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ABSTRACT 
Keyphrases provide semantic metadata that summarize and characterize documents. This paper 

describes Kea, an algorithm for automatically extracting keyphrases from text. Kea identifies 

candidate keyphrases using lexical methods, calculates feature values for each candidate, and 

uses a machine-learning algorithm to predict which candidates are good keyphrases. The 

machine learning scheme first builds a prediction model using training documents with known 

keyphrases, and then uses the model to find keyphrases in new documents. We use a large test 

corpus to evaluate Kea’s effectiveness in terms of how many author-assigned keyphrases are 

correctly identified. The system is simple, robust, and available under the GNU General Public 

License; the paper gives instructions for use. 

INTRODUCTION 
Keyphrases provide a brief summary of a document’s contents. As large document collections 

such as digital libraries become widespread, the value of such summary information increases. 

Keywords and keyphrases1 are particularly useful because they can be interpreted individually 

and independently of each other. They can be used in information retrieval systems as 

descriptions of the documents returned by a query, as the basis for search indexes, as a way of 

browsing a collection, and as a document clustering technique. 

In addition, keyphrases can help users get a feel for the content of a collection, provide sensible 

entry points into it, show how queries can be extended, facilitate document skimming by visually 

                                                
1 Throughout this document we use the latter term to subsume the former 
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emphasizing important phrases; and offer a powerful means of measuring document similarity 

(e.g. Gutwin et al., 1999; Witten, 1999). 

Keyphrases are usually chosen manually. In many academic contexts, authors assign keyphrases 

to documents they have written. Professional indexers often choose phrases from a predefined 

“controlled vocabulary” relevant to the domain at hand. However, the great majority of 

documents come without keyphrases, and assigning them manually is a tedious process that 

requires knowledge of the subject matter. Automatic extraction techniques are potentially of 

great benefit. 

There are two fundamentally different approaches to the problem of automatically generating 

keyphrases for a document: keyphrase assignment and keyphrase extraction. Both use machine 

learning methods, and require for training purposes a set of documents with keyphrases already 

attached. 

Keyphrase assignment seeks to select the phrases from a controlled vocabulary that best 

describe a document. The training data associates a set of documents with each phrase in the 

vocabulary, and builds a classifier for each phrase. A new document is processed by each 

classifier, and assigned the keyphrase of any model that classifies it positively (e.g. Dumais et 

al., 1998). The only keyphrases that can be assigned are ones that have already been seen in the 

training data. 
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Table 1  Titles, and author- and machine-assigned keyphrases, for three papers 
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Keyphrase extraction, the approach used here, does not use a controlled vocabulary, but instead 

chooses keyphrases from the text itself. It employs lexical and information retrieval techniques 

to extract phrases from the document text that are likely to characterize it (Turney, 2000). In 

this approach, the training data is used to tune the parameters of the extraction algorithm. 

This paper describes the Kea keyphrase extraction algorithm. It is simple and effective, and 

performs at the current state of the art (Frank et al., 1999). It uses the Naïve Bayes machine 

learning algorithm for training and keyphrase extraction. An implementation is available from 

the New Zealand Digital Library project (http://www.nzdl.org/). 

Kea builds on work by Turney (2000), who was the first to treat this problem as a problem of 

supervised learning from examples. Others had previously used heuristics to extract keyphrases 

from a document (Krulwich and Burkey, 1996), or methods such as neural networks (Munoz, 

1996), or the mutual information heuristic (Steier and Belew, 1993), to discover a large list of 

two-word phrases. There has also been a great deal of related research on generating or 

extracting summary information from text (e.g. Brandow et al., 1994; Johnson et al., 1993; 

Kupiec et al., 1995), but this, in general, attempts to extract complete sentences rather than 

keywords or keyphrases. 

Kea’s output is illustrated in Table 1, which shows the titles of three research articles and two 

sets of keyphrases for each article. One set gives the keyphrases assigned by the author; the 
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Table 2  Author- and machine-assigned keyphrases for three abstracts in German 
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other was determined automatically from the article’s full text. Phrases in common between the 

two sets are italicized. 

In each case, the author’s keyphrases and the automatically-extracted keyphrases are quite 

similar, but it is not too difficult to guess which phrases are the author’s. The giveaway is that 

Kea, in addition to choosing several good keyphrases, also chooses some that authors are 

unlikely to use—for example, gauge, smooth, and especially garbage! Despite these anomalies, 

the automatically-extracted lists seem to provide a reasonable description of the three papers. In 

the case where no author-specified keyphrases were available, Kea’s choices would be a 

valuable resource to someone encountering these three articles for the first time. 

The Kea algorithm is language-independent (although a stemmer and a stopword list are used, 

both of which do depend on the language). Table 2 shows an example in the German language. 

In this case the documents are abstracts of papers in a German sociology journal. Again the first 

list in each pair gives the author’s keyphrases; the second gives Kea’s; and phrases with a 

common stem are italicized. Most of the authors’ phrases are single words, and this relative lack 

of multiword phases is probably characteristic of the German languages, where compound 

words often serve the role of phrases in English. Also, because in this example only abstracts 

were available, rather than full articles, the extracted keyphrases have a somewhat lower 

correspondence with the authors’ ones than can be seen in Table 1. 

Our goal with Kea is to provide useful metadata where none existed before. Although we 

evaluate Kea’s performance by comparing with the author’s own keyphrases, we do not expect 

to equal them. If we can extract reasonable summaries from text documents, we give a valuable 

tool to the designers and users of digital libraries. The remainder of this paper describes Kea. 

The next section details the design of the algorithm. We then give an example of the prediction 

model generated by Kea and show how it is used to assess a candidate keyphrase. Following 

that, we report on several experiments designed to test Kea’s effectiveness and to explore the 

effects of varying parameters in the extraction process. An Appendix describes how to 

download and run the Kea system. 
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THE KEA ALGORITHM 
Kea’s extraction algorithm has two stages: 

1. Training: create a model for identifying keyphrases, using training documents where the 

author’s keyphrases are known. 

2. Extraction: choose keyphrases from a new document, using the above model. 

The process is outlined in Figure 1. Both stages choose a set of candidate phrases from their 

input documents, and then calculate the values of certain attributes (called features) for each 

candidate. We describe these two steps first, and then outline the training and extraction stages 

in more detail. 

Candidate phrases 
Kea chooses candidate phrases in three steps. It first cleans the input text, then identifies 

candidates, and finally stems and case-folds the phrases. 

Input cleaning 

ASCII input files are filtered to regularize the text and determine initial phrase boundaries. The 

input stream is split into tokens (sequences of letters, digits and internal periods), and then 

several modifications are made: 

• punctuation marks, brackets, and numbers are replaced by phrase boundaries; 

• apostrophes are removed; 

• hyphenated words are split in two; 

• remaining non-token characters are deleted, as are any tokens that do not contain letters. 

The result is a set of lines, each a sequence of tokens containing at least one letter. Acronyms 

containing periods, like C4.5, are retained as single tokens. 

Phrase identification 

Kea then considers all the subsequences in each line and determines which of these are suitable 

candidate phrases. We have investigated several methods for determining suitability, such as 

looking for noun phrases, but we have found that the following rules are both simple and 

effective: 

1. Candidate phrases are limited to a certain maximum length (usually three words). 
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2. Candidate phrases cannot be proper names (i.e. single words that only ever appear with an 

initial capital). 

3. Candidate phrases cannot begin or end with a stopword. 

The stopword list contains 425 words in nine syntactic classes (conjunctions, articles, particles, 

prepositions, pronouns, anomalous verbs, adjectives, and adverbs). For most of these classes, all 

the words listed in an on-line dictionary were added to the list. However, for adjectives and 

adverbs, we introduced several subclasses, and words from the subclasses were added only if 

they overlapped the sixty most common words in the Brown corpus (Kucera and Francis, 

1967). Furthermore, we only added frequently-occurring words from these subclasses. 

All contiguous sequences of words in each input line are tested using the three rules above, 

yielding a set of candidate phrases. Note that subphrases are often candidates themselves. Thus, 

for example, a line that reads the programming by demonstration method will generate 

programming, demonstration, method, programming by demonstration, demonstration method, 

and programming by demonstration method as candidate phrases, because the and by are on the 

stopword list. 

Case-folding and stemming 

The final step in determining candidate phrases is to case-fold all words and stem them using the 

iterated Lovins method. This involves using the classic Lovins stemmer (1968) to discard any 
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Figure 1 The training and extraction processes 
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suffix, and repeating the process on the stem that remains until there is no further change. So, 

for example, the phrase cut elimination becomes cut elim.2 

Stemming and case-folding allow us to treat different variations on a phrase as the same thing. 

For example, proof net and proof nets are essentially the same, but without stemming they 

would have to be treated as different phrases. In addition, we use the stemmed versions to 

compare Kea’s output to the author’s keyphrases. We consider an author-specified keyphrase to 

have been successfully identified if, when stemmed, it is the same as a machine-generated 

keyphrase, also stemmed. That is why in Table 1 the phrases cut-elimination and cut 

elimination, and proof nets and proof net, are considered equivalent. 

We retain the unstemmed words for each phrase, in their original capitalization, for presentation 

to the user in case the phrase does turn out to be a keyphrase. When several different 

capitalizations occur, the most frequent version is chosen. 

Feature calculation 
Two features are calculated for each candidate phrase and used in training and extraction. They 

are: TF×IDF, a measure of a phrase’s frequency in a document compared to its rarity in general 

use; and first occurrence, which is the distance into the document of the phrase’s first 

appearance. 

TF×IDF 

This feature compares the frequency of a phrase’s use in a particular document with the 

frequency of that phrase in general use. General usage is represented by document frequency—

the number of documents containing the phrase in some large corpus. A phrase’s document 

frequency indicates how common it is (and rarer phrases are more likely to be keyphrases). Kea 

builds a document frequency file for this purpose using a corpus of documents. Stemmed 

candidate phrases are generated from all documents in this corpus using the method described 

above. The document frequency file stores each phrase and a count of the number of documents 

in which it appears. 

                                                
2 For German, we used the stemmer described in [2]. 
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With this file in hand, the TF×IDF for phrase P in document D is: 

TF×IDF = 
freq(P, D)

size( D)
× − log 2

df(P)
N

, where 

1. freq(P,D) is the number of times P occurs in D 

2. size(D) is the number of words in D 

3. df(P) is the number of documents containing P in the global corpus 

4. N is the size of the global corpus. 

The second term in the equation is the log of the probability that this phrase appears in any 

document of the corpus (negated because the probability is less than one). If the document is 

not part of the global corpus, df(P) and N are both incremented by one before the term is 

evaluated, to simulate its appearance in the corpus. 

First occurrence 

The second feature, first occurrence, is calculated as the number of words that precede the 

phrase’s first appearance, divided by the number of words in the document. The result is a 

number between 0 and 1 that represents how much of the document precedes the phrase’s first 

appearance. 

Discretization 

Both features are real numbers, which we convert to nominal data for the machine-learning 

scheme. During the training process, a discretization table for each feature is derived from the 

training data. This table gives a set of numeric ranges for each feature, and values are replaced 

by the range into which the value falls. Discretization is accomplished using the supervised 

discretization method described by Fayyad and Irani (1993). 

Training: building the model 
The training stage uses a set of training documents for which the author’s keyphrases are 

known. For each training document, candidate phrases are identified and their feature values are 

calculated as described above. To reduce the size of the training set, we discard any phrase that 

occurs only once in the document. Each phrase is then marked as a keyphrase or a non-

keyphrase, using the actual keyphrases for that document. This binary feature is the class 

feature used by the machine learning scheme. 
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The scheme then generates a model that predicts the class using the values of the other two 

features. We have experimented with a number of different machine learning schemes; Kea uses 

the Naïve Bayes technique (e.g Domingos and Pazzani, 1997) because it is simple and yields 

good results. This scheme learns two sets of numeric weights from the discretized feature 

values, one set applying to positive (“is a keyphrase”) examples and the other to negative (“is 

not a keyphrase”) instances. An example model is described in Section 3. 

Extraction of new keyphrases 
To select keyphrases from a new document, Kea determines candidate phrases and feature 

values, and then applies the model built during training. The model determines the overall 

probability that each candidate is a keyphrase, and then a post-processing operation selects the 

best set of keyphrases. 

When the Naïve Bayes model is used on a candidate phrase with feature values t (for TF×IDF) 

and d (for distance), two quantities are computed: 

 P[yes] =
Y

Y + N
PTF×IDF [t | yes] Pdistance[d | yes] (1) 

and a similar expression for P[no], where Y is the number of positive instances in the training 

files—that is, author-identified keyphrases—and N is the number of negative instances—that is, 

candidate phrases that are not keyphrases. (The Laplace estimator is used to avoid zero 

probabilities. This simply replaces Y and N by Y+1 and N+1.) 

The overall probability that the candidate phrase is a keyphrase can then be calculated: 

 p = P[yes] / (P[yes]+P[no]) (2)  

Candidate phrases are ranked according to this value, and two post-process steps are carried 

out. First, TF×IDF (in its pre-discretized form) is used as a tie-breaker if two phrases have equal 

probability (common because of the discretization). Second, we remove from the list any phrase 

that is a subphrase of a higher-ranking phrase. From the remaining ranked list, the first r phrases 

are returned, where r is the number of keyphrases requested. 
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KEYPHRASE EXTRACTION EXAMPLE 
To illustrate the Naïve Bayes modeling method, we exhibit a model for keyphrase extraction 

that was learned in one experiment, and show its application to a particular phrase. 

Sample model 

Table 3 shows the model. For this training set, TF×IDF was discretized into five fixed levels, 

and first occurrence into four levels. The discretization boundaries are given at the top of Table 

3. 

Using this discretization, there are nine feature weights for positive examples and nine for 

negative ones. For example, PTF×IDF[1 | yes] is the proportion of positive examples that have a 

discretized TF×IDF value of 1. The values learned for these weights are shown in the middle of 

Table 3. 

The final component of the learned model is the number of positive and negative instances in the 

training set, shown at the bottom of Table 3. These determine the prior probability of a 

candidate phrase being a keyphrase, in the absence of any other information. 

Application of the model 
As an example of keyphrase assignment, the phrase cut elimination, with stem cut elim, appears 

16 times in the third paper of Table 1. The size of this paper is 5114 words; the phrase first 

appears at word 130. There are 132 documents in the global corpus, and cut elim appears in just 

one, but this paper is not in the global corpus, so these counts are incremented by 1. This gives 

Discretization table Feature Discretization ranges 
  1 2 3 4 5 

 TF×IDF < 0.0031 [0.0031, 0.0045) [0.0045, 0.013) [0.013, 0.033) ≥ 0.033 
 distance < 0.0014 [0.0014, 0.017) [0.017, 0.081) ≥ 0.081  

 

Class probabilities Feature Values Discretization ranges 

   1 2 3 4 5 

 TF×IDF P[TF×IDF | yes] 0.2826 0.1002 0.2986 0.1984 0.1182 
  P[TF×IDF | no] 0.8609 0.0548 0.0667 0.0140 0.0036 

 distance P[distance | yes]  0.1952 0.3360 0.2515 0.2173  
  P[distance | no]  0.0194 0.0759 0.1789 0.7333  
 
Prior probabilities Class Training instances Prior probability 

 yes 493 P(yes)  = Y/(Y+N) = 0.0044 

 no 112183 P(no) = N/(Y+N) = 0.9956 

Table 3 A particular learned model for keyphrase identification 



 

11 

cut elim the feature values TF×IDF = 0.0189, distance = 0.0254. After discretization, these 

become 4 and 3. 

The a posteriori likelihoods of this phrase being in the yes and no classes are calculated from 

Equation (1), and the overall probability for it being a keyphrase is calculated from Equation (2) 

as 0.0805. This makes it the fifth candidate phrase in the probability ordered list, so it will be 

returned as a keyphrase provided five or more are requested. 

The individual words cut and elim are also candidate phrases. Although cut has the same 

probability as cut elimination, it is ranked higher because its (undiscretized) TF×IDF value is 

greater; thus it will also appear as a keyphrase. On the other hand, elim will never be chosen as 

a keyphrase, no matter how many are sought, because its probability is lower than that of its 

superphrase. 

EVALUATION 
We carried out an empirical evaluation of Kea using documents from the New Zealand Digital 

Library. Our goals were to assess Kea’s overall effectiveness, and also to investigate the effects 

of varying several parameters in the extraction process. We measured keyphrase quality by 

counting the number of matches between Kea’s output and the keyphrases that were originally 

chosen by the document’s author. The following sections outline our experimental methodology 

and report the results. 

Methodology 

Procedure 

Kea was evaluated using the Computer Science Technical Reports (CSTR) collection of the 

NZDL. From the 46,000 documents in this corpus, we chose 1800 where the author had 

supplied keyphrases. From these 1800, we randomly chose a test set of 500 documents, leaving 

1300 as a pool from which to select training documents. The large test set reduces measurement 

error, so our results will closely approximate the expected values for any particular document. 

Finally, a further set of documents were chosen at random from the remainder of the CSTR as 

our global corpus, used to build the document-frequency file. 

We then carried out four experiments to determine: 

• Kea’s overall effectiveness 

• the effect of changing the size and source of the global corpus 
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• the effect of changing the number of training documents 

• Kea’s performance using abstracts rather than full text 

Results from each of these experiments are given below; first, however, we describe our quality 

measures, and discuss the advantages and disadvantages of using author-specified keyphrases as 

a standard. 

Measures 

We assess Kea’s effectiveness by counting the keyphrases that were also chosen by the 

document’s author, when a fixed number of keyphrases are extracted. We use this measure 

instead of the more common information-retrieval metrics of precision and recall for three 

reasons. First, a single overall value is more easily interpreted than two values. Second, 

precision and recall can be misleading, for it is easy to maximize precision at the expense of 

recall (by returning the single most promising candidate phrase), or recall at the expense of 

precision (by returning all candidates). Third, our measure fits well with the expected behaviour 

of end-users, who will likely ask for a certain number of keyphrases for a document. If required, 

however, precision can be calculated by dividing our measure by the number of phrases 

retrieved. 

We chose to measure Kea against the choices of the document’s author for several reasons: this 

method of evaluation is simple, can be carried out automatically, and allows the comparison of 

different extraction schemes. However, there are several disadvantages to using author 

keyphrases as a standard—primarily that authors do not always choose keyphrases that best 

describe the content of their paper. Authors might choose phrases to slant their work a certain 

way, or to maximize its chance of being noticed by particular searchers. Also, keyphrases are 

often chosen hastily, just before a document is finalized. Finally, one can argue that authors are 

in any case poorly qualified to choose phrases to describe their work for others. 

This problem raises two issues. First, the variance in author choices makes it more difficult for 

an automatic extraction scheme to perform well. Second, Kea’s incorrect choices (those that did 

not match an author choice) are not necessarily poor keyphrases. A more revealing approach 

might be to use human judges to independently assess the quality of Kea’s phrases, without 

using the original author’s choices at all (Jones and Paynter, 2002). 
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Results 

Overall effectiveness 

Our first experiment assessed Kea’s overall effectiveness, when extracting up to 20 keyphrases 

per test document. This experiment used 50 training documents, the standard 500-document 

test set, and a global corpus of 100 documents. Selected results are shown in Table 4, and 

illustrated in Figure 2. 

In Figure 2, the lowest line shows the average number of correct identifications. The upper lines 

show three limits on possible performance. The first shows how many keyphrases the author 

assigned: clearly it is not possible for any algorithm to do better than this using our measure of 

success. The asymptote shows that the test set has an average of 5.4 author-assigned 

keyphrases per document. The second line from the top indicates the number of keyphrases that 

appear in the document’s text. No method of keyphrase extraction (as opposed to assignment) 

can possibly identify keyphrases that do not appear in the text. The third gives the number of 

keyphrases appearing within the candidate phrases (see Section 2.1). 

Figure 2 thus illustrates where Kea loses ground. The difference between the two middle lines 

represents how many keyphrases are not selected by the candidate selection process. The 
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Table 4 Overall performance 
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difference between the bottom two lines represents how much better the machine learning 

scheme could conceivably do in finding the authors’ keyphrases from among the candidates. 

The error bars on the lowest line (which are so small as to be barely visible) represent variance 

due to the choice of training documents. If one considers the population of all training sets of 

size 50, there is a 99% chance that the population mean lies within the error bar. Using training 

sets of only 50 documents represents the realistic situation where there are not many documents 

available with known keyphrases. Although the results for any given training set will differ, we 

can be 99% sure that Figure 2 accurately portrays the expected result over different training 

sets. 

Effect of size and source of global corpus 

We carried out a series of tests to determine how the size and source of the global corpus affect 

performance. As described in Section 2.2, the global corpus is used to build a document 

frequency file used in TF×IDF calculations. We were interested in the corpus’ size since a larger 

global corpus will more closely approximate a phrase’s true frequency in general use. We were 

also interested in the source of the global corpus’ documents—in particular, whether the 

similarity of these documents to the test documents would affect performance. 

To test the effect of the source, we built different global corpuses from: an independent set of 

similar documents, the training set, the training and test sets, the test set alone, and a set of 

documents containing a different kind of material. In our trials, no one global corpus 

significantly outperformed the others. 
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Documents 
in corpus 

Average # 
matches  

(5 extracted) 

Average # 
matches  

(15 extracted) 
0 ? ? 

1  0.674 1.307 

5 0.738 1.445 

10  0.822 1.560 

50  0.884 1.644 

100  0.868 1.644 

1000  0.854 1.596 

Table 5 Effect of varying global corpus size 

To test the effect of global corpus size, we tested Kea using corpuses of different sizes. For 

these trials, we used a training set of 130 documents, and the standard 500-document test set. 

All global corpuses were formed randomly from the CSTR documents without author-assigned 

keyphrases. As shown in Table 5 and in Figure 3, there is little to be gained by increasing the 

size of the global corpus beyond about ten documents, and after 50 documents, there is no 

further improvement. However, the document-frequency file is crucial for good results: without 

one, performance drops off dramatically. 

Figure 3 plots the number of keyphrases matched against the size of the global corpus. The 

error bars give 95% confidence intervals for the number of correct keyphrases extracted from a 

test document, given the particular training set. 
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Effect of training set size 

Our third experiment investigated whether the number of training documents (those with 

keyphrases identified) affects performance. We were interested in the practical problem of how 

many training documents are necessary for good results. In this experiment, we use a standard 

global corpus of 100 CSTR documents, and the standard test set. We varied the size of the 

training set from 1 to 130 documents, and tested Kea’s performance with each set. 

Our results (Table 6 and Figure 4) show that performance improves steadily up to a training set 

of about 20 documents, and smaller gains are made until the training set holds 50 documents. 

Figure 4 plots the number of correctly-identified keyphrases, when 5 and 15 phrases are 

extracted, against the number of documents used for training. The error bars show 99% 

confidence limits. 

These results indicate that good extraction performance can be had with a relatively small set of 

training documents. In a real-world situation where a collection without any keyphrases is to be 

Training 
documents 

Average # 
matches  

(5 extracted) 

Average # 
matches  

(15 extracted) 
0  0.684 1.266 

1  0.717 1.301 

5 0.819 1.508 

10  0.840 1.542 

20  0.869 1.625 

50 0.898 1.650 

100  0.908 1.673 

Table 6 Effect of varying training set size 

Document 
length 

Average # 
matches  

(5 extracted) 

Average # 
matches  

(15 extracted) 
Full text 0.909 1.712 

Abstracts 0.655 1.028 

Table 7 Effect of varying document length 
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processed, human experts need only read and assign keyphrases to about 25 documents in order 

to extract keyphrases from the rest of the collection. 

Effect of document length 

Our final experiment considered whether Kea’s performance suffers when it only uses the 

abstracts of documents to extract keyphrases, and compares it to performance on the full text. 

This experiment used the standard training, testing, and global corpus sets, except that 

documents with no abstract were ignored (leaving 110 training documents and 429 testing 

documents). 

Table 7 shows the number of correct keyphrases extracted using both the short and full 

documents. As expected, Kea extracts fewer keyphrases from abstracts than from the full 

document text.  

Figure 5 plots curves for the short document trial only. The four solid lines, from top to bottom, 

indicate: the number of keyphrases assigned by the author, the number appearing in the 

shortened document, the number that appear in the candidate list, and the number that are 

correctly identified by Kea. The dashed line is the number of correct keyphrases identified when 

using the full document text. The main reason for the reduced performance when using abstracts 

seems to be that—not surprisingly—far fewer of the author’s keyphrases appear in the abstract 

than can be found in the entire document. 

CONCLUSION 
We have described and evaluated an algorithm for automatically extracting keyphrases from 

text. Our results show that Kea can on average match between one and two of the five 

keyphrases chosen by the average author in this collection. We consider this to be good 

performance. Although Kea finds less than half the author’s phrases, it must choose from many 

thousands of candidates; also, it is highly unlikely that even another human would select the 

same set of phrases as the original author. 

At present, Kea’s performance is sufficient for the applications it was designed for: providing 

support for summarizing, browsing, searching and clustering in cases where manual keyphrase 

assignment is infeasible. It can and will greatly assist designers and users of large document 

collections. 
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APPENDIX: USING KEA 
The latest version of Kea is Kea-3.0, a Java implementation that basically follows the ideas 

presented above. It differs slightly from the version described above in the pre-processing step 

(i.e. in how candidate keyphrases are generated). Also, the global frequencies are based on the 

training data rather than a separate corpus. The online documentation gives more detailed 

information. 

Kea is distributed under the GNU General Public License, and can be downloaded from 

http://www.nzdl.org/Kea/. It includes a cut-down version of WEKA (Witten and Frank, 2000), 

a widely-used machine learning workbench whose full form is available from 

http://www.cs.waikato.ac.nz/ml/weka, also under the GNU General Public License. 

Installation 
To install Kea, download the archive file and use the jar utility included in every standard Java 

distribution to expand it. This creates a directory called Kea-3.0. 

Kea is implemented as a set of Java classes. To run it, first tell the Java Virtual Machine where 

to look for the classes. One way of doing this is to add Kea-3.0 (the directory containing the 

Kea code) to the CLASSPATH environment variable that is used by the Java Virtual Machine. 

Under Linux, do this: 

a) Set KEAHOME to Kea-3.0. 

b) Add $KEAHOME to your CLASSPATH environment variable. 

The on-line documentation, generated automatically from the source code, is located in a 

directory called doc. To have the documentation handy, 

c) Bookmark $KEAHOME/doc/packages.html in your web browser. 

Getting started 

Building a keyphrase extraction model 

To extract keyphrases for new documents, you must first build a keyphrase extraction model 

from a set of documents for which you have author-assigned keyphrases. Preferably these 

documents will be from the same domain as those from which you intend to extract keyphrases. 

a) Create a directory containing the documents to be used to train Kea.  



 

21 

b) Rename the document files in that directory so that they end with the suffix ".txt". 

c) Delete the author-assigned keyphrases from those documents and put them into separate 

".key" files. For example, for a document file called doc1.txt, move its keyphrases into a new 

file called doc1.key. Each keyphrase must be on a separate line. 

d) Build the keyphrase extraction model by running the KEAModelBuilder:  

java KEAModelBuilder –l <name_of_directory> –m <name_of_model> 

This uses the documents in <name_of_directory> to build a keyphrase extraction model, and 

saves it in <name_of_model>.  

KEAModelBuilder has several other options, shown in Table 8 (run it with no arguments to see 

the list). 

Option  Meaning 

–l <directory name>  Specifies name of directory 

–m <model name>  Specifies name of model 

–e <encoding>  Specifies encoding 

–d  Turns debugging mode on 

–k  Use keyphrase frequency statistic 

–p  Disallow internal periods 

–x <length>  Sets the maximum phrase length (default: 3) 

–y <length>  Sets the minimum phrase length (default: 1) 

–o <number>  The minimum number of times a phrase 
needs to occur (default: 2) 

–s <name of stopwords class>  The list of stopwords to use (default: 
StopwordsEnglish) 

–t <name of stemmer class>  The stemmer to use (default: 
IteratedLovinsStemmer) 

–n  Do not check for proper nouns 

Table 8 Options for KEAModelBuilder 
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The –e option specifies a different character encoding supported by Java. For example, to 

extract keyphrases from Chinese documents encoded using GBK, specify "–e GBK". The –d 

option generates some output that shows the progress of the model builder. 

If –k is set, the keyphrase frequency attribute is used in the model (Frank et al., 1999). This can 

improve accuracy if the training and test documents come from the same domain. For example, 

to extract keyphrases from papers on radiology, where the training documents are about 

radiology, use this option. 

If –p is set, KEA does not consider phrases with internal periods as candidate keyphrases. It is 

important to use this if a full stop is not always followed by white space in the documents. 

The last three options, –s, –t and –n allow Kea to be adapted for different languages by 

changing the list of stopwords, the stemmer, and the policy for whether capitalized words can 

be keywords. 

Extracting keyphrases 

To extract keyphrases, place the documents in an empty directory and rename them to end with 

the suffix ".txt". A previously-built keyphrase extraction model can be applied to the new 

documents using: 

java KEAKeyphraseExtractor –l <name_of_directory> –m <name_of_model> 

For each document in the directory, this creates a .key file containing five extracted keyphrases. 

However, existing .key files will not be overwritten. Instead, the keyphrases present in that file 

Option Meaning 

–l <directory name>  Specifies name of directory 

–m <model name>  Specifies name of model 

–e <encoding>  Specifies encoding 

–n  Specifies number of phrases to be output 

(default: 5) 

–d  Turns debugging mode on 

–a  Also write stemmed phrase and score into 

".key" file 

Table 9 Options for KEAKeyphraseExtractor 
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will be used to evaluate the extraction model. To do this, KEAKeyphraseExtractor compares 

the stemmed extracted phrases with the stemmed versions of the phrases in the .key file and 

reports the number of hits among the total number of extracted phrases for those documents 

that have associated .key files. 

Table 9 shows the options for KEAKeyphraseExtractor.  

To get good results, the input text for Kea should be as “clean” as possible. For example, 

HTML tags etc. in the input documents should be deleted before the model is built and before 

keyphrases are extracted from new documents. 

Examples 
The Kea archive file contains two small example collections, each split into train and test 

directories. Note that these collections are only included to show how the system can be applied 

to actual documents. Due to lack of data, the accuracy is low on both examples. 

Collection A 

This is a collection of abstracts of computer science technical reports. To build a model from 

the training data, use: 

java KEAModelBuilder –l CSTR_abstracts_train –m CSTR_abstracts_model 

To evaluate that model on the test data, use: 

java KEAKeyphraseExtractor –l CSTR_abstracts_test –m CSTR_abstracts_model 

Collection B 

This is small collection of Chinese documents in GBK encoding. To build a model from the 

training data, use: 

java KEAModelBuilder –l Chinese_train –m Chinese_model –e GBK 

To evaluate that model on the test data, use: 

java KEAKeyphraseExtractor –l Chinese_test –m Chinese_model –e GBK 

 


