
Accepted for publication in the IEEE Transactions on Automatic Control, to appear

Computing Budget Allocation for

Efficient Ranking and Selection of Variances

with Application to Target Tracking Algorithms 1

Lidija Trailović and Lucy Y. Pao

Department of Electrical and Computer Engineering
University of Colorado at Boulder

CB 425
Boulder, CO 80309-0425

E-mail: Lidija.Trailovic@Colorado.EDU and Lucy.Pao@Colorado.EDU

Abstract:

This paper addresses the problem of ranking and selection for stochastic processes, such as tar-

get tracking algorithms, where variance is the performance metric. Comparison of different tracking

algorithms or parameter sets within one algorithm relies on time-consuming and computationally

demanding simulations. We present a method to minimize simulation time, yet to achieve a de-

sirable confidence of the obtained results by applying ordinal optimization and computing budget

allocation ideas and techniques, while taking into account statistical properties of the variance. The

developed method is applied to a general tracking problem of Ns sensors tracking T targets using

a sequential multi-sensor data fusion tracking algorithm. The optimization consists of finding the

order of processing sensor information that results in the smallest variance of the position error.

Results that we obtained with high confidence levels and in reduced simulation times confirm the

findings from our previous research (where we considered only two sensors) that processing the best

available sensor the last performs the best, on average. The presented method can be applied to

any ranking and selection problem where variance is the performance metric.
1Portions of this paper have appeared in the Proc. American Control Conference, Arlington, VA, June 2001.

1

1 Introduction

Target tracking problems involve processing position measurements (observed by a sensor) from

a target of interest, and producing, at each time step, an estimate of the target’s current state

(position and velocity). Uncertainties in the target motion and in the measured values, usually

modeled as additive random noise, lead to corresponding uncertainties in the target state. In many

tracking problems there is an additional uncertainty regarding the origin of the received data, which

may or may not include measurement(s) from the targets or random clutter (false alarms). This

leads to the problem of data association or data correlation [2].

In this paper we consider a system of Ns (not necessarily identical) sensors tracking T targets

using a sequential multi-sensor joint probabilistic data association (MSJPDA) algorithm [3, 9,

10, 11, 17]. A centralized processing architecture is assumed, where all sensor measurements are

received by a central processor prior to data fusion. We are interested in optimizing tracking

performance of the MSJPDA algorithm. The optimization consists of finding the order of processing

sensor information that results in the smallest variance of the position error, i.e., the smallest root

mean square (RMS) position error. For the special case of two sensors tracking two targets, this

problem was addressed in [18].

In the general case of Ns sensors tracking T targets, this is a difficult optimization problem.

First, the design space can be large (there are Ns! possible sensor orders for a system with Ns

different sensors). Second, a computationally demanding simulation is needed to obtain a sample

of the performance metric for a given sensor processing order. Finally, since target tracking is a

stochastic process, many samples (and therefore many simulation runs) are required to achieve high

confidence levels in comparing, ranking, and selecting the best performing designs.

Two complementary approaches have emerged to handle optimization problems such as the one

considered in this paper. If the goal is to find one or more among the best designs rather than

accurate estimates of the performance metrics, ordinal comparisons (as opposed to cardinal evalu-

ations) can be used to achieve faster convergence rates and significantly reduce the computational

2

effort. The idea of ordinal optimization [13, 14, 16] has been applied to a number of optimiza-

tion problems [4, 7]. The second, complementary idea is to minimize the computational cost of

achieving desired confidence levels in ordinal comparisons and selection by intelligently allocating

the computing budget among the designs [5, 6, 7, 8]. The procedure for allocating computational

effort to competing designs was formulated as a nonlinear optimization problem in [5]. A steepest

ascent method to solve the budget allocation problem was described in [7]. An asymptotic rule for

computing budget allocation was presented in [8]. These approaches make use of a lower bound for

the probability of correct selection introduced in [5].

A distinguishing feature of the problem considered in this paper is that the performance metric

is the variance rather than the mean of a random process. Ordinal ranking and selection proce-

dures therefore must take into account statistical properties of the sampled process variance. In

order statistics literature, the problem of selecting the population with the smallest variance was

addressed in [12], but the problem of computing budget allocation has not been addressed.

The paper is organized as follows. The sequential implementation of the MSJPDA algorithm is

briefly reviewed in Section 2, and the optimization problem is defined in Section 3. An algorithm

for finding the best design with a desired (pre-defined) probability of correct selection or within a

prescribed total computing budget is presented in Section 4, as well as a discussion of convergence

and performance properties of the algorithm. Results of applications of the developed algorithm to

the problem of optimization of sensor processing order in the sequential MSJPDA target tracking

algorithm are presented in Section 5, and concluding remarks are given in Section 6.

2 MSJPDA Tracking Algorithm

The multi-sensor multi-target tracking problem is to track T targets using Ns sensors in a clut-

tered environment, where measurements from the sensors are received by a central processor at

discrete time intervals. Each measurement can originate from at most one target, and some of the

measurements arise from targets while others arise from clutter. Some targets may not yield any

3

measurements in a particular time interval for a particular sensor, and measurement errors due to

measurements from one sensor are assumed to be independent of those from another sensor.

Assume the state xt(k), 1 ≤ t ≤ T , of each target t is determined by known matrices Ft(k) and

Gt(k) as follows [2, 3]:

xt(k + 1) = Ft(k)xt(k) +Gt(k)wt(k) (1)

where wt(k) are Gaussian random noise vectors independent for all time intervals k and all targets

t, with zero means and known covariances Qt(k).

With Ns sensors, let Ms,k, 1 ≤ s ≤ Ns, be the number of measurements from sensor s at the

k-th time interval [2, 3, 11, 17]. The target originated position measurements are determined by

zt
s,�s

(k) = Hs(k)xt(k) + vt
s,�s

(k), (2)

where 1 ≤ t ≤ T , 1 ≤ s ≤ Ns, and 1 ≤ �s ≤ Ms,k. The Hs(k) matrices are known, and each vt
s,�s

(k)

is a zero-mean Gaussian noise vector, with known covariances Rs(k), uncorrelated with other noise

vectors. Given a target t and a sensor s, it is not known which measurement �s originates from

the target. That is the problem of data association whereby it is necessary to determine which

measurements originate from which targets.

Further background on target tracking and data association methods can be found in [2, 3, 9,

10, 11, 17, 18]. This paper investigates the sequential implementation of the MSJPDA algorithm,

where the measurements from each sensor are processed one sensor at a time [11, 18].

2.1 Sequential Implementation of the Multi-sensor JPDA (MSJPDA)

The computational requirements and the performance of a parallel implementation of the MSJPDA

algorithm have been studied in [17]. Computational complexity for the parallel implementation

grows exponentially with the number of sensors, which led to the search for other ways of imple-

menting the MSJPDA algorithm that are less complex and still have comparable performance. A

sequential implementation of the MSJPDA algorithm was presented in [11], where it was shown

4

that it has linear growth in complexity with the number of sensors, and that it results in better per-

formance (in terms of both RMS position error and track lifetime metrics) for tracking in cluttered

environments.

In the sequential implementation of the MSJPDA algorithm, the measurements from each sensor

are processed one sensor at a time. The measurements of the first sensor are used to compute

an intermediate state estimate and the corresponding position error covariance for each target.

The measurements of the next sensor are then used to further improve this intermediate state

estimate. Measurements of each of the next sensors are then used sequentially to further update

each state estimate and covariance until all the sensors are exhausted. In processing each sensor’s

measurements, the actual association being unknown, the conditional estimate is determined by

taking a weighted average over all possible associations.

2.2 Simulation of the Sequential MSJPDA

The MSJPDA simulator from [18] which was set up in Matlab was expanded for Ns sensors tracking

T targets, with the matrices Ft, Gt, Hs, Qt, and Rs assumed known and time-invariant in (1)

and (2). The initial state is assumed Gaussian with known mean and covariance. The state vectors

xt(k) = [x ẋ y ẏ]′(k) represent the positions and velocities of the targets at time k, and the targets

nominally move in straight lines with constant velocity, though corrupted by process noise. The

process noise and measurement noise covariances Qt and Rs, respectively, and the measurement

matrices Hi are as in [18]:

Qt =

[
q 0
0 q

]
, 1 ≤ t ≤ T , (3)

Rs =

[
rs 0
0 rs

]
, and (4)

Hs =

[
1 0 0 0
0 0 1 0

]
, 1 ≤ s ≤ Ns. (5)

The method developed in this paper is applicable to general Rs, but we consider only diagonal

Rs = I rs because it allows us to more easily compare sensor qualities (better sensor has smaller

5

rs). The measurements corresponding to the sensor with covariance R1 are processed first, and

measurements from the sensor with covariance RNs are processed last in the sequential MSJPDA.

We assume that the position error ε, which is the difference between the true target position

and the target position estimate, is a Gaussian random variable with zero mean and standard

deviation σ, i.e., ε ∼ N [0, σ]. The standard deviation σ is the true RMS position error for a given

design (i.e., a given set of sensors) and system parameters. Our objective is to compare and rank

the designs based on the estimated standard deviation σ̂, i.e., the measured RMS position error

computed from the data generated by the tracking simulator.

Let εr be a sample of the position error computed by the simulator as the difference between

the true target position and the target position estimate. After the simulator generates n position

error samples {εr}n
r=1, the estimate of the mean of the position error is

ε̄ =
1
n

n∑
r=1

εr . (6)

Under the assumption that the position error is a zero-mean random variable, ε̄ ≈ 0, the unbiased

estimate of the standard deviation of the position error is [15]

σ̂ = measured RMS error =

√√√√ 1
n− 1

n∑
r=1

ε2
r . (7)

The standard deviation estimate σ̂ is the measured RMS position error. This is an approximation

to the true RMS position error. By the strong law of large numbers,

σ = lim
n→∞ σ̂ (8)

with probability 1. This means that the estimated standard deviation of the position error ap-

proaches the true RMS position error as the number n of position error samples generated by the

simulator increases.

3 Notation and Problem Formulation

In this section we establish the notation used, and formulate the optimization problem.

6

S sensor set, S = {r1, r2, . . . , rNs}; rs is the parameter in the sensor noise covariance matrix,

defined in (4),

θi ith design, an ordered subset of S, θi = [ri1, ri2, . . . , riNi], Ni ≤ Ns,

Θ design space, Θ = {θ1, . . . , θNd
}; Nd = |Θ| is the size of the design space,

σ2
i variance of the position error for the design θi; σi is the true RMS position error for the design

θi,

ni number of samples (simulation runs) for the design θi,

σ̂i standard deviation estimate, i.e., RMS position error obtained after ni simulation runs for

the design θi,

θb selected best ranking design, σ̂b < σ̂i, for all i �= b,

θs second best ranking design, σ̂b < σ̂s < σ̂i, for all i �= b, i �= s,

PCS a posteriori probability of correct selection,

PCS = P{σb < σi, for all i �= b | σ̂i obtained after ni simulation runs for the design θi},

APCS approximate probability of correct selection,

EPCSu estimated approximate probability of correct selection if the number of runs nu for the design

θu is incremented by 1,

P � desired probability of correct selection, i.e., desired confidence level (predefined, e.g., 90%),

Nruns total number of simulation runs, Nruns =
∑Nd

i=1 ni,

Nmax maximum allowed number of simulation runs, Nruns ≤ Nmax.

The optimization problem of finding the best design on the entire design space can be redefined in

two ways:

7

1. Select the best ranking design θb s.t. PCS ≥ P �, while minimizing the total number of

simulation runs Nruns.

2. Select the best ranking design θb s.t. Nruns ≤ Nmax, while maximizing the probability of

correct selection PCS .

4 Ranking and Selection of Variances

In this section statistical properties of variance as a performance metric are summarized and opti-

mization algorithms are described, accompanied with a discussion of convergence and performance

properties.

4.1 Statistics of the Position Error Variance

For a design θi, the position error ε is a Gaussian random variable with zero mean and standard

deviation σi. It is desired to compare two designs using the standard deviation σi, i.e., the true

RMS position error, as the performance metric. We assume that no prior knowledge is available

about the performance of any design. Therefore, following the Bayesian model, the comparison is

made based on the measured RMS position error (7).

Consider two designs, θi and θj , with σ̂i and σ̂j computed according to (7). Suppose that

σ̂i < σ̂j . After the simulation experiments that produced ni samples of the position error for the

design θi and nj samples of the position error for the design θj , the design θi is selected as the better

performing design. To find the confidence of this selection, let us find the a posteriori probability

pij that the design θi is indeed better than the design θj , i.e., that σi < σj , given σ̂i < σ̂j ,

pij = P {σi < σj | σ̂i, σ̂j} (9)

or, equivalently,

pij = P

{(
σj

σi

)2

> 1 | σ̂i, σ̂j

}
. (10)

8

The random variable x defined by

x =
σ̂2

j

σ2
j

σ2
i

σ̂2
i

(11)

has a Fni−1,nj−1 distribution, with (ni−1) degrees of freedom in the numerator and (nj−1) degrees

of freedom in the denominator. The PDF is given by [20]

f(ni, nj , x) =

Γ

(
ni−1

2
+

nj−1

2

)(
ni−1

nj−1

)ni−1
2

x
ni−1

2 −1

Γ

(
ni−1

2

)
Γ

(
nj−1

2

)(
1+

ni−1

nj−1
x

)(
ni−1

2 +
nj−1

2

) , x > 0

0, x ≤ 0

(12)

where Γ(z) is the Gamma function

Γ(z) =
∫ ∞

0
tz−1e−tdt. (13)

Given ni, σ̂i, nj , and σ̂j , the probability pij that the design θi produces a smaller variance than

the design θj can be found as the probability that x is less than
(

σ̂j

σ̂i

)2
,

pij = CDF
(
ni, nj ,

(
σ̂j

σ̂i

))
, (14)

or equivalently [20]

pij = 1− CDF

(
nj , ni,

1
ξ2
ij

)
=

∫ ∞

1/ξ2
ij

f(nj , ni, x)dx (15)

where

ξij =
σ̂j

σ̂i
> 1 (16)

and CDF(·) is the cumulative density function of the random variable x. The probability pij in

(15) can be computed easily.

To illustrate the behavior of pij as a function of ni, nj , and ξij , Figures 1 and 2 show pij when

ni and nj range from 2 to 100, with ξij being a parameter. Figure 1 shows two views (presented

to help clarify the discussion) of the surface plot when the two variances being compared differ

considerably (σ̂i = 1.0 and σ̂j = 1.4, producing ξij = 1.4 in (16)). It can be observed that pij

increases either with ni, or with nj , or both. Figure 2 shows two views of the surface plot when

the two variances differ only slightly (σ̂i = 1.0 and σ̂j = 1.05, producing ξij = 1.05 in (16)). It can

9

���

���

�

��
��

���

��
��

��
��

���

���

���

�

��

��

���

��
��

��
��
���

�� �� �� �� ���

��
��

��
��

���

Figure 1: Probability pij as a function of ni and nj for ξij = 1.4. ni and nj range from 2 to

100 and ξij = 1.4 can be considered a large difference in variances σ̂i and σ̂j .

��
��

��
��

���

��	

���

��

��
��

���

��
��

��
��

���
��

��
��

��
���

��	

���

��

��
��

���

��
��

��
��

���

Figure 2: Probability pij as a function of ni and nj for ξij = 1.05. ni and nj range from 2 to

100 and ξij = 1.05 can be considered a small difference in variances σ̂i and σ̂j .

10

be observed that pij does not increase monotonically with ni for a fixed nj . This behavior of pij

and its impact on developing successfully converging computing budget allocation algorithms will

be discussed in more detail in Section 4.4.

In the optimization problem of finding the best design on the entire design space, it is necessary

to extend the result for the probability of correct selection pij among two designs to the probability

of correct selection PCS . In general, the probability of correct selection PCS can be computed as

described in [12]. However, for an arbitrary number of designs, and an arbitrary number of samples

ni per design θi, the numerical computation of PCS is quite involved. We instead make use of the

approximate probability of correct selection (APCS) introduced in [5].

The approximate probability of the correct selection (APCS) can be computed according to [5]

as

APCS =
Nd∏

i=1,i�=b

pbi . (17)

It has been shown that APCS is an asymptotic lower bound for PCS [7]:

PCS ≥ APCS (18)

so that APCS can replace PCS in the optimization algorithm.

11

4.2 Uniform Computing Budget Allocation

A simple approach to solve the optimization problem is to perform a sufficiently large, equal number

of simulation runs for all designs. This uniform computing budget allocation (UCBA) algorithm is

UCBA algorithm

Perform 2 simulation runs for each of Nd designs θi;

Update σ̂i for all i; compute APCS;

While (APCS < P � and Nruns < Nmax)

Perform one simulation run for each of Nd designs;

Update σ̂i for all i; compute APCS;

End-while

The algorithm starts with performing two simulation runs, because pij in (15) is undefined for

ni, nj < 2. The algorithm terminates when APCS becomes greater than the desired probability

of correct selection P �, or when the total number of simulation runs Nruns exceeds the specified

maximum computing budget Nmax.

4.3 Optimized Computing Budget Allocation

To minimize the total number of simulation runs, we propose an optimized computing budget

allocation (OCBA) algorithm where only one simulation run is performed in each iteration, as

opposed to simulation of all designs. The design θm selected for simulation is the design for which

incrementing the number of runs nm is expected to result in the largest APCS. Let us define

pij∗ = 1− CDF
(
nj + 1, ni, 1/ξ2

ij

)
(19)

pi∗j = 1− CDF
(
nj , ni + 1, 1/ξ2

ij

)
(20)

12

and the estimated approximate probability of correct selection EPCSu for the design θu as

EPCSu =

pbu∗
∏Nd

i=1,i�=b,i�=u pbi, u �= b

∏Nd
i=1,i�=b pb∗i, u = b .

(21)

This definition of EPCSu is similar to the definition of EPCS in [7]. After n1, n2 . . . , nNd
runs

are completed for designs θ1, θ2, . . . , θNd
, EPCSu is an estimated APCS based on the already

available statistical information, but with the number of runs nu for the design θu increased by 1.

EPCSu can be easily computed for all designs. The design θm selected for simulation is the one

that maximizes EPCSu,

m = arg max
1≤u≤Nd

(EPCSu) , (22)

and only one simulation run of the MSJPDA tracking algorithm is performed in each iteration.

Compared to the more general approach presented in [7], this simple approach of performing only

one simulation run in each iteration of the OCBA algorithm is well justified by the fact that

our tracking problem has the cost of one simulation run much higher than the cost of all other

computations performed in one iteration.

13

The algorithm with optimized computing budget allocation is:

OCBA algorithm

Perform 2 simulation runs for each of Nd designs θi;

Update σ̂i for all i; compute APCS and pbs;

While (APCS < P � and Nruns < Nmax)

If (pbs < Pinit and ns < Ninit)

Perform one simulation run for each of Nd designs;

Update σ̂i for all i;

Else

Find m such that EPCSm = max
u

(EPCSu);

Perform one simulation run for the design θm;

Update σ̂m;

End-if

Compute APCS and pbs;

End-while

The algorithm starts by performing two simulation runs for all designs. Iterations are then

performed until APCS exceeds the desired confidence level P ∗ or the number of simulation runs

Nruns exceeds the maximum allowed number of runs Nmax. In each iteration, either all Nd designs

are simulated, or only the design θm selected according to (22) is simulated. The decision about

performing simulation of all designs or just one selected design, and the selection of the parameters

Ninit and Pinit are related to the convergence issues discussed in the next section. The probability

pbs, which is the confidence that the best ranking design θb is better than the second best ranking

design θs, is found as pij in (15) for i = b and j = s.

14

4.4 Convergence

Suppose that the same number of simulation runs is allocated to each design, as in the UCBA

algorithm, n1 = n2 = . . . = nNd
= n. Then, it can be shown that [20]

lim
n→∞ pbi = 1, for all i �= b . (23)

Therefore, APCS defined by (17) in the UCBA algorithm converges to 1 as the number of simulation

runs increases, and APCS ≥ P � is obtained in a finite number of simulation runs. In the OCBA,

the number of simulation runs ni for different designs is not the same, and the proof of convergence

requires a more detailed analysis.

Figure 3 illustrates how pbs depends on the number of runs ns, for several fixed values of nb.

For a fixed nb, the probability pbs increases monotonically with ns, but the asymptote for ns → ∞
is less than 1. Therefore, increasing the number of runs only for the second best ranking design θs

does not guarantee convergence.

Figure 4 shows how pbs depends on the number of runs nb, for several fixed values of ns. For a

given ns and small nb, the probability pbs initially decreases with nb. Depending on the value of ns,

pbs may continue to decrease with nb, or it may reach a minimum after which it starts increasing

with nb. This behavior of pbs is observed for ξbs close to one, i.e., when designs θb and θs have σ̂b

and σ̂s that do not differ by much. It is a result of comparing standard deviations (RMS position

errors) that leads to the Fni−1,nj−1 distribution. To avoid non-convergence that would result from

this counter-intuitive behavior of pbs, our algorithm performs a certain number of iterations with

the UCBA algorithm until conditions are met for pbs to become monotonically increasing with nb.

Since APCS is defined by (17), it is only necessary to consider these conditions for pbs, because

ξbi > ξbs and therefore pbi > pbs for all other designs θi.

A sufficient condition for convergence is given by the following: given ξbs > 1, and a sufficiently

large ns, there exists Ninit such that pbs is monotonically increasing with nb, for nb ≥ Ninit.

15

100 200 300 400 500

0.55

0.6

0.65

0.7

0.75

pbs

ns

nb = 2

nb = 4

nb = 40

nb = 100

Figure 3: Probability pbs as a function of ns for several fixed values of nb and ξbs = 1.05.

pbs

nb

ns = 100

20 40 60 80 100

0.35

0.4

0.45

0.5

0.55

0.6

0.65 ns = 40

ns = 4

ns = 2

Figure 4: Probability pbs as a function of nb for several fixed values of ns and ξbs = 1.05.

16

Since we are interested in the asymptotic behavior of pbs for large nb and ns, according to (8) we

can assume that σ̂b ≈ σb and σ̂s ≈ σs. To simplify notation, we define

α =
nb − 1

2
(24)

β =
ns − 1

2
(25)

ξ =
(
σs

σb

)2

(26)

g(β, α, x) = f(ns, nb, x). (27)

To find how pbs behaves for large ns, let us define

pb(nb, ξ) = lim
ns→∞ pbs . (28)

Following (15),

pbs =
∫ ∞

1/ξ
g(β, α, x)dx (29)

and

pb(nb, ξ) = lim
β→∞

∫ ∞

1/ξ
g(β, α, x)dx =

∫ ∞

1/ξ
lim

β→∞
g(β, α, x)dx. (30)

The F -distribution given by (12) can be rewritten, for ni = nb and nj = ns, as

g(β, α, x) =
Γ(α+ β)
Γ(α) Γ(β)

x−1

(1 + α
β

1
x)

β(1 + β
αx)

α
. (31)

For β → ∞, (
1 +

α

β x

)β

−→ eα/x (32)

and (
1 +

β

α
x

)α (
β

α
x

)−α

−→ 1 . (33)

Thus, we have

g(β, α, x) −→ Γ(α+ β)
Γ(α) Γ(β)

e−α/x
(
α

β

)α

x−(α+1) (34)

and hence

pbs −→ Γ(α+ β)
Γ(α) Γ(β)

(
α

β

)α ∫ ∞

1/ξ
e−α/x x−(α+1) dx. (35)

17

The integral above can be solved as [1]:

∫ ∞

1/ξ
e−α/x x−(α+1) dx =

(
1
α

)α+1

[Γ(α+ 1)− αΓ (α, ξα)] , (36)

where Γ (α, ξα) is the incomplete Gamma function

Γ (α, ξα) =
∫ ∞

ξα
tα−1e−tdt. (37)

For a fixed α, using the property Γ(α+ 1) = αΓ(α), from (35) and (36) we have

pbs −→ Γ(α+ β)
Γ(β)

1
βα

[
1− Γ (α, ξα)

Γ(α)

]
, (38)

where
Γ(α+ β)
Γ(β)

1
βα

=
(α+ β − 1) . . . (β + 1)βΓ(β)

Γ(β)
1
βα

−→ 1 as β −→ ∞ . (39)

Therefore,

pb(nb, ξ) = pbs −→ 1− Γ (α, ξα)
Γ(α)

as β −→ ∞ . (40)

For large α, the uniform asymptotic expansion of the incomplete Gamma function [19] in (40) yields

1− Γ (α, ξα)
Γ(α)

≈ 1
2
erfc

(
(1− ξ)

√
α

2

)
. (41)

Given ξ > 1, the complementary error function in (41) is monotonically increasing and approaches 1

as α → ∞, where α is defined in (24). Therefore, for sufficiently large ns there exists Ninit such

that pbs is monotonically increasing with nb, for nb ≥ Ninit. Since pbi > pbs for all other designs

θi, i �= b, i �= s, we can conclude that APCS defined in (17) asymptotically approaches 1 provided

that the OCBA algorithm starts after a sufficiently large number of samples ni ≥ Ninit has been

collected for all designs θi.

For the algorithm implementation, it is of interest to quantify the behavior of pb(nb, ξ) as a

function of nb. Figure 5 shows plots of pb(nb, ξ) in (40) as a function of nb for ξ = (1.01)2 and

(1.02)2. From the plots we can conclude that selecting Ninit ≥ 35 (≥ 18) is sufficient to guarantee

convergence, given that the measured RMS position errors differ by at least 1% (2%). In the

algorithm, the UCBA algorithm iterations are performed until the number of simulation runs for

18

pb(nb,ξ)

10 20 30 40 50 60

0.57

0.58

0.59

0.6

0.61
ξ = (1.02)2

ξ = (1.01)2

nb
Ninit ≥ 35Ninit ≥ 18

0.56

Figure 5: Probability pb(nb, ξ) as a function of nb for ξ = (1.01)2 and (1.02)2.

each design exceeds Ninit. If the designs differ by more than the lower limiting value (ξ > 1.01

or 1.02), the number of runs in the UCBA iteration can use a smaller Ninit. The initial iterations

can also be terminated if pbs > Pinit. The value of Pinit = 59% is found as the value of pbs

for nb = ns = 2 and ξ = 1.334 where Ninit ≥ 2 is sufficient to guarantee convergence. With

Pinit = 59% and Ninit = 35, the convergence conditions guarantee that APCS ≥ P � in a finite

number of simulation runs, provided that the designs differ by more than 1% (i.e., ξ ≥ 1.01),

but there is no guarantee about the rate of convergence. Generally, it is not of interest to labor

over distinguishing between designs that are less than 1% different in performance. However, if

necessary, (40) can be used to determine the minimum Ninit to use for ξ less than 1.01.

4.5 Algorithm Comparison

In this section we compare the OCBA algorithm (Section 4.3) with the UCBA algorithm (Section

4.2) using synthetic data obtained from a random number generator with known σi for the design

θi. In the Monte Carlo experiments with synthetic data the results are averaged over a very large

number (10, 000) of algorithm runs.

Figure 6 illustrates the comparison of the OCBA algorithm with the UCBA algorithm when

19

there are Nd = 10 competing designs with standard deviations between σmin = 1 and σmax = 2,

and
σmax

σmin
= (ξi,i+1)

Nd−1 = 2, for 1 ≤ i ≤ Nd, (42)

that is, any two consecutive designs differ in performance metrics by 8% (ξi,i+1 = 1.08). As

expected, with both algorithms the average achieved APCS increases with the increase of the

total number of runs Nruns. However, the OCBA algorithm achieves a high probability of correct

selection in significantly fewer simulation runs. For example, to achieve APCS = 90%, the OCBA

algorithm requires a total number of runs Nruns = 1000, while the UCBA algorithm requires

Nruns = 2800. Figure 7 shows a comparison of the two algorithms when the σ’s of 10 designs differ

even less (ξi,i+1 = 1.046). Note that the designs have σ’s that are very close, which would make it

difficult to distinguish the best one for any optimization algorithm. The OCBA algorithm achieves

confidence levels greater than 80% in less than half of the number of simulation runs required by the

UCBA algorithm. If higher confidence levels are required, the advantages of the OCBA algorithm

in reducing the computational effort are even more significant.

5 Sensor Processing Order Optimization Examples

The algorithms from Sections 4.2 and 4.3 were applied to several examples of optimization of

sensor processing order in the MSJPDA tracking simulator. In all simulations, the system noise

was q = 0.01 and the clutter density was λ = 1.4, while the number of sensors Ns and the number

of targets T varies. Different designs correspond to the different number of identical sensors or to

different orders of non-identical sensors. Better sensors have a smaller ri sensor noise parameter

defined in (4). The expected clutter measurements per target gate varies with the quality of the

sensor used from 0.08 for the best sensor up to 3.12 for the worst sensor. Tables 1 through 6

summarize results obtained using the OCBA algorithm applied to the sequential MSJPDA. The

chosen best design is marked in boldface.

Table 1 presents a comparison of designs consisting of different numbers of identical sensors.

20

500 1000 1500 2000 2500 3000

0.2

0.4

0.6

0.8

1

0
0.0

APCS

Total number of simulation runs, Nruns

UCBA

OCBA

Figure 6: Comparison of the average achieved probability of correct selection APCS as a

function of the total number of simulation runs for the uniform computing budget

allocation (UCBA) algorithm and for the optimized computing budget allocation

(OCBA) algorithm. The number of designs is Nd = 10; ξ9 = 2, ξ = 1.08.

1000 2000 3000 4000 5000

0.2

0.4

0.6

0.8

1

0
0.0

APCS

Total number of simulation runs, Nruns

UCBA

OCBA

Figure 7: Comparison of the average achieved probability of correct selection APCS as a func-

tion of the total number of simulation runs Nruns for the uniform computing budget

allocation (UCBA) algorithm and for the optimized computing budget allocation

(OCBA) algorithm. The number of designs is Nd = 10; ξ9 = 1.5, ξ = 1.046.

21

As may be expected, performance improves as the number of sensors increases (Ns = 5 has better

performance than Ns = 4), but for some Ns, improvement sometimes can not be verified in a

predefined maximum number of runs Nmax (comparing designs when Ns = 5 and Ns = 6, Nmax =

200 was exhausted before the APCS achieved the desired P � = 90%).

Table 2 compares orders of sensor processing of a two-sensor system where the overall quality

of the two sensors is the same in all cases, that is, 1/re = 1/r1 + 1/r2, as in [18], and we arrived

at the same conclusion that processing the best sensor last yields the smallest RMS position error.

Further, we came to the conclusion in only Nruns = 15 (in [18] we used 200 Monte Carlo runs)

and with APCS > 95%. Results from Table 3 confirm our previous findings [18] that two identical

sensors outperform two different quality sensors in any order.

In Table 4, results for a more complex tracking system is presented, with Ns = 4 and T = 5.

The increase of APCS with Nruns for these designs is presented in Figure 8. The observation

from above still holds, the best design is the one where the best sensor is being processed the last.

For these four designs we also ran the UCBA algorithm, and it produced APCS = 85.27% with

ni = 193 runs per design, or Nruns = 772, while the OCBA algorithm achieved the same confidence

in Nruns = 548.

Results obtained when more diverse sensors are used in the sequential MSJPDA are shown in

Table 5, and the increase of APCS with Nruns is shown in Figure 9 for the listed eight designs.

The conclusion about processing the best available sensor last still holds. For these design choices,

improvement over the UCBA algorithm is even more significant. The UCBA algorithm achieved

an APCS = 85.17% in Nruns = 1472, or ni = 184 per design, while the OCBA algorithm achieved

an APCS = 85.03% in Nruns = 897.

Table 6 presents another illustration of the same trend, with Ns = 3 different sensors and

Nd = 6 designs, and the best ranking design is again the one with the best sensor processed last.

In fact, processing the best sensor last leads to the best two sensor orderings, θ4 and θ6.

From the examples shown in this section, some general trends can be observed. Starting from

a sufficiently large number of runs, further increasing the number of runs for the best performing

22

T = 3, Ns = 2, 3, 4, 5, 6, P � = 90%
design ni RMSi

θ1 = {0.01, 0.01} 6 0.025676
θ2 = {0.01,0.01,0.01} 11 0.016155

Nruns = 17, APCS = 90.04%, θb = θ2

θ1 = {0.01, 0.01, 0.01} 16 0.016881
θ2 = {0.01,0.01,0.01,0.01} 25 0.012622

Nruns = 41, APCS = 90.12%, θb = θ2

θ1 = {0.01, 0.01, 0.01, 0.01} 73 0.012566
θ2 = {0.01,0.01,0.01,0.01,0.01} 91 0.010893

Nruns = 164, APCS = 90.09%, θb = θ2

θ1 = {0.01, 0.01, 0.01, 0.01, 0.01} 84 0.010625
θ2 = {0.01,0.01,0.01,0.01,0.01,0.01} 116 0.009492

Nruns = 200, APCS = 75.25%, θb = θ2

Table 1: Application of the optimized computing budget allocation algorithm: desired con-

fidence P � = 90% and Nmax = 200 for T = 3 targets and different numbers of

sensors, Ns = 2, 3, 4, 5, and 6.

T = 2, Ns = 2
P � = 90% Nruns = 15
APCS = 95.12% θb = θ2

design ni RMSi

θ1 = {0.011, 0.11} 5 0.21756
θ2 = {0.11,0.011} 10 0.11361

Table 2: Application of the optimized computing budget allocation algorithm: desired confi-

dence P � = 90%, Nmax = 100, Nruns = 15, and the selected best ranking design is

θ2 with APCS = 95.12%.

23

T = 2, Ns = 2
P � = 90% Nruns = 13
APCS = 95.66% θb = θ1

design ni RMSi

θ1 = {0.02,0.02} 8 0.05263
θ2 = {0.011, 0.11} 3 0.18364
θ3 = {0.11, 0.011} 2 0.13396

Table 3: Application of the optimized computing budget allocation algorithm: desired confi-

dence P � = 90%, Nmax = 100, Nruns = 13, and the selected best ranking design is

θ1 with APCS = 95.66%.

T = 5, Ns = 4
P � = 85% Nruns = 548
APCS = 85.24% θb = θ1

design ni RMSi

θ1 = {0.1,0.1,0.1,0.01} 232 0.047529
θ2 = {0.1, 0.1, 0.01, 0.1} 161 0.051999
θ3 = {0.1, 0.01, 0.1, 0.1} 113 0.056401
θ4 = {0.01, 0.1, 0.1, 0.1} 42 0.062513

Table 4: Application of the optimized computing budget allocation algorithm: desired confi-

dence P � = 85%, Nmax = 1000, Nruns = 548, and the selected best ranking design

is θ1 with APCS = 85.24%. APCS as a function of Nruns for the listed designs is

presented in Figure 8.

24

100 200 300 400 500

0.2

0.4

0.6

0.8

1
APCS

Number of simulation runs, Nruns

θ1 = {0.1, 0.1, 0.1, 0.01}
θ2 = {0.1, 0.1, 0.01, 0.1}
θ3 = {0.1, 0.01, 0.1, 0.1}
θ4 = {0.01, 0.1, 0.1, 0.1}

Figure 8: Achieved APCS as a function of total number of simulation runs. Tracking T = 5

targets, λ = 1.4; θb = θ1 with APCS = 85.24%. The total number of runs was

Nruns = 548.

T = 5, Ns = 4
P � = 85% Nruns = 897
APCS = 85.03% θb = θ4

design ni RMSi

θ1 = {0.01, 0.1, 0.1, 1.0} 42 0.072662
θ2 = {0.01, 0.1, 1.0, 0.1} 55 0.069468
θ3 = {0.01, 1.0, 0.1, 0.1} 39 0.073231
θ4 = {1.0,0.1,0.1,0.01} 294 0.054996
θ5 = {1.0, 0.1, 0.01, 0.1} 143 0.061807
θ6 = {1.0, 0.01, 0.1, 0.1} 53 0.070067
θ7 = {0.1, 1.0, 0.01, 0.1} 110 0.064531
θ8 = {0.1, 0.01, 1.0, 0.1} 161 0.060987

Table 5: Application of the optimized computing budget allocation algorithm: desired confi-

dence P � = 85%, Nmax = 1000, Nruns = 897, and the selected best ranking design

is θ4 with APCS = 85.03%. APCS as a function of Nruns for the listed designs is

presented in Figure 9.

25

200 400 600 800

0.2

0.4

0.6

0.8

1

APCS

Number of simulation runs, Nruns

θ1 = {0.01, 0.1, 0.1, 1.0}
θ2 = {0.01, 0.1, 1.0, 0.1}
θ3 = {0.01, 1.0, 0.1, 0.1}
θ4 = {1.0, 0.1, 0.1, 0.01}
θ5 = {1.0, 0.1, 0.01, 0.1}
θ6 = {1.0, 0.01, 0.1, 0.1}
θ7 = {0.1, 1.0, 0.01, 0.1}
θ8 = {0.1, 0.01, 1.0, 0.1}

Figure 9: Achieved APCS as a function of total number of simulation runs. Tracking T = 5

targets, λ = 1.4; θb = θ4 with APCS = 85.03%. Total number of runs was Nruns =

897.

T = 5, Ns = 3
P � = 85% Nruns = 538
APCS = 87.98% θb = θ4

design ni RMSi

θ1 = {0.01, 0.1, 1.0} 23 0.146661
θ2 = {0.01, 1.0, 0.1} 19 0.147113
θ3 = {0.1, 0.01, 1.0} 117 0.104865
θ4 = {0.1,1.0,0.01} 215 0.092072
θ5 = {1.0, 0.01, 0.1} 19 0.167626
θ6 = {1.0, 0.1, 0.01} 145 0.102838

Table 6: Application of the optimized computing budget allocation algorithm: desired confi-

dence P � = 85%, Nmax = 1000, Nruns = 538, and the selected best ranking design

is θ4 with APCS = 87.98%.

26

design tends to increase the probability of correct selection the most. Therefore in general, in the

optimized computing budget allocation algorithm the computing budget is allocated more to the

best designs. Fewer runs are spent on the worst performing designs, which results in reduction of

the computation time compared to the uniform computing budget allocation.

6 Conclusion

In this paper we addressed the problem of ranking and selection for stochastic processes, such as

target tracking algorithms, where variance is the performance metric, as opposed to the problem of

ranking and selection of process means which has been frequently addressed in the literature. We

present a method to minimize simulation time, yet to achieve a desirable confidence of the obtained

results by applying ordinal optimization and computing budget allocation ideas and techniques,

while taking into account statistical properties of the variance.

The developed optimized computing budget allocation algorithm (OCBA) method was applied

to evaluate the sequential multi-sensor joint probabilistic data association algorithm, where we

searched for the best order of processing sensor information when given non-identical sensors, so

that the root-mean square position error performance metric is minimized. To evaluate the perfor-

mance of different sensor orderings efficiently, the developed OCBA technique attempts to minimize

simulation time, that is, achieves a predefined confidence level within a defined computation budget,

or returns the confidence level of the achieved results if the computation budget must be exhausted.

Results that we obtained with high confidence levels and in significantly reduced simulation times

confirm the findings from our previous research (where we considered only two sensors) that pro-

cessing the best available sensor the last in the sequential multi-sensor data association algorithm

produces the smallest root-mean square position error on average.

27

7 Acknowledgements

This work was supported in part by the Office of Naval Research (Young Investigator Award Grant

N00014-97-1-0642 and Grant N00014-02-1-0136) and a University of Colorado Faculty Fellowship.

The authors would also like to thank Professor Y. C. Ho of Harvard University for motivating this

research.

References

[1] M. Abramowitz and I. A. Stegun, Eds, Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables, Dover Publications, New York, 1972.

[2] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association, Academic Press Inc., 1988.

[3] Y. Bar-Shalom and E. Tse, “Tracking in a Cluttered Environment With Probabilistic Data

Association,” Automatica, Vol. 11, pp. 451-460, Pergamon Press, 1975.

[4] C. G. Cassandras, L. Dai, and C. G. Panayiotou, “Ordinal Optimization for a Class of De-

terministic and Stochastic Discrete Resource Allocation Problems,” IEEE Trans. Automatic

Control, Vol. 43, No. 7, pp. 881-900, July 1998.

[5] C. H. Chen, “A Lower Bound for the Correct Subset-Selection Probability and Its Applica-

tion to Discrete-Event System Simulations,” IEEE Trans. Automatic Control, Vol. 41, No. 8,

pp. 1227-1231, August 1996.

[6] C. H. Chen, H. C. Chen, and L. Dai, “A Gradient Approach for Smartly Allocating Computing

Budget for Discrete Event Simulation,” Proc. of the 1996 Winter Simulation Conference,

pp. 398-405, 1996.

[7] C. H. Chen, S. D. Wu, and L. Dai, “Ordinal Comparison of Heuristic Algorithms Using

Stochastic Optimization,” IEEE Trans. Robotics and Automation, Vol. 15, No. 8, pp. 44–56,

February 1999.

28

[8] H. C. Chen, C. H. Chen, and E. Yucesan, “Computing Efforts Allocation for Ordinal Opti-

mization and Discrete Event Simulation,” IEEE Trans. Automatic Control, Vol. 45, No. 5,

pp. 960-964, May 2000.

[9] T. E. Fortmann, Y. Bar-Shalom, M. Scheffe, and S. Gelfand, “Detection Thresholds for Track-

ing in Clutter – A Connection Between Estimation and Signal Processing,” IEEE Trans.

Automatic Control, Vol. 30, No. 3, pp. 221-229, March 1985.

[10] T. E. Fortmann, Y. Bar-Shalom, and M. Scheffe, “Sonar Tracking of Multiple Targets Using

Joint Probabilistic Data Association,” IEEE Journal of Oceanic Engineering, Vol. 8, No. 3,

pp. 173-183, July 1983.

[11] C. W. Frei and L. Y. Pao, “Alternatives to Monte-Carlo Simulation Evaluations of Two Multi-

sensor Fusion Algorithms,” Automatica, Vol. 34, No. 1, pp. 103-110, Pergamon Press, 1998.

[12] S. S. Gupta and M. Sobel, “On Selecting a Subset Containing the Population with the Smallest

Variance,” Biometrika, Vol. 49, Issue 3/4, pp. 495-507, Dec. 1962.

[13] Y. C. Ho, “An Explanation of Ordinal Optimization: Soft Computing for Hard Problems,”

Information Sciences, Vol. 113, pp. 169-172, 1999.

[14] Y. C. Ho, C. G. Cassandras, C. H. Chen, and L. Dai, “Ordinal Optimisation and Simulation,”

Journal of the Operational Research Society, Vol. 51, No. 4, pp. 490-500, 2000.

[15] P. G. Hoel, Introduction to Mathematical Statistics, John Wiley, 1962.

[16] T. W. E. Lau and Y. C. Ho, “Universal Alignment Probabilities and Subset Selection for

Ordinal Optimization,” Journal of Optimization Theory and Applications, Vol. 93, No. 3,

pp. 455-489, June 1997.

[17] L. Y. Pao, “Centralized Multi-sensor Fusion Algorithms for Tracking Applications,” Control

Eng. Practice, Vol. 2, No. 5, pp. 875-887, 1994.

29

[18] L. Y. Pao and L. Trailović, “Optimal Order of Processing Sensor Information in Sequential

Multi-sensor Fusion Algorithms,” IEEE Trans. Automatic Control, Vol. 45, No. 8, pp. 1532–

1536, Aug. 2000.

[19] N. M. Temme, “The asymptotic expansions of the incomplete gamma functions,” SIAM J.

Math. Anal., 10, pp. 239-253, 1979.

[20] S. B. Vardeman, Statistics for Engineering Problem Solving, IEEE Press, 1994.

30

