
XPath: Looking ForwardDan Olteanu, Holger Meuss, Tim Furhe, Fran�ois BryInsitute for Computer Siene and Center for Information and Language ProessingUniversity of Munih, Germanyolteanu�informatik.uni-muenhen.deAbstratThe loation path language XPath is of partiular importane for XML appliations sineit is a ore omponent of many XML proessing standards suh as XSLT or XQuery. In thispaper, based on axis symmetry of XPath, equivalenes of XPath 1.0 loation paths involvingreverse axes, suh as anestor and preeding, are established. These equivalenes are usedas rewriting rules in an algorithm for transforming loation paths with reverse axes intoequivalent reverse-axis-free ones. Loation paths without reverse axes, as generated by thepresented rewriting algorithm, enable eÆient SAX-like streamed data proessing of XPath.1 IntrodutionQuery languages for XML and semistrutured data rely on loation paths for seleting nodesin data items. In partiular, XQuery [21℄ and XSLT [19℄ are based on XPath [18℄. XPathtakes a navigational approah for speifying the nodes to be seleted, hene a large numberof navigational axes (e.g. hild, desendant, preeding) have been de�ned in XPath. Thenumber as well as the relevane of these navigational axes for querying XML has been hallengedin [8, 21, 23℄.The random aess to XML data that is enabled by the various navigational axes of XPathhas proven partiularly diÆult for an eÆient stream-based proessing of XPath queries. Pro-essing of XML has seen the widespread use of the W3C doument objet model (DOM) [20℄,where an in-memory representation of the entire XML data is used. As DOM has been devel-oped with fous on doument proessing in user agents (e.g. browsers), this approah has severalshortomings for other appliation areas:First, a onsiderable amount of XML appliations, in partiular data-entri appliations,handle douments too large to be proessed in memory. Suh douments are often enounteredin natural language proessing [11℄, in biologial [13℄ and astronomial [1℄ projets.Seond, the need for progressive proessing (also referred to as sequential proessing) of XMLhas emerged: Stream-based proessing generating partial results as soon as they are availablegives rise to a more eÆient evaluation in ertain ontexts, e.g.:� For seletive dissemination of information (SDI), douments have to be �ltered aording toomplex requirements spei�ed as XPath queries before being distributed to the subsribers[7, 4℄. The routing of data to seleted reeivers is also beoming inreasingly important inthe ontext of web servie arhitetures.� To integrate data over the Internet, in partiular from slow soures, it is desirable toprogressively proess the input before the full data is retrieved [14, 10℄.� As a general proessing sheme for XML, several solutions for pipelined proessing havebeen suggested, where the input is sent through a hain of proessors eah of whih takingthe output of the preeding proessor as input, e.g. Apahe Cooon [2℄ and XPipe [15℄.1

� Progressive rendering of large douments, e.g. by means of XSL(T) (f. Requirement 19of [23℄). There have been several attempts to solve this problem [3℄.There is a great interest in the identi�ation of a subset of XPath that allows eÆientprogressive or stream-based proessing (f. [8℄ and Requirement 19 of [23℄).For stream-based proessing of XML data, the Simple API for XML (SAX) [16℄ has beenspei�ed. Of partiular onern for progressive SAX-like proessing are the reverse axes ofXPath, i.e. those navigational axes (e.g. parent, preeding) that selet nodes ouring beforethe ontext node in doument order. A restrition to forward axes (i.e. axes seleting onlynodes after the ontext node) in loation paths is a straightforward onsideration for an eÆientstream-based evaluation of XPath queries [8℄.There are three prinipal options how to evaluate reverse axes in a stream-based ontext:� Storing in memory suÆient information that allows to aess past events when evaluatinga reverse axis. This amounts to keeping in memory a (possibly pruned) DOM representa-tion of the data [3℄.� Evaluating an XPath expression in more than one run. With this approah, it is alsoneessary to store additional information to be used in suessive runs. This informationan be onsiderably smaller than what is needed in the �rst approah.� Replaing XPath expressions by equivalent ones without reverse axes.In this paper it is shown that the third approah is possible. It is less time onsuming thanthe seond approah and does not require the in-memory storage of fragments of the input asthe �rst approah does. Hene, XPath an be evaluated without restrition on the use of reverseaxes.Setion 2 spei�es the loation path language onsidered in the rest of the paper. Then, thenotion of equivalene between loation paths is de�ned in Setion 3 using a formal model and adenotational semantis for XPath based on [24, 25℄. Furthermore, two sets of equivalenes (withrather di�erent properties) are established. These equivalenes are used as rewriting rules in analgorithm, alled \rare", for transforming absolute XPath loation paths with reverse axes intoequivalent reverse-axis-free ones (Setion 4). Two rewritings, based on the two rule sets, areonsidered. In Setion 5, related work is disussed. Setion 6 is a onlusion.Due to spae limitations, parts of this work have been omitted, most notably the proofs forthe equivalenes. They an be found in the full version [17℄ of this paper.Some familiarity with XPath 1.0 is assumed.2 PreliminariesIn this paper, spei�ities of XML that are irrelevant to the issue of onern are left out.Thus, namespaes, omments, proessing instrutions, attributes, attribute values, doumentolletions, shema types, referenes, and white spae proessing are not onsidered. The resultsgiven in this paper extend straightforwardly to unrestrited XML douments.The root node of a doument orresponds to the doument node of DOM and of the XQuery1.0 and XPath 2.0 Data Model [22℄ { i.e. it is none of the doument elements. A leaf is an emptyelement or a text node { f. Figure 1.The mathematial model used in this paper is adapted from [24, 25℄. The full formal modelas well as the denotational semantis an be found in the full version [17℄ of this paper. Itonsists of mathematial funtions that an be seen as (formal spei�ations of) elementaryproedures. 2

Figure 1 Tree and XML data it represents
<journal>
 <title>databases</title>
 <editor>anna</editor>
 <authors>
 <name>anna</name>
 <name>bob</name>
 </authors>
 <price />
</journal>

root

journal

title editor authors price

"anna""databases"
name name

"anna" "bob"2.1 Loation Path LanguageThe loation path language onsidered in the following is unabbreviated XPath without thoseonstruts (suh as those needed for proessing attributes) irrelevant to the issue of onern. Foronveniene, this language will be referred to as xPath. Reall that every abbreviated XPathexpression an easily be translated into an unabbreviated XPath expression. It is worth stressingthat the results given below for xPath extend to XPath 1.0 [18℄. The (abstrat) syntax of xPathis as follows: path ::= path | path j / path j path / path j path [qualif ℄ j axis :: nodetest j ? :qualif ::= qualif and qualif j qualif or qualif j (qualif) jpath = path j path == path j path :axis ::= reverse axis j forward axis :reverse axis ::= parent j anestor j anestor-or-self jpreeding j preeding-sibling :forward axis ::= self j hild j desendant j desendant-or-self jfollowing j following-sibling :nodetest ::= tagname j * j text() j node() :As XPath 2.0 and in ontrast to XPath 1.0, xPath allows the union p1 | p2 of two pathsat every level. Suh paths an easily be transformed into paths with unions at top level only.Note also that while we do not onsider funtions in the following setions, the results almostimmediately apply to loation paths with funtions. The only lass of funtions that needsspeial treatment are funtions for aessing the ontext position or size of a node.? is onvenient for simplifying proofs. It is used as a anonial equivalent path to the xPathexpressions that selet no nodes whatever the ontext node and doument are, e.g. /parent::*.p1 == p2 expresses node equality based on identity. Thus, if p1 and p2 are two paths, thenp1 == p2 holds if there is a node seleted by p1 whih is idential to a node seleted by p2.== orresponds to built-in node equality operator (==) in XPath 2.0 and XQuery 1.0, but itan also be used for omparing node sets similar to general omparisons in XPath 2.0. AsXPath 1.0 has built-in support for equality based on node values only, the XPath 1.0 expressionount(p1 | p2) < ount(p1) + ount(p2) an be used for expressing ==.A path expression will be alled a \loation path", or \path" for short. A qualif expression isa \quali�er" (or pattern). Expressions axis::nodetest and axis::nodetest[qualif ℄ are \steps",also alled \loation steps". The length of a loation path is the number of loation steps itontains outside and inside quali�ers. Note that every loation path is a quali�er, but theonverse is false.Absolute loation paths are reursively de�ned as follows: A disjuntive path, i.e. a path ofthe form p1 | : : : | pi | : : : | pk, is an absolute path if for all i = 1; : : : ; k, pi is an absolute path.3

A non-disjuntive path is an absolute path if it is of the form /p, where p is a path. A loationpath, whih is not an absolute path, is a \relative path". A step is a \forward step", if its axisis a forward axis, or a \reverse step", if its axis is a reverse axis.The axes of the following pairs are \symmetrial" of eah other: parent { hild, anestor {desendant, desendant-or-self { anestor-or-self, preeding { following, preeding-sibling { following-sibling, and (useful in proofs) self { self.[24℄ and [25℄ give a denotational semantis for XPath, whih is slightly modi�ed for ourpurpose in [17℄. The semantis de�nes a funtion S that assigns a set of nodes to a loationpath and a ontext node: SJpKx is the set of nodes seleted by p from node x.3 Loation Path EquivalenesA set of simple equivalenes is �rst established. These are then used to prove equivalenes ofpaths with reverse axes. We distinguish between general equivalenes that an be applied toremove any reverse axis, and spei� equivalenes, eah of them being appliable to a ertainase. Making use of the semantis of xPath given in the full version [17℄ of this paper, theequivalene of loation paths an be formally de�ned as follows.De�nition 3.1 (Path equivalene). Two loation paths p1 and p2 are equivalent, notedp1 � p2, if SJp1K = SJp2K, i.e. if SJp1Kx = SJp2Kx for all nodes x (from any doument).Intuitively, two loation paths are equivalent if they selet the same set of nodes for everydoument and every ontext node in this doument.Lemma 3.1. Let p, p1, and p2 be loation paths, q, q1, and q2 quali�ers, n a node test, and� 2 f==; =g.1. Right step adjuntion: If p1 � p2 and p relative, then p1/p � p2/p.2. Left step adjuntion: If p1 � p2 and p1, p2 relative, then p/p1 � p/p2.3. Quali�er adjuntion: If p1 � p2, then p1[q℄ � p2[q℄ and p[p1℄ � p[p2℄.4. Relative/absolute path onversion: If p1 � p2, then /p1 � /p2.5. Quali�er attening: p[p1/p2℄ � p[p1[p2℄℄.6. Anestor-or-self axis deomposition:anestor-or-self::n � anestor::n | self::n.7. Desendant-or-self axis deomposition:desendant-or-self::n � desendant::n | self::n.8. Quali�ers with joins: p[p1 � /p2℄ � p[p1[self::node() � /p2℄℄.Equivalenes involving omplex quali�ers and unions an be found in the full version [17℄ ofthis paper.Reall that ? is a loation path never seleting any node whatever the ontext node anddoument are. Sine the root node has no parents and therefore no siblings, the following holds:
4

Lemma 3.2. Let m and n be node tests, i.e. m and n are tag names or one of the xPathonstruts *, node(), or text().� Let a be one of the axes parent, anestor, preeding, preeding-sibling, self,following, or following-sibling. Then the following holds:/a::n � (/ if a = self and n = node()? otherwise� Let a be the preeding or anestor axis. Then the following equivalenes hold:/hild::m/a::n � (/self::node()[hild::m℄ if a = anestor and n = node()? otherwise/hild::m[a::n℄ � (/hild::m if a = anestor and n = node()? otherwise3.1 General equivalenesThe nodes seleted by a reverse step within a loation path are neessarily desendants of thedoument root. The following equivalenes show how for any reverse axis only those desendantsof the root an be seleted that are also mathed by the original reverse step.Proposition 3.1. Let p and s be relative loation paths, n and m node tests, am a reverse axis,an a forward axis, and bm the symmetrial axis of am. Then the following holdsp[am::m/s℄ � p[/desendant::m[s℄/bm::node() == self::node()℄ (1)/p/an::n/am::m � /desendant::m[bm::n == /p/an::n℄ (2)/an::n/am::m � /desendant::m[bm::n == /an::n℄ (2a)Equivalene (1) shows that it is possible to remove the �rst step in a loation path within aquali�er. With help of Lemma 3.1.5 this result is generalized to reverse steps having an arbitraryposition within a quali�er.The key idea of Equivalene (1) is that, instead of looking bak from the ontext node spe-i�ed by path p for mathing a ertain node (am::m), one an look forward from the beginningof the doument for mathing the node (/desendant::m) and then, still forward, for reahingthe initial ontext node (bm::node()). Hene, e.g. instead of heking whether the ontextnode spei�ed by path p has a preeding m (p[preeding::m℄), one rather looks for an mnode and then for a following node that is idential to the ontext node:p[/desendant::m/following::node() == self::node()℄:Equivalene (2) removes the �rst reverse step from an absolute loation path using the sameunderlying idea.Note that the equality ourring in these equivalenes is based on node identity. The equiv-alent paths might remain expensive to evaluate, but no evaluation of the am::m reverse step isneeded anymore.Example 3.1. Consider the example of Figure 1 and a query asking for all names that appearbefore a prie. A way to selet these nodes is using the following loation path:/desendant::prie/preeding::nameBy Equivalene (2a), the preeding axis an be removed yielding to the following equivalentloation path: /desendant::name[following::prie == /desendant::prie℄While the initial loation path selets all name nodes preeding a prie node, the equivalentloation path selets all name nodes, that have a following prie node, if that node is also a5

desendant of the root. It is obvious, that there is a onsiderably simpler equivalent loation path(dropping the join), /desendant::name[following::prie℄. The need for the join arises, asthe loation path seleting the ontext nodes, relative to whih the reverse step is evaluated, (inthis ase the prie nodes) an be arbitrarily omplex:Consider a slightly modi�ed ase of the previous one, where only pries, that are insidea journal with a title, should be onsidered. A possible loation path for this query withreverse axis is:/desendant::journal[hild::title℄/desendant::prie/preeding::nameAgain, by Equivalene (2) this is equivalent to/desendant::name[following::prie == /desendant::journal[hild::title℄/desendant::prie℄:As argued above, it is impossible in this ase to remove the introdued join. Note that thejoin in the �rst example an be removed by additional equivalene rules for simplifying loationpaths that are outside the sope of this paper.Using the equivalenes above, it is possible to replae reverse steps in xPath expressions.Nonetheless, in the following setion spei� equivalenes for reverse axes are given, that yieldto loation paths without joins.3.2 Spei� EquivalenesIn this setion the interation of the reverse axes (anestor, anestor-or-self, parent,preeding, and preeding-sibling) with forward axes is treated, i.e. equivalenes are given,that (if read as rewriting rules from left to right), depending on the loation step Lf before areverse loation step Lr, either replae the reverse loation step Lr or rewrite the loation pathinto one, where the reverse step Lr is \pushed leftwise". For every reverse step the interationwith every forward step is shown.In general, the equivalenes have the following struturep/Lf/Lr � p0 or p/Lf[Lr℄ � p0;where p is an absolute path, Lf a forward loation step, Lr a reverse loation step, and p0the equivalent loation path. Sometimes the equivalenes an be formulated without the leadingpath p.Note that interation with reverse axes, e.g. interation of parent with preeding-sibling,is not neessary to investigate in these equivalenes due to the way our algorithm works (remov-ing reverse steps from left to right of the loation path in question). Also, equivalenes involvinganestor-or-self and desendant-or-self are not neessary sine these loation steps anbe replaed using Equivalenes (3.1.6) and (3.1.7).Some of the following equivalenes do still ontain reverse steps on the right-hand side, butthese reverse steps are either more on the left of the loation path, or the right-hand side is ofa form, where other equivalenes an be applied to fully remove the reverse loation steps aselaborated in Setion 4.3.2.1 ParentThe equivalenes in the following proposition are divided in two sets. The �rst set (Equivalenes(3) to (7)) overs the ase of parent loation steps outside, the seond inside a quali�er. Notethat there is a strong strutural similarity between the equivalenes of the two sets.
6

Proposition 3.2 (parent axis). Let m and n be node tests and p a loation path.desendant::n/parent::m � desendant-or-self::m[hild::n℄ (3)hild::n/parent::m � self::m[hild::n℄ (4)p/self::n/parent::m � p[self::n℄/parent::m (5)p/following-sibling::n/parent::m � p[following-sibling::n℄/parent::m (6)p/following::n/parent::m � p/following::m[hild::n℄ (7)| p/anestor-or-self::*[following-sibling::n℄/parent::mdesendant::n [parent::m℄ � desendant-or-self::m/hild::n (8)hild::n[parent::m℄ � self::m/hild::n (9)p/self::n[parent::m℄ � p[parent::m℄/self::n (10)p/following-sibling::n[parent::m℄ � p[parent::m℄/following-sibling::n (11)p/following::n[parent::m℄ � p/following::m/hild::n (12)| p/anestor-or-self::*[parent::m℄/following-sibling::nExample 3.2. Consider the data of Figure 1. The following loation path selets all editors ofjournals: /desendant::editor[parent::journal℄:Aording to Equivalene (8), this path is equivalent to:/desendant-or-self::journal/hild::editor:3.2.2 AnestorThe following proposition gives equivalenes that either move an anestor step to the left of apath or remove it ompletely. Equivalenes (13a) and (18a) are speial ases of Equivalenes (13)and (18), respetively.Proposition 3.3 (anestor axis). Let m and n be node tests and p a loation path.p/desendant::n/anestor::m � p[desendant::n℄/anestor::m (13)| p/desendant-or-self::m[desendant::n℄/desendant::n/anestor::m � /desendant-or-self::m[desendant::n℄ (13a)p/hild::n/anestor::m � p[hild::n℄/anestor-or-self::m (14)p/self::n/anestor::m � p[self::n℄/anestor::m (15)p/following-sibling::n/anestor::m � p[following-sibling::n℄/anestor::m (16)p/following::n/anestor::m � p/following::m[desendant::n℄ (17)| p/anestor-or-self::*[following-sibling::*/desendant-or-self::n℄/anestor::mp/desendant::n[anestor::m℄ � p[anestor::m℄/desendant::n (18)| p/desendant-or-self::m/desendant::n/desendant::n[anestor::m℄ � /desendant-or-self::m/desendant::n (18a)p/hild::n[anestor::m℄ � p[anestor-or-self::m℄/hild::n (19)p/self::n[anestor::m℄ � p[anestor::m℄/self::n (20)p/following-sibling::n[anestor::m℄ � p[anestor::m℄/following-sibling::n (21)p/following::n[anestor::m℄ � p/following::m/desendant::n (22)| p/anestor-or-self::*[anestor::m℄/following-sibling::*/desendant-or-self::n7

3.2.3 Preeding-siblingIn the following proposition the preeding-sibling axis is treated. Note that the right-handside of equivalenes for preeding-sibling (and preeding) ontains more union terms thanthe other equivalenes, sine there is no -or-self variant of these axes.Proposition 3.4 (preeding-sibling axis). Let m and n be node tests and p a loation path.The following equivalenes hold:desendant::n/preeding-sibling::m � desendant::m[following-sibling::n℄ (23)hild::n/preeding-sibling::m � hild::m[following-sibling::n℄ (24)p/self::n/preeding-sibling::m � p[self::n℄/preeding-sibling::m (25)p/following-sibling::n/preeding-sibling::m � p[self::m/following-sibling::n℄ (26)| p[following-sibling::n℄/preeding-sibling::m| p/following-sibling::m[following-sibling::n℄p/following::n/preeding-sibling::m � p/following::m[following-sibling::n℄ (27)| p/anestor-or-self::*[following-sibling::n℄/preeding-sibling::m| p/anestor-or-self::m[following-sibling::n℄desendant::n[preeding-sibling::m ℄ � desendant::m/following-sibling::n (28)hild::n[preeding-sibling::m℄ � hild::m/following-sibling::n (29)p/self::n[preeding-sibling::m℄ � p[self::n℄/following-sibling::m (30)p/following-sibling::n[preeding-sibling::m℄ � p[self::m℄/following-sibling::n (31)| p/following-sibling::m/following-sibling::n| p[preeding-sibling::m℄/following-sibling::np/following::n[preeding-sibling::m℄ � p/following::m/following-sibling::n (32)| p/anestor-or-self::*[preeding-sibling::m℄/following-sibling::n| p/anestor-or-self::/following-sibling::n3.2.4 PreedingThe following proposition desribes the interation of preeding with other axes.Proposition 3.5 (preeding axis). Let m and n be node tests and p a loation path.p/desendant::n/preeding::m � p[desendant::n℄/preeding::m (33)| p/hild::*[following-sibling::*/desendant-or-self::n℄/desendant-or-self::m/desendant::n/preeding::m � /desendant::m[following::n℄ (33a)p/hild::n/preeding::m � p[hild::n℄/preeding::m (34)| p/hild::*[following-sibling::n℄/desendant-or-self::mp/self::n/preeding::m � p[self::n℄/preeding::m (35)p/following-sibling::n/preeding::m � p[following-sibling::n℄/preeding::m (36)| p/following-sibling::*[following-sibling::n℄/desendant-or-self::m| p[following-sibling::n℄/desendant-or-self::mp/following::n/preeding::m � p[following::n℄/preeding::m (37)| p/following::m[following::n℄| p[following::n℄/desendant-or-self::m8

p/desendant::n[preeding::m℄ � p[preeding::m℄/desendant::n (38)| p/hild::*[desendant-or-self::m℄/following-sibling::*/desendant-or-self::n/desendant::n[preeding::m ℄ � /desendant::m/following::n (38a)p/hild::n[preeding::m ℄ � p[preeding::m℄/hild::n (39)| p/hild::*[desendant-or-self::m℄/following-sibling::np/self::n[preeding::m℄ � p[preeding::m℄/self::n (40)p/following-sibling::n[preeding::m℄ � p[preeding::m℄/following-sibling::n (41)| p/following-sibling::*[desendant-or-self::m℄/following-sibling::n| p[desendant-or-self::m℄/following-sibling::np/following::n[preeding::m℄ � p[preeding::m℄/following::n (42)| p/following::m/following::n| p[desendant-or-self::m℄/following::nExample 3.3. Consider the loation path/desendant::prie/preeding::nameof Example (3.1). With Rule 33a it an be rewritten to/desendant::name[following::prie℄:This result is more ompat and loser to the original than the result of Example (3.1) usingEquivalene (2a).4 Loation Path RewritingEah Equivalene (i) p1 � p2 of Setion 3 gives rise to a rewriting rule: A path mathing withthe left-hand side p1 an be rewritten into a path orresponding to the right-hand side p2. Inthe following, Rule (i) denotes the rewriting rule p1 ! p2 indued by Equivalene (i) p1 � p2.The equivalenes of Lemma 3.1 and Lemma 3.2 indue rewriting rules, denoted Rules (3.1.1)to (3.1.8) and (3.2).The equivalenes of Setion 3 are splitted in two sets of rules for use in a rewriting algorithm:1. RuleSet1, ontaining the general Rules (1), (2), (2a) and (3.2).2. RuleSet2, ontaining the spei� Rules (3) to (42) and (3.2).A rule an be applied to a loation path in the following manner:De�nition 4.1 (Rule appliation). Let p be a non-disjuntive loation path, and let pl ! prbe a rule either from RuleSet1 or RuleSet2. If p is of the form pl/p0, then let q denote the pathpr/p0. If pl is a relative path and if p is of the form p1/pl/p2, then let q denote the path p1/pr/p2.In both ases q is alled the result of the appliation of rule pl ! pr to p.An algorithm, alled \rare" (skethed in Figure 2) for omputing a reverse-axis-free pathequivalent to an absolute path is onsidered below. The input for the algorithm is restrited topaths without quali�ers ontaining so-alled \RR joins":De�nition 4.2 (RR join). An RR join is an expression of the form p1 � p2 where � 2 f==; =g,and both p1 and p2 are Relative paths suh that at least one of them ontains a Reverse step.For the onsideration of termination and orretness of the algorithm, some important prop-erties of the appliation of the rewriting rules to a loation path are required:9

Lemma 4.1 (Properties of rule appliation). Let p be an absolute loation path with noquali�er ontaining RR joins.1. If p ontains a reverse step, then a rule from RuleSet1 and a rule from RuleSet2 is appliableto p. Possibly, Rules (3.1.1) to (3.1.8) have to be applied �rst.2. The result of a rule appliation to the �rst reverse step in p is an absolute path with noquali�ers ontaining RR joins.3. If q is the result of a rule appliation to p, then p � q.Proof. (1): Let L be the �rst reverse loation step.First onsider RuleSet1: If L ours outside a quali�er, Rules (2), (2a) or (3.2) an be applied,sine p is an absolute loation path. If L ours as the �rst loation step inside a quali�er Rule(1) an be applied. If L appears at any other position inside a quali�er, Rule (3.1.5) an beapplied in order to onstrut a quali�er with L as �rst loation step. Rule (1) an be appliednow.RuleSet2 provides rules for interation between eah reverse step and an arbitrary forwardstep p, so there is always a rule, that an be applied to the �rst reverse step in p.(2) Only Rules (1), (2), and (2a) introdue a binary relation (namely ==), if they are applied toa loation path. But always one of the two paths related by == is absolute. Hene, in any asethe result of the rule appliation ontains no RR join. Furthermore, sine p is an absolute path,the result of applying a rule to p is also an absolute path.(3) This holds due to Lemma 3.1.1�4.\rare" Algorithm. The \rare" Algorithm, outlined in Figure 2, an be used for RuleSet1 aswell as for RuleSet2. The algorithm takes as input a loation path whih is absolute, sine somerules from RuleSet1 and RuleSet2 are appliable to absolute loation paths only.Theorem 4.1 (Removal of reverse loation steps using RuleSet1). Let p be an absolutepath with no quali�er in whih RR joins our. There exists an absolute path p0 with no reversesteps suh that p � p0. Using \rare" and RuleSet1, this path p0 has a length and an be omputedin a time linear in the length of p.Proof. A path equivalent to p is onstruted as skethed in Figure 2. All reverse loation stepsare rewritten, one by one. Lemma 4.1 guarantees that a rule of RuleSet1 an be applied to anypath ontaining a reverse loation step. The resulting path p0 ontains no reverse loation stepsand is equivalent to p.The loation path p0 is of linear size and onstruted in linear time, sine eah rule appliationremoves one reverse step, adds at most two forward loation steps and no reverse ones.Theorem 4.2 (Removal of reverse loation steps using RuleSet2). Let p be an absolutepath with no quali�ers in whih RR joins our. There exists an absolute path p0 with no reversesteps suh that p � p0. Using \rare" and RuleSet2, this path p0 has a length and an be omputedin a time exponential in the length of p.Proof. An appliation of a rule from RuleSet2 an have three di�erent result types:1. removes ompletely a reverse step (e.g. Rules (3.2) or (3));2. pushes the reverse step from right to left in the path (e.g. Rule (5));
10

Figure 2 Algorithm rare (reverse axis removal)Let � = RuleSet1 or RuleSet2.Auxiliary funtions:math(p): returns the result of a rule appliation from � to the �rst reverse loation step in p.apply-lemmas(p): returns p if Rules (3.1.1-8) are not appliable to p. Otherwise, it returns theresult of the repeated appliation of Rules (3.1.1-8) to p.union-attening(p): returns a path equivalent to p with unions at top level only.rare(p)Input: p fabsolute loation path without quali�ers ontaining RR joinsg.p apply-lemmas(p).p union-attening(p) = U1 | : : : | Un (n � 1).S empty stak.for i 1 to n dopush(Ui; S).end forp0 ?. finitializationgwhile not(empty(S)) doU pop(S).while U ontains a reverse step doU math(U).U apply-lemmas(U).U union-attening(U) = V1 | : : : | Vn (n � 1).for i 2 to n dopush(Vi; S).end forU V1.end whilep0 p0 | U .end whileOutput: p0 floation path without reverse axes equivalent to pg.
11

3. for the interation between a following and a reverse step Lr, i.e. following::n/Lr orfollowing::n[Lr℄, a union of several other paths is obtained (e.g. Rule (7)); the resultingunion terms have reverse steps at positions less than or equal in the original path and theydo not ontain anymore the interation between the initial following step and a reversestep.Sine the path has a �nite length, the proedure of pushing reverse steps leftwise terminates.Also, the number of interations between following and reverse steps is �nite. Hene, thealgorithm terminates.Eah rule appliation having the �rst result type removes a reverse step and does not hangethe number of union terms. Hene, in the best ase, i.e. using only rule appliations with the�rst result type, the algorithm has a linear time omplexity in the length of the input path p.The last two result types are signi�ant for the worst-ase omplexity of the algorithm, sineeah rule appliation an produe intermediate rewritten paths with more than one union term(up to three union terms). Hene, eah rule appliation an inrease the order of the input forthe next rule appliation, yielding to an exponential time omplexity in the length of the inputpath p.Example runs of the algorithm for both set of rules are presented in Figure 3 and Figure 4.Comparison. Both RuleSet1 and RuleSet2 have advantages and it is an open issue whihone is preferable. The path rewriting using RuleSet2 has in the worst ase an exponential timeomplexity and output size in the length of the input loation path. As loation paths are inpratie small (less than ten steps), the exponential worst-ase omplexity of RuleSet2 does notneessarily generate longer paths than RuleSet1. In addition, sine they do not ontain joins, theloation paths generated using RuleSet2 are simpler (as an be seen in the examples), hene moreonvenient to evaluate, than those generated using RuleSet1, whih ontain the same numberof joins as there are reverse steps in the input loation path. It remains to deide in pratialtests, up to whih size of an input path RuleSet2 generates simpler paths than RuleSet1.Rewriting loation paths using variables. There are two lasses of loation paths notovered by the rules given so far: relative loation paths and loation paths with RR joins (f.De�nition 4.2), e.g. p[self::* = preeding::*℄. Any attempt to remove the reverse loationsteps in these ases results in losing the ontext given by p.In the full version [17℄ of this paper an approah is proposed to solve this problem byremembering the ontext in a variable. It is based on a for onstrut for variable binding, asprovided by XPath 2.0, XQuery, and XSLT. Using this approah every loation path an berewritten to an equivalent reverse-axis-free one.5 Related WorkSeveral methods have been proposed for rewriting XPath expressions taking integrity onstraintsor shemas into aount [6, 26℄, and the equivalene and ontainment problems for XPathexpressions have been investigated [9, 27℄. Furthermore, a growing interest in query optimizationfor XML databases, inluding optimization of XPath expressions, reently emerged. To the bestof our knowledge, however, no other approah has been proposed for removing reverse stepsfrom XPath expressions relying upon XPath symmetry. Note that using equivalene preservingrewriting rules for removing reverse steps from XPath expressions, as it is proposed in the presentpaper, is not losely related to the general equivalene problem for XPath expressions.In [5℄ redundanies in XPath expressions based on a \model-oriented" approah are investi-gated. Suh an approah relies on an abstrat model of XPath that views XPath expressions as12

Figure 3 Example run of rare algorithm with RuleSet1Consider the example of Figure 1 and a query asking for all titles that appear before a name and areinside journals. This query an be expressed as the following loation path:/desendant::name/preeding::title[anestor::journal℄Note that p is an absolute path with no quali�er ontaining RR-joins.Step 1: p apply-lemmas(p) = p.Step 2: U1 /desendant::name/preeding::title[anestor::journal℄.Step 3: push(U1; S).Step 4: p0 ?.Step 5: U pop(S).Step 6: U ontains a reverse step (preeding::title).Step 7: U math(U) = /desendant::title[anestor::journal℄[following::name == /desendant::name℄. fRule (2)gStep 8: U apply-lemmas(U) = U .Step 9: U ontains a reverse step (anestor::journal).Step 10: U math(U) = /desendant::title[/desendant::journal/desendant::node() == self::node()℄[following::name == /desendant::name℄. fRule (1)gStep 11: U apply-lemmas(U) = U .Step 12: U does not ontain reverse steps.Step 13: p0 U .Step 14: S is empty.Output: p = /desendant::title[/desendant::journal/desendant::node() == self::node()℄[following::name == /desendant::name℄.Figure 4 Example run of rare algorithm with RuleSet2Consider the example query in Figure 3. For oniseness the union terms in Step 8 are not pushed to thestak.Step 1: p apply-lemmas(p) = p.Step 2: U1 /desendant::name/preeding::title[anestor::journal℄.Step 3: push(U1; S).Step 4: p0 ?.Step 5: U pop(S).Step 6: U ontains a reverse step (preeding::title).Step 7: U math(U) =/desendant-or-self::title[anestor::journal℄[following::name℄ fRule (33a)gStep 8: U apply-lemmas(U) = /desendant::title[anestor::journal℄[following::name℄| /self::title[anestor::journal℄[following::name℄.Step 9: U ontains a reverse step (anestor::journal).Step 10: U math(U) =/desendant::title[anestor::journal℄[following::name℄ |?. fRule (3.2)gStep 11: U ontains a reverse step (anestor::journal).Step 12: U math(U) =/desendant::journal/desendant::title[following::name℄. fRule (18a)gStep 13: U apply-lemmas(U) = U .Step 14: U does not ontain reverse steps.Step 15: p0 U .Step 16: S is empty.Output: p0 = /desendant::journal/desendant::title[following::name℄.13

tree patterns. [5℄ shows that redundant branhes of a tree pattern an be eliminated in polyno-mial time. Tree patterns are more abstrat than XPath expressions in a way whih is relevantto the work desribed in the present paper: A same tree pattern represents multiple equivalentXPath expressions. In partiular, the symmetries in XPath exploited in the present paper areabsent from tree patterns. Tree patterns do not onsider the doument order and therefore theonept of forward and reverse steps. In some sense the present work shows in whih ases thissimpli�ed view upon an XPath expression an be justi�ed.Stream-based query proessing has gained onsiderable interest in the past few years, e.g.due to its appliation in data integration [10, 14℄ and in publish-subsribe arhitetures [4, 7℄.They all onsider a navigational approah (XML-QL or XPath) onsisting of a restrited subsetof forward axes from XPath. This fat ontrasts with the present work, whih enables the useof the unrestrited set of XPath axes in a stream-based ontext.6 ConlusionThe main result of this paper onsists in two rule sets, RuleSet1 and RuleSet2, used in analgorithm for transforming XPath 1.0 expressions ontaining reverse axes into reverse-axis-freeequivalents. Both RuleSet1 and RuleSet2 have advantages and it is an open issue whih one ispreferable. The loation paths generated using RuleSet2 do not ontain joins, in ontrast withthose generated using RuleSet1, whih ontain the same number of joins as there are reversesteps in the input loation path. However, the path rewriting using RuleSet2 has an exponentialomplexity in the length of the input loation path, in ontrast with rewriting using RuleSet1whih has only a linear omplexity.Closely related to the omparison of RuleSet1 and RuleSet2 we plan to investigate the notionof \minimality" or \simpliity" of XPath expressions. We are fousing on de�ning a notion ofa minimal XPath expression that an be evaluated more eÆiently in a stream-based ontextthan its equivalents. A notion of minimality will allow for well-founded optimization tehniquesfor XPath expressions.We believe that the equivalenes proposed in this paper are an important step towards aneÆient progressive evaluation of full XPath. In partiular, we show that it is not neessary torestrit the use of axes in XPath for progressive proessing, as suggested in [8℄. Based on theresults of this paper we are designing and implementing a progressive XPath proessor, thatsupports unrestrited XPath [12℄.Referenes[1℄ Astronomial Data Center, Home page, http://ad.gsf.nasa.gov/.[2℄ Cooon 2.0: XML publishing framework, http://xml.apahe.org/ooon/index.html.[3℄ Xalan-Java Version 2.2, Apahe Projet, http://xml.apahe.org/xalan-j/index.html.[4℄ M. Altinel and M. Franklin, EÆient Filtering of XML Douments for Seletive Dissemi-nation of Information, Pro. of 26th Conferene on Very Large Databases (VLDB), 2000.[5℄ Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Divesh Srivastava, Mini-mization of tree pattern queries, SIGMOD, 2001.[6℄ K. Boehm, K. Gayer, T. Oezsu, and K. Aberer, Query optimization for strutured dou-ments based on knowledge on the doument type de�nition, Pro. of the Advanes in DigitalLibraries Conferene, 1998.[7℄ C. Chan, P. Felber, M. Garofalakis, and R. Rastogi, EÆient Filtering of XML Doumentswith XPath Expressions, Pro. of International Conferene on Data Engineering (ICDE),2002. 14

[8℄ A. Desai, Introdution to Sequential XPath, Pro. of IDEAlliane XML Conferene, 2001,http://www.idealliane.org/papers/xml2001/papers/html/05-01-01.html.[9℄ A. Deutsh and V. Tannen, Containment for lasses of XPath expressions under integrityonstraints, Knowledge Representation meets Databases (KRDB), 2001.[10℄ T. J. Green, M. Onizuka, and D. Suiu, Proessing XML Streams with Deterministi Au-tomata and Stream Indexes, Teh. report, University of Washington, 2001.[11℄ N. Ide, P. Bonhomme, and L. Romary, XCES: An XML-based standard for linguisti or-pora, Pro. of the Seond Annual Conferene on Language Resoures and Evaluation, 2000.[12℄ T. Kiesling, Towards a streamed XPath evaluation, 2002,http://www.pms.informatik.uni-muenhen.de/lehre/projekt-diplom-arbeit/streamedxpath.html.[13℄ P. Kroeger, Modeling of Biologial Data, Teh. report, University of Munih, 2001.[14℄ A. Levy, Z. Ives, and D. Weld, EÆient Evaluation of Regular Path Expressions on Stream-ing XML Data, Teh. report, University of Washington, 2000.[15℄ S. MGrath, XPipe, http://xpipe.soureforge.net/.[16℄ D. Megginson, SAX: The Simple API for XML, http://www.saxprojet.org/.[17℄ D. Olteanu, H. Meuss, T. Furhe, and F. Bry, XPath: Looking For-ward, Teh. Report PMS-FB-2001-16, University of Munih, 2001,http://www.pms.informatik.uni-muenhen.de/publikationen/PMS-FB/PMS-FB-2001-16.pdf.[18℄ W3C, XML Path Language (XPath) Version 1.0, W3C Reommendation, 1999,http://www.w3.org/TR/xpath.[19℄ W3C, XSL Transformations (XSLT) Version 1.0, W3C Reommendation, 1999.[20℄ W3C, Doument Objet Model (DOM) Level 2 Core Spei�ation, W3C Reommendation,2000.[21℄ W3C, XQuery 1.0: An XML query language, W3C Working Draft, 2001,http://www.w3.org/TR/xquery/.[22℄ W3C, XQuery 1.0 and XPath 2.0 data model, W3C Working Draft, 2001,http://www.w3.org/TR/query-datamodel/.[23℄ W3C, XSL Transformations (XSLT) Version 2.0, W3C Working Draft, 2001,http://www.w3.org/TR/xslt20.[24℄ P. Wadler, A formal semantis of patterns in XSLT, Pro. of Conferene on Markup Teh-nologies, 1999.[25℄ P. Wadler, Two semantis of XPath, Teh. report, 2000.[26℄ P. T. Wood, Optimising web queries using doument type de�nitions, 2nd ACM Workshopon Web Information and Data Management (WIDM'99), 1999.[27℄ P. T. Wood, On the equivalene of XML patterns, Pro. 6th Int. Conf. on Rules and Objetsin Databases (DOOD), 2000.

15

