
XPath: Looking ForwardDan Olteanu, Holger Meuss, Tim Fur
he, Fran�
ois BryInsitute for Computer S
ien
e and Center for Information and Language Pro
essingUniversity of Muni
h, Germanyolteanu�informatik.uni-muen
hen.deAbstra
tThe lo
ation path language XPath is of parti
ular importan
e for XML appli
ations sin
eit is a
ore
omponent of many XML pro
essing standards su
h as XSLT or XQuery. In thispaper, based on axis symmetry of XPath, equivalen
es of XPath 1.0 lo
ation paths involvingreverse axes, su
h as an
estor and pre
eding, are established. These equivalen
es are usedas rewriting rules in an algorithm for transforming lo
ation paths with reverse axes intoequivalent reverse-axis-free ones. Lo
ation paths without reverse axes, as generated by thepresented rewriting algorithm, enable eÆ
ient SAX-like streamed data pro
essing of XPath.1 Introdu
tionQuery languages for XML and semistru
tured data rely on lo
ation paths for sele
ting nodesin data items. In parti
ular, XQuery [21℄ and XSLT [19℄ are based on XPath [18℄. XPathtakes a navigational approa
h for spe
ifying the nodes to be sele
ted, hen
e a large numberof navigational axes (e.g.
hild, des
endant, pre
eding) have been de�ned in XPath. Thenumber as well as the relevan
e of these navigational axes for querying XML has been
hallengedin [8, 21, 23℄.The random a

ess to XML data that is enabled by the various navigational axes of XPathhas proven parti
ularly diÆ
ult for an eÆ
ient stream-based pro
essing of XPath queries. Pro-
essing of XML has seen the widespread use of the W3C do
ument obje
t model (DOM) [20℄,where an in-memory representation of the entire XML data is used. As DOM has been devel-oped with fo
us on do
ument pro
essing in user agents (e.g. browsers), this approa
h has severalshort
omings for other appli
ation areas:First, a
onsiderable amount of XML appli
ations, in parti
ular data-
entri
 appli
ations,handle do
uments too large to be pro
essed in memory. Su
h do
uments are often en
ounteredin natural language pro
essing [11℄, in biologi
al [13℄ and astronomi
al [1℄ proje
ts.Se
ond, the need for progressive pro
essing (also referred to as sequential pro
essing) of XMLhas emerged: Stream-based pro
essing generating partial results as soon as they are availablegives rise to a more eÆ
ient evaluation in
ertain
ontexts, e.g.:� For sele
tive dissemination of information (SDI), do
uments have to be �ltered a

ording to
omplex requirements spe
i�ed as XPath queries before being distributed to the subs
ribers[7, 4℄. The routing of data to sele
ted re
eivers is also be
oming in
reasingly important inthe
ontext of web servi
e ar
hite
tures.� To integrate data over the Internet, in parti
ular from slow sour
es, it is desirable toprogressively pro
ess the input before the full data is retrieved [14, 10℄.� As a general pro
essing s
heme for XML, several solutions for pipelined pro
essing havebeen suggested, where the input is sent through a
hain of pro
essors ea
h of whi
h takingthe output of the pre
eding pro
essor as input, e.g. Apa
he Co
oon [2℄ and XPipe [15℄.1

� Progressive rendering of large do
uments, e.g. by means of XSL(T) (
f. Requirement 19of [23℄). There have been several attempts to solve this problem [3℄.There is a great interest in the identi�
ation of a subset of XPath that allows eÆ
ientprogressive or stream-based pro
essing (
f. [8℄ and Requirement 19 of [23℄).For stream-based pro
essing of XML data, the Simple API for XML (SAX) [16℄ has beenspe
i�ed. Of parti
ular
on
ern for progressive SAX-like pro
essing are the reverse axes ofXPath, i.e. those navigational axes (e.g. parent, pre
eding) that sele
t nodes o

uring beforethe
ontext node in do
ument order. A restri
tion to forward axes (i.e. axes sele
ting onlynodes after the
ontext node) in lo
ation paths is a straightforward
onsideration for an eÆ
ientstream-based evaluation of XPath queries [8℄.There are three prin
ipal options how to evaluate reverse axes in a stream-based
ontext:� Storing in memory suÆ
ient information that allows to a

ess past events when evaluatinga reverse axis. This amounts to keeping in memory a (possibly pruned) DOM representa-tion of the data [3℄.� Evaluating an XPath expression in more than one run. With this approa
h, it is alsone
essary to store additional information to be used in su

essive runs. This information
an be
onsiderably smaller than what is needed in the �rst approa
h.� Repla
ing XPath expressions by equivalent ones without reverse axes.In this paper it is shown that the third approa
h is possible. It is less time
onsuming thanthe se
ond approa
h and does not require the in-memory storage of fragments of the input asthe �rst approa
h does. Hen
e, XPath
an be evaluated without restri
tion on the use of reverseaxes.Se
tion 2 spe
i�es the lo
ation path language
onsidered in the rest of the paper. Then, thenotion of equivalen
e between lo
ation paths is de�ned in Se
tion 3 using a formal model and adenotational semanti
s for XPath based on [24, 25℄. Furthermore, two sets of equivalen
es (withrather di�erent properties) are established. These equivalen
es are used as rewriting rules in analgorithm,
alled \rare", for transforming absolute XPath lo
ation paths with reverse axes intoequivalent reverse-axis-free ones (Se
tion 4). Two rewritings, based on the two rule sets, are
onsidered. In Se
tion 5, related work is dis
ussed. Se
tion 6 is a
on
lusion.Due to spa
e limitations, parts of this work have been omitted, most notably the proofs forthe equivalen
es. They
an be found in the full version [17℄ of this paper.Some familiarity with XPath 1.0 is assumed.2 PreliminariesIn this paper, spe
i�
ities of XML that are irrelevant to the issue of
on
ern are left out.Thus, namespa
es,
omments, pro
essing instru
tions, attributes, attribute values, do
ument
olle
tions, s
hema types, referen
es, and white spa
e pro
essing are not
onsidered. The resultsgiven in this paper extend straightforwardly to unrestri
ted XML do
uments.The root node of a do
ument
orresponds to the do
ument node of DOM and of the XQuery1.0 and XPath 2.0 Data Model [22℄ { i.e. it is none of the do
ument elements. A leaf is an emptyelement or a text node {
f. Figure 1.The mathemati
al model used in this paper is adapted from [24, 25℄. The full formal modelas well as the denotational semanti
s
an be found in the full version [17℄ of this paper. It
onsists of mathemati
al fun
tions that
an be seen as (formal spe
i�
ations of) elementarypro
edures. 2

Figure 1 Tree and XML data it represents
<journal>
 <title>databases</title>
 <editor>anna</editor>
 <authors>
 <name>anna</name>
 <name>bob</name>
 </authors>
 <price />
</journal>

root

journal

title editor authors price

"anna""databases"
name name

"anna" "bob"2.1 Lo
ation Path LanguageThe lo
ation path language
onsidered in the following is unabbreviated XPath without those
onstru
ts (su
h as those needed for pro
essing attributes) irrelevant to the issue of
on
ern. For
onvenien
e, this language will be referred to as xPath. Re
all that every abbreviated XPathexpression
an easily be translated into an unabbreviated XPath expression. It is worth stressingthat the results given below for xPath extend to XPath 1.0 [18℄. The (abstra
t) syntax of xPathis as follows: path ::= path | path j / path j path / path j path [qualif ℄ j axis :: nodetest j ? :qualif ::= qualif and qualif j qualif or qualif j (qualif) jpath = path j path == path j path :axis ::= reverse axis j forward axis :reverse axis ::= parent j an
estor j an
estor-or-self jpre
eding j pre
eding-sibling :forward axis ::= self j
hild j des
endant j des
endant-or-self jfollowing j following-sibling :nodetest ::= tagname j * j text() j node() :As XPath 2.0 and in
ontrast to XPath 1.0, xPath allows the union p1 | p2 of two pathsat every level. Su
h paths
an easily be transformed into paths with unions at top level only.Note also that while we do not
onsider fun
tions in the following se
tions, the results almostimmediately apply to lo
ation paths with fun
tions. The only
lass of fun
tions that needsspe
ial treatment are fun
tions for a

essing the
ontext position or size of a node.? is
onvenient for simplifying proofs. It is used as a
anoni
al equivalent path to the xPathexpressions that sele
t no nodes whatever the
ontext node and do
ument are, e.g. /parent::*.p1 == p2 expresses node equality based on identity. Thus, if p1 and p2 are two paths, thenp1 == p2 holds if there is a node sele
ted by p1 whi
h is identi
al to a node sele
ted by p2.==
orresponds to built-in node equality operator (==) in XPath 2.0 and XQuery 1.0, but it
an also be used for
omparing node sets similar to general
omparisons in XPath 2.0. AsXPath 1.0 has built-in support for equality based on node values only, the XPath 1.0 expression
ount(p1 | p2) <
ount(p1) +
ount(p2)
an be used for expressing ==.A path expression will be
alled a \lo
ation path", or \path" for short. A qualif expression isa \quali�er" (or pattern). Expressions axis::nodetest and axis::nodetest[qualif ℄ are \steps",also
alled \lo
ation steps". The length of a lo
ation path is the number of lo
ation steps it
ontains outside and inside quali�ers. Note that every lo
ation path is a quali�er, but the
onverse is false.Absolute lo
ation paths are re
ursively de�ned as follows: A disjun
tive path, i.e. a path ofthe form p1 | : : : | pi | : : : | pk, is an absolute path if for all i = 1; : : : ; k, pi is an absolute path.3

A non-disjun
tive path is an absolute path if it is of the form /p, where p is a path. A lo
ationpath, whi
h is not an absolute path, is a \relative path". A step is a \forward step", if its axisis a forward axis, or a \reverse step", if its axis is a reverse axis.The axes of the following pairs are \symmetri
al" of ea
h other: parent {
hild, an
estor {des
endant, des
endant-or-self { an
estor-or-self, pre
eding { following, pre
eding-sibling { following-sibling, and (useful in proofs) self { self.[24℄ and [25℄ give a denotational semanti
s for XPath, whi
h is slightly modi�ed for ourpurpose in [17℄. The semanti
s de�nes a fun
tion S that assigns a set of nodes to a lo
ationpath and a
ontext node: SJpKx is the set of nodes sele
ted by p from node x.3 Lo
ation Path Equivalen
esA set of simple equivalen
es is �rst established. These are then used to prove equivalen
es ofpaths with reverse axes. We distinguish between general equivalen
es that
an be applied toremove any reverse axis, and spe
i�
 equivalen
es, ea
h of them being appli
able to a
ertain
ase. Making use of the semanti
s of xPath given in the full version [17℄ of this paper, theequivalen
e of lo
ation paths
an be formally de�ned as follows.De�nition 3.1 (Path equivalen
e). Two lo
ation paths p1 and p2 are equivalent, notedp1 � p2, if SJp1K = SJp2K, i.e. if SJp1Kx = SJp2Kx for all nodes x (from any do
ument).Intuitively, two lo
ation paths are equivalent if they sele
t the same set of nodes for everydo
ument and every
ontext node in this do
ument.Lemma 3.1. Let p, p1, and p2 be lo
ation paths, q, q1, and q2 quali�ers, n a node test, and� 2 f==; =g.1. Right step adjun
tion: If p1 � p2 and p relative, then p1/p � p2/p.2. Left step adjun
tion: If p1 � p2 and p1, p2 relative, then p/p1 � p/p2.3. Quali�er adjun
tion: If p1 � p2, then p1[q℄ � p2[q℄ and p[p1℄ � p[p2℄.4. Relative/absolute path
onversion: If p1 � p2, then /p1 � /p2.5. Quali�er
attening: p[p1/p2℄ � p[p1[p2℄℄.6. An
estor-or-self axis de
omposition:an
estor-or-self::n � an
estor::n | self::n.7. Des
endant-or-self axis de
omposition:des
endant-or-self::n � des
endant::n | self::n.8. Quali�ers with joins: p[p1 � /p2℄ � p[p1[self::node() � /p2℄℄.Equivalen
es involving
omplex quali�ers and unions
an be found in the full version [17℄ ofthis paper.Re
all that ? is a lo
ation path never sele
ting any node whatever the
ontext node anddo
ument are. Sin
e the root node has no parents and therefore no siblings, the following holds:
4

Lemma 3.2. Let m and n be node tests, i.e. m and n are tag names or one of the xPath
onstru
ts *, node(), or text().� Let a be one of the axes parent, an
estor, pre
eding, pre
eding-sibling, self,following, or following-sibling. Then the following holds:/a::n � (/ if a = self and n = node()? otherwise� Let a be the pre
eding or an
estor axis. Then the following equivalen
es hold:/
hild::m/a::n � (/self::node()[
hild::m℄ if a = an
estor and n = node()? otherwise/
hild::m[a::n℄ � (/
hild::m if a = an
estor and n = node()? otherwise3.1 General equivalen
esThe nodes sele
ted by a reverse step within a lo
ation path are ne
essarily des
endants of thedo
ument root. The following equivalen
es show how for any reverse axis only those des
endantsof the root
an be sele
ted that are also mat
hed by the original reverse step.Proposition 3.1. Let p and s be relative lo
ation paths, n and m node tests, am a reverse axis,an a forward axis, and bm the symmetri
al axis of am. Then the following holdsp[am::m/s℄ � p[/des
endant::m[s℄/bm::node() == self::node()℄ (1)/p/an::n/am::m � /des
endant::m[bm::n == /p/an::n℄ (2)/an::n/am::m � /des
endant::m[bm::n == /an::n℄ (2a)Equivalen
e (1) shows that it is possible to remove the �rst step in a lo
ation path within aquali�er. With help of Lemma 3.1.5 this result is generalized to reverse steps having an arbitraryposition within a quali�er.The key idea of Equivalen
e (1) is that, instead of looking ba
k from the
ontext node spe
-i�ed by path p for mat
hing a
ertain node (am::m), one
an look forward from the beginningof the do
ument for mat
hing the node (/des
endant::m) and then, still forward, for rea
hingthe initial
ontext node (bm::node()). Hen
e, e.g. instead of
he
king whether the
ontextnode spe
i�ed by path p has a pre
eding m (p[pre
eding::m℄), one rather looks for an mnode and then for a following node that is identi
al to the
ontext node:p[/des
endant::m/following::node() == self::node()℄:Equivalen
e (2) removes the �rst reverse step from an absolute lo
ation path using the sameunderlying idea.Note that the equality o

urring in these equivalen
es is based on node identity. The equiv-alent paths might remain expensive to evaluate, but no evaluation of the am::m reverse step isneeded anymore.Example 3.1. Consider the example of Figure 1 and a query asking for all names that appearbefore a pri
e. A way to sele
t these nodes is using the following lo
ation path:/des
endant::pri
e/pre
eding::nameBy Equivalen
e (2a), the pre
eding axis
an be removed yielding to the following equivalentlo
ation path: /des
endant::name[following::pri
e == /des
endant::pri
e℄While the initial lo
ation path sele
ts all name nodes pre
eding a pri
e node, the equivalentlo
ation path sele
ts all name nodes, that have a following pri
e node, if that node is also a5

des
endant of the root. It is obvious, that there is a
onsiderably simpler equivalent lo
ation path(dropping the join), /des
endant::name[following::pri
e℄. The need for the join arises, asthe lo
ation path sele
ting the
ontext nodes, relative to whi
h the reverse step is evaluated, (inthis
ase the pri
e nodes)
an be arbitrarily
omplex:Consider a slightly modi�ed
ase of the previous one, where only pri
es, that are insidea journal with a title, should be
onsidered. A possible lo
ation path for this query withreverse axis is:/des
endant::journal[
hild::title℄/des
endant::pri
e/pre
eding::nameAgain, by Equivalen
e (2) this is equivalent to/des
endant::name[following::pri
e == /des
endant::journal[
hild::title℄/des
endant::pri
e℄:As argued above, it is impossible in this
ase to remove the introdu
ed join. Note that thejoin in the �rst example
an be removed by additional equivalen
e rules for simplifying lo
ationpaths that are outside the s
ope of this paper.Using the equivalen
es above, it is possible to repla
e reverse steps in xPath expressions.Nonetheless, in the following se
tion spe
i�
 equivalen
es for reverse axes are given, that yieldto lo
ation paths without joins.3.2 Spe
i�
 Equivalen
esIn this se
tion the intera
tion of the reverse axes (an
estor, an
estor-or-self, parent,pre
eding, and pre
eding-sibling) with forward axes is treated, i.e. equivalen
es are given,that (if read as rewriting rules from left to right), depending on the lo
ation step Lf before areverse lo
ation step Lr, either repla
e the reverse lo
ation step Lr or rewrite the lo
ation pathinto one, where the reverse step Lr is \pushed leftwise". For every reverse step the intera
tionwith every forward step is shown.In general, the equivalen
es have the following stru
turep/Lf/Lr � p0 or p/Lf[Lr℄ � p0;where p is an absolute path, Lf a forward lo
ation step, Lr a reverse lo
ation step, and p0the equivalent lo
ation path. Sometimes the equivalen
es
an be formulated without the leadingpath p.Note that intera
tion with reverse axes, e.g. intera
tion of parent with pre
eding-sibling,is not ne
essary to investigate in these equivalen
es due to the way our algorithm works (remov-ing reverse steps from left to right of the lo
ation path in question). Also, equivalen
es involvingan
estor-or-self and des
endant-or-self are not ne
essary sin
e these lo
ation steps
anbe repla
ed using Equivalen
es (3.1.6) and (3.1.7).Some of the following equivalen
es do still
ontain reverse steps on the right-hand side, butthese reverse steps are either more on the left of the lo
ation path, or the right-hand side is ofa form, where other equivalen
es
an be applied to fully remove the reverse lo
ation steps aselaborated in Se
tion 4.3.2.1 ParentThe equivalen
es in the following proposition are divided in two sets. The �rst set (Equivalen
es(3) to (7))
overs the
ase of parent lo
ation steps outside, the se
ond inside a quali�er. Notethat there is a strong stru
tural similarity between the equivalen
es of the two sets.
6

Proposition 3.2 (parent axis). Let m and n be node tests and p a lo
ation path.des
endant::n/parent::m � des
endant-or-self::m[
hild::n℄ (3)
hild::n/parent::m � self::m[
hild::n℄ (4)p/self::n/parent::m � p[self::n℄/parent::m (5)p/following-sibling::n/parent::m � p[following-sibling::n℄/parent::m (6)p/following::n/parent::m � p/following::m[
hild::n℄ (7)| p/an
estor-or-self::*[following-sibling::n℄/parent::mdes
endant::n [parent::m℄ � des
endant-or-self::m/
hild::n (8)
hild::n[parent::m℄ � self::m/
hild::n (9)p/self::n[parent::m℄ � p[parent::m℄/self::n (10)p/following-sibling::n[parent::m℄ � p[parent::m℄/following-sibling::n (11)p/following::n[parent::m℄ � p/following::m/
hild::n (12)| p/an
estor-or-self::*[parent::m℄/following-sibling::nExample 3.2. Consider the data of Figure 1. The following lo
ation path sele
ts all editors ofjournals: /des
endant::editor[parent::journal℄:A

ording to Equivalen
e (8), this path is equivalent to:/des
endant-or-self::journal/
hild::editor:3.2.2 An
estorThe following proposition gives equivalen
es that either move an an
estor step to the left of apath or remove it
ompletely. Equivalen
es (13a) and (18a) are spe
ial
ases of Equivalen
es (13)and (18), respe
tively.Proposition 3.3 (an
estor axis). Let m and n be node tests and p a lo
ation path.p/des
endant::n/an
estor::m � p[des
endant::n℄/an
estor::m (13)| p/des
endant-or-self::m[des
endant::n℄/des
endant::n/an
estor::m � /des
endant-or-self::m[des
endant::n℄ (13a)p/
hild::n/an
estor::m � p[
hild::n℄/an
estor-or-self::m (14)p/self::n/an
estor::m � p[self::n℄/an
estor::m (15)p/following-sibling::n/an
estor::m � p[following-sibling::n℄/an
estor::m (16)p/following::n/an
estor::m � p/following::m[des
endant::n℄ (17)| p/an
estor-or-self::*[following-sibling::*/des
endant-or-self::n℄/an
estor::mp/des
endant::n[an
estor::m℄ � p[an
estor::m℄/des
endant::n (18)| p/des
endant-or-self::m/des
endant::n/des
endant::n[an
estor::m℄ � /des
endant-or-self::m/des
endant::n (18a)p/
hild::n[an
estor::m℄ � p[an
estor-or-self::m℄/
hild::n (19)p/self::n[an
estor::m℄ � p[an
estor::m℄/self::n (20)p/following-sibling::n[an
estor::m℄ � p[an
estor::m℄/following-sibling::n (21)p/following::n[an
estor::m℄ � p/following::m/des
endant::n (22)| p/an
estor-or-self::*[an
estor::m℄/following-sibling::*/des
endant-or-self::n7

3.2.3 Pre
eding-siblingIn the following proposition the pre
eding-sibling axis is treated. Note that the right-handside of equivalen
es for pre
eding-sibling (and pre
eding)
ontains more union terms thanthe other equivalen
es, sin
e there is no -or-self variant of these axes.Proposition 3.4 (pre
eding-sibling axis). Let m and n be node tests and p a lo
ation path.The following equivalen
es hold:des
endant::n/pre
eding-sibling::m � des
endant::m[following-sibling::n℄ (23)
hild::n/pre
eding-sibling::m �
hild::m[following-sibling::n℄ (24)p/self::n/pre
eding-sibling::m � p[self::n℄/pre
eding-sibling::m (25)p/following-sibling::n/pre
eding-sibling::m � p[self::m/following-sibling::n℄ (26)| p[following-sibling::n℄/pre
eding-sibling::m| p/following-sibling::m[following-sibling::n℄p/following::n/pre
eding-sibling::m � p/following::m[following-sibling::n℄ (27)| p/an
estor-or-self::*[following-sibling::n℄/pre
eding-sibling::m| p/an
estor-or-self::m[following-sibling::n℄des
endant::n[pre
eding-sibling::m ℄ � des
endant::m/following-sibling::n (28)
hild::n[pre
eding-sibling::m℄ �
hild::m/following-sibling::n (29)p/self::n[pre
eding-sibling::m℄ � p[self::n℄/following-sibling::m (30)p/following-sibling::n[pre
eding-sibling::m℄ � p[self::m℄/following-sibling::n (31)| p/following-sibling::m/following-sibling::n| p[pre
eding-sibling::m℄/following-sibling::np/following::n[pre
eding-sibling::m℄ � p/following::m/following-sibling::n (32)| p/an
estor-or-self::*[pre
eding-sibling::m℄/following-sibling::n| p/an
estor-or-self::/following-sibling::n3.2.4 Pre
edingThe following proposition des
ribes the intera
tion of pre
eding with other axes.Proposition 3.5 (pre
eding axis). Let m and n be node tests and p a lo
ation path.p/des
endant::n/pre
eding::m � p[des
endant::n℄/pre
eding::m (33)| p/
hild::*[following-sibling::*/des
endant-or-self::n℄/des
endant-or-self::m/des
endant::n/pre
eding::m � /des
endant::m[following::n℄ (33a)p/
hild::n/pre
eding::m � p[
hild::n℄/pre
eding::m (34)| p/
hild::*[following-sibling::n℄/des
endant-or-self::mp/self::n/pre
eding::m � p[self::n℄/pre
eding::m (35)p/following-sibling::n/pre
eding::m � p[following-sibling::n℄/pre
eding::m (36)| p/following-sibling::*[following-sibling::n℄/des
endant-or-self::m| p[following-sibling::n℄/des
endant-or-self::mp/following::n/pre
eding::m � p[following::n℄/pre
eding::m (37)| p/following::m[following::n℄| p[following::n℄/des
endant-or-self::m8

p/des
endant::n[pre
eding::m℄ � p[pre
eding::m℄/des
endant::n (38)| p/
hild::*[des
endant-or-self::m℄/following-sibling::*/des
endant-or-self::n/des
endant::n[pre
eding::m ℄ � /des
endant::m/following::n (38a)p/
hild::n[pre
eding::m ℄ � p[pre
eding::m℄/
hild::n (39)| p/
hild::*[des
endant-or-self::m℄/following-sibling::np/self::n[pre
eding::m℄ � p[pre
eding::m℄/self::n (40)p/following-sibling::n[pre
eding::m℄ � p[pre
eding::m℄/following-sibling::n (41)| p/following-sibling::*[des
endant-or-self::m℄/following-sibling::n| p[des
endant-or-self::m℄/following-sibling::np/following::n[pre
eding::m℄ � p[pre
eding::m℄/following::n (42)| p/following::m/following::n| p[des
endant-or-self::m℄/following::nExample 3.3. Consider the lo
ation path/des
endant::pri
e/pre
eding::nameof Example (3.1). With Rule 33a it
an be rewritten to/des
endant::name[following::pri
e℄:This result is more
ompa
t and
loser to the original than the result of Example (3.1) usingEquivalen
e (2a).4 Lo
ation Path RewritingEa
h Equivalen
e (i) p1 � p2 of Se
tion 3 gives rise to a rewriting rule: A path mat
hing withthe left-hand side p1
an be rewritten into a path
orresponding to the right-hand side p2. Inthe following, Rule (i) denotes the rewriting rule p1 ! p2 indu
ed by Equivalen
e (i) p1 � p2.The equivalen
es of Lemma 3.1 and Lemma 3.2 indu
e rewriting rules, denoted Rules (3.1.1)to (3.1.8) and (3.2).The equivalen
es of Se
tion 3 are splitted in two sets of rules for use in a rewriting algorithm:1. RuleSet1,
ontaining the general Rules (1), (2), (2a) and (3.2).2. RuleSet2,
ontaining the spe
i�
 Rules (3) to (42) and (3.2).A rule
an be applied to a lo
ation path in the following manner:De�nition 4.1 (Rule appli
ation). Let p be a non-disjun
tive lo
ation path, and let pl ! prbe a rule either from RuleSet1 or RuleSet2. If p is of the form pl/p0, then let q denote the pathpr/p0. If pl is a relative path and if p is of the form p1/pl/p2, then let q denote the path p1/pr/p2.In both
ases q is
alled the result of the appli
ation of rule pl ! pr to p.An algorithm,
alled \rare" (sket
hed in Figure 2) for
omputing a reverse-axis-free pathequivalent to an absolute path is
onsidered below. The input for the algorithm is restri
ted topaths without quali�ers
ontaining so-
alled \RR joins":De�nition 4.2 (RR join). An RR join is an expression of the form p1 � p2 where � 2 f==; =g,and both p1 and p2 are Relative paths su
h that at least one of them
ontains a Reverse step.For the
onsideration of termination and
orre
tness of the algorithm, some important prop-erties of the appli
ation of the rewriting rules to a lo
ation path are required:9

Lemma 4.1 (Properties of rule appli
ation). Let p be an absolute lo
ation path with noquali�er
ontaining RR joins.1. If p
ontains a reverse step, then a rule from RuleSet1 and a rule from RuleSet2 is appli
ableto p. Possibly, Rules (3.1.1) to (3.1.8) have to be applied �rst.2. The result of a rule appli
ation to the �rst reverse step in p is an absolute path with noquali�ers
ontaining RR joins.3. If q is the result of a rule appli
ation to p, then p � q.Proof. (1): Let L be the �rst reverse lo
ation step.First
onsider RuleSet1: If L o

urs outside a quali�er, Rules (2), (2a) or (3.2)
an be applied,sin
e p is an absolute lo
ation path. If L o

urs as the �rst lo
ation step inside a quali�er Rule(1)
an be applied. If L appears at any other position inside a quali�er, Rule (3.1.5)
an beapplied in order to
onstru
t a quali�er with L as �rst lo
ation step. Rule (1)
an be appliednow.RuleSet2 provides rules for intera
tion between ea
h reverse step and an arbitrary forwardstep p, so there is always a rule, that
an be applied to the �rst reverse step in p.(2) Only Rules (1), (2), and (2a) introdu
e a binary relation (namely ==), if they are applied toa lo
ation path. But always one of the two paths related by == is absolute. Hen
e, in any
asethe result of the rule appli
ation
ontains no RR join. Furthermore, sin
e p is an absolute path,the result of applying a rule to p is also an absolute path.(3) This holds due to Lemma 3.1.1�4.\rare" Algorithm. The \rare" Algorithm, outlined in Figure 2,
an be used for RuleSet1 aswell as for RuleSet2. The algorithm takes as input a lo
ation path whi
h is absolute, sin
e somerules from RuleSet1 and RuleSet2 are appli
able to absolute lo
ation paths only.Theorem 4.1 (Removal of reverse lo
ation steps using RuleSet1). Let p be an absolutepath with no quali�er in whi
h RR joins o

ur. There exists an absolute path p0 with no reversesteps su
h that p � p0. Using \rare" and RuleSet1, this path p0 has a length and
an be
omputedin a time linear in the length of p.Proof. A path equivalent to p is
onstru
ted as sket
hed in Figure 2. All reverse lo
ation stepsare rewritten, one by one. Lemma 4.1 guarantees that a rule of RuleSet1
an be applied to anypath
ontaining a reverse lo
ation step. The resulting path p0
ontains no reverse lo
ation stepsand is equivalent to p.The lo
ation path p0 is of linear size and
onstru
ted in linear time, sin
e ea
h rule appli
ationremoves one reverse step, adds at most two forward lo
ation steps and no reverse ones.Theorem 4.2 (Removal of reverse lo
ation steps using RuleSet2). Let p be an absolutepath with no quali�ers in whi
h RR joins o

ur. There exists an absolute path p0 with no reversesteps su
h that p � p0. Using \rare" and RuleSet2, this path p0 has a length and
an be
omputedin a time exponential in the length of p.Proof. An appli
ation of a rule from RuleSet2
an have three di�erent result types:1. removes
ompletely a reverse step (e.g. Rules (3.2) or (3));2. pushes the reverse step from right to left in the path (e.g. Rule (5));
10

Figure 2 Algorithm rare (reverse axis removal)Let � = RuleSet1 or RuleSet2.Auxiliary fun
tions:mat
h(p): returns the result of a rule appli
ation from � to the �rst reverse lo
ation step in p.apply-lemmas(p): returns p if Rules (3.1.1-8) are not appli
able to p. Otherwise, it returns theresult of the repeated appli
ation of Rules (3.1.1-8) to p.union-
attening(p): returns a path equivalent to p with unions at top level only.rare(p)Input: p fabsolute lo
ation path without quali�ers
ontaining RR joinsg.p apply-lemmas(p).p union-
attening(p) = U1 | : : : | Un (n � 1).S empty sta
k.for i 1 to n dopush(Ui; S).end forp0 ?. finitializationgwhile not(empty(S)) doU pop(S).while U
ontains a reverse step doU mat
h(U).U apply-lemmas(U).U union-
attening(U) = V1 | : : : | Vn (n � 1).for i 2 to n dopush(Vi; S).end forU V1.end whilep0 p0 | U .end whileOutput: p0 flo
ation path without reverse axes equivalent to pg.
11

3. for the intera
tion between a following and a reverse step Lr, i.e. following::n/Lr orfollowing::n[Lr℄, a union of several other paths is obtained (e.g. Rule (7)); the resultingunion terms have reverse steps at positions less than or equal in the original path and theydo not
ontain anymore the intera
tion between the initial following step and a reversestep.Sin
e the path has a �nite length, the pro
edure of pushing reverse steps leftwise terminates.Also, the number of intera
tions between following and reverse steps is �nite. Hen
e, thealgorithm terminates.Ea
h rule appli
ation having the �rst result type removes a reverse step and does not
hangethe number of union terms. Hen
e, in the best
ase, i.e. using only rule appli
ations with the�rst result type, the algorithm has a linear time
omplexity in the length of the input path p.The last two result types are signi�
ant for the worst-
ase
omplexity of the algorithm, sin
eea
h rule appli
ation
an produ
e intermediate rewritten paths with more than one union term(up to three union terms). Hen
e, ea
h rule appli
ation
an in
rease the order of the input forthe next rule appli
ation, yielding to an exponential time
omplexity in the length of the inputpath p.Example runs of the algorithm for both set of rules are presented in Figure 3 and Figure 4.Comparison. Both RuleSet1 and RuleSet2 have advantages and it is an open issue whi
hone is preferable. The path rewriting using RuleSet2 has in the worst
ase an exponential time
omplexity and output size in the length of the input lo
ation path. As lo
ation paths are inpra
ti
e small (less than ten steps), the exponential worst-
ase
omplexity of RuleSet2 does notne
essarily generate longer paths than RuleSet1. In addition, sin
e they do not
ontain joins, thelo
ation paths generated using RuleSet2 are simpler (as
an be seen in the examples), hen
e more
onvenient to evaluate, than those generated using RuleSet1, whi
h
ontain the same numberof joins as there are reverse steps in the input lo
ation path. It remains to de
ide in pra
ti
altests, up to whi
h size of an input path RuleSet2 generates simpler paths than RuleSet1.Rewriting lo
ation paths using variables. There are two
lasses of lo
ation paths not
overed by the rules given so far: relative lo
ation paths and lo
ation paths with RR joins (
f.De�nition 4.2), e.g. p[self::* = pre
eding::*℄. Any attempt to remove the reverse lo
ationsteps in these
ases results in losing the
ontext given by p.In the full version [17℄ of this paper an approa
h is proposed to solve this problem byremembering the
ontext in a variable. It is based on a for
onstru
t for variable binding, asprovided by XPath 2.0, XQuery, and XSLT. Using this approa
h every lo
ation path
an berewritten to an equivalent reverse-axis-free one.5 Related WorkSeveral methods have been proposed for rewriting XPath expressions taking integrity
onstraintsor s
hemas into a

ount [6, 26℄, and the equivalen
e and
ontainment problems for XPathexpressions have been investigated [9, 27℄. Furthermore, a growing interest in query optimizationfor XML databases, in
luding optimization of XPath expressions, re
ently emerged. To the bestof our knowledge, however, no other approa
h has been proposed for removing reverse stepsfrom XPath expressions relying upon XPath symmetry. Note that using equivalen
e preservingrewriting rules for removing reverse steps from XPath expressions, as it is proposed in the presentpaper, is not
losely related to the general equivalen
e problem for XPath expressions.In [5℄ redundan
ies in XPath expressions based on a \model-oriented" approa
h are investi-gated. Su
h an approa
h relies on an abstra
t model of XPath that views XPath expressions as12

Figure 3 Example run of rare algorithm with RuleSet1Consider the example of Figure 1 and a query asking for all titles that appear before a name and areinside journals. This query
an be expressed as the following lo
ation path:/des
endant::name/pre
eding::title[an
estor::journal℄Note that p is an absolute path with no quali�er
ontaining RR-joins.Step 1: p apply-lemmas(p) = p.Step 2: U1 /des
endant::name/pre
eding::title[an
estor::journal℄.Step 3: push(U1; S).Step 4: p0 ?.Step 5: U pop(S).Step 6: U
ontains a reverse step (pre
eding::title).Step 7: U mat
h(U) = /des
endant::title[an
estor::journal℄[following::name == /des
endant::name℄. fRule (2)gStep 8: U apply-lemmas(U) = U .Step 9: U
ontains a reverse step (an
estor::journal).Step 10: U mat
h(U) = /des
endant::title[/des
endant::journal/des
endant::node() == self::node()℄[following::name == /des
endant::name℄. fRule (1)gStep 11: U apply-lemmas(U) = U .Step 12: U does not
ontain reverse steps.Step 13: p0 U .Step 14: S is empty.Output: p = /des
endant::title[/des
endant::journal/des
endant::node() == self::node()℄[following::name == /des
endant::name℄.Figure 4 Example run of rare algorithm with RuleSet2Consider the example query in Figure 3. For
on
iseness the union terms in Step 8 are not pushed to thesta
k.Step 1: p apply-lemmas(p) = p.Step 2: U1 /des
endant::name/pre
eding::title[an
estor::journal℄.Step 3: push(U1; S).Step 4: p0 ?.Step 5: U pop(S).Step 6: U
ontains a reverse step (pre
eding::title).Step 7: U mat
h(U) =/des
endant-or-self::title[an
estor::journal℄[following::name℄ fRule (33a)gStep 8: U apply-lemmas(U) = /des
endant::title[an
estor::journal℄[following::name℄| /self::title[an
estor::journal℄[following::name℄.Step 9: U
ontains a reverse step (an
estor::journal).Step 10: U mat
h(U) =/des
endant::title[an
estor::journal℄[following::name℄ |?. fRule (3.2)gStep 11: U
ontains a reverse step (an
estor::journal).Step 12: U mat
h(U) =/des
endant::journal/des
endant::title[following::name℄. fRule (18a)gStep 13: U apply-lemmas(U) = U .Step 14: U does not
ontain reverse steps.Step 15: p0 U .Step 16: S is empty.Output: p0 = /des
endant::journal/des
endant::title[following::name℄.13

tree patterns. [5℄ shows that redundant bran
hes of a tree pattern
an be eliminated in polyno-mial time. Tree patterns are more abstra
t than XPath expressions in a way whi
h is relevantto the work des
ribed in the present paper: A same tree pattern represents multiple equivalentXPath expressions. In parti
ular, the symmetries in XPath exploited in the present paper areabsent from tree patterns. Tree patterns do not
onsider the do
ument order and therefore the
on
ept of forward and reverse steps. In some sense the present work shows in whi
h
ases thissimpli�ed view upon an XPath expression
an be justi�ed.Stream-based query pro
essing has gained
onsiderable interest in the past few years, e.g.due to its appli
ation in data integration [10, 14℄ and in publish-subs
ribe ar
hite
tures [4, 7℄.They all
onsider a navigational approa
h (XML-QL or XPath)
onsisting of a restri
ted subsetof forward axes from XPath. This fa
t
ontrasts with the present work, whi
h enables the useof the unrestri
ted set of XPath axes in a stream-based
ontext.6 Con
lusionThe main result of this paper
onsists in two rule sets, RuleSet1 and RuleSet2, used in analgorithm for transforming XPath 1.0 expressions
ontaining reverse axes into reverse-axis-freeequivalents. Both RuleSet1 and RuleSet2 have advantages and it is an open issue whi
h one ispreferable. The lo
ation paths generated using RuleSet2 do not
ontain joins, in
ontrast withthose generated using RuleSet1, whi
h
ontain the same number of joins as there are reversesteps in the input lo
ation path. However, the path rewriting using RuleSet2 has an exponential
omplexity in the length of the input lo
ation path, in
ontrast with rewriting using RuleSet1whi
h has only a linear
omplexity.Closely related to the
omparison of RuleSet1 and RuleSet2 we plan to investigate the notionof \minimality" or \simpli
ity" of XPath expressions. We are fo
using on de�ning a notion ofa minimal XPath expression that
an be evaluated more eÆ
iently in a stream-based
ontextthan its equivalents. A notion of minimality will allow for well-founded optimization te
hniquesfor XPath expressions.We believe that the equivalen
es proposed in this paper are an important step towards aneÆ
ient progressive evaluation of full XPath. In parti
ular, we show that it is not ne
essary torestri
t the use of axes in XPath for progressive pro
essing, as suggested in [8℄. Based on theresults of this paper we are designing and implementing a progressive XPath pro
essor, thatsupports unrestri
ted XPath [12℄.Referen
es[1℄ Astronomi
al Data Center, Home page, http://ad
.gsf
.nasa.gov/.[2℄ Co
oon 2.0: XML publishing framework, http://xml.apa
he.org/
o
oon/index.html.[3℄ Xalan-Java Version 2.2, Apa
he Proje
t, http://xml.apa
he.org/xalan-j/index.html.[4℄ M. Altinel and M. Franklin, EÆ
ient Filtering of XML Do
uments for Sele
tive Dissemi-nation of Information, Pro
. of 26th Conferen
e on Very Large Databases (VLDB), 2000.[5℄ Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Divesh Srivastava, Mini-mization of tree pattern queries, SIGMOD, 2001.[6℄ K. Boehm, K. Gayer, T. Oezsu, and K. Aberer, Query optimization for stru
tured do
u-ments based on knowledge on the do
ument type de�nition, Pro
. of the Advan
es in DigitalLibraries Conferen
e, 1998.[7℄ C. Chan, P. Felber, M. Garofalakis, and R. Rastogi, EÆ
ient Filtering of XML Do
umentswith XPath Expressions, Pro
. of International Conferen
e on Data Engineering (ICDE),2002. 14

[8℄ A. Desai, Introdu
tion to Sequential XPath, Pro
. of IDEAllian
e XML Conferen
e, 2001,http://www.ideallian
e.org/papers/xml2001/papers/html/05-01-01.html.[9℄ A. Deuts
h and V. Tannen, Containment for
lasses of XPath expressions under integrity
onstraints, Knowledge Representation meets Databases (KRDB), 2001.[10℄ T. J. Green, M. Onizuka, and D. Su
iu, Pro
essing XML Streams with Deterministi
 Au-tomata and Stream Indexes, Te
h. report, University of Washington, 2001.[11℄ N. Ide, P. Bonhomme, and L. Romary, XCES: An XML-based standard for linguisti

or-pora, Pro
. of the Se
ond Annual Conferen
e on Language Resour
es and Evaluation, 2000.[12℄ T. Kiesling, Towards a streamed XPath evaluation, 2002,http://www.pms.informatik.uni-muen
hen.de/lehre/projekt-diplom-arbeit/streamedxpath.html.[13℄ P. Kroeger, Modeling of Biologi
al Data, Te
h. report, University of Muni
h, 2001.[14℄ A. Levy, Z. Ives, and D. Weld, EÆ
ient Evaluation of Regular Path Expressions on Stream-ing XML Data, Te
h. report, University of Washington, 2000.[15℄ S. M
Grath, XPipe, http://xpipe.sour
eforge.net/.[16℄ D. Megginson, SAX: The Simple API for XML, http://www.saxproje
t.org/.[17℄ D. Olteanu, H. Meuss, T. Fur
he, and F. Bry, XPath: Looking For-ward, Te
h. Report PMS-FB-2001-16, University of Muni
h, 2001,http://www.pms.informatik.uni-muen
hen.de/publikationen/PMS-FB/PMS-FB-2001-16.pdf.[18℄ W3C, XML Path Language (XPath) Version 1.0, W3C Re
ommendation, 1999,http://www.w3.org/TR/xpath.[19℄ W3C, XSL Transformations (XSLT) Version 1.0, W3C Re
ommendation, 1999.[20℄ W3C, Do
ument Obje
t Model (DOM) Level 2 Core Spe
i�
ation, W3C Re
ommendation,2000.[21℄ W3C, XQuery 1.0: An XML query language, W3C Working Draft, 2001,http://www.w3.org/TR/xquery/.[22℄ W3C, XQuery 1.0 and XPath 2.0 data model, W3C Working Draft, 2001,http://www.w3.org/TR/query-datamodel/.[23℄ W3C, XSL Transformations (XSLT) Version 2.0, W3C Working Draft, 2001,http://www.w3.org/TR/xslt20.[24℄ P. Wadler, A formal semanti
s of patterns in XSLT, Pro
. of Conferen
e on Markup Te
h-nologies, 1999.[25℄ P. Wadler, Two semanti
s of XPath, Te
h. report, 2000.[26℄ P. T. Wood, Optimising web queries using do
ument type de�nitions, 2nd ACM Workshopon Web Information and Data Management (WIDM'99), 1999.[27℄ P. T. Wood, On the equivalen
e of XML patterns, Pro
. 6th Int. Conf. on Rules and Obje
tsin Databases (DOOD), 2000.

15

