
Verifying BDD Algorithms through Monadic
Interpretation?

Sava Krstić1 and John Matthews2

1 Oregon Graduate Institute krstic@cse.ogi.edu
2 Compaq Cambridge Research Lab John.Matthews@compaq.com

Abstract. Many symbolic model checkers use Binary Decision Dia-
grams (BDDs) to efficiently determine whether two Boolean formulas are
semantically equivalent. For realistic problems, the size of the generated
BDDs can be enormous, and constructing them can easily become a per-
formance bottleneck. As a result, most state-of-the-art BDD programs
are written as highly optimized imperative C programs, increasing the
risk of soundness defects in their implementation. This paper describes
the use of monadic interpreters to formally verify BDD algorithms at
a higher level of abstraction than the original C program, but still at a
concrete enough level to retain their essential imperative features. Our
hope is then that verification of the original C program can be achieved
by strictly localized refinement reasoning.

During this work we encountered the surprising fact that modeling im-
perative recursive algorithms monadically often results in logical func-
tions that are both partial and nestedly-recursive in their (hidden) state
parameters, making termination proofs difficult.

1 Introduction

Confidence in results produced by verification tools varies. Counterexamples we
can directly check. A theorem prover’s claim of the validity of a formula can be
checked by an independent tool that tests the validity of derivations recorded
in proof scripts. But when a model checker says that a formula is true, such
independent checking is untenable for large examples. Since large examples are
what model checkers are made for, trusting their results seems tantamount to
trusting correctness of their design.

Model checkers are usually built on top of a BDD (binary decision diagrams)
package, or some other set of efficiently implemented algorithms for representing
and manipulating boolean formulas. Verifying the correctness of a model checker
thus naturally splits into two parts: verification of the model checking algorithms
assuming correctness of the BDD package, and verification of the BDD package.
Recent work of Reif et al. [RRSV00] successfully carried out the first verification
? The research reported in this paper was supported by the National Science Founda-

tion Grants EIA-0072761 and CDA-9703218, Compaq Computer Corporation, and
Intel Corporation.

task for the model checker RAVEN. The focus of this work is on the second task
and our goal is to provide a technique for proving correctness of high performance
BDD packages.

The efficiency of modern BDD programs is achieved at the expense of of-
ten highly complex code structure, for example by implementing custom hash
tables and garbage collection routines, employing tricks with unused bits in
pointers, and so on. To avoid runtime overhead, the code is written in a low
level language, usually C. Our goal of formally verifying such algorithms as
originally written distinguishes our work from other proofs of BDD algorithms
[HPPR98,VGPA00,Sum00].

BDD libraries are hierarchical: More complex programs are built on top of
a set of atomic primitives using standard programming constructs. In this pa-
per we decompose the verification problem accordingly into two steps: verifying
an abstraction of the program with the primitives specified axiomatically, and
then a refinement proof that the C implementation of the primitives and pro-
gramming constructs is faithful to the abstraction. This paper concentrates on
the first step, although we hope the reader will be convinced that the axioms
governing the primitives can be justified by purely local reasoning over their
C implementations, and that our logical characterization of the standard pro-
gramming constructs (e.g., sequencing of statements and use of local variables)
is faithful to the corresponding C semantics.

We adopted an abstraction method called monadic interpretation for the
first step; it is particularly suitable for higher order logic theorem provers such
as Isabelle/HOL (in the sequel, Isabelle). In particular, local C variables that
are statically assigned to only once (the common case) are abstracted to logical
function parameters, allowing the theorem prover to automatically carry out
routine inferences about variable creation, renaming, and substitution.

We begin in Section 2 by giving an informal description of a basic BDD
package. Monadic interpreters are briefly described in Section 3. The BDD rou-
tines are then monadically interpreted as Isabelle functions in Section 4. The
most complicated of the library programs (Apply) is a recursively defined par-
tial function, which presents a difficulty for Isabelle, where all functions are
total. How we deal with recursion and model the program Apply is explained in
Section 5. Then in Section 6 we state the correctness properties of non-atomic
programs and comment on their proofs. We comment on what is needed to refine
our abstraction to C in Section 7.

We hope the relevance of this paper goes beyond its immediate objective.
It presents, by means of an extensive example, a method, based on monadic
interpretation and refinement, for proving correctness of imperative programs
that use complicated recursion, manipulate complex state, and raise exceptions.

2 Basic BDD Package

A binary decision diagram is a rooted directed acyclic graph in which every node
represents a boolean function. Two special nodes represent the two constant

functions. Every other node u has an associated variable x and two child nodes l
and h. The boolean function represented by the node u is defined recursively by
fu = if x then fl else fh. Bryant [Bry86] originally proved that every function
is represented by a unique reduced ordered BDD, where reduced means that no
two nodes represent the same function, and ordered means that variable names
are totally ordered and that every node’s variable name precedes the variable
names of its children.

Following the exposition in [And96], we give now a fairly abstract description
of a typical implementation of (reduced, ordered) BDDs and a small package of
programs, sufficient to define a tautology checker. It contains some underspecified
basic types and atomic functions, and a few more complex but fully specified C
programs. In the next two sections we will show how all this naturally translates
into Isabelle.

We abstract the global state used by the BDD package as two tables: BDD
and HASH. The first table represents the storage pool of BDD nodes, and the
second is a hash table that memoizes a reverse mappingu from the contents of a
node to its address. Node addresses are represented by the abstract type node.

Specifically, each entry of BDD associates to a node u a unique triple (i,l,h),
where i is a natural number (the level of u) and l an h are nodes (the low and
high children of u). The level of a node is the position of the node’s variable
name in the given variable ordering. Each entry in HASH maps a triple (i,l,h)
to a unique node.

There are two special nodes TrueNode and FalseNode; the atomic proce-
dure initializeState replaces the current state with the initial state whose
tables associate the special nodes with the triples (0,TrueNode,TrueNode) and
(0,FalseNode,FalseNode) respectively, and contain no other entries.

The accessor functions lookupLev, lookupLow and lookupHigh take a node
u as an argument, and return the components i, l and h of the triple the table
BDD associates with u. What, if anything, these functions return in the case when
u is not in the table BDD is left unspecified. Similarly, the function lookupH takes
a triple (i,l,h) as input, and returns the node associated by HASH to this triple.
Again, we do not know what lookupH returns if the input triple is not in the
table HASH. However, there is another function, member, which also takes triples
(i,l,h) as inputs and returns a boolean value that is True if and only if the
triple is in the table HASH.

The simple function bool2node maps True and False to TrueNode and
FalseNode respectively, while node2bool does the opposite, being unspecified
for “non-boolean” inputs.

The function getFreshNode takes no input and returns a node that is not
already in the table BDD, raising an exception if there are no free nodes left.

The list of atomic programs is completed with insertNode and insertH.
Both take as input a quadruple (i,l,h,u) consisting of a level and three nodes,
have no output, but change the state. The effect of insertNode is the update of
BDD by an entry that associates u with (i,l,h). The insertH similarly updates
HASH.

The remaining programs are defined by combining the atomic ones by means
of standard constructs: sequencing, conditionals, and recursion. Shown below
is the program Mk, the only one in the package that directly calls the updating
functions insertNode and insertH, thus guaranteeing that all higher-level BDD
programs preserve some critical properties of the state, for example that the two
tables are inverses. (See Section 5 for the complete state invariant.)

node Mk(int i, node l, node h) {
if (l == h)

return l;

else if (member(i,l,h))

return lookupH(i,l,h);

else {
node u = getFreshNode();

insertNode(i,l,h,u);

insertH(i,l,h,u);

return u;

}
}
The program Apply takes a binary boolean operation op and two nodes, and

returns a node representing the boolean function one could otherwise obtain by
applying op to boolean functions represented by the two input nodes. It is the
most complicated program in the package and is defined recursively as follows.

node Apply(opFn op, node u, node v) {
int i = lookupLev(u);

int j = lookupLev(v);

if (i == j)

if (i == 0) return bool2node((*op)(node2bool(u),node2bool(v)));

else {
node l1 = lookupLow(u);

node l2 = lookupLow(v);

node h1 = lookupHigh(u);

node h2 = lookupHigh(v);

return Mk(i,Apply(op,l1,l2),Apply(op,h1,h2));

}
else if (i < j) {

node l = lookupLow(v);

node h = lookupHigh(v);

return Mk(j,Apply(op,u,l),Apply(op,u,h));

}
else {

node l = lookupLow(u);

node h = lookupHigh(u);

return Mk(i,Apply(op,l,v),Apply(op,h,v));

}
}
The program Apply is used by another program Build to produce a node

representing the boolean function defined by a given boolean expression. Build
is defined by primitive recursion over the structure of the expression. Finally, we

have the program TautChecker which just initializes the state, invokes Build
with its input expression, and returns a boolean value: True if and only if the
node returned by Build is TrueNode.

In the next section we will see how all the above code can be more or less
directly translated into Isabelle, so instead of giving the C code for Build and
TautChecker here, we refer to their Isabelle definitions in Section 4.

3 Monadic Interpretation

Variants and extensions of Floyd-Hoare logic [AO97] are the most commonly
used frameworks for verifying imperative programs. The complexity of our pro-
grams forces to adopt an alternative, more flexible, even if less investigated and
automated approach. We proceed by modeling BDD programs as functions in
higher order logic, in the style of monadic interpreters [Mog91,LHJ95]. Generally,
a monadic interpreter translates source programs of input type A and output
type B into functions of type A⇒M B in the target functional language, where
the type constructor M is a suitable monad that encapsulates the notion of com-
putation used by the source language. Different source languages get interpreted
by means of different monads. The target language for us will be Isabelle, and
the source language would be a fragment of C large enough to describe BDD
programs. For our purposes, a so-called “state with exceptions” monad is the
appropriate choice. With it, a program of input type A and output type B gets
interpreted as a function that given an element of A and a state returns a new
state together with either an element of B or the memory overflow exception.

Postponing the definition of the state type St, the definition of the monad is
as follows.

datatype ’a except = OutOfMem | Rslt ’a

types ’a M = "St ⇒ St × ’a except"

constdefs return :: "’a ⇒ ’a M" ("η")
"return ≡ λa s. (s, Rslt a)"

bind :: "[’a M, ’a ⇒ ’b M] ⇒ ’b M" (infixr "B" 60)

"bind ≡ λm f s. let s’ = fst (m s) in case snd (m s)

of OutOfMem ⇒ (s’, OutOfMem)

| Rslt a ⇒ f a s’"

Every instance of a monad has two distinguished operations: return (η) and
bind (B). The η operator is used to represent effect-free computations, such as
the evaluation of pure expressions and functions. The notion of “effect” varies
by monad; in our case an effect is either a change in the global state or the
raising of an out-of-memory exception. The B operator simultaneously captures
the notions of program sequencing and local variable declaration. The expression
mB f has the effect of first performing the computation m; assuming m returns

normally, then f is applied to m’s return value, which results in a new compu-
tation that is then performed. The B operator also ensures that state changes
and exceptions are propagated correctly between m and f .

Proper monads are required to obey three algebraic identities: unit laws

(η x)B f = f x mB (λx. η x) = m

and associativity of B

mB (λx. p[x]B f) = (mB (λx. p[x]))B f

Here p[x] indicates that the bound variable x is allowed to occur free in p but not
in f , since x’s scope is being restricted on the right-hand side. It is straightfor-
ward to prove the above laws hold for our Isabelle definitions of return and bind.
Once proved, the laws can then be used to simplify complex monadic expressions.

The rules of higher order logic guarantee that the logical bound variables,
which represent local program variables, are re-scoped and renamed as necessary
to maintain program equivalence. The monadic representation of programs also
allows program recursion to be naturally modeled as logical recursion, as we will
see in Section 5. In the next section, we show how the BDD package primitives
are axiomatized as monadic computations in our state-with-exceptions monad.

4 Modeling the Basic Package

The following Isabelle code models the global state of our BDD package.

types Level = nat

typedecl Node

record NodeRecord = lev :: Level low :: Node high :: Node

types BDD = "Node ⇒ NodeRecord"

HASH = "NodeRecord ⇒ Node"

typedecl St

consts bdd :: "St ⇒ BDD"

hash :: "St ⇒ HASH"

activeNode :: "St ⇒ Node ⇒ bool"

activeRcrd :: "St ⇒ NodeRecord ⇒ bool"

Thus, the type Node is left undefined and so is St, but we know that we can
extract the two tables from the state. The intuition that the table BDD is mathe-
matically a partial function of type Node ⇒ NodeRecord is represented in Isabelle
(where all functions are total) by declaring the table to be a total function of
that type, and specifying its domain of definition separately by the function
activeNode. Similar remarks apply to the table HASH. The important thing to

notice, however, is that whatever concrete implementation of the BDD package
we later come up with, it should be possible to define the functions bdd, hash,
activeNode and activeRcrd.

TrueNode and FalseNode are declared as constants of type Node, and since this
type is unspecified, we add an axiom saying that these two nodes are distinct.
The initial values initBDD, initHASH, initActiveNode and initActiveRcrd are
straighforward to define, and then initializeSt is introduced by an axiom.

consts initializeSt :: "unit M"

axioms initializeSt_ax :

"initializeSt s = (s’,x) =⇒ bdd s’ = initBDD ∧ hash s’ = initHASH

∧ activeNode s’ = initActiveNode ∧ activeRcrd s’ = initActiveRcrd"

Other atomic functions are also introduced by axioms1. We show three; the re-
maining ones are similar or simpler. (The notation f (u := a) used in insertNode ax

is for function update.)

consts lookupLev :: "Node ⇒ Level M"

axioms lookupLev_ax : " [[lookupLev u s = (s’,p); activeNode s u]]
=⇒ s’ = s ∧ p = Rslt (lev (bdd s u))"

consts getFreshNode :: "Node M"

axioms getFreshNode_ax :

"getFreshNode s = (s’, Rslt u) =⇒ ¬(activeNode s u)"

consts insertNode :: "Level × Node × Node × Node ⇒ unit M"

axioms insertNode_ax : "insertNode (i,l,h,u) s = (s’,p) =⇒
p = Rslt ()

∧ bdd s’ = (bdd s) (u := (|lev = i, low = l, high = h |))
∧ activeNode s’ = (activeNode s) (u := True)

∧ hash s’ = hash s

∧ activeRcrd s’ = activeRcrd s"

Non-atomic programs Mk, Build and TautChecker are fully specified as follows
and the recursively defined Apply is discussed in the next section.

constdefs Mk :: "Level × Node × Node ⇒ Node M"

"Mk ≡ λ(i,l,h).
if l=h then η l

else member (i,l,h) B (λx.
if x then lookupH (i,l,h)

else getFreshNode B (λu.
insertNode (i,l,h,u) B (λp.
insertH (i,l,h,u))))"

1 There is no danger of inconsistency with these axioms; after the refinement step
(Section 7) they will be theorems. We could have also introduced our underspecified
functions in a purely definitional manner by means of the ε-operator.

consts Build :: "Exp ⇒ Node M"

primrec "Build (Var i) = Mk (i+1,TrueNode,FalseNode)"

"Build (Const b) = bool2node b"

"Build (Exp’ oper e1 e2) =

Build e1 B (λu.
Build e2 B (λv.
Apply (oper,u,v)))"

constdefs TautChecker :: "Exp ⇒ bool M"

"TautChecker ≡ λe.
initializeSt B (λx.
Build e B (λu.
η (u = TrueNode)))"

The input tupe of Build is that of boolean expessions:

datatype Exp = Var nat | Const bool | Exp’ Op Exp Exp

Note that the variable Var i is represented by the level i+1; the level zero of the
BDD table is reserved for TrueNode and FalseNode.

5 Modeling Recursive Programs (Apply)

The definition of Apply and the proof of the corresponding recursion theorem
is the most difficult part of this work. Even though Isabelle has a sophisticated
recdef mechanism [NP] for recursive definitions with user-supplied well-founded
relation or a measure function to justify termination, this method is difficult to
apply in our case, mostly because of nested recursion we have to deal with.

Pondering the definition in Section 2, one realizes that even a hand proof
of termination of Apply requires effort. The ultimate reason for termination is
clear: in an ordered BDD (and only those we would like to consider), the level
goes down when passing children nodes, so in all recursive calls of Apply the level
decreases either for both node arguments, or decreases for the “higher”, while
the other stays the same. Thus, in order to prove that the arguments decrease in
recursive calls, it is necessary to work with a restricted set of states, described
by a predicate goodSt that needs to be preserved by Apply. A workable invariant
goodSt is the conjunction of three properties: (1) being ordered; (2) having inverse
bdd and hash tables; (3) the two tables associate TrueNode and FalseNode with
TrueRcrd and FalseRcrd respectively, and among active records only these two
have level zero.

In Isabelle notation, the type of Apply is Op × Node × Node ⇒ Node M, which
is the same as Op × Node × Node ⇒ St ⇒ St × Node except; later we will use
the shorthand Z for it. The Op argument is of little significance here, so Apply

is practically a function of two arguments of type Node and one of type St. We
can expect Apply to terminate only if its St argument is good. But there must
be restrictions on the node arguments as well: they must be present in the state.
We capture these restrictions using the node-state relation u in s defined as the

conjunction of goodSt s and activeNode u s. Thus, Apply must be modeled as a
partial function, with restrictions on its state and node arguments. The expected
recursion theorem takes these restrictions as assumption.

theorem Apply_Recursion:

" [[u in s; v in s]] =⇒ Apply (oper,u,v) s = F Apply (oper,u,v) s"

Here F is the Isabelle function of type Z ⇒ Z, obtained by a direct monadic
translation of the C code for Apply in Section 2. In principle, the recdef pack-
age can handle recursive definitions of partial functions by defining the partial
function as a total function whose value is arbitrary outside its “real” domain
of definition, and by proving the recursion theorem with the proviso that the
argument belongs to that domain, just as in our example. However, there is
an additional difficulty that recdef cannot easily deal with, viz. the presence of
nested recursion—a recursive call whose argument contains another recursive
call.

Back to the informal definition of Apply, consider for example the second of
the three lines in which recursion occurs; in expanded form this piece of code
could read like this:

node ll = Apply(op,u,l);

node hh = Apply(op,u,h);

node w = Mk(j,ll,hh)

After the first call to Apply, the state changes, so perhaps u and h are not
even active indices in the new state’s BDD table. How do we know then that
the second call terminates? We may say that the new state, being the result of
an application of Apply, must contain the old state intact. But this is circular
reasoning, assuming a property of Apply before this function has been defined.
Our inductive proof of termination of Apply must thus be organized as a simul-
taneous proof of termination and the desired property that Apply increases the
state. A careful analysis shows that a stronger invariant goodFn (predicate on
Z) is necessary; it is the conjuction of three properties: (1) increasing state; (2)
output node is active in the new state; (3) the level of the output node is not
larger than the levels of the input nodes.

Note that nesting is not immediately seen in the definition given in Section 2
because the state is not implicitly mentioned in the program text, being an extra
hidden argument. If we made it explicit, the three lines above would look like
this:

(ll,s1) = Apply’(op,u,l,s)

(hh,s2) = Apply’(op,u,h,s1)

(w,s3) = Mk’(j,ll,hh,s2)

exposing the nesting first in

hh = fst(Apply’(op,u,h, snd(Apply’(op,u,l,s))))

Generalizing this observation, note that nested recursion occurs in every re-
cursively defined imperative program in which there is a sequence of commands
containing two recursive calls.

Nested recursion is difficult to treat by automatic tools. In [Sli00], Slind
demonstrates that recdef can be used even in such cases, but some additional
more or less ad hoc arguing is inevitable to make it work. We devised and formu-
lated in Isabelle a systematic approach that reduces the problem of justifying a
nested recursive definition and proving the appropriate recursion theorem to two
specific proof obligations. To make it work, in addition to the measure function
(or well-founded ordering) as in recdef, the user has to supply a specification—
property of the function being defined that is needed to prove termination. A
brief explanation of the basic form of the method follows; full development will
appear elsewhere [KM].

Given a functional F : (A ⇒ B) ⇒ (A ⇒ B) and a well-founded relation
≺ on A, one can prove that F has a unique fixed point (that is, a function
f : A⇒ B satisfying f x = F f x) if it satisfies the contraction condition

∀f g x. (∀y. y ≺ x −→ f y = g y) −→ F f x = F g x

This is a fixed point theorem à la Banach, and we can immediately generalize it
by considering a non-empty predicate S : (A⇒ B)⇒ bool and asserting that if
S is invariant under F (that is, S f −→ S (F f)), then a weakened contraction
condition

∀f g x. (∀y. y ≺ x −→ f y = g y) ∧ S f ∧ S g −→ F f x = F g x

guarantees the existence of a fixpoint of F and its uniqueness among functions
satisfying S.

The weakened form of the last uniqueness result is a drawback, especially in
the application to program semantics. When a recursive program is interpreted
as a fixpoint of a functional in HOL, the situation is clean when that fixpoint is
unique, and not quite so when we have uniqueness only among the set of functions
satisfying a certain predicate. We obtained a satisfying solution by strengthening
both the invariance and contraction conditions. It works for invariants specified
as input-output relations. Precisely, given F and ≺ as before, and given a relation
R : A⇒ B ⇒ bool, the two conditions

∀f. (∀y. y ≺ x −→ R y (f y)) −→ R x (f x)
∀f g x. (∀y. y ≺ x −→ f y = g y ∧R y (f y)) −→ F f x = F g x

are sufficient to guarantee the existence and (unrestricted) uniqueness of a fix-
point of F .

Finally, we need to generalize the last result to cover the possibility of non-
termination of the limit function outside a specified set of inputs. That set being
described by a predicate D : A ⇒ bool, the final form of the invariance and
contraction conditions reads as follows.

∀f. (∀y. D y ∧ y ≺ x −→ R y (f y)) −→ R x (f x)
∀f g x. D x ∧ (∀y. D y ∧ y ≺ x −→ f y = g y ∧R y (f y)) −→ F f x = F g x

Now we can formulate a fixpoint theorem that can be used to justify nested
recursive definitions.

Theorem 1. Suppose the last two conditions are satisfied. Then there exists a
function f : A⇒ B such that

∀x. D x −→ f x = F f x

Moreover, f is unique in the sense that every other function g satisfying this
same conditional fixpoint equation satisfies also ∀x. D x −→ g x = f x.

The theorem can be proved in Isabelle and then instantiated by taking: (1)
F to be the functional defining Apply; (2) the well-ordering ≺ induced by the
measure function given by the maximum of the levels of input nodes in the input
state; (3) R to be the input-output relation defining the invariant goodFn; (4)
the predicate D saying that both input nodes are present in the input state.
As a result, we obtain the definition of Apply together with the quoted theorem
Apply Recursion.

6 Correctness

Once the definition and recursion theorem for Apply become available, the proof
of its correctness and then the correctness of Build and TautChecker are straight-
forward. The only interesting auxiliary function is the interpretation function
IntNode that specifies how a node and a state containing the node determine a
boolean function.

consts IntNode :: "Node × St ⇒ BoolFn"

recdef IntNode "measure (λ(u,s). lev’ u s)"

"IntNode us = (let u = fst us; s = snd us in

if u in s then

(if u = TrueNode then TrueFn

else if u = FalseNode then FalseFn

else λ env. if env ((lev’ u s) - 1)

then IntNode (low’ u s, s) env

else IntNode (high’ u s, s) env)

else arbitrary)"

As for the new notation, lev’ u s , low’ u s and high’ u s are abbreviations
for the components of the record bdd s u, the type BoolFn is just "Env ⇒ bool",
and the environment type Env is "Var ⇒ bool".

Correctness of Apply asserts the relationship between the interpretations of
the two input nodes and the output node. To state it we need the obvious ver-
sion of Apply for boolean functions: BoolFnApply oper f g env = oper (f env)

(g env).

theorem Apply_Correct: " [[u in s; v in s; Apply (oper,u,v) s = (s’,Rslt w)]]
=⇒ IntNode (w,s’) = BoolFnApply oper (IntNode (u,s)) (IntNode (v,s))"

Correctness of Build is the statement saying that the interpretation of the
node constructed by Build is the boolean function represented (via the obvious
function IntExp) by the expression given as input to Build.

theorem Build_Correct: " [[goodSt s; Build e s = (s’,Rslt u)]] =⇒
IntNode (u,s’) = IntExp e"

Correctness of the tautology checker is its soundness property:
theorem TautChecker_Correct:

"out (TautChecker e) s = Rslt True =⇒ IntExp e = TrueFn"

One can also prove the completeness of the tautology checker, saying that if it
terminates with the result False, then the input expression is not a tautology.

7 Completing the Refinement

Formalization of the complete ANSI C language is a formidable challenge but
within reach, as demonstrated by current work of Norish [Nor98] and Papaspy-
rou [Pap01]. Ideally, verification of C programs would use such a formalization,
but for proving properties of a small set of programs partial formalizations could
also be acceptable. BDD programs, for example, can be written in a small frag-
ment of C that we can with little pain interpret monadically in Isabelle.

We have already produced translations of non-atomic BDD programs and
made them a part of an Isabelle theory presented in Section 4. It remains to
add translations of atomic programs and derive the correctness of the whole
translated package. Since Isabelle does not directly support refinement of its
theories, we would have to manually modify the theory file described in Section 4
as follows.

First, the unspecified types St and Node are declared to be equal to the state
and node type used by the C functions. The functions bdd, hash, activeNode,
activeRcrd that extract the abstract tables from the concrete representation of
the state should at this point have straightforward definitions. Finally, atomic
functions are given their concrete definitions and the axiom we previously had
for each of them is now a theorem that needs to be proved.

Clearly, the abstract BDD package of Section 4 can be refined this way to
more than one C implementation. The complexity of the implementation will
not affect the proof of the top-level correctness; it will only show up in the level
of difficulty for the refinement proofs of atomic functions.

Leaving further development to future work, a couple of remarks are in or-
der about features that are critical for good performance, but left out in this
work. First is the memoization of Apply results. Adding it would indeed compli-
cate some of our proofs, but the main reason for this omission is ongoing work
where we expect to formalize a general result about equivalence of recursive
programs with their versions optimized by memoization. Then we have garbage
collection, omitted in the initial phase of this research for reasons of simplicity
and irrelevance for the proof of correctness of the tautology checker. Adding it
is possible at almost no cost in changing existing proofs. Concretely, reference
counts would be added to node records, together with the pertinent atomic func-
tions. The garbage collector would be called by a refined getFreshNode, so we
would need to reprove correctness of that routine assuming the correctness of
the garbage collector.

8 Related Work

Filliâtre seems to be the first to explore monadic interpretation for verifying
imperative programs. In [Fil01], he presents a far-reaching generalization of the
Floyd-Hoare method, applicable to programs written in an ML-like functional
language, with recursion and references. In the framework of the Coq theorem
prover, he uses a generalized monadic translation and suitable program annota-
tions to automatically generate simpler proof obligations from a given correct-
ness statement. The elegance and power of this system notwithstanding, it is not
clear how well it handles programs with nested recursion. It would be interesting
to see whether the specification predicates (mentioned in Section 5) we found
necessary to prove termination of such functions could be added as annotations
in this framework.

Verification of BDD algorithms has been a subject of active research and the
papers [HPPR98], [VGPA00] and [Sum00] offer proofs done with proof assitants
PVS, Coq and ACL2 respectively. Some go beyond our work so far in that they
cover memoization and/or garbage collection. A common goal of these papers is
to extend the prover with a certified BDD package by means of reflection avail-
able in their respective systems. The resulting packages have high-confidence
and encouraging performance, though still substantially below those of the cor-
responding C-coded implementations.

BDD algorithms are modeled in [VGPA00,Sum00] as functional programs
in “state-threading” style, while the “perfect hashing” trick used in [HPPR98]
makes the state constant. Complexity of the proof effort and the proof assistants’
idiosyncrasies imposed limitations on the form of some of these programs could
be expressed. For example, extra counter parameters are used in [VGPA00] for
recursive BDD programs, even though they are not needed for the algorithm
being defined. In contrast, our work is an attempt to verify BDD algorithms
“in the wild”, that is, expressed as closely as possible to the form they appear
in existing C implementations. Thus, we have emphasized monadic style and
worked hard to allow natural program definitions even if they involve nested
recursion.

9 Conclusions

We have made progress towards our ultimate goal of verifying current C language-
based model checkers. Adopting the monadic interpretation technique, we have
defined an abstract version in Isabelle of the imperative code implementing stan-
dard BDD algorithms. At this level, we proved correctness of the BDD programs,
including the BDD tautology checker. A shallow embedding of a small fragment
of C will allow interpretation of the actual C code. By refinement, verifying
correctness of the C code will be, in virtue of theorems presented in this pa-
per, reduced to proving precisely identified properties of (only) the atomic BDD
functions in the C package.

Acknowledgments

We thank John Launchbury and anonymous referees for useful comments on the
paper.

References

[And96] H. R. Andersen. An Introduction to Binary Decision Diagrams. Internet,
September 1996.

[AO97] K. R. Apt and E.-R. Olderog. Verification of sequential and concurrent
programs. Springer-Verlag, 1997.

[Bry86] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[Fil01] J.-C. Filliâtre. Verification of Non-Functional Programs using Interpreta-
tions in Type Theory. Journal of Functional Programming, 2001.

[HPPR98] F. W. von Henke, S. Pfab, H. Pfeifer, and H. Rueß. Case Studies in
Meta-Level Theorem Proving. In J. Grundy and M. Newey, editors, Proc.
Intl. Conf. on Theorem Proving in Higher Order Logics (TPHOLS), Lecture
Notes in Computer Science, pages 461–478. Springer LNCS 1479, September
1998.

[KM] S. Krstić and J. Matthews. Nested recursive definitions in Isabelle/HOL. In
preparation.

[LHJ95] S. Liang, P. Hudak, and M. P. Jones. Monad transformers and modular
interpreters. In Conference record of POPL ’95, 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 333–
343, New York, NY, USA, January 1995. ACM Press.

[Mog91] E. Moggi. Notions of computation and monads. Information and Compu-
tation, 93:55–92, 1991.

[Nor98] M. Norrish. C formalised in HOL. PhD thesis, University of Cambridge
Computer Laboratory, 1998.

[NP] T. Nipkow and L. Paulson. Isabelle/HOL tutorial.
[Pap01] N. S. Papaspyrou. Denotational semantics of ANSI C. Computer Standards

and Interfaces, 23:169–185, 2001.
[RRSV00] W. Reif, J. Ruf, G. Schellhorn, and T. Vollmer. Do you trust your model

checker? In W. A. Hunt Jr. and S. D. Johnson, editors, Formal Methods in
Computer Aided Design (FMCAD). Springer LNCS 1954, November 2000.

[Sli00] K. Slind. Another look at nested recursion. In M. Aagaard and J. Harri-
son, editors, Proc. Intl. Conf. on Theorem Proving in Higher Order Logics
(TPHOLS), Lecture Notes in Computer Science, pages 498–518. Springer
LNCS 1869, August 2000.

[Sum00] R. Sumners. Correctness proof of a BDd manager in the context of satis-
fiability checking. Technical Report TR-00-29, The University of Texas at
Austin, Department of Computer Sciences, November 2000.

[VGPA00] K. N. Verma, J. Goubalt-Larrecq, S. Prasad, and S. Arun-Kumar. Reflect-
ing BDDs in Coq. In J. He and M. Sato, editors, Proc. 6th Asian Com-
puting Science Conference (ASIAN), Lecture Notes in Computer Science,
pages 162–181. Springer LNCS 1961, November 2000.

