
Semantics of fixIO

Levent Erkök∗ John Launchbury∗ Andrew Moran†

∗OGI School of Science and Engineering, OHSU
†Galois Connections, Inc.

Abstract

Recent work on recursion over the values of monadic ac-
tions resulted in the introduction of a family of fixed point
operators, one for each different kind of monadic effect. In
the context of Haskell, the function fixIO is the correspond-
ing operator for the IO monad. Unfortunately, both the IO
monad and fixIO are language primitives in Haskell, i.e. they
can not be defined within the language itself. Therefore, any
attempt to formally reason about fixIO is futile without a
precise semantics for computations in the IO monad. Quite
recently, Peyton Jones introduced an operational semantics
based on observable transitions as a method for reasoning
about I/O in Haskell. Building on this work, we show how
one can model fixIO as well, and we argue that it indeed
belongs to the family of fixed point operators that enable
monadic value recursion.

1 Introduction

Ever since Peyton Jones and Wadler showed how monads
can be used to model I/O in a language with non-strict se-
mantics, monadic I/O became the standard way of dealing
with input/output in Haskell [13]. Together with the IO
monad, a rather mysterious function called fixIO was also
introduced. Intuitively, fixIO allows us to model computa-
tions that depend on “results that are not yet computed but
lazily available” [1, section 4.1]. The functionality provided
by fixIO is similar to that of fixST associated with the state
monad [7].

Later work on recursion resulting from the values of
monadic actions tried to explain the behavior of such fixed
point operators from an axiomatic point of view [3]. It was
noted that a generic fixed point operator, one that would
work regardless of the underlying effect, was not available.
Instead, one has to specify a “suitable” fixed point opera-
tor for each different kind of monadic effect. The meaning
of “suitable” was encoded in a number of properties. The
same work also provided a catalogue of operators for vari-
ous monads satisfying these properties and conjectured that
fixIO was the required operator for the IO monad in Haskell,
pending a detailed treatment.

Appears in the Fixed Points in Computer Science
Workshop (FICS’01), a satellite workshop to PLI’2001.
Sept. 7-8, 2001, Florence, Italy.

To explore the conjecture further, we need to understand
fixIO. First of all, we need a semantics for the computations
in the IO monad. Recent work by Peyton Jones introduced
a semantics based on observable transitions [11], in the spirit
of monadic transition systems that were previously studied
by Gordon [4]. In such a system, an IO computation is
viewed as a sequence of labeled transitions. Each label indi-
cates an effect observable in the real world, similar to those
in process calculi [9]. Peyton Jones’ work used an embed-
ding of a denotational semantics for the functional layer into
the IO layer. However, it bypassed the details of this embed-
ding. Such an approach is fine, as long as one is interested in
the big picture. If, on the other hand, one wants to reason
about fixIO, it becomes necessary to be explicit about the
relationship between the IO and functional layers. Our aim
in this paper is to bridge this gap.

Our semantics is structured in two layers: IO and func-
tional. The semantics for the IO layer is based on the ap-
proach taken by Peyton Jones [11]. The semantics for the
functional layer is based on the natural semantics for lazy
evaluation of Launchbury [5]. A final set of rules precisely
shows how these two layers interact with each other. It is
this interaction that allows us to give a semantics for fixIO.
The present paper contains our initial results, including a
complete operational semantics for both layers. A more rig-
orous study of the underlying proof system is still pending.

The remainder of this paper is structured as follows.
First, we motivate the usage of fixIO with some simple ex-
amples. Then we present a language with monadic I/O con-
structs, together with a two layer semantics. Then, we show
how one can use the semantics to reason about programs in-
volving fixIO. This is followed by a brief review of monadic
value recursion and a discussion of the properties satisfied
by fixIO. We conclude with a summary of our results and
pointers for future work.

2 Motivating Examples

To get an idea of what fixIO does, consider the following
Haskell expression of type IO [Char]:

fixIO (λcs. do c ← getChar
return (c : cs))

Intuitively, when we run this computation, we expect a char-
acter to be read from the standard input, say a. Once the
input operation is completed, the computation immediately
terminates with the delivery of an infinite list of a’s. We
will be able to pull out as many characters as we wish out

of this list, following the demand-driven evaluation policy of
Haskell. There are two crucial points:

• The action getChar is executed only once,

• The computation immediately terminates after the
reading is done, i.e. the infinite list is not constructed
prior to its demand. In other words, the fact that the
IO monad is strict in actions but not in values is pre-
served by fixIO.

Here, we also get a feel for what fixIO provides: it lets us
name the results of computations that will only be available
later on. That is, we were able to name the result of the
computation as cs, before we had its value computed. In
this sense, the semantics is similar to the pure expression:

let cs = ’a’ : cs
in cs

except, to determine the character in the list we first perform
an effect via the call to getChar.

One other facility provided by the IO monad in Haskell
is mutable variables. Here is an example showing the inter-
action of fixIO with mutable cells:

fixIO (λ˜(x ,). do y ← newIORef x
return (1:x , y))

�= λ(, l). readIORef l

In this example, we allocate a cell in which we store the
value of the variable x, before we know what this value really
is. The contents of x is determined through the fixed point
computation, to be the infinite list of 1’s. The call to fixIO
returns the value (which is discarded) and the address of
the cell that stores this cyclic structure. Outside of the
call to fixIO, we dereference the address, to get back the
lazily computed list of 1’s. Although this example might
look superficial, this is exactly what’s going on whenever we
have a cyclic structure with mutable nodes. For instance,
we have previously described how such a technique can be
used to implement doubly-linked-lists, where each node held
a mutable boolean value [3]. A similar situation arises in
object oriented programming, when several objects need to
refer to each other cyclically [10].

Once we describe the semantics for fixIO, we will revisit
these examples to see how our system works in practice.

3 The language

In this section, we define a language with monadic IO prim-
itives, based on Haskell [12].
Sorts:

c ∈ constructors
x, y, z, w ∈ heap variables

r, s, t ∈ mutable variables

We syntactically distinguish between heap and mutable vari-
ables: they come from different alphabets.
Terms:

M, N ::= x
| V
| M N

| let ~x = ~M in N
| case M of {ci ~xi → Ni}

Values:

V ::= c x 1 x 2 ... x i

| λx. M
| return M | M �= N
| getChar | putChar k
| fixIO M | updatez M
| r | newIORef M
| readIORef r | writeIORef r M

Terms and values are defined mutually recursively. Pro-
grams in our language are well typed terms of type IO a,
for some type a,1 and results of programs are values, with
the exception of the special value updatez. This value, as-
sociated with a heap variable z, can not appear in a valid
program. Furthermore, it is never the result of any pro-
gram either. It is only used internally, in giving a semantics
to fixIO. We will explain the role of update in detail later.
All other constructs have the same meaning as they do in
Haskell. Note that IO actions are values as far as the purely
functional world is concerned.

The first alternative in the definition of V covers
constructors. A constructor application is treated just
like a normal function application. A constructor c
of arity i should be considered as an abbreviation for
λx1 . . . xi. c x1 . . . xi. When a constructor is fully applied, it
becomes a value of its own. This is captured in the first al-
ternative in the definition of V , where c is assumed to have
arity i. Such a value has variables, rather than arbitrary
terms, as the arguments to the constructor. Our rules will
ensure that this is always the case. We model constants
as nullary constructors, i.e. numbers, characters etc. are
treated as constructors with zero arity. (As a notational
hint, we use the letter k to refer to constants.)

It is worth noting that the grammar we gave describes
the syntax for the reduced terms of our language rather
than its concrete syntax. This distinction shows up mainly
in the applications of putChar, readIORef and writeIORef.
In the concrete syntax, we allow them to receive arbitrary
terms as their first arguments, as in putChar (f x). As
we will see, our rules will reduce them appropriately to
conform to our grammar. We will also allow ourselves to
use the do-notation of Haskell, whose translation to the
core syntax is trivial [12].

Execution Contexts:�
::= [.] |

�
�= M

An execution context is a term with one hole.2 We use
contexts to guide our semantics. At each step, we match
the current term under consideration against this grammar,
such that there is a rule that corresponds to the term filling
the hole. In practice, this simply amounts to looking at the
leftmost branch in the tree of �= nodes.

Heaps: A heap is a finite partial function from heap vari-
ables to terms extended with a special blackhole value:

Γ, ∆, Θ :: x ⇀ M ∪ {•}

1For the purposes of this paper, we completely ignore the issue of
types. We assume that the usual Haskell rules apply to determine well
typed terms, and we never try to evaluate ill-typed terms. Typing of
Haskell programs has been discussed in detail in the literature [12].

2Other authors use the term evaluation context for this concept.
We prefer the term execution, since such a context can only only be
filled by an IO action in this case, which is going to be executed next.

2

A blackhole binding, written as z 7→ •, indicates that z is
known but its binding is not accessible. Notice that • is a
detectable bottom, and is not directly available to the user
(much like updatez). Its role will be explained in detail later.

Program state: A running program is identified by its
heap and its term state given by:

P, Q, R ::= M Current term
| 〈x〉r An IORef named r
| P | Q Parallel composition
| νr.P Restriction

We use the notation
Γ : P

to capture a program in execution. A program state Γ : P is
called closed, if Γ contains bindings for all the free variables
appearing in the term state P .

Notice that the term state allows parallel composition of
terms, as in M | N . This generality is needed when one
extends the system to handle concurrency primitives [11].
However, we do not use this generality here: For us, a term
state is a single term and a number of passive containers
that hold references to heap variables.

We need some machinery in formalizing our arguments.
First, we need to be able to tell free and bound names in cer-
tain contexts. Our free-name function fn can take a heap,
a context or a term state as an argument. For a context
or a term state, fn simply returns the set of all free vari-
ables in it, that is any occurrence of a heap or a mutable
variable that is not in the scope of a λ or a ν. For a heap
Γ, it is defined as fn(Γ) = � {fn(M) | x 7→ M ∈ Γ}. We
treat fn as a variable arity function to simplify the notation:
fn(A, B) means fn(A) ∪ fn(B). Similarly, the function bn
takes a heap and returns all the variables bound in it, i.e.
bn(Γ) = {x | x 7→M ∈ Γ}. The notation Γ/P stands for the
slice of a heap Γ, with respect to a term state P . Intuitively,
it is the subset of Γ that is reachable from the free names of
P . More precisely, for a given Γ and P , let

S0 = fn(P)

Si+1 = Si ∪ (� {fn(M) | x ∈ Si ∧ x 7→M ∈ Γ})

and let S = �
i∈ � Si. Then,

Γ/P = {x 7→M | x ∈ S, x 7→M ∈ Γ}

The final bit of notation we use is (Γ, x 7→ M), which
stands for Γ∪ {x 7→M}, with the side condition x 6∈ bn(Γ).
It simply means that we extend the heap Γ with the binding
x 7→M , where x is a fresh variable.

4 Semantics

We describe the semantics of our language in two layers.
The IO layer takes care of the interaction with the outer
world and manages mutable variables. The functional layer
handles pure computations. A final set of rules regulate the
interaction between these two layers.

4.1 IO layer

Figure 1 gives the transition rules for the IO layer. A tran-
sition labeled !c means that the character c is printed on
standard output, and one labeled ?c means that a character

is read from standard input. Although our rules are similar
to those given by Peyton Jones [11], the following points are
worth mentioning:

• As in the natural semantics of Launchbury [5], we keep
track of a separate global heap to store values of vari-
ables,

• Unlike the awkward squad paper, our reference cells
only store heap variables, rather than arbitrary terms.
This is necessary in order to model sharing implied by
lazy evaluation.

The FIXIO rule is modeled after knot tying recursion se-
mantics. We first create a new heap variable, called z, whose
value is not yet known. This is achieved by binding it to •.
Then, we call the function and pass it the argument z, and
proceed normally. If the evaluation of this function needs
to know the value of z, the derivation will get stuck with a
detected blackhole. Otherwise, z could be passed around,
stored in data structures etc: Notice that it is just a normal
heap variable. Once the function call completes, we update
the heap variable z by the result of the function, effectively
tying the knot by an application of the UPDATE rule. This
behavior achieves the recursion implied by fixIO. In sum-
mary, z holds the value of the entire computation, which
might in turn depend lazily on its own value, exactly the
mechanism provided by fixIO.

4.2 Functional layer

The semantics of the functional layer closely follows Launch-
bury’s natural semantics [5]. Some minor differences are
worth mentioning:

• We introduce a new blackhole binding,

• The APP rule is generalized to application of terms
to terms, rather than terms to just variables. Corre-
spondingly, we do not need to perform the normaliza-
tion pass,

• We perform renaming in the LET rule, rather than the
VAR rule,

In the LET rule, we rename all bound variables x1 . . . xn

to x̂1 . . . x̂n so that there won’t be any name clashes in the

heap when we do the additions. Similarly, the term M̂i de-
notes the same term as Mi where each occurrence of xi is
replaced by x̂i. (And N̂ as well.) The VAR rule is not appli-
cable if the corresponding variable is bound to • in the heap.
(Recall that • /∈ M .) If this is ever the case, the derivation
will simply terminate with failure. This corresponds to a
detected blackhole.

4.3 The marriage

Given separate semantics for the IO and functional layers,
we need to specify exactly how they interact. There are two
different kinds of interaction. First, whenever we try to re-
duce a term of the form, say, putChar M, we first need to
consult the functional layer to reduce the term M to a char-
acter. The IO layer will then perform the output. We need
similar rules for readIORef and writeIORef as well. The
first three rules in Figure 3 take care of this interaction.
The second kind of interaction embeds the functional world

3

�
[putChar c]

!c
−→

�
[return ()] (PUTC)�

[getChar]
?c
−→

�
[return c] (GETC)

�
[return N �= M] −→

�
[M N] (LUNIT)

r /∈ fn(
�
, M)

Γ :
�
[newIORef M] −→ (Γ, x 7→M) : νr.(

�
[return r] | 〈x〉r)

(NEWIO)

�
[readIORef r] | 〈x〉r −→

�
[return x] | 〈x〉r (READIO)

Γ :
�
[writeIORef r N] | 〈x〉r −→ (Γ, y 7→ N) :

�
[return ()] | 〈y〉r (WRITEIO)

Γ :
�
[fixIO M] −→ (Γ, z 7→ •) :

�
[M z �= updatez] (FIXIO)

(Γ, z 7→ •) :
�
[updatez M] −→ (Γ, z 7→M) :

�
[return z] (UPDATE)

Figure 1: Semantics: IO layer

Γ : V ⇓ Γ : V (VALUE)

Γ : M ⇓ ∆ : λy.M ′ (∆, w 7→ N) : M ′[w/y] ⇓ Θ : V

Γ : MN ⇓ Θ : V
(APP)

(Γ, x 7→ •) : M ⇓ (∆, x 7→ •) : V

(Γ, x 7→M) : x ⇓ (∆, x 7→ V) : V
(VAR)

(Γ, x̂1 7→ M̂1 · · · x̂n 7→ M̂n) : N̂ ⇓ ∆ : V

Γ : let x1 = M1 · · · xn = Mn in N ⇓ ∆ : V
(LET)

Γ : M ⇓ ∆ : ck ~xk ∆ : Mk[~xk/~yk] ⇓ Θ : V

Γ : case M of {ci ~yi →Mi} ⇓ Θ : V
(CASE)

Figure 2: Semantics: Functional layer

into the IO world, as modeled by the last rule in the fig-
ure. Whenever the IO layer has a functional expression to
reduce (such as an application or a let binding), it uses the
functional layer to do the job. In all these rules, M is as-
sumed to be a non-value: The functional layer is consulted
to reduce M to a value. As we will see later, this side condi-
tion ensures that a derivation will never loop forever due to
repeated applications of the VALUE rule of the functional
layer.

4.4 Structural rules

Finally, we need a set of structural rules to shape our proof
trees. We need the following rules from the awkward squad
paper: (Here, the label α ranges over empty transitions as
well.)

P | Q ≡ Q | P (COMM)
P | (Q | R) ≡ (P | Q) | R (ASSOC)

νr.νs.P ≡ νs.νr.P (SWAP)

P
α
−→ Q

P | R
α
−→ Q | R

(PAR)

P ≡ P ′ P ′ α
−→ Q′ Q′ ≡ Q

P
α
−→ Q

(EQUIV)

P
α
−→ Q

νr.P
α
−→ νr.Q

(NU)

We also get the ALPHA and EXTRUDE rules, with slight
modifications. First, we need to take care of renaming in
the heap, and we must make sure that we do not create a
dangling reference:

s /∈ fn(P)

Γ : νr.P ≡ Γ[s/r] : νs.P [s/r]
(ALPHA)

r /∈ fn(Q, Γ/Q)

Γ : (νr.P) | Q ≡ Γ : νr.(P | Q)
(EXTRUDE)

Notice that we don’t need a side condition of the form
s /∈ bn(Γ) in the ALPHA rule. In fact, such a condition is
not even well-typed: Recall that heap and mutable variables
come from different alphabets, and heap only ever binds
heap variables. But, in the extrude rule, it can be the case
that r ∈ fn(Γ/Q), that is the bound terms in the heap can
contain the names of mutable variables. Section 5.3 contains
an example demonstrating the situation.

We also need the following new structural rules that reg-
ulate the interaction of the heap with other bits of the se-
mantics:

P
α
−→ Q

Γ : P
α
−→ Γ : Q

(HEAPIN)

Γ : P
α
−→ ∆ : Q

Γ : P | R
α
−→ ∆ : Q | R

(HEAPPAR)

Γ : P
α
−→ ∆ : Q

Γ : νr.P
α
−→ ∆ : νr.Q

(HEAPNU)

4

Γ : M ⇓ ∆ : k

Γ :
�
[putChar M] −→ ∆ :

�
[putChar k]

(PUTCEVAL)

Γ : M ⇓ ∆ : r

Γ :
�
[readIORef M] −→ ∆ :

�
[readIORef r]

(READIOEVAL)

Γ : M ⇓ ∆ : r

Γ :
�
[writeIORef M N] −→ ∆ :

�
[writeIORef r N]

(WRITEIOEVAL)

Γ : M ⇓ ∆ : V

Γ :
�
[M] −→ ∆ :

�
[V]

(FUN)

Figure 3: Semantics: Marriage of layers. All these rules are subject to the side condition that M is not a value.

Γ : P
α
−→ ∆ : Q m ∈M ∪ {•}

(Γ, x 7→ m) : P
α
−→ (∆, m 7→ s) : Q

(HEAPEXT)

The first three rules show how we can introduce a heap,
a parallel composition or a restriction in an ongoing deriva-
tion. These rules let us to concentrate on pieces of proofs
separately at first, and put them together later on as nec-
essary. The last rule shows how to add extra bindings to
a heap. This rule is useful when we take an ongoing proof
and want to work on a particular term in it in isolation. In
such a case, we need not carry all the bindings in the heap
with us, but rather consider only those that matter for that
particular term. When we are done with the subproof, we
add the bindings back again, and resume normally. We will
see an application of this rule in Section 6.3.

4.5 Derivations

A derivation for a program represented by the term m starts
with the program state

{} : m

that is, with the empty heap. (Notice that the type of m is
IO a for some type a, since m represents a program.) At
each step, we match the program state to one of the rules
and apply it. Depending on the outcome of this process, we
classify (well typed) terms into two categories:

Definition 1 (Kinds of terms.) Let Γ :
�
[m] be a closed

program state. The term m is called normal if the derivation
starting at this state terminates, and divergent otherwise.

A derivation can diverge by getting stuck, i.e. when we
end up with program state with no applicable rules, or by
being infinite, i.e. when we never run out of rules to apply.
We also find the following definitions helpful:

Definition 2 (Silent derivations.) A derivation is silent if
it contains no labeled transitions.

Definition 3 (Strict divergence.) A derivation is strictly
divergent if it is silent and divergent.

In monadic value recursion, we deal with functions of
the type a→ IO a, and we need to be able to identify when
such a function is strict. That is, we need to identify the
least element of IO a, for some type a. We use the following
definition to serve this purpose:

Definition 4 (Bottom of IO.) A term m of type IO a has
the denotation ⊥, iff the derivation for Γ : m is strictly
divergent for all Γ.

Hence, the following expression:

let loop = do putStr “hello”
loop

in loop

is not associated with ⊥: Its derivation is divergent but
not silent. Now we can state what it means to be a strict
function of type a→ IO a:

Definition 5 (Strict functions.) A function f of type a→
IO a is strict if, for all Γ, the derivation for

(Γ, x 7→ •) : f x

is strictly divergent.

The semantics we have described is deterministic. Given
an IO computation, its derivation in our system is directly
guided by its structure. Furthermore, at each step there is
at most one rule that is applicable in the IO layer. The
following lemma states an expected property of derivations
in our system:

Lemma 1 (Derivations for normal terms.) Let Γ :
�
[m]

be a closed program state where m is a normal term. The
derivation starting at Γ :

�
[m] will take the form:

Γ :
�
[m]

α
−→ ∆ : ν~r.(

�
[return n] | C)

where n is a term, α is a (possibly empty) sequence of labels,
and C is a number of (possibly zero) passive containers.
The restrictions ν~r cover all the newly created references
corresponding to the containers in C, if any.

Proof Since m is normal, we are guaranteed by defini-
tion 1 that the derivation will terminate. To establish the
result, we simply note that the only program state that is
not matched by any of the rules in our semantics is of the
form ∆ :

�
[return n], for some term n. Since the derivation

for Γ :
�
[m] is guaranteed to terminate, it should do so with

a term of the required form. (In the course of reaching this
point, passive containers might be created by the WRITEIO
rule, and labels by the PUTC and GETC rules. The struc-
tural rule EXTRUDE can be used to pull all restrictions to
the top level, possibly after renaming them using the AL-
PHA rule.) �

5 Examples

In this section, we revisit the examples given in Section 2,
and show how our semantics can handle them. For further

5

examples of derivations, see the awkward squad paper [11].
In these examples, we will use the letters a, b, . . . to represent
heap variables as well. To save space, we apply the struc-
tural rules silently and collapse a sequence of reductions in
the functional layer to a single step.

5.1 An example with getChar

We first consider the example with getChar. We first remove
the do notation in favor of explicit �=’s:

fixIO (λcs. getChar �= λc. return (c : cs))

We have:
{} : fixIO (λcs. getChar �= λc. return (c : cs))

−→ (FIXIO - FUN)
{z 7→ •, a 7→ z} :

getChar �= λc. return (c : a) �= update z

?ch
−→ (GETC)
{z 7→ •, a 7→ z} :

return ch �= λc. return (c : a) �= update z

−→ (LUNIT - FUN)
{z 7→ •, a 7→ z , b 7→ ch} :

return (b : a) �= updatez

−→ (LUNIT)
{z 7→ •, a 7→ z , b 7→ ch} : updatez (b : a)

−→ (UPDATE)
{z 7→ b : a, a 7→ z , b 7→ ch} : return z

The derivation successfully terminates at this point, as
no further rules apply. Notice that the heap now contains
the cyclic structure that represents the infinite list of ch’s:
The character that was read by the call to getChar. In case
elements of this list is demanded in a context, the usual
demand-driven rules modeled by our semantics would let us
produce enough elements to satisfy the need.

5.2 Using references

We now consider the example with reference cells. Again,
removing do-notation and simplifying the patterns to match
our language, we have:

fixIO (λt. newIORef (fst t) �= λy.
return (1:fst t , y))

�= λu. readIORef (snd u)

We’ll first consider the fixIO call. To save space, we will
abbreviate newIORef to new and readIORef to read :

{} : fixIO (λt. new (fst t) �= λy.
return (1:fst t , y))

−→ (FIXIO - FUN)
{z 7→ •, a 7→ z} :

new (fst a) �= λy. return (1:fst a , y)
−→ (NEWIO)
{z 7→ •, a 7→ z , b 7→ fst a} :

νr.(return r �= λy.return (1:fst a, y)
�= updatez | 〈b〉r)

−→ (LUNIT - FUN)
{z 7→ •, a 7→ z , b 7→ fst a , c 7→ r} :

νr.(return (1:fst a, c) �= updatez | 〈b〉r)
−→ (LUNIT - UPDATE)
{z 7→ (1:fst a , c), a 7→ z , b 7→ fst a, c 7→ r} :

νr.(return z | 〈b〉r)

When we consider the original expression, it is not hard
to see that we will end up with:

−→ (LUNIT - FUN)
{z 7→ (1 : fst a, c), a 7→ z, b 7→ fst a, c 7→ r,

d 7→ z} : νr.(read (snd d) | 〈b〉r)
−→ (READIOEVAL)

{z 7→ (e, f), a 7→ z, b 7→ fst a, c 7→ r, d 7→ (e, f)
e 7→ 1 : fst a, f 7→ r} : νr.(read r | 〈b〉r)

−→ (READIOREF)
{z 7→ (e, f), a 7→ z, b 7→ fst a, c 7→ r, d 7→ (e, f)

e 7→ 1 : fst a, f 7→ r} : νr.(return b | 〈b〉r)

Now, if we chase the value of b in the heap, we see that
we will end up with a cyclic structure effectively represent-
ing the infinite lists of 1’s, as intended. The most interest-
ing step in this derivation is the application of the REA-
DIOEVAL rule. The function snd is a short hand for case
over the pairing constructor. The VAR rule in the func-
tional layer arranges for sharing, resulting in an abundance
of variables in the resulting heap. Notice that, abusing the
notation slightly, in the above derivation (1 : fst a, c) refers
to a function application: the pairing constructor applied to
the terms 1 : fst and c. In the last two lines, however, (e, f)
is a value, i.e. in this case, the pairing constructor applied
to the right number of arguments.

5.3 Dangling references

In this section, we will consider an example demonstrating
the importance of the side condition of the EXTRUDE rule.
Consider:

do j ← new 5
k ← new j
l ← read k
read l

Or, simply:

new 5 �= new �= read �= read

We will try to give a derivation for this expression,
ignoring the side condition of the EXTRUDE rule:

{} : new 5 �= new �= read �= read
−→ (NEWIOREF)
{x 7→ 5} :

νj.(return j �= new �= read �= read | 〈x〉j)
−→ (LUNIT-NEWIOREF)
{x 7→ 5, y 7→ j} :

νj.(νk.(return k �= read �= read | 〈y〉k) | 〈x〉j)
−→ (COMM)
{x 7→ 5, y 7→ j} :

νj.(〈x〉j | νk.(return k �= read �= read | 〈y〉k))
−→ (EXTRUDE – incorrect application)
{x 7→ 5, y 7→ j} :

νj.(〈x〉j) | νk.(return k �= read �= read | 〈y〉k)
−→ (LUNIT - READ - LUNIT)
{x 7→ 5, y 7→ j} : νj.(〈x〉j) | νk.(read y | 〈y〉k)

−→ (READIOEVAL)
{x 7→ 5, y 7→ j} : νj.(〈x〉j) | νk.(read j | 〈y〉k)

And now, we are stuck! The mutable variable j is not
visible at this point. Since we were not careful in applying

6

the extrude rule, we have created a dangling reference. Let’s
construct the slice when we apply the extrude rule:

S0 = {y}, S1 = {y, j}, S2 = S1 = S∞

Therefore, the slice is: {y 7→ j}. Since j ∈ fn({y 7→ j}),
extrude is not applicable. The side condition prevents the
creation of the dangling reference.

6 Monadic value recursion

Equipped with the semantics we have presented so far, we
are now in a position to look at monadic value recursion in
Haskell’s IO monad. But first, we briefly review monadic
value recursion in general.

Monadic value recursion aims at explaining the behavior
of recursion under the presence of effects modeled by mon-
ads. According to the usual unfolding view of recursion, one
“unfolds” the body of a recursive definition as many times
as necessary. If the underlying computation involves effects,
unfolding will repeat these effects. This is precisely the re-
quired behavior, for instance, when we model recursively de-
fined functions that might perform side effects: Each time
the function calls itself recursively, we want the effect to
take place again. For a certain class of problems, however,
this view of recursion is not appropriate. In these cases, re-
cursion needs to be performed only over the values, without
repeating (or losing) the associated effects. The unfolding
view of recursion fails to differentiate between values and
effects, simply repeating them both until a fixed point is
reached. (A premier example of the use of monadic value
recursion is in modeling circuits using monads [6].) We use
the term “value recursion” for this concept.

Not surprisingly, this sort of recursion is modeled by
“monadic value recursion operators”. We claim that fixIO
is such an operator for the IO monad in Haskell. In our ear-
lier work, we have identified several properties that monadic
value recursion operators are expected to satisfy [3]. Based
on the semantics we have described so far, we now investi-
gate these properties in detail for fixIO.

6.1 Strictness

Strictness property states that, if f :: a → IO a is a strict
function, fixIO f is ⊥. That is:

f ⊥ = ⊥ → fixIO f = ⊥

Assuming f is a strict function (definition 5), we have:

Γ : fixIO f
−→ (FIXIO)

(Γ, z 7→ •) : f z �= updatez

The current context specifies that the application f z should
be evaluated. But since f is strict, by definition 5 the deriva-
tion will strictly diverge. But then, by definition 4, this
implies that fixIO f is ⊥.

To illustrate the notion of strictness for IO computa-
tions, we consider some examples: Using if as a shorthand
for case over the boolean type and abbreviating return to
ret, consider:

{} : fixIO (λx.if x == 0 then ret 1 else ret 2)
−→ (FIXIO - FUN)
{z 7→ •, a 7→ z} :

if a = 0 then ret 1 else ret 2 �= updatez

−→ (FUN)
... detected blackhole ...

On the other hand, consider the non-strict function:

λx. return x :: Char → IO Char

Notice that it returns a computation successfully. Of
course, if the result of the fixed-point computation is used,
it will still diverge, but for a different reason. Consider:

{} : fixIO (λx. ret x) �= putChar
−→ (FIXIO - FUN)
{z 7→ •, a 7→ z} : ret a �= updatez �= putChar

−→ (LUNIT)
{z 7→ •, a 7→ z} : updatez a �= putChar

−→ (UPDATE)
{z 7→ a, a 7→ z} : ret z �= putChar

−→ (LUNIT)
{z 7→ a, a 7→ z} : putChar z

−→ (PUTCEVAL)
... detected blackhole ...

The last step diverges, since the VAR rule will get stuck
trying to reduce z to a character.

Similarly, the function:

λa. putChar ’s’ � if a then ret 1 else ret 2

is not strict either. Here is the derivation (abbreviating
putChar to put):

{} :
fixIO (λa. put ’s’ � if a then ret 1 else ret 2)

−→ (FIXIO - FUN)
{z 7→ •, a 7→ z} :

put ’s’ � if a then ret 1 else ret 2
�= updatez

!s
−→ (PUTC)
{z 7→ •, a 7→ z} :

if a then ret 1 else ret 2 �= update z

−→ (FUN)
... detected blackhole ...

But, before getting stuck, we see the character s printed,
which is the correct behavior in this case.

6.2 Purity

Purity property states that, for all f :: a→ a:

fixIO (return . f) = return (fix f)

On the lhs, we have:

Γ : fixIO (return . h)
−→ (FIXIO - FUN)

(Γ, z 7→ •, a 7→ z) : (return . h) a �= update z

−→ (LUNIT)
(Γ, z 7→ •, a 7→ z) : updatez (h a)

−→ (UPDATE)
(Γ, z 7→ h a, a 7→ z) : return z

Consider the right-hand-side, with

fix f = let x = f x in x

7

We get:
Γ : return (fix h)

To show that these two program states are observationally
equivalent, it suffices to argue that the term z with respect
to the heap {Γ, z 7→ h a, a 7→ z}, and the term fix h with
respect to the heap Γ can not be distinguished by the func-
tional layer. A simple proof in the functional layer shows
that

Γ : fix h ⇓ (Γ, z 7→ h z) : z

which is the same as first case we had, after removing the
unnecessary binding for a in the first heap.

In other words, the two program states we obtain from
the original expressions cannot be distinguished in any con-
text. In the first case, the result will be delivered in variable
z where z will contain the required cyclic structure in the
heap. In the second case, the functional layer will expand
fix h the first time the result is used. But the LET rule
will create effectively the same structure in the heap in the
very next step. In case the result is ignored, the first one
will have a heap variable created which is never ever used.
(It will simply be garbage collected.) In the second case,
the heap will not have this variable at all. One can add a
garbage collection rule to the functional layer to handle this
issue more formally [5]. We refrain from doing so, in order
to keep our rules as simple as possible.

6.3 Left shrinking

Left shrinking property states that:

fixIO (λx. q �= λy. f x y)
= q �= λy. fixIO (λx. f x y)

where q is a free variable, bound to an arbitrary expression
of the right type in the outer context. The crucial point is
that x is not used by q. The types involved are: q :: IO b,
and f :: a→ b→ IO a.

The very first steps in derivations of both handsides give:

Γ : fixIO (λx. q �= λy. f x y)
−→ (FIXIO - FUN)

(Γ, z 7→ •, a 7→ z) : q �= λy. f a y �= updatez

and

Γ : q �= λy. fixIO (λx. f x y)

Now, if q is a divergent term, both derivations will di-
verge in the exact same way, that is both hand sides are
equivalent. If q is normal, then by lemma 1, it will have a
derivation of the form:

Γ : q
α
−→ ∆ : ν~r.(return qv | C)

where α is obtained by concatenating all the labels in the
derivation, possibly empty. The C on the right hand side
captures the passive containers that might be introduced in
the derivation for q, along with the associated restrictions
ν~r. Since these containers will get copied in both sides in
exactly the same way, we do not show them explicitly in
what follows. Using the HEAPEXT and EXTRUDE rules
silently, we can continue our derivations. On the lhs we get:

(Γ, z 7→ •, a 7→ z) : q �= λy. f a y �= updatez
α
−→ (ASSUMPTION)

(∆, z 7→ •, a 7→ z) :
return qv �= λy. f a y �= updatez

−→ (LUNIT, FUN)
(∆, z 7→ •, a 7→ z , b 7→ qv) : f a b �= updatez

Let’s look at the rhs:

Γ : q �= λy. fixIO (λx. f x y)
α
−→ (ASSUMPTION - LUNIT)

(∆, b 7→ qv) : fixIO (λx. f x b)
−→ (FIXIO - FUN)

(∆, b 7→ qv , z 7→ •, a 7→ z) : f a b �= updatez

Hence, the property holds fixIO. By this property, we
are ensured that the recursive do-notation in Haskell will
behave exactly like the usual do-notation, a key property in
monadic value recursion [2].

6.4 Bekić property

Bekić property states that simultaneous recursion over mul-
tiple variables can be replaced by recursion on one variable
at a time. For monadic value recursion, it states3:

fixIO (λt. fixIO (λu. f (fst t , snd u)))
= fixIO (λv. f (fst v , snd v))

where f is of type (a, b)→ IO (a, b). On the left hand side,
we have:

Γ : fixIO (λt. fixIO (λu. f (fst t , snd u)))
−→ (FIXIO)

(Γ, z 7→ •, a 7→ z) :
fixIO (λu. f (fst a, snd u)) �= update z

−→ (FIXIO)
(Γ, z 7→ •, a 7→ z , y 7→ •, b 7→ y) :

f (fst a, snd b) �= updatey �= updatez

On the right hand side, we have:
Γ : fixIO (λv. f (fst v , snd v))

−→ (FIXIO)
(Γ, z 7→ •, a 7→ z) : f (fst a, snd a) �= update z

In both cases, f is given a tuple where both elements
are bound to •. If this term is divergent, both hand sides
will diverge in the same way, as their arguments are indis-
tinguishable as values. Similarly, if the call to f terminates
with a value, the derivation will have a transition to return
fv, for some term fv, and a new heap ∆. We will assume
α represents the concatenated labels of all the transitions
performed during this transition. Again, we do not show
any passive containers that might be created along the way,
they will be copied along in both cases in the exact same
way.

Now, the lhs becomes:

α
−→ (ASSUMPTION)

(∆, z 7→ •, a 7→ z , y 7→ •, b 7→ y) :
return fv �= updatey �= updatez

−→ (LUNIT - UPDATE - LUNIT - UPDATE)
(∆, z 7→ y , a 7→ z , y 7→ fv , b 7→ y) : return z

3Since Haskell types are lifted, we cannot simplify the right hand
side to fixIO f. In Haskell, (⊥,⊥) is not the same as ⊥.

8

And the rhs becomes:
α
−→ (ASSUMPTION)

(∆, z 7→ •, a 7→ z) : return fv �= updatez

−→ (LUNIT - UPDATE)
(∆, z 7→ fv , a 7→ z) : return z

Which gives us the same term and an equivalent heap
structure, just chase the pointer from z.

7 Conclusions and Future Work

We have given a semantics for the function fixIO of Haskell,
and we have shown that it is is the fixed point operator for
monadic-value recursion in the IO monad. Our approach
presents a full operational semantics for a non-strict func-
tional language extended with monadic IO primitives and
references. Our contributions are:

• We show how a purely functional language and its se-
mantics can be embedded into a language with monadic
effects,

• We model sharing explicitly at all levels, giving an ac-
count of call by need in both the functional and the IO
layers,

• We provide a semantics for fixIO and show that it in-
deed is a monadic value recursion operator.

Our work can be extended in several ways. The most ob-
vious extension is the addition of threads and synchronized
variables as in the awkward squad paper [11]. This extension
does not present any challenges. (The addition of concur-
rency primitives will make the semantics non-deterministic.
In that case, a derivation will be a set of transitions.) The
difficulty, however, lies in extending the approach with asyn-
chronous exceptions [8]. Although exceptions can be mod-
eled nicely in the IO layer, we currently do not see a com-
plementary way of capturing them in the functional layer
using our method.

More work is needed in formalizing our arguments. Rea-
soning about the derivations in both IO and functional lev-
els, as we did in the previous section, is a notoriously hard
task. Although our system can easily be used to give se-
mantics to concrete examples, it is harder to use it when
reasoning about symbolic terms.

Study of other properties of fixIO is still pending. Al-
though we have established the basic requirements, there
are a number of other properties of interest as well (for in-
stance the right shrinking law). Another open question is
whether the semantics we have given for fixIO will satisfy
the parametricity theorem for the type (a→ IO a)→ IO a.
The parametricity theorem can further be used in establish-
ing several derived properties for fixIO, such as swapping
and pure right shrinking [3].

Detailed information about monadic value recursion can
be found at www.cse.ogi.edu/PacSoft/projects/rmb.

8 Acknowledgements

We thank Simon Peyton Jones, Mark Shields and members
of the OGI PacSoft Group for valuable discussions.

References

[1] Achten, P., and Peyton Jones, S. Porting the
Clean Object I/O Library to Haskell. In Proceedings
of the 12th International Workshop on Implementation
of Functional Languages (2000), pp. 194–213.

[2] Erkök, L., and Launchbury, J. A recursive do
for Haskell: Design and implementation. Tech. Rep.
CSE-00-014, Department of Computer Science and En-
gineering, Oregon Graduate Institute of Science and
Technology, August 2000.

[3] Erkök, L., and Launchbury, J. Recursive monadic
bindings. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming,
ICFP’00 (September 2000), ACM Press, pp. 174–185.

[4] Gordon, A. D. Functional Programming and In-
put/Output. Distinguished Dissertations in Computer
Science. CUP, Sept. 1994.

[5] Launchbury, J. A natural semantics for lazy evalu-
ation. In Conference record of the Twentieth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Charleston, South Carolina
(1993), pp. 144–154.

[6] Launchbury, J., Lewis, J., and Cook, B. On em-
bedding a microarchitectural design language within
Haskell. In Proceedings of the ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP
’99) (1999), pp. 60–69.

[7] Launchbury, J., and Peyton Jones, S. L. State
in Haskell. Lisp and Symbolic Computation 8, 4 (Dec.
1995), 293–341.

[8] Marlow, S., Peyton Jones, S. L., Moran, A., and
Reppy, J. Asynchronous exceptions in haskell. In ACM
SIGPLAN 2001 Conference on Programming Language
Design and Implementation (PLDI) (Snowbird, Utah,
June 20–22 2001).

[9] Milner, R. Communicating and Mobile Systems: the
π-Calculus. Cambridge University Press, May 1999.

[10] Nordlander, J. Reactive Objects and Functional Pro-
gramming. PhD thesis, Chalmers University of Tech-
nology, Göteborg, Sweden, 1999.

[11] Peyton Jones, S. L. Tackling the awkward squad:
monadic input/output, concurrency, exceptions, and
foreign-language calls in haskell. In Engineering theo-
ries of software construction (2001), T. Hoare, M. Broy,
and R. Steinbruggen, Eds., IOS Press, pp. 47–96.

[12] Peyton Jones, S. L., and Hughes, J. (Editors.) Re-
port on the programming language Haskell 98, a non-
strict purely-functional programming language. Avail-
able at: http://www.haskell.org/onlinereport, Feb.
1999.

[13] Peyton Jones, S. L., and Wadler, P. Imper-
ative functional programming. In Conference record
of the Twentieth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
Charleston, South Carolina (1993), pp. 71–84.

9

