
represents the plan Dunki; Dunky. The formula —Act; represents the set of the
two plans of length 2 Dunks; Dunk; and Dunks; Dunks, since it imposes no
constraint on the second action. In the following we assume that the variables
in x,x' a,aq,...,a; are all distinct. An SP table containing plans of length i is
represented by a formula in the state variables x and plan variables @, a1, . . . , @;.

Using a symbolic representation, we exploit the fact that if a variable v does
not occur in ¢, then it is irrelevant for the truth value of ¢: any satisfying assign-
ment of ¢ where the truth value of v is reversed is still a satisfying assignment.
In general, the cardinality of the set represented by a given formula has a multi-
plying factor of two to the power of the number of variables which do not occur
in the formula. This explains why a symbolic representation can have a dramatic
improvement over an explicit-state (enumerative) representation.

In the following we describe in terms of propositional and QBF transfor-
mations some of the operations of the algorithm. The complete description can
be found in [6]. We indicate with ¢[v’/v] the parallel substitution (also called
“shifting”) in the formula ¢ of the variables in vector v with the (correspond-
ing) variables in v'. The computation of CONFORMANTPREIMAGE(SPT), can
be described as follows (where SPT is the SP table in input, representing plans

of length i — 1):

CONFORMANTPREIMAGE(SPT) = (4)
(Vx".(R(x,a,x') = SPT(x,a;i_1,...,a1)[x'/x]) A X' R(x,a,x'))ai/a]

The free variables of the resulting formula are the current state variables x and
the plan variables @j, . ..,a;. The action variables @ in R are renamed to plan
variables @;. The next state variables in R and in SPTarr (resulting from the
shifting of x to x') are universally quantified away. Each set of assignments
satisfying (4) and agreeing on the values assigned to plan variables represents a
relation between a set of states and a plan of length i, i.e. a SP pair.

GETPLANS extracts the assignments to plan variables such that the corre-
sponding set contains the initial states. In symbols,

GETPLANS(Init, SPT) = Vx.(Init(x) = SPT(x,ai, ... ,a1)) (5)

4 Experimental results

In this section we discuss some implementational issues, and present some results
of the experimental evaluation (all the details are given in [6]). The conformant
planning algorithm was implemented in MBP. MBP is based on the NUSMV
model checker, is written in C, and uses the CUDD [20] state-of-the-art BDD
package. MBP takes in input planning domains described in AR [10], generates
the corresponding symbolic representation, and can apply different planning al-
gorithms to the specified planning problems. In the following we call CMBP the
conformant planning algorithm implemented in MBP.

The conformant planners which are most significant for comparison with
CMBP are CGP [19] and QBFPLAN [17]. cGP extends the ideas of GRAPHPLAN [1]
to deal with uncertainty. Basically, a planning graph is built of every possible
sequence of possible worlds, and constraints among planning graphs are prop-
agated to ensure conformance. We consider cGP the state of the art in confor-
mant planning. CGP was shown to outperform several other planners such as
Buridan [16] and UDTPOP [14] (see [19] for a detailed comparison).

QBFPLAN is (our name for) the planning system by Rintanen. QBFPLAN
generalizes the idea of SAT-based planning [12,13,11] to nondeterministic do-
mains, by encoding problems in QBF. Given a bound on the length of the plan,
first a QBF encoding of the problem is generated, and then a QBF solver [18]
is called. If no solution is found, a new encoding for a longer plan must be gen-
erated and solved. QBFPLAN is interesting for comparison, since it relies on a
symbolic representation based on QBF (although it differs from CMBP in many
other ways).

Both cGap and QBFPLAN are incomplete, i.e. can not conclude that a planning
problem has no conformant solutions. CMBP, on the other hand, thanks to the
pruning step, is complete, i.e. it can discover whether no solution exists. In the
experimental evaluation, for a fair comparison, CMBP was run by disabling the
pruning primitives.

CMBP CGP QBFPLAN
[P|| #P. [|BDD||Timel||L|[Time BTC(6) BTC(10)
BT(2) 2 2 3[0.000]] 1]0.000 [P][Time [[[P]] Time
BT(4) 4 24 3710.000|| 1{0.000 1 0.00 1 0.02
BT(6) 6 720 287|0.020|| 1(0.010 2 0.01 2 0.03
BT(8) 8| 40320| 1337|0.150|| 1[0.020 3 0.26 3 0.78
BT(10)[] 10[3628800] 7919[1.330]] 1[0.020 4 0.63[| 4 2.30
5 1.53 5 4.87
CMBP CGP 6 2.82 6 8.90
[P|| #P. [|IBDD]|| Time [[|L]| Time 7 6.80|| 7 22.61
BTC(2) 2 11| 0.010{| 3| 0.000 8 14.06 8 52.72
BTC(3) 5 6 28| 0.010(| 5| 0.010 9 35.59 9 156.12
BTC(4) 7 24 102| 0.010]| 7| 0.030 10 93.34|| 10 410.86
BTC(5) 9 120 225| 0.050(| 9| 0.130 11[(+) 2.48]] 11] 1280.88
BTC(6) || 11 720 483] 0.160([11| 0.860 13| 3924.96
BTC(7) [[13 5040 1005| 0.520(| 13| 2.980 14
BTC(8) || 15] 40320] 2773| 1.850](| 15| 13.690
BTC(9) || 17] 362880| 5876 6.020[| 17| 41.010 18
BTC(10)[[19]3628800] 12336[16.020]] 19[157.590 19[(+) 16.84

Table 1. Results for the BT and BTC problems.

CMBP is strictly more expressive than cGP, which can handle uncertainty
only in the initial state (although [19] describes how the approach can be ex-
tended to actions with uncertain effects). The comparison with cGp was carried
out only on the cases with uncertainty on the initial condition. QBFPLAN is able
to handle actions with uncertain effects. This is done by introducing auxiliary
(choice) variables, the assignments to which correspond to the different possible
outcomes of actions. These variables need to be quantified universally to ensure
conformance of the solution. However, the encoding generator of QBFPLAN has
ML code as its input format. The comparison with QBFPLAN is limited to the
(few) problems for which the encodings already existed.

For cMBP and cGP, all the examples were run by setting a limit to the depth
of the search. Since MBP uses a serial encoding, the limit corresponds to the
maximum length of the plan. In CGP, the limit is on the number of levels in the
planning graph. The chosen limit was enough to find a solution for the tested
problems in both systems. Differently from e.g. BLACKBOX [11], QBFPLAN does
not have a heuristic to guess the “right” length of the plan. Given a limit in
the length of the plan, it generates all the encodings up to the specified length,
and repeatedly calls the QBF decider on encodings of increasing length until
a plan is found. We specified as limit the length of the shortest solution. BDD
based computations are known to be sensitive to a number of factors, such as
the ordering of variables. For all the examples reported here, cMBP used a fixed
ordering strategy: action variables were positioned at the top, then plan vari-
ables, and state variables. Variables of a given kind were interleaved with the
corresponding auxiliary variables (e.g. x with x', a; with 8;). Dynamic variable
reordering was disabled. The tests were performed on an Intel 300MhZ Pentium-
IT, 512MB RAM, running Linux. ¢GP is implemented in LISP, and was compiled
and run under Allegro CL 4.3 [Linux/X86;R1]. CPU time was limited to 7200
sec (two hours) for each test. In the following tables, unless otherwise specified,
we write — for a test that was not completed within the above time limit.

The evaluation was performed by running the systems on a number of pa-

Low Unc. Mid Unc. High Unc.

BMTC ‘ [CMBP [CGP CMBP | CGP [cmBP CGP
(p,t)[[TS[TP]] #P. [IBDD][Time [[L][Time [[IS]| Time [[L]] Time [[IS| Time [[L]] Time
(2,2)[[2] 2 4| 15 0.000] 1 0.000]| 4 0.000| 2 | 0.010]| 8 0.000| 2 0.030
(3,2)[[3] 4 48| 70 0.010] 3 0.020]| 6 0.010] 3| 0.040]] 12 0.020] 4 13.560
(4,2)[|4] 6 768| 268 0.040| 3 0.030]| 8 0.060| 4 | 0.460|| 16 0.090| 4 | 145.830
(5,2)][5] 8] 15360] 662 0.180| 5 1.390([10] 0.260| 5 |13,180]| 20 0.340] 4 —
(6,2)][6] 10] 368640 1499 0.640| 5 3.490(|12| 0.830| 5 —|| 24 1.150

(7,2)][7] 12] 1.03e7] 3250 2.100| 7 | 508.510(|14| 2.780 28 3.390

(8,2)][8] 14] 3.30e8] 8357 7.960| 7 | 918.960||16| 10.380 32 12.330

(9,2)[[9] 16] 1.18e10[17944 22.820] 7 18| 30.370 36 35.510

(10,2)[]10] 18] 4.75e11[37968 [72.730 20| 87.370 40 | 121.740

29][2] 2 24| 31 0.000| 1 0.000]| 8 0.010] 1 | 0.020]| 32 0.010] 2 1.610
(3,4)[[3] 3 144 122 0.030] 1 0.010]|12] 0.050| 2 | 0.290|| 48 0.150| 2 8.690
(4,0)[[4] 4 576] 426 0.100] 1 0.010]]16] 0.320] 2 | 0.730]| 64 0.840] 2 32.190
(5,4)|[5] 6] 57600| 1985 0.680] 3 0.500(|20] 1.610| 2 80 3.420| 3

(6,4)][6] 8]5806080] 5905 3.350] 3 1.160([24] 6.900 96 12.650

(7,4)][7] 10] 6.58e08] 14939 14.210| 3 2.410(|28| 23.090 112] 40.410

(8,4)][8] 12] 8.44e10[40237| 77.420[3 8.540(|32|232.150 128] 932.820

(9,4)[[9 — = —4 —|36 — 144 —

(10,4)[[10 160

(2,6)][2] 2 60| 56 0.010| 1 0.010]]16| 0.010] 1 | 0.200{[128 0.090| 2 | 337.604
(3,6)][3] 3 720| 423 0.090| 1 0.010]|24| 0.080] 1 | 0.830([192 1.040| 2 |1459.110
(4,6)[[4] 4 8640| 1879 0.510] 1 0.040]|32| 1.190] 2 |30.630(|256 6.460| 2 |5643.450
(5,6)][5| 5] 86400] 6137 3.080| 1 0.060]|]40| 12.260| 2 |30.140([320] 40.770| 2

(6,6)[| 6| 6] 518400]14265 17.490| 1 0.100]|48|118.600| 2 |57.300||384]1819.520

(7,6)][7] 8] 2.03e08] 67489 [5939.520] 3 | 211.720[[56 —| 2 —448 —

(8,6)][8 — — — | 3 [1015.160]|64 512

(9,6)][9 3 13051.990(|72 576

(10,6){[10 2 —|80 640

Table 2. Results for the BMTC problems

rameterized problem domains. The first class of problems we tackled is based on
the classical bomb in the toilet problem, BT (p), where p is the parametric num-
ber of packages. The results for the BT problems are shown in Table 1 (upper
left). The columns relative to CMBP are the length of the plan (|P|), the number
of plans (#P.), the size of the BDD representing the set of conformant solutions
(IBDD]|), and the run time needed for searching the automaton (expressed in
seconds). The columns relative to ¢GP are the number of levels in the planning
graphs, and the computation time needed for the search. For the BT problem
CGP is almost insensitive to the problem size, and outperforms CMBP. One reason
for this is that cGP inherits from GRAPHPLAN the ability to deal with parallel
actions efficiently, and the BT problem is intrinsically parallel (the depth of the
planning graph is always one, i.e. all packages can be dunked in parallel).

We call BTC(p) the extension where dunking a package (always) clogs the
toilet, and flushing can remove the clogging. The results for this problems are
shown in Table 1. Since the BTC does not allow for parallel actions, the impact
of the depth of the plan length becomes significant, and CMBP outperforms CGP.
The performance of QBFPLAN is reported in the rightmost table, only for the 6
and 10 package problems. Notice that each line reports the time needed to decide
whether there is a plan of length i. QBFPLAN is outperformed both by cGP and
by cMBP. QBFPLAN does not exploit the computations performed to analyze
previous levels, and thus needs to restart from scratch problems of increasing
length. In the rest of the comparison we do not consider QBFPLAN.

CMBP CGP
[P[[#P.[[BDD][Time [[L[[Time —
RING(2)[[5] 2 | 10 | 0.010] 3 |0.070 = G‘("PT?;?‘III\I‘G(%)me
RING(3)[| 8] 2 23 0.030[4 | — - . -
1| 5[0.010] 9] 0.020
RING(4)|[11] 2 | 35 0.060 -
2| 5[0.060[9] 0.140
RING(5)|[14] 2 | 47 0.320 -
4] 5]0.420] 9] 1.950
RING(6)[[17] 2 | 59 1.460 S =le 1501 91359 680
RING(7)[[20] 2 | 71 7.190 e s = —
RING(8)[[23] 2 | 83 [35.380 -
RING(9)[[26] 2 | 95 [167.690

Table 3. Results for the RING problems.

The next class of problems, called BMTC(p,t), is the generalization of the
BTC problem to the case of multiple toilets. The results are reported in Table 2.
(IS is the number of initial states.) In the first class of tests (“Low Uncertainty”
columns), the only uncertainty is the position of the bomb, while toilets are
known to be not clogged. The basic feature of the problem is that it becomes
more parallelizable when the number of toilets increases. cGp is able to fully
exploit this feature, while cMBP suffers because of its serial encoding. With
many toilets CGP outperforms cMBP. However, the behavior of cGp degrades as
soon as more than 5 levels in the planning graph need to be explored. Consider
the results for the BMTC(6,2) and BMCT(7,2) problems. Notice also that cMBP
finds all the 10321920 conformant solutions to BMTC(7,2) in 2.100 seconds.

The “Mid” and “High” columns show the results in presence of more uncer-
tainty in the initial state. In the second [third, respectively] class of tests, the
status of every other [every, resp.] toilet can be either clogged or non clogged.
This increases the number of possible initial states. The results show that cMBP
is much less sensitive to the number of initial states, CGP is almost unable to
solve what were trivial problems.

We considered another class of problems, where we have a ring of rooms,
each of them with a window, which can be either open, closed or locked. The
robot can move (either clockwise or counterclockwise), close the window of the
room where it is, and lock it if closed. The goal is to have all windows locked. In
the problem RING(r), where r is the number of rooms, the position of windows
obeys the law of inertia, i.e. it remains unchanged unless changed by an action
of the robot. The uncertainty in the initial states can be both in the position
of the robot, and in the status of the windows. The maximum number of initial
states is 7% 3", corresponding to full uncertainty on the position of the robot and
on the status of each window. The results, in the case of maximum uncertainty,
are reported in on the left in Table 3. On the right, we plot (for the RING(5)
problem) the dependency of cGP on the number of initial states combined with
the number of levels to be explored (different goals were provided which require
the exploration of different levels).

Finally, we considered problems with full uncertainty in action effects, which
can not be expressed in ¢GP. In the BTUC(p), clogging is an uncertain outcome
of dunking a package. In the URING(r), at each time instant, each window can
open or close nondeterministically if it is not locked. The results are reported
in Table 4. The run times are lower than in the inertial cases, this is due to the
fact that there is no need to represent the effects of the law of inertia.

CMBP CMBP

[P #P. [BDD]|| Time [P|[#P.[[BDD]|| Time
BTUC(2) || 3 2 11] 0.000 URING(2) [[5] 2 | 10 | 0.000
BTUC®3) || 5 6 28] 0.000 URING(3) |[8] 2 | 23 | 0.010
BTUC(4) || 7 24| 102] 0.020 URING(4) |[11] 2 | 35 | 0.030
BTUC(5) || 9 120 225] 0.050 URING(5) |[14] 2 | 47 | 0.080
BTUC(6) || 11 720| 483| 0.170 URING(6) |[17] 2 | 59 | 0.200
BTUC(7) || 13| 5040] 1005| 0.530 URING(7) |[20] 2 | 71 | 0.530
BTUC(8) |[15] 40320] 2773| 1.830 URING(8) [[23] 2 | 83 | 1.370
BTUC(9) |[17| 362880] 5876] 6.020 URING(9) [[26] 2 | 95 | 4.600
BTUC(10)][19|3628800] 12336]17.730 URING(10)[[29] 2 | 107 |14.320

Table 4. Results for the BTUC and URING problems.
5 Conclusions and Future Work

In this paper we presented a new algorithm for conformant planning. The al-
gorithm is applicable to complex planning domains, with conditional actions,
uncertainty in the initial state and in the outcomes of actions, and nondetermin-
istic changes in the environment. The algorithm returns the set of all conformant
plans of minimal length, if a solution to the planning problem exists. Otherwise,
it terminates with failure. This work relies on and extends the planning via sym-
bolic model checking paradigm presented in [5,8,7,9]. The algorithm has been
designed to be implemented efficiently taking full advantage of the symbolic
representation based on BDD. The experimental results show that the algorithm
is able to solve rather complex problems, and compares nicely with the state
of the art conformant planner cGp, and with QBFPLAN. First, CMBP is com-
plete, i.e. it is able to decide whether a conformant plan exists. Second, CMBP
is strictly more expressive than CGP, as it allows for uncertainty in the action
effects. Furthermore, cGp suffers from the enumerative nature of its algorithm,
and its qualitative behavior seem to depend heavily on the number of possible
situations to be considered. The experimental evaluation suggests that CMBP is
able to deal with uncertainties more efficiently than cap.

A first direction of future activity is the investigation of parallel encodings.
CMBP inherits from MBP a serial encoding, and is thus outperformed by cap
in problems with a high degree of parallelizability (e.g. when multiple toilets
are available). Furthermore, optimization techniques typical of symbolic model
checking, such as partitioning techniques [3], could be used to reduce the compu-
tational cost of relational products and pruning. We have also developed another
algorithm for conformant planning, based on a forward (rather than backward)
traversal of the state space. Another direction of future research includes its
experimental evaluation, and its integration with the backward algorithm pre-
sented in this paper. Finally, conformant planning via model checking will be
extended to deal with the general case of planning under partial observability.

References

1. Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph
analysis. Artificial Intelligence 1 2, 90:279 298, 1997.

2. R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677 691, August 1986.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-

bolic Model Checking: 10*° States and Beyond. Information and Computation,
98(2):142-170, June 1992.

. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new Symbolic

Model Verifier. In N. Halbwachs and D. Peled, editors, Proceedings Eleventh Con-
ference on Computer-Aided Verification (CAV’99), number 1633 in Lecture Notes
in Computer Science, pages 495-499, Trento, Italy, July 1999. Springer.

A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso. Planning via Model
Checking: A Decision Procedure for AR. In S. Steel and R. Alami, editors, Pro-
ceeding of the Fourth European Conference on Planning, number 1348 in LNAI,
pages 130 142, Toulouse, France, September 1997. Springer-Verlag.

A. Cimatti and M. Roveri. Conformant Planning via Model Checking. Technical
Report 9908-02, ITC-IRST, Trento, Italy, August 1999.

A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-based Generation of
Universal Plans in Non-Deterministic Domains. In Proceeding of the Fifteenth
National Conference on Artificial Intelligence (AAAI-98), Madison, Wisconsin,
1998. AAAI-Press.

A. Cimatti, M. Roveri, and P. Traverso. Strong Planning in Non-Deterministic
Domains via Model Checking. In Proceeding of the Fourth International Conference
on Artificial Intelligence Planning Systems (AIPS-98), Carnegie Mellon University,
Pittsburgh, USA, June 1998. AAAI-Press.

M. Daniele, P. Traverso, and M. Y. Vardi. Strong Cyclic Planning Revisited. In
Susanne Biundo, editor, Proceeding of the Fifth European Conference on Planning.
Durham, UK, September 1999. Springer-Verlag.

E. Giunchiglia, G. N. Kartha, and V. Lifschitz. Representing action: Indeterminacy
and ramifications. Artificial Intelligence, 95(2):409-438, 1997.

H. Kautz and B. Selman. BLACKBOX: A New Approach to the Application
of Theorem Proving to Problem Solving. In Working notes of the Workshop on
Planning as Combinatorial Search, Pittsburgh, PA, USA, June 1998.

Henry A. Kautz, David McAllester, and Bart Selman. Encoding Plans in Propo-
sitional Logic. In Proc. KR-96, 1996.

Henry A. Kautz and Bart Selman. Pushing the Envelope: Planning, Propositional
Logic, and Stochastic Search. In Proc. AAAI-96, 1996.

Nicholas Kushmerick, Steve Hanks; and Daniel S. Weld. An algorithm for proba-
bilistic planning. Artificial Intelligence, 76(1-2):239 286, September 1995.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

M. Peot. Decision-Theoretic Planning. PhD thesis, Dept. Engineering-Economic
Systems — Stanford University, 1998.

J. Rintanen. Constructing conditional plans by a theorem-prover. Journal of
Artificial Intellegence Research, 1999. Accepted for publication.

J. Rintanen. Improvements to the Evaluation of Quantified Boolean Formulae. In
16th Iinternational Joint Conference on Artificial Intelligence. Morgan Kaufmann
Publishers, August 1999. To appear.

David E. Smith and Daniel S. Weld. Conformant graphplan. In Proceedings of
the 15th National Conference on Artificial Intelligence (AAAI-98) and of the 10th
Conference on Innovative Applications of Artificial Intelligence (IAAI-98), pages
889 896, Menlo Park, July 26 30 1998. AAAT Press.

F. Somenzi. CUDD: CU Decision Diagram package — release 2.1.2. Department of
Electrical and Computer Engineering — University of Colorado at Boulder, April
1997.

