
ECSI Forum on specification & Design Languages (FDL) (2007) 268-273

Time modeling in MARTE

Charles André, Frédéric Mallet, Robert de Simone
I3S, Université de Nice-Sophia Antipolis, CNRS, F-06903 Sophia Antipolis

Aoste Project, I3S/INRIA

E-mail: {candre,fmallet,rs}@sophia.inria.fr

Abstract

This article introduces the Time Model subprofile of
MARTE, a new OMG UML Profile dedicated to Modeling
and Analysis of Real-Time and Embedded systems. After
a brief presentation of former time modeling elements
present in SPT and UML2, we introduce the Time meta-
model of MARTE. It defines physical and logical time,
timed model elements and their associated properties.
We present both the time domain view and the UML
representation of the most important concepts. Various
time bases (called clocks in the profile) can be correlated
using clock relations and constraints, built from a core set
predefined in the profile. Constraints are usually collected
from scheduling and partitioning decisions taken in the
course of design flow for embedded systems. We illustrate
this on two simple examples.

I. Introduction

Modeling of Time should certainly be a central con-
cern in Model-Driven Engineering dedicated to Real-
Time Embedded Systems (RTES). Timed extensions
should allow to support a rich design flow, that can
encompass both established and emerging new tech-
niques for model-based optimization, transformation and
analysis of systems. Indeed, embedded system mod-
els very often consists of a predefined set of appli-
cation functions, and of execution platforms on which
to allocate these functions. Application elements are
increasingly componentized, may coexist and possibly
cooperate concurrently. Execution platforms increasingly
comprise parallel resources for both communications and
computations.

The design challenge in embedded system modeling is
then to provide model-level compilation techniques that
provide support for both spatial distribution and temporal
scheduling of applications onto platforms (collectively
called allocation). This approach is therefore akin to
system level design techniques such as advocated in
SysML [1]. But SysML, just like UML, hardly formalizes

its real-time aspects.
This global issue triggered over the years a number

of proposals for specific representation formalisms, and
their associated particular design techniques. These mod-
els then can be, and often have been, represented inside
the scope of the UML [2], [3], [4], [5], [6]. But this is
typically done, a) mostly at the metamodel level, and b)
without any clear interpretation of any kind of the time
annotations in the framework of the UML. This raises
the risk of mismatch between the private interpretation
inherited from the formalism and the existing UML
semantics [7].

The primary objective of the Time subprofile in
MARTE [8] was to provide basic and advanced time
modeling concepts, with interpretation inside the UML
modeling level, not outside. These time-related concepts
could then be used to build various Models of Com-
putation and Communication (MoCC). Importantly, the
profile should subsume the former SPT [9] and the
UML2 Simple Time models [10], while extending them
towards the possibility of modeling much richer MoCC-
based design approaches [11], [12], [13], [14].

Time as considered in design can be of physical or
logical nature. Physical time is continuous, but can usu-
ally be discretized into chronometric clocks under appro-
priate assumptions. Logical time is less often recognized
in itselft as an explicit modeling concept. Processings
and execution steps performed at the rate of a processor
cycle (which may vary according to power consumption
management), or triggered by successive occurrences
of an external event (such as completion of an engine
revolution) are simple example of that. Often the allo-
cation process may be perceived as this : asynchronous
concurrent application components are each considered
as being governed by their own (local) logical clock,
connected to appropriate events; then the allocation itself
consists in fitting these various clock threads onto a single
(or at least more correlated) synchronous clock, subject
to constraints of various sources abstracted from physical
time properties and requirements. The transformation and
analysis steps involved in the proper mapping are (at
least implicitly) dealing with scheduling objects that are

c©2007 ECSI

relations between logical and physical clocks attached to
the various processings. MARTE Time profile is meant
exactly to represent that.

In the sequel, we shall describe the profile in greater
details and its position with respect to other parts of
MARTE. We start with the domain view and give an
overview of the UML representation. Two examples
illustrate the usage of the profile.

II. Time domain view

This section describes the MARTE Time domain view,
i.e., the main concepts related to time and their relation-
ships. In an MDE approach, this is done through meta-
modeling. Before reviewing the MARTE Time models,
we will have a look at the former UML profile for Time:
SPT

A. SPT
The UML Profile for Schedulability, Performance, and

Time (SPT) aimed at filling the lacks of UML 1.4 in
some key areas that are of particular concern to real-
time system designers and developers. SPT introduces a
quantifiable notion of time and resources. It annotates
model elements with quantitative information related to
time, information used for timeliness, performance, and
schedulability analyses.

SPT only considers (chrono)metric time, which makes
implicit reference to physical time. It provides time-
related concepts: concepts of instant and duration, con-
cepts for modeling events in time and time-related stim-
uli. SPT also addresses modeling of timing mechanisms
(clocks, timers), and timing services. SPT, which relies
on UML 1.4, had to be aligned with UML 2.1. This is
one of the objectives of the MARTE profile, presented
below.

UML 2 has included a new package called Simple-
Time, part of the CommonBehavior package. The main
new meta-classes are TimeEvent and Observation (Time
and Duration). The model is kept very simple and is
intended to be extended in specialized profiles. This is
the specific agenda of MARTE Time model.

B. MARTE time model
As a successor of SPT, MARTE has to support a

metric time with implicit reference to physical time.
However, MARTE goes beyond this quantitative model
of time and adopts more general time models suitable
for system design. In MARTE, Time can be physical,
and considered as dense or discretized, but it can also
be logical, and related to user-defined clocks. Time may
even be multiform, allowing different times to progress
in a non-uniform fashion, and possibly independently to
any (direct) reference to physical time.

1) Concept of time structure: The building element in
a time structure is the TimeBase (Fig. 1). A time base is
a totally ordered set of instants. A set of instants can be

MultipleTimeBase

TimeBase

date: Real

Instant

{ ordered }
instants

base1

1..*

memberTB0..*

TimeStructureRelation

tsRelations

0..*

currentInstant1

TimeBaseRelation

TimeInstantRelation

2..*

/relatedInstants
{ union, ordered }

0..*

0..1 parentMTB

subMTB

0..*

1

ownedTB
{ subsets memberTB }

2..*

{ union, ordered }
/relatedTB

Fig. 1. Time structure (Domain view).

discrete or dense. The linear vision of time represented
by a single time base is not sufficient for most of the
applications, especially in the case of multithreaded or
distributed applications. Multiple time bases are then
used. A MultipleTimeBase consists of one or many time
bases. A time structure contains a tree of multiple time
bases.

Time bases are a priori independent. They become
dependent when instants from different time bases are
linked by relationships (coincidence or precedence). The
abstract class TimeInstantRelation in Fig. 1 has Coinci-
denceRelation and PrecedenceRelation as concrete sub-
classes. Instead of imposing local dependencies between
instants, dependencies can be directly imposed between
time bases. A TimeBaseRelation (or more precisely one
of its concrete subclasses) specifies many (possibly an
infinity of) individual time instant relations. This will
be illustrated later on some time base relations. Time-
BaseRelation and TimeInstantRelation have a common
generalization: the abstract class TimeStructureRelation.
As a result of adding time structure relations to multiple
time bases, time bases are no longer independent and the
instants are partially ordered. This partial ordering of in-
stants characterizes the time structure of the application.

This model of time is sufficient to check the logical
correctness of the application. Quantitative information,
attached to the instants, can be added to this structure
when quantitative analyses become necessary (see be-
low).

2) Access to time: In real world technical systems,
special devices, called clocks, are used to measure the
progress of physical time. In MARTE, we adopt a more
general point of view: a clock is a model element giving
access to the time structure. Time may be logical or
physical or both.

A Clock makes reference to a TimeBase (Fig. 2), and
thus indirectly to the instants of this timebase. The nature
attribute indicates whether the accessed time is dense or
discrete. A Clock accepts units (acceptedUnits property).
Unit is a concept introduced in the MARTE NFP (Non-
functional property) domain view. One of these accepted
units is the defaultUnit. A clock may own an event

TimeBase

nature: TimeNatureKind
resolution: Real=1.0
origin: Real [0..1]
currentTime: Real
maximalValue: Real[0..1]

Clock1

timeBase

Event

Unit

0..1

0..1

clockTick

acceptedUnits

1..*

defaultUnit
{subsets

acceptedUnits}

1

Fig. 2. Clock

(clockTick). This event occurs at each change of the
current time of the clock. Other attributes characterize
quantitive information that can be attached to a clock.
The resolution property specifies the readout granularity
of the clock, expressed in defaultUnit unit. Its default
value is 1.0. The optional attribute origin specifies the
possible offset in the clock reading. The optional attribute
maximalValue expresses the limited capability of usual
clocks to represent arbitrary large instant values: the
clock “rolls over” when the currentTime value gets at
the maximal value. For instance, for a discrete periodic
clock, the time value attached to the kth instant is given
by (origin+(k−1)∗resolution) mod maximalV alue.

Clock

LogicalClock

Event

definingEvent0..1 standard: TimeStandardKind [0..1]
 stability : Real [0..1]
 offset: DurationValue [0..1]
 skew: Real [0..1]
 drift: Real [0..1]

ChronometricClock

PhysicalTime

0..1

referenceClock

Fig. 3. Logical and chronometric clock

Clock is an abstract concept. There exist two concrete
specializations of Clock: LogicalClock and Chronometric-
Clock. A chronometric clock is a clock making refer-
ence to physical time. A special attention is then put
on the quantitative information attached to this model.
Non functional properties like stability, skew, etc can
be defined for these clocks with respect to some refer-
enceClock. On the other hand, a logical clock can be
defined by any event (definingEvent property); in this
case, the clock ticks at each occurrence of the defining
event. Logical time is usually counted in the number of
ticks. So, tick is a predefined unit often used as the default
unit for a logical clock.

3) Time value specifications: An application may use
time in two ways: either as a reference to a time instant
or as a time span. So, MARTE introduces two distinct
concepts: InstantValue and DurationValue, specializations
of the abstract concept of TimeValue. Since the access

to time is done through clocks, a TimeValue refers to a
Clock (the onClock property). A time value also have an
associated unit. When optional property unit is given, it
must be used instead of default unit of the associated
clock. The attribute nature specifies whether the time
values associated with the clock take their values in a
dense or discrete domain.

Clock

Instant InstantValue
0..*

denotedInstant

TimeInterval
0..*

denotedTimeInterval

nature: TimeNatureKind

TimeValue

isMinOpen: Boolean [1]
isMaxOpen: Boolean [1]

TimeIntervalValue

min 1 max 1

Unit
unit

0..1

1

onClock

lower 1 upper 1

DurationValue

intervalValue

1

Fig. 4. Time values

4) Time-related concepts: A timed element is a most
general concept. TimedElement is an abstract class gen-
eralization of all other timed concepts. It associates a non
empty set of clocks with a model element. The semantics
of the association with clocks depends on the kind of
timed element.

ClockTimedElement
1..*

on

ModelElement

Fig. 5. Timed element

Events and behaviors can be directly bound to time.
The occurrences of a (timed) event refer to points of time
(instants). The executions of a (timed) behavior refer to
points of time (start and finish instants) or to segments
of time (duration of the execution).

TimedEvent (TimedProcessing, resp.) is a concept rep-
resenting an event (a processing, resp.) explicitly bound
to time through a clock. In this way, time is not a mere
annotation: it changes the semantics of the timed model
elements.

Other timed elements—not detailled in this
presentation—are also defined in the MARTE Time
domain: timed observations, and timed constraints. As
timed elements they explicitly bind observations or
constraints to clocks.

III. UML view of Time in MARTE

A. The Time sub-profile
The time structure presented above constitutes the

semantic domain of our time model. The UML view
is defined in the “MARTE Time profile”. This profile
introduces a limited number of powerful stereotypes. We
have striven to avoid the multiplication of too specialized

 isRelative: Boolean
repetition: Integer [0..1]

TimedEvent

TimedElement

every0..1when1

Event

TimeValueSpecification DurationValueSpecification

Fig. 6. Timed event

TimedProcessing

0..1start 0..1finish
0..1 duration

TimedElement

TimedBehavior TimedActionTimedMessage

Delay

EventDurationValueSpecification

CoreElements::
Causality::

CommonBehavior::
Behavior

CoreElements::
Causality::

CommonBehavior::
Action

CoreElements::
Causality::

Communication::
Request

Fig. 7. Timed processing

stereotypes. Thanks to the sound semantic grounds of
our styereotypes, modeling environments may propose
patterns for more specific uses.

« stereotype»
TimedElement

« metaclass »
UML::Classes::Kernel::Class

nature: TimeNatureKind [1]
unitType: Enumeration [0..1]
isLogical : Boolean [1] = false
resolAttr: Property [0..1]
maxValAttr: Property [0..1]
offsetAttr: Property [0..1]
getTime: Operation [0..1]
setTime: Operation [0..1]
indexToValue: Operation [0..1]

« stereotype»
ClockType

« metaclass »
UML::Classes::Kernel::
InstanceSpecification

« stereotype»
Clock

« stereotype»
NFPs::Unit

« stereotype»
TimedDomain

« metaclass »
UML::Classes::Kernel::

Package

on 1..*
unit

0..1

type

1

Fig. 8. MARTE Time profile: Clock.

1) ClockType and Clock: The main sterotypes are
presented in figure 8. ClockType is a stereotype of the
UML Class. Its properties specifies the kind (chrono-
metric or logical) of clock, the nature (dense or discrete)
of the represented time, a set of clock properties (e.g.,
resolution, maximal value. . .), and a set of accepted time
units. Clock is a sterotype of InstanceSpecification. An
OCL rule imposes to apply the Clock stereotype only to
instance specifications of a class stereotyped by Clock-
Type. The unit of the clock is given when the stereotype

is applied. Unit is defined in the Non Fonctional Prop-
erty modeling (NFPs) subprofile of MARTE; it extends
EnumerationLiteral. It is very convenient because a unit
can be used like any user-defined enumeration literal, and
conversion factors between units can be specified (e.g.,
1ms = 10−3s). TimedElement is an abstract stereotype
with no defined metaclass. It stands for model elements
which reference clocks. All other timed stereotypes spe-
cialize TimedElement.

2) Clock constraints: ClockConstraint is a stereotype
of the UML Constraint. The clock constraints are used
to specify the time structure relations of a time domain.

The context of the constraint must be a TimedDomain.
The constrained elements are clocks of this timed domain
and possibly other objects. The specification of a clock
constraint is a set of declarative statements. This raises
the question of choosing a language for expressing the
clock constraints. A natural language is not sufficiently
precise to be a good candidate. UML encourages the
use of OCL. However, our clocks usually deal with
infinite sets of instants, the relations may use many math-
ematical quantifiers, which are not supported by OCL.
Additionnally, OCL [15] is made to be evaluatable, while
our constraints often have to be processed altogether
to get a set of possible solutions. So, we have chosen
to define a simple constraint expression language en-
dowed with a mathematical semantics. The specification
of a clock constraint is a UML::OpaqueExpression that
makes use of pre-defined (clock) relations, the meaning
of which is given in mathematical terms, outside the
UML. Our Clock Constraint Specification Language is
not normative. Other languages can be used, so long as
the semantics of clocks and clock constraints is respected.

3) TimedEvent and TimedProcessing: In UML, an
Event describes a set of possible occurrences; an oc-
currence may trigger effects in the system. A UML2
TimeEvent is an Event that defines a point in time
(instant) when the event occurs. The MARTE stereotype
TimedEvent extends TimeEvent. Its instant specification
explicitly refers to a clock. If the event is recurrent,
a repetition period—duration between two successive
occurrences of the event—and the number of repetitions
may be specified.

In UML, a Behavior describes a set of possible ex-
ecutions; an execution is the performance of an algo-
rithm according to a set of rules. MARTE associates a
duration, an instant of start, an instant of termination
with an execution, these times being read on a clock.
The stereotype TimedProcessing extends the metaclasses
Behavior, Action, and also Message. The latter extension
assimilates a message tranfer to a communication action.

Note that, StateMachine, Activity, Interaction being
Behavior, they can be stereotyped by TimedProcessing,
and thus, can be bound to clocks.

B. The Time model library
The TimeLibrary (Fig 9) is a user’s model libary

that provides enumerations related to time and facilities
for using the ideal chronometric time (i.e., the time
referenced in physical laws). TimeUnitKind contains the
main chronometric time units. s (second) is an SI unit.
Other units are derived units. All the enumeration literals
are stereotyped by Unit. LogicalTimeUnitKind is a special
enumeration which contains one enumeration literal only.
This literal is tick. The IdealClock and its instance idealClk
model the abstract and ideal time which is used in
physical laws. It is a dense time. idealClk should be
imported in models that refer to chronometric time.
TimedValueType is a templated data type. The template
parameter is an enumeration which contains time units.

« modelLibrary»
TimeLibrary

currentTime(): Real

<<clockType>>
{ nature = dense, unitType = TimeUnitKind,

getTime = currentTime }
IdealClock

« clock »
{ unit = s }

idealClk:IdealClock«unit» s

«unit» ms {baseUnit=s, convFactor=0.001}

«unit» us {baseUnit=ms, convFactor=0.001}

«unit» ns {baseUnit=us, convFactor=0.001}

«unit» min {baseUnit=s, convFactor=60}

«unit» hrs {baseUnit=min, convFactor=60}

«unit» dys {baseUnit=hrs, convFactor=24}

...

« enumeration »
TimeUnitKind

<<unit>> tick

« enumeration »
LogicalTimeUnitKind

value: Real
expr: ClockedValueSpecification
unit: TUK
onClock: String

« tupleType »
TimedValueType

TUK

« primitive »
ClockedValueSpecification

Fig. 9. TimeLibrary: a user library for time

Besides libraries, other facilities are offered to
MARTE users: concrete languages dedicated to value
expressions (Value Specification Language—VSL) and to
clock constraint expressions (Clock Constraint Specifica-
tion Language—CCSL) [16, Annexes B & C]. The latter
defines a core set of constraints that can be extended to
express desired relation patterns between timed elements.

Examples of such clock constraints are described in
a technical report [17]. For lack of room we cannot
describe them here. Some constraint relations state that
variations in rate or jitter between two clocks are some-
how bounded, that clocks are related up to some drift, or
that a clock has to be a subclock of some other (with
the subclocking mechanism following possibly some
pattern). Some relations are more imperative in that they
denote the single solution to some clock transformations
(as for instance in b isPeriodicOn a ofPeriod n).

IV. Examples

The first step for the designer is to construct its
own, not always perfect, clocks. The first subsection
shows how to create chronometric clocks and the second
subsection illustrates the use of logical clocks.

A. Chronometric clock specifications
The MARTE TimeLibrary provides a model for the

ideal time used in physical laws: idealClk, which is an in-
stance of the class IdealClock, stereotyped by ClockType
(Fig. 10, upper part). idealClk is a dense time clock, its
unit is the SI time unit s.

currentTime(): Real

resolution: Real {readOnly}

« clockType »
{ nature = discrete, unitType = TimeUnitKind,
resolAttr=resolution, getTime = currentTime }

Chronometric

resolution = 0.01

« clock »
{ unit = s, standard = UTC }

cc1:Chronometric

resolution = 0.01

« clock »
{ unit = s, standard = UTC }

cc2:Chronometric

« clockConstraint » { kind = required }
{ Clock c is idealClk discretizedBy0.001;

cc1 isPeriodicOn c period 10;
cc2 isPeriodicOn c period10;
cc1 hasStability 1E-4;
cc2 hasStability 1E-4;
cc1,cc2 haveOffset [0..5] ms wrt idealClk;

}

« clock »
{ unit = s }

idealClk:IdealClock

currentTime(): Real

« clockType »
{ nature = dense, unitType = TimeUnitKind,

getTime = currentTime }
IdealClock

Imported from
MARTE::TimeLibrary

« TimedDomain »
ApplicationTimeDomain

Fig. 10. Chronometric clocks.

After importing the library, new user-defined chrono-
metric clocks can be defined. For instance, Fig. 10 defines
the class Chronometric with an attribute resolution of type
Real and an operation currentTime that allows for reading
the current time. The stereotype ClockType is applied
and the tagged values characterize the nature of clocks
represented by this class. Here, the clock is a discrete
clock and accepts the units defined by the predefined
Enumeration TimeUnitKind (see Fig. 9). By default, the
clock types are chronometric, not logical.

Actual clocks belong to timed domains, i.e., a package
stereotyped by TimedDomain (Fig. 10, lower part). Here,
a single time domain is considered. It owns three clocks.
idealClk is imported from the library. Two instances of
the class Chronometric, cc1 and cc2, are defined. They
both use s (second) as a time unit and their resolution is
0.01 s. The three clocks are a priori independent. A clock
constraint specifies relationships among them. According
to the given constraints, cc1 and cc2 are two 100 Hz
clocks, the stability of which is 10−4, and with an offset
less than 5ms.

B. Logical clock specifications
Fig. 11 illustrates the definition of logical clocks. The

discrete, logical, clock type AngleClock is defined. It
has three attributes, resolution, offset and maximalValue.
The label function angle associates a real value, the
clock reading, with each instant of the clock. Each
instant is uniquely identified by a natural number, its
index, inferred from the linear order defined on the clock
instants.

The enumeration AngleUnitKind defines the units, enu-
meration literals stereotyped by NFP::Unit, that can be
used by the clocks.

Two clocks, instances of AngleClock, are then created.
crkClk represents the crankshaft revolutions, its unit is

◦CRK (degree crank), its resolution is 1◦CRK and its
maximal value is 720◦CRK, i.e., two revolutions of the
crank shaft. camClk represents the camshaft resolutions,
its unit is ◦CAM (degree cam), its resolution is 1◦CAM
and its maximal value is 360◦CAM , one rotation of
the camshaft. One revolution of the camshaft (mechan-
ically) implies two revolutions of the crankshaft, hence
1◦CAM = 2◦CRK.

<<unit>> °CAM
<<unit>> °CRK

« enumeration »
AngleUnitKind

angle(k:Integer): Real

resolution: Real
offset: Real
maximalValue: Real

« clockType »
{ nature = discrete, isLogical ,

timeUnit =AngleUnitKind,
resolAttrib = resolution,

offsetAttrib = offset,
maxValAttrib = maximalValue,

indexToValue = angle }
AngleClock

resolution =1.0
offset = 0.0
maximalValue = 720.0

« clock »
{ unit = °CRK }

crkClk:AngleClock

{ context AngleClock::angle(k:Integer): Real;
angle = (offset + (k – 1) * resolution)

 rmod maximalValue }

resolution = 1.0
offset = 0.0
maximalValue = 360.0

« clock »
{ unit = °CAM }

camClk:AngleClock

Fig. 11. Logical Clocks.

Fig. 12 uses the clock camClk to represent a four-
stroke engine cycle. This state machine is stereotyped by
TimedProcessing. The on attribute identifies the clock
used and therefore the unit (◦CAM).

Intake

stm « timedProcessing » 4StrokeEngineCycle

{ on = camClk }

Compression

CombustionExhaust

after 90

after 90

after 90

after 90

Fig. 12. State machine of a 4-stroke engine
cycle.

This example is developed in a previous paper [18]
dedicated to the use of multiform time, and the modeling
of the “knock control” problem with MARTE.

V. Conclusion

The MARTE Time subprofile provides a limited num-
ber of time concepts from which to build Models of
Computations with timed interpretations (as examplified
by our modeling of AADL aspects in the same pro-
ceedings [19]). These concepts rely on the existence of
various time threads (or logical clocks) that may drive
application elements. Constraint relations may exist be-
tween clocks, from the loose asynchronous compositions
to stricter simultaneous coincidence. More constraints are
raised as result of scheduling decisions, or by abstraction

of timely requirements demanded by the view or im-
posed by the execution platform. Solving constraints and
committing progressively to particular schedule results
from the intended flow of design promoted by MARTE
in model-based engineering of embedded systems.

References

[1] OMG, Systems Modeling Language (SysML) Specification,
April 2006, OMG document number: ad/2006-03-01. [Online].
Available: http://www.sae.org/technical/standards/AS5506/1

[2] B. Selic, G. Gullekson, and P. Ward, Real-Time Object-Oriented
Modeling. J. Wiley Publ., 1994.

[3] B. P. Douglass, Real-Time UML: developing efficient objects for
embedded systems, ser. Object technology series. Reading,
Massachusetts: Addison-Wesley, 1998.

[4] S. Gérard, F. Terrier, and Y. Tanguy, “Using the model paradigm
for real-time systems development: Accord/uml,” in OOIS’02-
MDSD, ser. LNCS, vol. 2426. Montpellier (F): Springer-Verlag,
2002.

[5] S. Graf, I. Ober, and I. Ober, “A real-time profile for UML,”
STTT, Software Tools for Technology Transfer, vol. 8, no. 2, pp.
113–127, April 2006.

[6] L. Apvrille, P. Saqui-Sannes, and F. Khendek, “TURTLE-P: a
uml profile for the formal validation of critical and distributed
systems,” Software and Systems Modeling (SoSyM), vol. 5,
no. 4, pp. 449–466, December 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10270-006-0029-5

[7] R. De Simone and C. André, “Towards a “Synchronous Reac-
tive” UML profile?” International Journal on Software Tools for
Technology Transfer (STTT), vol. 8, no. 2, pp. 146–155, April
2006.

[8] OMG, UML profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE), Request for proposals, Object
Management Group, Inc., Needham, MA 02494., February 2005,
OMG document number: realtime/2005-02-06.

[9] ——, UML Profile for Schedulability, Performance, and Time
Specification, January 2005, OMG document number: formal/05-
01-02 (v1.1).

[10] ——, UML 2.1 Superstructure Specification, April 2006, OMG
document number: ptc/2006-04-02.

[11] E. A. Lee and A. L. Sangiovanni-Vincentelli, “A framework
for comparing models of computation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 17, no. 12, pp. 1217–1229, December 1998.

[12] J. Buck, S. Ha, E. Lee, and D. Messerschmitt, “Ptolemy: A frame-
work for simulating and prototyping heterogeneous systems,”
International Journal of Computer Simulation, special issue on
“Simulation Software Development”, vol. 4, pp. 155–182, April
1994.

[13] A. Jantsch, Modeling Embedded Systems and SoCs - Concurrency
and Time in Models of Computation. Morgan Kaufman, 2003.

[14] A. Benveniste, B. Caillaud, L. Carloni, P. Caspi, and
A. Sangiovanni-Vincentelli, “Composing heterogeneous reactive
systems,” ACM Transactions on Embedded Computing Systems,
2007.

[15] OMG, Object Constraint Language, version 2.0, May 2006, OMG
document number: formal/06-05-01.

[16] ——, UML profile for MARTE (2nd rev.), August 2007, OMG
document number: still pending.

[17] C. André, F. Mallet, and R. de Simone, “Modeling time(s) in
UML,” Laboratoire I3S - Sophia Antipolis, Tech. Rep., 2007, 24
pages.

[18] C. André, F. Mallet, and M.-A. Peraldi-Frati, “A multiform
time approach to real-time system modeling: Application to an
automotive system,” in IEEE 2nd International Symposium on
Industrial Embedded Systems (SIES’2007). IEEE, 2007, pp. 234–
241.

[19] C. André, F. Mallet, and R. de Simone, “Modeling of immediate
vs. delayed data communications: from AADL to UML MARTE,”
in ECSI Forum on specification & Design Languages (FDL),
September 2007.

