
Schematic: A Concurrent Object-Oriented

Extension to Scheme

Kenjiro Taura and Akinori Yonezawa

University of Tokyo

Abstract. A concurrent object-oriented extension to the programming

language Scheme, called Schematic, is described. Schematic supports fa-

miliar constructs often used in typical parallel programs (future and

higher-level macros such as plet and pbegin), which are actually de-

�ned atop a very small number of fundamental primitives. In this way,

Schematic achieves both the convenience for typical concurrent program-

ming and simplicity and 
exibility of the language kernel. Schematic

also supports concurrent objects which exhibit more natural and intu-

itive behavior than the \bare" (unprotected) shared memory, and permit

intra-object concurrency. Schematic will be useful for intensive parallel

applications on parallel machines or networks of workstations, concur-

rent graphical user interface programming, distributed programming over

network, and even concurrent shell programming.

1 Introduction

Programmers in the world, we believe, will begin to use concurrent languages

for various applications including demanding and intensive computation, dis-

tributed programming over networks, user interface programming and even text

�le processing. Although the task of concurrent programming is, in general, more

di�cult than sequential programming, there are many evidences and trends that

support the above prospect.

{ First, parallel machines will become ubiquitous. There is a strong economical

demand that parallel intensive applications should run not only on dedicated

parallel machines (e.g., CM5, AP1000, T3D, and Paragon), but also on net-

works of workstations [5, 33]. Recent research [2] has demonstrated that,

with suitable communication infrastructures, intensive applications perform

well on networks of workstations. Concurrent languages provide ease of pro-

gramming, portability, and e�ciency of applications on such computing en-

vironments.

{ Second, multiple threads and synchronizing data structure (e.g., concurrent

objects) supported by concurrent languages allow more natural and terse

description of certain types of applications. Important applications include

graphical user interface (GUI) and interactive distributed computation. For

example, in interactive distributed applications such as WEB browsers, the

programmer in a sequential language must write a complicated scheduler

loop which polls inputs both from the user and the remote server. Such



applications can be described much more concisely if the language supports

multiple threads of control within a processor. In such languages, a thread

can simply block when necessary data has not yet arrived. The runtime

system schedules threads and guarantees that the entire application does not

block as long as there is at least one runnable thread. A similar situation

arises when GUI applications wish to handle multiple inputs in parallel.

Since certain types of input must be synchronized with other tasks (e.g., two

\redraw" requests to a window must be mutually excluded), the programmer

of sequential languages must suspend/restore a thread of control explicitly.

This kind of mutual exclusion can be naturally expressed by multiple threads

+ suitable synchronizing data structures.

In summary, concurrent languages serve as a vehicle both for driving parallel

machines more easily and expressing certain problems more naturally.

Based on the above observation, we designed and implemented a parallel

extension to the programming language Scheme, named Schematic. This pa-

per focuses on its language design. The extension is concurrency and object-

orientation|the language is based on a set of 
exible primitives for concur-

rency and a safe means for dealing with mutable data structure. We believe that

the design of Schematic interests two types of concurrent language designers.

First, designers who wish to extend an already popular sequential language into

parallel one will be interested in how Schematic naturally integrates powerful

concurrency primitives into existing sequential features such as function calls.

Second, those who design a new parallel language, perhaps based on a concurrent

calculus, will be interested in how concurrent primitives + a set of simple syntac-

tic tricks provide a concise and familiar syntax both for sequential and parallel

constructs. They are bene�cial for lowering the learning barrier of the language

while keeping the simplicity of the computation model and implementations of

the language.

Target applications of Schematic include intensive applications (irregular

symbolic or algebraic computation, in particular

1

), interactive applications (GUI

in particular), and distributed programming over networks. For irregular inten-

sive applications, Schematic supports very e�cient �ne-grain thread creation and

communication. We have already demonstrated runtime techniques for creating

and scheduling excess parallelism within a processor with very low overhead (a

local thread creation + reply value communication approximately take ten RISC

instructions) [30, 32]. For GUI applications, we are currently working on a GUI

library where each widget is represented as a concurrent object and multiple

1

We are not saying that numeric programs do not bene�t from languages like

Schematic. In fact, it is widely known that many numerics bene�t from support

of irregular data structures [8, 12, 13] and this leads to many proposals of extensions

to C++ [6, 7, 11, 19]. The reason why we did not include numerics from the main

target applications is just that in our initial implementation, 
oating point numbers

have boxed (hence slow) representation for the simplicity. We are also working on

a similar, but statically typed language called ABCL/f [31], which focuses on the

performance of irregular numerics in �ne-grain concurrent object-based languages.



events are delivered simultaneously. Since method invocations on a widget is

arbitrated by the runtime system, almost no further complication is added from

the programmer's point of view, while processing multiple events in parallel.

The rest of the paper is organized as follows. After giving a brief overview

of Schematic in Sect. 2 and some background in Sect. 3, we introduce the basic

concurrency primitives and the concurrent object-oriented extension in Sect. 4

and Sect. 5, respectively. Section 6 demonstrates some examples which highlight

the main features of Schematic. Sect. 7 compares Schematic to a wide range of

related languages. We �nally conclude and summarize the current status of the

Schematic project in Sect. 8.

2 Schematic Overview

The following is the summary of the key extensions made to Scheme:

Channels: As the fundamental primitive for synchronization, we provide �rst-

class channels.A channel is a data structure on which synchronized read/write

can be performed. Channels can be passed to other processes or stored in

any data structure.

Future: As the fundamental construct for expressing parallelism, we introduce

a variant of the future construct originally proposed by Halstead [14]. The

value of a future expression is a channel, which we call reply channel of

the invocation. The result of an invocation can be extracted from the reply

channel of the invocation.

Explicit Reply: The reply channel of an invocation is visible from the invoked

process and subject to any �rst-class manipulation. For example, an invoca-

tion can delegate the reply channel to another invocation, or can store the

reply channel into a data structure. These features allow us to express many


exible communication/synchronization patterns in a natural way.

Concurrent Objects: Concurrent objects are supported as a safe and conve-

nient way for sharing mutable data structures among concurrent processes.

A concurrent object is a data structure where a method invocation can be

regarded as an instantaneous mutation on that object. That is, the program-

mer is free from the complexity which comes from interleaving execution of

multiple methods. An object behaves as if methods were serialized.

Concurrent Accesses: While achieving the instantaneous property of a method

invocation, we still allow a certain amount of concurrency between multiple

method invocations on a single concurrent object. In particular, we guar-

antee that read-only methods are never blocked by other (possibly writing)

methods.

3 Background

This section brie
y surveys related work which directly in
uenced the design

of Schematic. A thorough comparison to other concurrent languages is given in

Sect. 7.



3.1 Concurrent Calculi

Concurrent calculi, such as HACL [20] and �-calculus [21], have been drawing

much attention and some languages have been designed based on them [23, 24].

The goal is to identify the `core' language which expresses various computation

patterns by a small number of fundamental primitives. In their simplest term,

both HACL and �-calculus are based on channels communicating via processes.

Channels are �rst-class citizens which can be passed to other processes, sent

through other channels, and stored into data structures. Processes can commu-

nicate values by synchronized read/write primitives on shared channels.

Although these concurrent calculi are simple and powerful, expressing every-

thing in the pure calculi is tedious. For example, a sequential function call would

be expressed by two processes (the caller and the callee) communicating the re-

sult value via a channel. Thus, the practical concern when designing a language

based on them is how to incorporate familiar constructs (e.g., sequential/parallel

function calls) into the language, while keeping the purity of the core.

The design of Schematic achieves both the simplicity of the core and famil-

iar/convenient syntax for frequently used idioms such as future calls. A future

call, for example, is understood as a combination of a channel creation and a pro-

cess invocation. Even higher-level constructs are realized using channels and/or

futures (and are de�ned as macros, as in Scheme).

The semantics of Schematic can be understood by encoding it into an untyped

subset of HACL. Our optimizing compiler which is currently under development

uses this untyped subset of HACL as the intermediate language and we are now

investigating the analysis and optimization on the simple intermediate language.

3.2 Linearizable Objects

Herlihy et.al [17] de�ned \linearizability," which captures and formalizes an in-

tuitively correct behavior of data structure shared by concurrent processes. An

execution of a program consists of a sequence of events (history), each of which

is either an invocation or a termination of a method invocation. A history is

linearizable if events can be reordered, preserving the order of methods

2

in the

original history, to a sequential history, a history in which method executions

do not interleave. By de�nition, a method invocation in a linearizable history

appears to take e�ect instantaneously . This simpli�es reasoning about behavior

of concurrent data structure.

Almost all concurrent object-oriented languages guarantee linearizable his-

tories. Traditionally, many of them guarantee linearizability by, implicitly or

explicitly, mutually excluding (serializing) method invocations on a single ob-

ject.

As demonstrated in a separate paper by Herlihy [16], guaranteeing lineariz-

able history, per se, does not require mutual exclusion. We adopt a similar imple-

mentation technique to achieve linearizability while permitting certain amount

2

We say method M

1

proceeds method M

2

if the termination of M

1

proceeds the

invocation of M

2

.



of concurrent accesses to a single object. In Schematic, methods which do not

update an object require no mutual exclusion, thus never be blocked by other

methods. Methods which do update may still be blocked by other updating

methods, but our scheduler never retries interrupted computation. The result-

ing scheduler is less permissive than Herlihy's with respect to deadlock, but will

be more e�cient because their implementation requires extra memory store due

to the provision for possible retries.

4 Basic Parallelism and Synchronization Primitives

One of the underlying principles of the design of Schematic is the view that a

function/method invocation is, whether it is sequential or asynchronous, just a

special case of a process creation. More precisely, when we have some way for

process creation and communication between processes, and we regard a Scheme

lambda expression as (a template of) processes, a function call is achieved by

invoking a thread which will put the result value to a communication medium.

A sequential call just tries to get the result value immediately, while an asyn-

chronous call at a later time.

In Schematic, both processes and the medium for inter-process communica-

tion, which we call channel , are �rst-class entities, just as functions are �rst-class

in Scheme. This guarantees the 
exibility of Schematic in the sense that what-

ever can be expressed in HACL or �-calculus has an obvious counterpart in

Schematic.

3

This is true to other languages which support �rst-class channels

and processes [24, 25]. However, Schematic better integrates parallel extensions

with the sequential part and more concisely expresses frequent parallel program-

ming idioms than those languages.

4.1 Channels

Channels are the fundamental entities which realize synchronization and com-

munication between processes. Channels are implicitly created as the result of

a process creation (see Sect. 4.3), or can be explicitly created via the following

form:

(make-channel).

Let c be a channel. We can perform following operations on c:

{ (touch c)|extracts a value from c. The value is supplied to the enclosing

expression.

3

This is not strictly true for �-calculus because writing a value to a channel in

Schematic is asynchronous, while it is synchronous in �-calculus, in the sense that

writing to a channel in a �-calculus speci�es a post action which is executed after

the reply has been completed. We presume this rarely makes di�erence in practice,

and a synchronous call can be emulated by composing asynchronous ones, although

it is tedious.



{ (reply x c)|puts x in c. The enclosing expression immediately gets an

unspeci�ed value.

There may be multiple pairs of touch/reply performed on a single channel. In

such cases, the extracted value is an arbitrary one which has been put until that

time.

4.2 Process Templates (or Lambda)

A process template in Schematic is expressed by a lambda expression. As its

syntax indicates, it is the analogue of a function in Scheme, but is given a

name \process template" because applying values to it invokes a new concur-

rent process. Details about process invocations is described in Sect. 4.3 and this

subsection concentrates on process templates.

The canonical form of process template has the following syntax:

(lambda (args � � �) (:reply-to r) exprs � � �).

In addition to the list of parameter names, (i.e., (args � � �)), a process templates

takes another parameter, which we call reply channel . In the above, the name

of a reply channel is speci�ed as r.

For example, expression

(lambda (x) (:reply-to r)

(reply (+ x 1) r))

represents a template of processes which reply x + 1 to the given reply channel.

A reply channel can be manipulated as �rst class data. In particular, a process

can store it into any data structure to reply a value later. For example,

(lambda (x) (:reply-to r)

(set! g r))

expresses a template of processes which assign the given reply channel to g and

do not reply any value to r from within the processes.

This is an upper-compatible extension of Scheme in the following sense. If a

lambda expression does not specify (:reply-to r) clause, it is interpreted as

an abbreviation of a template of processes which reply the last evaluated value

to the given reply channel. That is,

(lambda (x) exprs)

is an abbreviation of

(lambda (x) (:reply-to r) (reply (begin exprs) r)),

where r is a name which does not occur in exprs .

In essence, we add an extra parameter to each lambda expression, the pa-

rameter which represents the location where the result value should be stored.

Explicit reply gives the programmer the ability to decouple the termination of



a process and the delivering the result value; a process may reply a value ear-

lier than its termination and continue some computation, reply values multiple

times, or defer the reply until some synchronization/resource constraints are

satis�ed.

4.3 Process Invocation (or Future)

Suppose f be a process template (lambda expression). The canonical form of

process creation is

(future (f args � � �) :reply-to r).

This expression creates a new thread of control which executes the body of f

with given arguments and the reply channel r. The entire expression returns r.

For example, when f is de�ned as

(lambda (x) (:reply-to r) (reply (+ x 1) r)),

code fragment

(let ((r (make-channel)))

(future (f 3) :reply-to r)

(future (f 4) :reply-to r)

(touch r))

evaluates to 4 or 5, depending on which process replies the value to r �rst.

There are several syntactic rules which make expressions in frequent cases

more concise. First, when :reply-to clause is omitted, a newly created channel

is supplied. That is,

(future (f args� � �))

� (future (f args� � �) :reply-to (make-channel)).

Second, a function call expression found in Scheme abbreviates an expression

which touches the reply channel immediately after a future call. That is,

(f args � � �) � (touch (future (f args � � �))).

This complements the syntax rule about the abbreviation of explicit reply chan-

nel name described in the previous subsection. That is, when f is a lambda

expression without explicit reply channel name, (f args � � �) can be understood

just as sequential function call in Scheme.

4.4 Higher-Level Constructs

In addition to the basic primitives, we provide several useful high-level con-

structs. These are:

plet: a parallel version of let, which evaluates all bound values in parallel.

pcall: a parallel version of apply (evaluates all arguments in parallel)



pbegin: a parallel version of begin, which evaluates all subexpressions in par-

allel.

pmap: a parallel version of map, which applies a given function to all elements

of the list in parallel.

pfor-each: a parallel version of for-each.

They are de�ned as simple processes and/or macros.

5 Concurrent Object-Oriented Extension

Schematic extends Scheme with concurrent objects which serve as a stylized

means for safely using mutable data structure in concurrent applications. Scheme

does have mutable data structures (cons cells, strings, vectors, symbols are all

mutable), but they are not enough for concurrent applications; interleaving exe-

cutions of multiple transactions on a single data may result in a state which were

impossible in non-interleaving ones. This signi�cantly complicates the behavior

of shared data and becomes the source of irreproducible bugs.

A concurrent object in Schematic exhibits simpler and more intuitive behav-

ior than the `bare' shared memory. The most important property is the instan-

taneousness of a method invocation: from the programmer's point of view, a

method invocation appears to mutate the state of the object at some point be-

tween its invocation and termination. Hence the programmer never has to reason

about how potential interleaving executions of concurrent method invocations

4

may a�ect the result. An object behaves as if method invocations on the object

are serialized.

This behavior, however, should not be confused with an implementation

strategy, which really serializes all method invocations on a single object. Such

implementation not only loses concurrency, but also signi�cantly narrows the

range of deadlock-free programs, enforcing unnatural description of many al-

gorithms. The problem has been recognized for a long time and in fact many

languages provide some solutions to the problem. Until recently, few of them

guarantees the instantaneousness of a method invocation when the programmer

speci�es not to serialize certain methods [7, 9, 35]. In such languages, it was up to

the programmer that guarantees the desired result on all possible interleavings.

More recent languages such as SYMPAL [3] and UFO [26, 27] propose more

complete solutions. They allow concurrent accesses to a single object, while guar-

anteeing the instantaneousness. The basic idea is to start subsequent invocations

as soon as the last update on the object is done in the current method. The re-

maining issue is how to detect the point where the last update is done. In UFO,

updates are speci�ed by individual assignments on instance variables and the

4

Here, we say method invocations M and M

0

are concurrent if there are no data

dependencies that guarantee they never overlap. Notice that this de�nition is inde-

pendent of any implementation or scheduling strategy that determines if they are

really scheduled in parallel.



compiler approximates the point of the last update. In SYMPAL, a special syn-

tax called �nally is introduced. A �nally expression performs all (hence the last)

updates in a method at once and continues other computation in parallel with

subsequent method invocation(s). We adopted �nally construct in Schematic

and add a further extension to allow read-only methods to proceed without any

lock.

5.1 Classes and Methods

De�ning Classes. A class is de�ned by define-class and a method either by

define-method or define-method!. For example,

(define-class point ()

x

y)

de�nes class called point, each instance of which has slots called x and y. What

follows after the class name is the list of inherited classes. For example,

(define-class color-point (point)

color)

de�nes color-point class, each instance of which now has slot color in addition

to x and y.

A define-class implicitly de�nes a function with the class name which

creates an instance of the class. For example, an instance of point class is created

by:

(point 2.0 3.0).

De�ning Methods. The following de�nes a method which returns the distance

between the point and the origin.

(define-method point (distance self)

(sqrt (+ (* x x) (* y y)))).

Define-method de�nes a process template which can read instance variables

of the �rst parameter (self in this example). Invoking methods has exactly

the same syntax as invoking normal process templates. For example, distance

method can be called by:

(distance p) or,

(future (distance p)),

where p is an instance of point (or one of its subclasses).

Explicit reply channels can be used in methods as well. For example, distance

method equivalent to the above one could be written by:

(define-method point (distance self)

(:reply-to r)

(reply (sqrt (+ (* x x) (* y y))) r)).



Updating States. Updating the state of an object is expressed by become con-

struct which speci�es new values for updated slots as well as the result of the

entire expression. Our become is di�erent from that of Actors [1] in that ours

speci�es the result value and only allows changing state variables.

5

This con-

struct was originally proposed by Aridor [3] in the name of finally construct.

For example, the following method increments x and y by dx and dy respec-

tively, and returns the value of (redraw! self).

(define-method! point (move! self dx dy)

(become (redraw! self) :x (+ x dx) :y (+ y dy)))

The �rst argument of a become ((redraw! self) in this case) is called result

expression of the become and speci�es which value the become is evaluated to,

while the rest part the updated values for instance variables.

There are two syntactic rules about the position of becomes. First, a become

can only appear in the body of define-method! and cannot appear in the body

of define-method. Second, inside the body of a define-method!, a become can

appear only at tail position of the method body. A tail position of a method

body is a position where a tail function call can be put. For example, we permit

(define-method! class (method self ...)

(if ...

(become ...)

(become ...)))

and,

(define-method! class (method self ...)

(let ((x ...))

...

(become ...))),

because these becomes are, if replaced by a function call, tail calls. On the other

hand, we reject

(define-method! class (method self ...)

(+ (become ...) 10)).

By the second restriction, we guarantee that become is performed at most once

in a method invocation. Precise de�nition of the syntactic restriction is not given

here. It de�nes right places for each essential syntax and builtin Scheme macros

(such as do).

5.2 Concurrency Semantics

Concurrency semantics refers to the way in which the programmer reasons about

deadlock and liveness. Notice that it does not tell the programmer which pair

5

Become in Actor allows us to replace the class of the object.



of methods are really scheduled in parallel. It merely tells which programs are

guaranteed to run without deadlock.

In many concurrent object-oriented languages [4, 36], method invocations on

a single object are serialized. In other words, the system schedules methods so

that any pair of methods on a single object does not interleave. This is a very

naive way to guaranteeing the instantaneousness of a method invocation and

enforces unnatural coding styles just for avoiding possible deadlocks.

To illustrate the problem, consider a possible description of a relaxation step

on a one dimensional mesh.

(define-class cell ()

value ; the value in the current step

new-value ; the value in the next step

left ; cell object on the left

right) ; cell object on the right

(define-method cell (current-value self)

value)

(define-method! cell (relax! self)

(let ((lv (current-value left)) (rv (current-value right)))

(become #t :new-value (/ (- (+ lv rv) (* 2 value)) 2))))

a b

Fig. 1. Cell objects linked by left and right �elds.

Many cell objects form a doubly linked list via left and right, as in Fig. 1.

A relaxation step invokes relax! method on all the cell objects. Each relax!

method �rst asks the current value of its neighbors by current-value method

and updates itself using these values. If any pair of methods on a single object

cannot overlap, invoking relax!s in parallel may result in deadlock. This hap-

pens when two neighboring objects start their relax! method almost simulta-

neously. Invocation of relax!es never terminate unless current-values invoked

from within them terminate, but these current-values in this scheduling wait

for the completion of relax!es!.



Notice that since instance variable value is not updated in relax!, there is

no reason why we serialize current-value and relax! on a single object. This

example suggests that we must have a �ner classi�cation of methods, which

de�nes which types of methods can/cannot interleave with which.

The next example demonstrates another requirement for the concurrency

between methods. Consider a sorted (linear) list of concurrent objects and a

method which inserts a new value in the appropriate place, maintaining the list

to be sorted.

(define-class cell ()

value

next)

(define-method cell (get-value self)

value)

;;; Insert V in the appropriate place

(define-method! cell (insert! self v)

(if (< v (get-value next))

;; V is smaller than VALUE of NEXT,

;; so we insert V between SELF and NEXT

(become 'done :value value :next (cell v next))

;; otherwise recurse on the child

(become (insert! next v))))

We easily see that, if we serialize methods to a single object, accesses to an en-

tire list is also serialized, because insert! on the head object �nishes only when

the entire computation �nishes. Since the \else" branch of the above method

simply delegates the insert! method to next object, we can accept subsequent

methods as soon as (< v (get-value next)) turns out to be false. This exam-

ple suggests that we must provide a way to accept subsequent methods when a

method execution reaches a certain point.

Based on the above observation, Schematic re�nes the traditional mutual

exclusion model in the following two ways.

{ We classify methods into two types, i.e., those de�ned by define-method

(which we call method below) and those de�ned by define-method! (which

we call method! below). Schematic guarantees that a method always pro-

gresses and can overlap with any other methods and method!s.

{ For solving the second example, we breakdown execution of a method! into

two stages, called before-stage and after-stage. After-stage evaluates the re-

sult expression of the become and before-stage performs all actions before

the after-stage. In the move! method, for example,

(define-method! point (move! self dx dy)

(become (redraw! self) :x (+ x dx) :y (+ y dy)))



the before-stage consists of evaluating (+ x dx) and (+ y dy) and updat-

ing the instance variables. After-stage invokes redraw! method for self. Our

relaxed mutual exclusion rule is that a before-stage of an invocation cannot

overlap with before-stages of other invocations, but an after-stage can over-

lap with other before-stages and after-stages. Hence, this example does not

deadlock.

The �rst rule implies that, as far as deadlock is concerned, we only have to

consider method!s. The above relaxation example never causes deadlock because

it only invokes one method! per an object. The second rule says that a method!

can release the mutex associated to an object earlier than its termination. The

second example allows multiple insert!s to operate in parallel on a list because

a cell object can accept subsequent methods as soon as it decides to call next

object.

When the system results in a situation where no executing methods cannot

be completed, the system simply deadlocks and never retries nor aborts unlike

schedulers in many database systems.

5.3 Consistency Semantics

Concurrent objects exhibit simpler and more intuitive behavior than the reg-

ular shared memory, in that methods on concurrent objects interleave in the

granularity of an entire method body, rather than individual load/store opera-

tions. This section gives the description of how to reason about possible states

(i.e., values of instance variables) of an object at any given time. There are two

important rules.

{ First, values of instance variables never change inside a body of both types of

methods (i.e., define-method and define-method!); their values are �xed

at the beginning of the method. A mutation by a method! takes e�ect in

methods invoked after the before-stage of the method!. Consider the follow-

ing counter object.

(define-class counter ()

value)

(define-method counter (get-value self)

value)

(define-method! counter (add-value! self x)

(become value :value (+ value x))).

Method add-value! increments value of a counter object by x. Referencing

value in the result expression of the become still reads the original value of

value. On the other hand, if we change add-value! method in the following

way:



(define-method! counter (add-value! self x)

(become (get-value self) :value (+ value x))),

we will obtain the value after value has been incremented, since get-value

method is invoked after the update has been done.

{ Second, become atomically updates all the instance variables, no matter how

many variables are updated. Consider the following example.

(define-method! point (move! self dx dy)

(become (redraw! self) :x (+ x dx) :y (+ y dy)))

(define-method point (position self)

(list x y))

(let ((p (point 0 0)))

(pbegin

(move! p 1 1)

(position p))).

In the last expression, we invoke position method on a point object that is

moving from point (0; 0) to point (1; 1). The position method is guaranteed

to return either (0 0) or (1 1). It never obtains (0 1) nor (1 0).

6 Examples

6.1 Concurrent Tree Updating

This example demonstrates how the concurrency semantics of our model, that

is, classi�cation of methods and the notion of before/after-stage, allows natural

description of concurrent data structure. Consider a binary tree search algorithm

where each node of the binary tree is a concurrent object. Here is the de�nition

of each node object.

(define-class bintree-node ()

;; remember association between KEY and VALUE

key

value

;; children (#f when it does not exist)

left

right)

Each node has its key and associated value. It holds that the key of the left child

is less than that of self and the key of the right child is greater than that of self.

Hence binary search operation is very straightforward.

;;;

;;; Lookup the value associated for K.

;;;



(define-method bintree-node (lookup self k not-found)

(cond ((= k key) value) ; found

((< k key)

;; look for the left subtree if K < KEY

(if left

(lookup left k not-found)

not-found))

(else

;; look for the right subtree if K > KEY

(if right

(lookup right k not-found)

not-found))))

Since this operation does not update the tree, we use define-method, hence

multiple lookup invocations can simultaneously operate on a single tree. The

following method installs a new association between key k and value val.

;;;

;;; Establish association K $ VAL, maintaining the

;;; following invariant:

;;; "(KEY of LEFT) < (KEY of SELF) < (KEY of RIGHT)"

;;;

(define-method! bintree-node (insert! self k val)

(cond ((< k key)

(if left

;; if there is already left child, delegate this value

;; to the child, unlocking self

(become (insert! left k val))

;; if there is no left child, create it

(become #t :left (make-leaf-bintree-node k val)))

((= k key)

(format #t "Warning conflicting key (~s ~s)~%" key value)

(become #f))

(else

;; the same algorithm as the �rst case, but for the right child

(if right

(become (insert! right k val))

(become #t :right (make-leaf-bintree-node k val)))))))

This method �rst �nds the appropriate place to which we insert the item and

then installs a new node to that place. An interesting case happens in internal

nodes; an internal node recursively calls insert! method for an appropriate

child after it unlocks self for subsequent requests. This is expressed by

(become (insert! left k val))



at line 6 and

(become (insert! right k val))

at line 15. As has been described in Sect. 5.2, these recursive calls are in the

after-stage of the method, i.e., executed after self has been unlocked.

6.2 Synchronizing Objects

To demonstrate the expressive power of explicit reply channels, consider imple-

mentation of an object which embodies an application-speci�c synchronization

constraint. That is, upon a method invocation, the object defers the reply of the

invocation until certain synchronization constraints are satis�ed by subsequent

methods. Simply blocking computation inside the method does not work, be-

cause this may exclude subsequent method invocations, thus block the original

computation forever!

As a simple example, consider implementing a synchronizing stack object.

The synchronization constraint is that pop operation on an empty stack should

block until the next push operation has been made. An instance of the following

stack class has two instance variables values and waiters. Values is a list of

pushed values and waiters a list of reply channels of pop requests which are

not yet served. At least one of values or waiters is always empty.

(define-class stack ()

values ; list of pushed values

waiters) ; list of reply channels

The following stack-pop! method facilitates explicit reply channel feature of

Schematic. The method �rst checks if values is empty. If it is, we block the

caller by not replying any value to the reply channel of the invocation. In order

to later unblock the caller, we insert the reply channel to waiters list. Otherwise

we simply serve the top element of values by reply operation on the reply

channel.

;;;

;;; Pop a value from the stack. Block if empty, until the next STACK-PUSH!

;;;

(define-method! stack (stack-pop! self)

(:reply-to r) ; declare the name of the reply channel to be R

(if (null? values)

;; Stack is empty. Does not reply anything and let the caller

;; wait until the next value comes

(become #t :values '() :waiters (cons r waiters))

;; Stack is not empty. Simply reply the top element to R.

(become (reply (car values) r)

:values (cdr values) :waiters '())))



To make this example complete, we give the description of push operation below.

The method �rst checks waiters list. If it is empty, we simply push the value

to values for servicing later stack-pop!s. Otherwise it removes a channel from

waiters and serves the value to it.

;;;

;;; Push VAL on the stack.

;;;

(define-method! stack (stack-push! self val)

(if (null? waiters)

;; nobody is waiting, hence simply push VAL

(become #t :values (cons val values) :waiters '())

;; somebody is blocking, hence resume the �rst guy

(become (reply val (car waiters))

:values '() :waiters (cdr waiters))))

7 Comparison to Other Languages

Schematic can be related to several groups of other concurrent languages. First,

Schematic is a language whose computation model is based on a concurrent cal-

culus which gives us the foundations of compiler optimizations. Second, Schematic

supports concurrent objects which allow/guarantee more concurrency than the

traditional mutual exclusion model which serialize all method invocations on a

single object. Third, Schematic is an extension of a popular sequential language,

which already has a philosophy to be preserved.

7.1 Languages Based on Concurrent Calculi

PICT. PICT [24] is a concurrent language based on �-calculus [21]. Its design

goal is to support frequently used higher-level idioms as syntactic rules in a

language directly based on �-calculus (just as Scheme is based on � calculus

and has higher-level idioms such as do loop). Although the language design is

still evolving, there seems to be no constructs which directly support future

or even sequential function calls. Schematic shares the same design goal and

demonstrates that, by looking at function calls and lambda expressions of Scheme

in a slightly di�erent way, a language with a very small number of fundamental

primitives can at the same time provide convenient constructs (such as future

and plet) for typical cases.

7.2 Concurrent Extensions to Sequential Languages

Extending a sequential language to yield a concurrent dialect has many practical

advantages. Among others, Multilisp and Concurrent ML are closely related

to Schematic, in that Multilisp extends Scheme by future and Concurrent ML

supports �rst class channels.



Multilisp. Multilisp [14] is the language which originally embodies the future

construct. The central idea of future is that a future expression returns some-

thing which later becomes the result value. This construct or variants are later

adopted not only in parallel Lisps but also in some concurrent object-oriented

languages [18, 31, 34, 36].

Schematic also supports a variant of future. An apparent di�erence between

the future in Multilisp and the one in Schematic is that in Multilisp, producer-

consumer synchronization of a future invocation is implicit in value reference,

whereas Schematic requires explicit touch operations. For example, invoking (f

x) and (g y z) in parallel and then adds the two results is written by

(+ (future (f x)) (future (g y z))),

in Multilisp, while it is written by

(let ((l (future (f x))) (r (future (g y z))))

(+ (touch l) (touch r)))

in Schematic.

6

Informally, the Multilisp view of a future is that what is immediately returned

by a future expression is a placeholder object, which later becomes the result

value for itself, whereas the Schematic view is that a future expression returns

a placeholder (i.e., channel) into which the result value is stored.

There are tradeo�s between these two views. The implicit future in Multilisp,

as the above example indicates, often results in a terse expression but loses some


exibility. On the other hand, by making touch explicit, we can distinguish a

reference to a channel itself from the reference to the value which is stored in the

channel by the program text. This not only guarantees fast value reference with-

out additional compiler analysis [29], but also produces more expressive power

by making channels �rst-class citizens. Examples have been given in Sect. 6.2.

Another di�erence is their treatment of shared mutable data. Multilisp pro-

vides Scheme builtin data as the basis for mutable data and some atomic memory

operations such as replace-if-eq (analogue of compare & swap). No higher-

level mechanisms for de�ning safe mutable data are provided. Schematic sup-

ports and encourages the use of concurrent objects to represent mutable data,

concurrent accesses to which are arbitrated by the runtime system.

Concurrent ML. Concurrent ML (CML) [25] extends SML by �rst-class chan-

nels and fork (spawn), whereas Schematic extends Scheme by �rst-class channels,

fork (future), and concurrent objects. To put concurrent objects aside, the main

di�erence is that CML does not support any higher-level concurrent primitives

(parallel calls or even futures).

Consider how to do two CML function calls f x and g x in parallel. Since the

results must now be extracted from a channel, let us de�ne a `wrapper' function

which takes a channel and sends the result of f x to the channel.

6

As far as this particular example is concerned, pcall would express it more nicely.



fun wrapper f x c = send (f x, c)

What remains is to create two channels, spawn two wrappers, and wait for the

result.

let c0 = channel ()

and c1 = channel ()

in

(spawn (fn () => wrapper f x c0);

spawn (fn () => wrapper g x c1);

accept c0; accept c1)

end

Presumably, a fragment like this will appear very often and should be more

stylized, as in Schematic. In fact, a restricted version of future can be de�ned in

CML by

fun future f x =

let c = channel ()

in

(spawn (fn () => send (c, f x)); c)

end.

Except that it can only invoke a unary function, the above future takes any func-

tion and any argument and returns the reply channel. This is more monolithic

and less 
exible than futures in Schematic, in that a future now always creates

a reply channel and the caller loses the chance to specify a reply channel.

Given that a function is the fundamental building block of CML programs,

CML should support and encourage a convenient way for invoking functions in

parallel. Schematic is designed based on this principle, while leaving chances to

construct customized communication structure whenever desired.

7.3 Concurrent Object-Oriented Languages

A concurrent object refers to data that embodies some access arbitration mech-

anisms so that an execution of a method never observes inconsistent state of

an object. Several object models have been proposed and they di�er in the de-

gree of concurrency on a single object. Below we compare Schematic with other

languages in this respect.

Early Concurrent Object-Oriented Languages based on Actors. Some

early concurrent object-oriented languages such as ABCL/1 [35, 36] and Cantor

[4] achieves the instantaneousness of a method execution by mutually exclud-

ing all the method invocations on an object. This is often explained by \an

autonomous object which has its own thread and message queue." Although

the traditional mutual exclusion model provides the instantaneousness and a

very simple model in which the programmer reasons about deadlock, it is often



criticized to serialize too much. This not only loses performance gain which is

otherwise possible by exploiting parallelism, but also enforces unnatural descrip-

tion of algorithms to solely avoid potential deadlock.

Concurrent Aggregates. Concurrent Aggregates (CA) [9, 10] supports ag-

gregates in addition to regular objects. A regular object is a serializing data

structure and an aggregate is internally composed of multiple objects, but ex-

ternally viewed as if it were a single object. By processing multiple method

invocations on an aggregate by multiple internal objects, an aggregate can serve

as a non-serializing object. Maintaining the consistency among multiple internal

objects, if required, is the responsibility of the programmer.

SYMPAL and UFO An object in more recent languages such as SYMPAL [3]

and UFO [26, 27] allows a running method to overlap with subsequent methods,

while achieving the instantaneousness of method invocations. The basic idea is

to schedule subsequent methods on an object as soon as the current method

�nishes the last update in the method body.

Become of Schematic was originally proposed in SYMPAL as finally con-

struct. A method can perform at most one finally, which all at once updates

instance variable. The syntactic rule described in Sect. 5.1 (also described in

[3]) guarantees the single update rule. Schematic extends the object model of

SYMPAL by further classifying methods into two types (define-method and

define-method!) and guaranteeing that define-method always progresses with-

out any mutual exclusion.

UFO also enforces the single assignment rule and takes another approach for

detecting the last update. A method (called procedure in UFO) updates state

variables by individual assignments. The compiler statically approximates the

point where the last update is done and unlocks the object at that point.

C++ Dialects. Several C++ dialects support objectwise concurrency control

mechanisms. Here we concentrate on dialects which support this type of object

model and do not discuss other types of C++ extensions such as data-parallel

extensions [6].

CC++ [7] does not directly support concurrent objects, but the similar e�ect

can be achieved by atomicmember functions. By declaring a member function as

atomic, the member function locks/unlocks the object at invocation/termination

as in the traditional Actors. Thus the object model of CC++ has the same

problems with early concurrent object-oriented languages. Non-atomic functions

can run concurrently with others, but this merely leaves consistency issues for

the programmer.

Objects in ICC++ [11] allows two methodsM and M

0

to operate on a single

object in parallel if there are no read/write nor write/write con
icts between

them on any instance variable of the object. In this way, ICC++ guarantees

that any method appears to take e�ect instantaneously, while achieving concur-

rent accesses to a single object. The main di�erence between ICC++ and the



UFO/SYMPAL/Schematic group is that the ICC++ model performs mutual

exclusion on a per instance variable basis, rather than a per object basis.

The range of programs which are guaranteed to be scheduled without dead-

lock do not seem quite di�erent between ICC++ and Schematic. A foreseeable

problem with the ICC++ object model is that each object now potentially has

to have multiple locks to serialize only con
icting methods. The worst case re-

quires a lock per instance variable and removing redundant locks requires global

information on the source code.

8 Summary and Current Status

The design of Schematic, a concurrent object-oriented extension to Scheme, has

been presented. Just as most part of Scheme can be understood in terms of a

very simple calculus (the �-calculus), most part of Schematic can be understood

in terms of a simple concurrent calculus (HACL). To make it really practical,

Schematic also supports and encourages the use of familiar paradigms (i.e.,

futures and concurrent objects) as well, achieving both the simple core of the

language and the conciseness/convenience in typical programs.

A prototype on top of a sequential Scheme (Scheme->C) has been imple-

mented and is running on AP1000 and AP1000+ massively parallel processors

[15, 28]. We had developed an RNA secondary structure prediction algorithm

[22],

7

which is essentially a parallel tree search with application-speci�c priority

and a load-balancing control scheme, and Barnes-Hut Nbody algorithm. Exper-

iments on an AP1000+ system (SuperSparc 50 Mhz � 256) indicated an usable

performance, though many more improvements are necessary.

Further information is available via:

http://web.yl.is.s.u-tokyo.ac.jp/pl/schematic.html.

References

1. Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.

The MIT Press, Cambridge, Massachusetts, 1986.

2. Thomas E. Anderson, David E. Culler, David A. Patterson, and the NOW Team.

A case for NOW (networks of workstations). IEEE Micro, 15(1):54{64, February

1995.

3. Yariv Aridor. An E�cient Software Environment for Implicit Parallel Program-

ming with a Multi-Paradigm Language. PhD thesis, the Senate of Tel-Aviv Uni-

versity, 1995.

4. W. C. Athas and C. L. Seitz. Cantor user report version 2.0. Technical report,

Computer Science Department, California Institute of Technology, 1987.

5. Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,

Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A gigabit-per-

second local area network. IEEE Micro, 15(1):29{36, February 1995.

7

This paper describes algorithms and results by message passing C on CM5, and we

are now preparing the result in Schematic.



6. F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony, and B. Mohr.

Implementing a parallel C++ runtime system for scalable parallel systems. In

Proceedings of Supercomputing, pages 588{597, 1993.

7. K. Mani Chandy and Carl Kesselman. CC++: A declarative concurrent object-

oriented programming notation. In Gul Agha, Peter Wegner, and Akinori

Yonezawa, editors, Research Directions in Concurrent Object-Oriented Program-

ming, chapter 11, pages 281{313. The MIT Press, 1993.

8. Andrew Chien, M. Straka, Julian Dolby, Vijay Karamcheti, John Plevyak, and

Xingbin Zhang. A case study in irregular parallel programming. In Proceedings of

the DIMACS workshop on Speci�cation of Parallel Algorithms, 1994.

9. Andrew A. Chien. Concurrent Aggregates (CA). PhD thesis, MIT, 1991.

10. Andrew A. Chien and William J. Dally. Concurrent aggregates (CA). In Pro-

ceedings of the Second ACM SIGPLAN Symposium on Princeples & Practice of

Parallel Programming, pages 187{196, Seattle, Washington, March 1990.

11. Andrew. A. Chien, U. S. Reddy, J. Plevyak, and J. Dolby. ICC++ { a C++ di-

alect for high performance parallel computing. In Proceedings of the Second Inter-

national Symposium on Object Technologies for Advanced Software (To appear),

1996.

12. High Performance Fortran Forum. HPF-2 Scope of Activities and Motivating Ap-

plications, 1994.

13. Ananth Y. Grama, Vipin Kumar, and Ahmed Sameh. Scalable parallel formulation

of the Barnes-Hut method for n-body simulations. In Proceedings of Supercomput-

ing '94, pages 439{448, 1994.

14. Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computa-

tion. ACM Transactions on Programming Languages and Systems, 7(4):501{538,

April 1985.

15. Kenichi Hayashi, Tunehisa Doi, Takeshi Horie, Yoichi Koyanagi, Osamu Shiraki,

Nobutaka Imamura, Toshiyuki Shimizu, Hiroaki Ishihata, and Tatsuya Shindo.

AP1000+: Architectural support of put/get interface for parallelizing compiler. In

Proceedings of Architectural Support for Programming Languages and Operating

Systems, pages 196{207, 1994.

16. Maurice P. Herlihy. A methodology for implementing highly concurrent data ob-

jects. ACM Transactions on Programming Languages and Systems, 15(5):745{770,

1993.

17. Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condi-

tion for concurrent objects. ACM Transactions on Programming Languages and

Systems, 12(3):463{492, 1990.

18. Waldemar Horwat, Andrew A. Chien, and William J. Dally. Experience with CST:

Programming and implementation. In Proceedings of the SIGPLAN '89 Conference

on Programming Language Design and Implementation, pages 101{109, Portland,

Oregon, July 1989.

19. Yutaka Ishikawa. The MPC++ Programming Language V1.0 Speci�cation with

Commentary Document Version 0.1. Technical Report TR{94014, RWC, June

1994. http://www.rwcp.or.jp/people/mpslab/ mpc++/mpc++.html.

20. Naoki Kobayashi and Akinori Yonezawa. Higher-order concurrent linear logic pro-

gramming. In Proceedings of Workshop on Theory and Practice of Parallel Pro-

gramming (TPPP), volume 907 of Lecture Notes in Computer Science, pages 137{

166. Springer Verlag, 1994. http:// web.yl.is.s.u-tokyo.ac.jp/pl/hacl.html.

21. Robin Milner. The polyadic �-calculus: A tutorial. Technical Report ECS-LFCS-

91-180, University of Edinburgh, 1991.



22. Akihiro Nakaya, Kenji Yamamoto, and Akinori Yonezawa. RNA secondary

structure prediction using highly parallel computers. Comput. Applic. Biosci.

(CABIOS) (to appear), 11, 1995.

23. Benjamin C. Pierce and David N. Turner. Concurrent objects in a process cal-

culus. In Proceedings of Workshop on Theory and Practice of Parallel Program-

ming (TPPP), volume 907 of Lecture Notes in Computer Science, pages 187{215.

Springer Verlag, 1994.

24. Benjamin C. Pierce and David N. Turner. PICT: A programming language based

on the Pi-Calculus. Technical report in preparation; available electronically, 1995.

25. John H. Reppy. CML: A higher-order concurrent language. In Proceedings of the

ACM SIGPLAN'91 Conference on Programming Language Design and Implemen-

tation, pages 293{305, 1991.

26. John Sargeant. United functions and objects: An overview. Technical report,

Department of Computer Science, University of Manchester, 1993.

27. John Sargeant. Uniting functional and object-oriented programming. In Shojiro

Nishio and Akinori Yonezawa, editors, Proceedings of First JSSST International

Symposium on Object Technologies for Advanced Software, volume 742 of Lecture

Notes in Computer Science, pages 1{26. Springer-Verlag, 1993.

28. Toshiyuki Shimizu, Takeshi Horie, and Hiroaki Ishihata. Low-latency message

communication support for the AP1000. In The 19th Annual International Sym-

posium on Computer Architecture, pages 288{297, 1992.

29. Olin Shivers. Data-
ow analysis and type recovery in Scheme. In Peter Lee, editor,

Topics in Advanced Language Implementation, chapter 3, pages 47{87. The MIT

Press, 1991.

30. Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. An e�cient im-

plementation scheme of concurrent object-oriented languages on stock mul-

ticomputers. In Proceedings of the ACM SIGPLAN Symposium on Prin-

ciples & Practice of Parallel Programming PPOPP, pages 218{228, 1993.

http://web.yl.is.s.u-tokyo.ac.jp/pl/schematic.html.

31. Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. ABCL/f : A future-

based polymorphic typed concurrent object-oriented language { its design

and implementation {. In G. Blelloch, M. Chandy, and S. Jagannathan, edi-

tors, Proceedings of the DIMACS workshop on Speci�cation of Parallel Algo-

rithms, number 18 in Dimacs Series in Discrete Mathematics and Theoreti-

cal Computer Science, pages 275{292. American Mathematical Society, 1994.

http://web.yl.is.s.u-tokyo.ac.jp/pl/ schematic.html.

32. Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. StackThreads: An ab-

stract machine for scheduling �ne-grain threads on stock CPUs. In Proceedings

of Workshop on Theory and Practice of Parallel Programming (TPPP), number

907 in Lecture Notes in Computer Science, pages 121{136. Springer Verlag, 1994.

http://web.yl.is.s.u-tokyo.ac.jp/pl/ schematic.html.

33. Thorsten von Eicken, Anindya Basu, and Vineet Buch. Low-latency communica-

tion over ATM networks using active messages. IEEE Micro, 15(1):46{53, February

1995.

34. William Weihl, Eric Brewer, Adrian Colbrook, Chrysanthos Dellarocas, Wilson

Hsieh, Anthony Joseph, Carl Waldspurger, and Paul Wang. PRELUDE: A system

for portable parallel software. Technical Report MIT/LCS/TR-519, Laboratory

for Computer Science, Massachusetts Institute of Technology, 1991.

35. Akinori Yonezawa. ABCL: An Object-Oriented Concurrent System|Theory, Lan-

guage, Programming, Implementation and Application. The MIT Press, 1990.



36. Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented

concurrent programming in ABCL/1. In OOPSLA '86 Conference Proceedings,

pages 258{268, 1986.

This article was processed using the L

a

T

E

X macro package with LLNCS style


