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1 Introduction

Anecdotal evidence suggests that most “theorems” initially given to an interactive theo-
rem prover do not hold, typically because of a typo or a missing assumption, but some-
times because of a deep flaw. Modern proof assistants for higher-order logic (HOL)
provide counterexample generators that can be run on putative theorems or on specific
subgoals in a proof to spare users the Sisyphean task of trying to prove non-theorems.

Isabelle/HOL includes two such tools: Quickcheck [1] generates functional code for
the HOL formula and evaluates it for random values of the free variables, and Refute [5]
searches for finite countermodels of a formula through a reduction to SAT (Boolean
satisfiability). Their areas of applicability are almost disjoint: Quickcheck excels at in-
ductive datatypes but is restricted to the executable fragment of HOL (which excludes
unbounded quantifiers) and may loop endlessly on inductive predicates. In contrast, Re-
fute copes well with logical symbols, but inductive datatypes and predicates are mostly
out of reach due to the state space explosion.

Our new tool, Nitpick [6], is designed to bridge this gap. Instead of using a SAT
solver directly, it builds upon the Kodkod first-order relational model finder [4].1 As
a result, it benefits from Kodkod’s optimizations (notably its symmetry breaking) and
its richer logic. Inductive datatypes are handled following an Alloy idiom [3], and in-
ductive predicates are unrolled as in bounded model checking [2]. Infinite datatypes are
approximated by a finite fragment augmented with an undefined value, embedded in a
three-valued logic. The current prototype outperforms Refute in nearly all benchmarks
while enjoying wider applicability than Quickcheck.

2 Our Approach

Enumeration of domains. Nitpick uses Kodkod to find a finite model (a satisfying as-
signment to the free variables) of the formula A ∧ ¬P, where P is a putative theorem
and A is the conjunction of axioms relevant to P. Nitpick, like Refute and Alloy, sys-
tematically enumerates the possible domain cardinalities for each type variable, so that
if a formula has a finite counterexample, the tool finds it (unless it runs out of memory).
? This work is supported by the DFG grant NI 491/11-1. Thanks to Mark Summerfield and Tjark
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1 The name Nitpick is shamelessly appropriated from a now retired Kodkod ancestor.



Nonuniform representations. The encoding of HOL terms as Kodkod expressions is
designed to take advantage of Kodkod’s relational calculus. Functions are normally
represented as relations constrained to be left-total and functional. However, predicates
and other functions whose range has cardinality 2 are naturally represented as sets.
Higher-order quantifiers are skolemized away when practicable. Any remaining quan-
tified function is replaced by a k-element vector of values, where k is the cardinality of
the function’s domain. Vectors are also used for functions passed as arguments to other
functions. Abstractions λx. f (x) are encoded as comprehensions {(x,y) | y = f (x)}.

Partiality. Because of the axiom of infinity, the type nat of natural numbers does not
admit any finite models. To work around this, Nitpick considers prefixes {0,1, . . . ,K}
of nat and maps numbers beyond K to the undefined value (⊥). Formulas of the form
∀n ::nat. P(n) become (∀n≤ K. P(n)) ∧ P(⊥). Undefined values lead to a three-valued
logic, which is encoded in terms of Kodkod’s binary logic. If the formula evaluates to
⊥, Nitpick reports the model as a potential counterexample and continues looking for
a model that makes the formula evaluate to True. The user can instruct Nitpick to use
Isabelle’s automatic tactics to ascertain whether a potential counterexample is genuine.

Inductive datatypes and recursive functions. A typical example of an inductive datatype
is α list, the type of lists with elements of type α generated by the constructors Nil ::α list
and Cons ::α→ α list→ α list. Nitpick’s approach to inductive datatypes is inspired by
the Alloy modeling of infinite datatypes done by Kuncak and Jackson [3]. Conceptually,
each constructor is seen as constructing a different type, for which the user can specify
a cardinality. For example, using a cardinality of 1 for Nil and 10 for Cons, Nitpick
looks for all counterexamples that can be built using at most 11 different lists. The
constructors are constrained relationally to ensure freedom and induction.

Functions that operate on inductive datatypes are often implemented by recursion.
Instead of using the internal representation of functions synthesized by Isabelle’s prim-
rec and function packages, Nitpick relies on the more natural equational specification
entered by the user.

Inductive predicates. Besides recursion, Isabelle also supports induction as a definition
principle. An inductive predicate corresponds to a least fixed point. If there is only one
fixed point (which can usually be proved automatically using Isabelle’s termination tac-
tics), Nitpick simply takes the fixed point equation as the specification of the predicate;
for example, given the introduction rules even 0 and even n =⇒ even (n + 2), Nitpick
uses the equation even n = (n = 0 ∨ (∃m. n = m + 2 ∧ even m)). In the general case,
Nitpick unrolls the predicate a given number of times, as in bounded model check-
ing [2]. Because the unrolling is incomplete, the predicate typically evaluates to True or
⊥, rarely False.

Function specialization. A simple but effective optimization is to eliminate fixed argu-
ments. Consider the map function specified by map f Nil = Nil and map f (Cons x xs) =
Cons ( f x) (map f xs). To falsify the formula map h [y] = [h y], Nitpick introduces a new
function map′ defined by map′ Nil = Nil and map′ (Cons x xs) = Cons (h x) (map′ xs)
and attempts to falsify map′ [y] = [h y] instead. This drastically reduces the search space,
especially for higher-order functions.



3 Evaluation

To assess Nitpick, we used a database of mutated formulas consisting mostly of non-
theorems, as was done for Quickcheck [1]. Figure 1 summarizes the results of running
Nitpick, Refute, and Quickcheck on 3 000 formulas derived from three theories: List
is the standard theory of lists, AVL is a theory of AVL trees, and POPLmark is a for-
malization of System F<:. Many of the formulas were not executable, in which case
Quickcheck was not applicable. Refute’s three-valued logic is unsound, so all counter-
examples for formulas that involve an infinite type are potentially spurious. In contrast,
Nitpick fared well on all kinds of formulas.

Fig. 1. Success rates of the counterexample generators on three theories

4 Conclusion and Future Work

Thanks to Kodkod and a nonuniform encoding scheme, Nitpick generates more counter-
examples than similar tools, without restrictions on the form of the formulas. This
means that Isabelle users can avoid a lot of wasted time spent trying to prove non-
theorems. In addition, using Isabelle and Nitpick together provides a viable higher-
order alternative to Alloy. Future work includes looking for encodings that would make
it possible to handle much larger states, which arise when formalizing programming
language semantics, and finding ways to rule out certain domain sizes through static
analysis of the formula.
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