

KEA: Practical Automatic Keyphrase Extraction

Ian H. Witten,* Gordon W. Paynter,* Eibe Frank,* Carl Gutwin† and Craig G. Nevill-Manning‡

* Dept of Computer Science,

University of Waikato,

Hamilton, New Zealand.

{ihw,gwp,eibe}@cs.waikato.ac.nz

† Dept of Computer Science,

University of Saskatchewan,

Saskatoon, Canada

gutwin@cs.usask.ca

‡ Google Inc.

New York

NY, USA

craignm@google.com

ABSTRACT
Keyphrases provide semantic metadata that summarize and characterize documents. This paper

describes Kea, an algorithm for automatically extracting keyphrases from text. Kea identifies

candidate keyphrases using lexical methods, calculates feature values for each candidate, and

uses a machine-learning algorithm to predict which candidates are good keyphrases. The

machine learning scheme first builds a prediction model using training documents with known

keyphrases, and then uses the model to find keyphrases in new documents. We use a large test

corpus to evaluate Kea’s effectiveness in terms of how many author-assigned keyphrases are

correctly identified. The system is simple, robust, and available under the GNU General Public

License; the paper gives instructions for use.

INTRODUCTION
Keyphrases provide a brief summary of a document’s contents. As large document collections

such as digital libraries become widespread, the value of such summary information increases.

Keywords and keyphrases1 are particularly useful because they can be interpreted individually

and independently of each other. They can be used in information retrieval systems as

descriptions of the documents returned by a query, as the basis for search indexes, as a way of

browsing a collection, and as a document clustering technique.

In addition, keyphrases can help users get a feel for the content of a collection, provide sensible

entry points into it, show how queries can be extended, facilitate document skimming by visually

1 Throughout this document we use the latter term to subsume the former

2

emphasizing important phrases; and offer a powerful means of measuring document similarity

(e.g. Gutwin et al., 1999; Witten, 1999).

Keyphrases are usually chosen manually. In many academic contexts, authors assign keyphrases

to documents they have written. Professional indexers often choose phrases from a predefined

“controlled vocabulary” relevant to the domain at hand. However, the great majority of

documents come without keyphrases, and assigning them manually is a tedious process that

requires knowledge of the subject matter. Automatic extraction techniques are potentially of

great benefit.

There are two fundamentally different approaches to the problem of automatically generating

keyphrases for a document: keyphrase assignment and keyphrase extraction. Both use machine

learning methods, and require for training purposes a set of documents with keyphrases already

attached.

Keyphrase assignment seeks to select the phrases from a controlled vocabulary that best

describe a document. The training data associates a set of documents with each phrase in the

vocabulary, and builds a classifier for each phrase. A new document is processed by each

classifier, and assigned the keyphrase of any model that classifies it positively (e.g. Dumais et

al., 1998). The only keyphrases that can be assigned are ones that have already been seen in the

training data.

Protocols for secure, atomic trans-
action execution in electronic
commerce

 Neural multigrid for gauge theories
and other disordered systems

 Proof nets, garbage, and
computations

anonymity

atomicity

auction

electronic
commerce

privacy

real-time

security

transaction

atomicity

auction

customer

electronic
commerce

intruder

merchant

protocol

security

third party

transaction

 disordered
systems

gauge fields

multigrid

neural multigrid

neural networks

disordered

gauge

gauge fields

interpolation
kernels

length scale

multigrid

smooth

cut-elimination

linear logic

proof nets

sharing graphs

typed lambda-
calculus

cut

cut elimination

garbage

proof net

weakening

Table 1 Titles, and author- and machine-assigned keyphrases, for three papers

3

Keyphrase extraction, the approach used here, does not use a controlled vocabulary, but instead

chooses keyphrases from the text itself. It employs lexical and information retrieval techniques

to extract phrases from the document text that are likely to characterize it (Turney, 2000). In

this approach, the training data is used to tune the parameters of the extraction algorithm.

This paper describes the Kea keyphrase extraction algorithm. It is simple and effective, and

performs at the current state of the art (Frank et al., 1999). It uses the Naïve Bayes machine

learning algorithm for training and keyphrase extraction. An implementation is available from

the New Zealand Digital Library project (http://www.nzdl.org/).

Kea builds on work by Turney (2000), who was the first to treat this problem as a problem of

supervised learning from examples. Others had previously used heuristics to extract keyphrases

from a document (Krulwich and Burkey, 1996), or methods such as neural networks (Munoz,

1996), or the mutual information heuristic (Steier and Belew, 1993), to discover a large list of

two-word phrases. There has also been a great deal of related research on generating or

extracting summary information from text (e.g. Brandow et al., 1994; Johnson et al., 1993;

Kupiec et al., 1995), but this, in general, attempts to extract complete sentences rather than

keywords or keyphrases.

Kea’s output is illustrated in Table 1, which shows the titles of three research articles and two

sets of keyphrases for each article. One set gives the keyphrases assigned by the author; the

Kompensation oder Konflikt? Zur
Erklärung negativer Einstellungen zur
Zuwanderung

 Gewalt als Reaktion auf Anerkennungs-
defizite? Eine Analyse bei männlichen
deutschen, türkischen und Aussiedler-
Jugendlichen mit dem IKG-Jugendpanel

 Ausländer, Eingebürgerte und das
Problem einer realistischen
Zuwanderer-Integrationsbilanz

Anomie

Autorität

Einstellungen

Fremden-
feindlichkeit

Konflikt

Kompensierung

Rechtsextremis-
mus

Zuwanderung

Erklärung

Einstellungen

Erklärung
negativer
Einstellungen

Konflikt

Kompensation

 Befragung

Desintegrations-
ansatz

Gewalt

Jugend

Multivariate
logistische
Regression

Gewalt

Gewalthandelns

Jugendlichen

männlichen

türkischen

Arbeitsmarkt

Bildung

Einbürgerung

Einkommen

Integration

Sprachkenntnisse

Zuwanderung

Ausländer

Eingebürgerter

juristische

sozialwissen-
schaftliche

Zuwanderer

Table 2 Author- and machine-assigned keyphrases for three abstracts in German

4

other was determined automatically from the article’s full text. Phrases in common between the

two sets are italicized.

In each case, the author’s keyphrases and the automatically-extracted keyphrases are quite

similar, but it is not too difficult to guess which phrases are the author’s. The giveaway is that

Kea, in addition to choosing several good keyphrases, also chooses some that authors are

unlikely to use—for example, gauge, smooth, and especially garbage! Despite these anomalies,

the automatically-extracted lists seem to provide a reasonable description of the three papers. In

the case where no author-specified keyphrases were available, Kea’s choices would be a

valuable resource to someone encountering these three articles for the first time.

The Kea algorithm is language-independent (although a stemmer and a stopword list are used,

both of which do depend on the language). Table 2 shows an example in the German language.

In this case the documents are abstracts of papers in a German sociology journal. Again the first

list in each pair gives the author’s keyphrases; the second gives Kea’s; and phrases with a

common stem are italicized. Most of the authors’ phrases are single words, and this relative lack

of multiword phases is probably characteristic of the German languages, where compound

words often serve the role of phrases in English. Also, because in this example only abstracts

were available, rather than full articles, the extracted keyphrases have a somewhat lower

correspondence with the authors’ ones than can be seen in Table 1.

Our goal with Kea is to provide useful metadata where none existed before. Although we

evaluate Kea’s performance by comparing with the author’s own keyphrases, we do not expect

to equal them. If we can extract reasonable summaries from text documents, we give a valuable

tool to the designers and users of digital libraries. The remainder of this paper describes Kea.

The next section details the design of the algorithm. We then give an example of the prediction

model generated by Kea and show how it is used to assess a candidate keyphrase. Following

that, we report on several experiments designed to test Kea’s effectiveness and to explore the

effects of varying parameters in the extraction process. An Appendix describes how to

download and run the Kea system.

5

THE KEA ALGORITHM
Kea’s extraction algorithm has two stages:

1. Training: create a model for identifying keyphrases, using training documents where the

author’s keyphrases are known.

2. Extraction: choose keyphrases from a new document, using the above model.

The process is outlined in Figure 1. Both stages choose a set of candidate phrases from their

input documents, and then calculate the values of certain attributes (called features) for each

candidate. We describe these two steps first, and then outline the training and extraction stages

in more detail.

Candidate phrases
Kea chooses candidate phrases in three steps. It first cleans the input text, then identifies

candidates, and finally stems and case-folds the phrases.

Input cleaning

ASCII input files are filtered to regularize the text and determine initial phrase boundaries. The

input stream is split into tokens (sequences of letters, digits and internal periods), and then

several modifications are made:

• punctuation marks, brackets, and numbers are replaced by phrase boundaries;

• apostrophes are removed;

• hyphenated words are split in two;

• remaining non-token characters are deleted, as are any tokens that do not contain letters.

The result is a set of lines, each a sequence of tokens containing at least one letter. Acronyms

containing periods, like C4.5, are retained as single tokens.

Phrase identification

Kea then considers all the subsequences in each line and determines which of these are suitable

candidate phrases. We have investigated several methods for determining suitability, such as

looking for noun phrases, but we have found that the following rules are both simple and

effective:

1. Candidate phrases are limited to a certain maximum length (usually three words).

6

2. Candidate phrases cannot be proper names (i.e. single words that only ever appear with an

initial capital).

3. Candidate phrases cannot begin or end with a stopword.

The stopword list contains 425 words in nine syntactic classes (conjunctions, articles, particles,

prepositions, pronouns, anomalous verbs, adjectives, and adverbs). For most of these classes, all

the words listed in an on-line dictionary were added to the list. However, for adjectives and

adverbs, we introduced several subclasses, and words from the subclasses were added only if

they overlapped the sixty most common words in the Brown corpus (Kucera and Francis,

1967). Furthermore, we only added frequently-occurring words from these subclasses.

All contiguous sequences of words in each input line are tested using the three rules above,

yielding a set of candidate phrases. Note that subphrases are often candidates themselves. Thus,

for example, a line that reads the programming by demonstration method will generate

programming, demonstration, method, programming by demonstration, demonstration method,

and programming by demonstration method as candidate phrases, because the and by are on the

stopword list.

Case-folding and stemming

The final step in determining candidate phrases is to case-fold all words and stem them using the

iterated Lovins method. This involves using the classic Lovins stemmer (1968) to discard any

candidate
phrase

identif ication

featu re
calculation

phrase in
document
frequency
calculation

candidate
phrase

identif ication

candidate
phrase

identif ication

global
corpus

training
documents

test
documents

learning

featu re
generation

model

keyword
ranking

DF

training

extraction

Figure 1 The training and extraction processes

7

suffix, and repeating the process on the stem that remains until there is no further change. So,

for example, the phrase cut elimination becomes cut elim.2

Stemming and case-folding allow us to treat different variations on a phrase as the same thing.

For example, proof net and proof nets are essentially the same, but without stemming they

would have to be treated as different phrases. In addition, we use the stemmed versions to

compare Kea’s output to the author’s keyphrases. We consider an author-specified keyphrase to

have been successfully identified if, when stemmed, it is the same as a machine-generated

keyphrase, also stemmed. That is why in Table 1 the phrases cut-elimination and cut

elimination, and proof nets and proof net, are considered equivalent.

We retain the unstemmed words for each phrase, in their original capitalization, for presentation

to the user in case the phrase does turn out to be a keyphrase. When several different

capitalizations occur, the most frequent version is chosen.

Feature calculation
Two features are calculated for each candidate phrase and used in training and extraction. They

are: TF×IDF, a measure of a phrase’s frequency in a document compared to its rarity in general

use; and first occurrence, which is the distance into the document of the phrase’s first

appearance.

TF×IDF

This feature compares the frequency of a phrase’s use in a particular document with the

frequency of that phrase in general use. General usage is represented by document frequency—

the number of documents containing the phrase in some large corpus. A phrase’s document

frequency indicates how common it is (and rarer phrases are more likely to be keyphrases). Kea

builds a document frequency file for this purpose using a corpus of documents. Stemmed

candidate phrases are generated from all documents in this corpus using the method described

above. The document frequency file stores each phrase and a count of the number of documents

in which it appears.

2 For German, we used the stemmer described in [2].

8

With this file in hand, the TF×IDF for phrase P in document D is:

TF×IDF =
freq(P, D)

size(D)
× − log 2

df(P)
N

, where

1. freq(P,D) is the number of times P occurs in D

2. size(D) is the number of words in D

3. df(P) is the number of documents containing P in the global corpus

4. N is the size of the global corpus.

The second term in the equation is the log of the probability that this phrase appears in any

document of the corpus (negated because the probability is less than one). If the document is

not part of the global corpus, df(P) and N are both incremented by one before the term is

evaluated, to simulate its appearance in the corpus.

First occurrence

The second feature, first occurrence, is calculated as the number of words that precede the

phrase’s first appearance, divided by the number of words in the document. The result is a

number between 0 and 1 that represents how much of the document precedes the phrase’s first

appearance.

Discretization

Both features are real numbers, which we convert to nominal data for the machine-learning

scheme. During the training process, a discretization table for each feature is derived from the

training data. This table gives a set of numeric ranges for each feature, and values are replaced

by the range into which the value falls. Discretization is accomplished using the supervised

discretization method described by Fayyad and Irani (1993).

Training: building the model
The training stage uses a set of training documents for which the author’s keyphrases are

known. For each training document, candidate phrases are identified and their feature values are

calculated as described above. To reduce the size of the training set, we discard any phrase that

occurs only once in the document. Each phrase is then marked as a keyphrase or a non-

keyphrase, using the actual keyphrases for that document. This binary feature is the class

feature used by the machine learning scheme.

9

The scheme then generates a model that predicts the class using the values of the other two

features. We have experimented with a number of different machine learning schemes; Kea uses

the Naïve Bayes technique (e.g Domingos and Pazzani, 1997) because it is simple and yields

good results. This scheme learns two sets of numeric weights from the discretized feature

values, one set applying to positive (“is a keyphrase”) examples and the other to negative (“is

not a keyphrase”) instances. An example model is described in Section 3.

Extraction of new keyphrases
To select keyphrases from a new document, Kea determines candidate phrases and feature

values, and then applies the model built during training. The model determines the overall

probability that each candidate is a keyphrase, and then a post-processing operation selects the

best set of keyphrases.

When the Naïve Bayes model is used on a candidate phrase with feature values t (for TF×IDF)

and d (for distance), two quantities are computed:

 P[yes] =
Y

Y + N
PTF×IDF [t | yes] Pdistance[d | yes] (1)

and a similar expression for P[no], where Y is the number of positive instances in the training

files—that is, author-identified keyphrases—and N is the number of negative instances—that is,

candidate phrases that are not keyphrases. (The Laplace estimator is used to avoid zero

probabilities. This simply replaces Y and N by Y+1 and N+1.)

The overall probability that the candidate phrase is a keyphrase can then be calculated:

 p = P[yes] / (P[yes]+P[no]) (2)

Candidate phrases are ranked according to this value, and two post-process steps are carried

out. First, TF×IDF (in its pre-discretized form) is used as a tie-breaker if two phrases have equal

probability (common because of the discretization). Second, we remove from the list any phrase

that is a subphrase of a higher-ranking phrase. From the remaining ranked list, the first r phrases

are returned, where r is the number of keyphrases requested.

10

KEYPHRASE EXTRACTION EXAMPLE
To illustrate the Naïve Bayes modeling method, we exhibit a model for keyphrase extraction

that was learned in one experiment, and show its application to a particular phrase.

Sample model

Table 3 shows the model. For this training set, TF×IDF was discretized into five fixed levels,

and first occurrence into four levels. The discretization boundaries are given at the top of Table

3.

Using this discretization, there are nine feature weights for positive examples and nine for

negative ones. For example, PTF×IDF[1 | yes] is the proportion of positive examples that have a

discretized TF×IDF value of 1. The values learned for these weights are shown in the middle of

Table 3.

The final component of the learned model is the number of positive and negative instances in the

training set, shown at the bottom of Table 3. These determine the prior probability of a

candidate phrase being a keyphrase, in the absence of any other information.

Application of the model
As an example of keyphrase assignment, the phrase cut elimination, with stem cut elim, appears

16 times in the third paper of Table 1. The size of this paper is 5114 words; the phrase first

appears at word 130. There are 132 documents in the global corpus, and cut elim appears in just

one, but this paper is not in the global corpus, so these counts are incremented by 1. This gives

Discretization table Feature Discretization ranges
 1 2 3 4 5

 TF×IDF < 0.0031 [0.0031, 0.0045) [0.0045, 0.013) [0.013, 0.033) ≥ 0.033
 distance < 0.0014 [0.0014, 0.017) [0.017, 0.081) ≥ 0.081

Class probabilities Feature Values Discretization ranges

 1 2 3 4 5

 TF×IDF P[TF×IDF | yes] 0.2826 0.1002 0.2986 0.1984 0.1182
 P[TF×IDF | no] 0.8609 0.0548 0.0667 0.0140 0.0036

 distance P[distance | yes] 0.1952 0.3360 0.2515 0.2173
 P[distance | no] 0.0194 0.0759 0.1789 0.7333

Prior probabilities Class Training instances Prior probability

 yes 493 P(yes) = Y/(Y+N) = 0.0044

 no 112183 P(no) = N/(Y+N) = 0.9956

Table 3 A particular learned model for keyphrase identification

11

cut elim the feature values TF×IDF = 0.0189, distance = 0.0254. After discretization, these

become 4 and 3.

The a posteriori likelihoods of this phrase being in the yes and no classes are calculated from

Equation (1), and the overall probability for it being a keyphrase is calculated from Equation (2)

as 0.0805. This makes it the fifth candidate phrase in the probability ordered list, so it will be

returned as a keyphrase provided five or more are requested.

The individual words cut and elim are also candidate phrases. Although cut has the same

probability as cut elimination, it is ranked higher because its (undiscretized) TF×IDF value is

greater; thus it will also appear as a keyphrase. On the other hand, elim will never be chosen as

a keyphrase, no matter how many are sought, because its probability is lower than that of its

superphrase.

EVALUATION
We carried out an empirical evaluation of Kea using documents from the New Zealand Digital

Library. Our goals were to assess Kea’s overall effectiveness, and also to investigate the effects

of varying several parameters in the extraction process. We measured keyphrase quality by

counting the number of matches between Kea’s output and the keyphrases that were originally

chosen by the document’s author. The following sections outline our experimental methodology

and report the results.

Methodology

Procedure

Kea was evaluated using the Computer Science Technical Reports (CSTR) collection of the

NZDL. From the 46,000 documents in this corpus, we chose 1800 where the author had

supplied keyphrases. From these 1800, we randomly chose a test set of 500 documents, leaving

1300 as a pool from which to select training documents. The large test set reduces measurement

error, so our results will closely approximate the expected values for any particular document.

Finally, a further set of documents were chosen at random from the remainder of the CSTR as

our global corpus, used to build the document-frequency file.

We then carried out four experiments to determine:

• Kea’s overall effectiveness

• the effect of changing the size and source of the global corpus

12

• the effect of changing the number of training documents

• Kea’s performance using abstracts rather than full text

Results from each of these experiments are given below; first, however, we describe our quality

measures, and discuss the advantages and disadvantages of using author-specified keyphrases as

a standard.

Measures

We assess Kea’s effectiveness by counting the keyphrases that were also chosen by the

document’s author, when a fixed number of keyphrases are extracted. We use this measure

instead of the more common information-retrieval metrics of precision and recall for three

reasons. First, a single overall value is more easily interpreted than two values. Second,

precision and recall can be misleading, for it is easy to maximize precision at the expense of

recall (by returning the single most promising candidate phrase), or recall at the expense of

precision (by returning all candidates). Third, our measure fits well with the expected behaviour

of end-users, who will likely ask for a certain number of keyphrases for a document. If required,

however, precision can be calculated by dividing our measure by the number of phrases

retrieved.

We chose to measure Kea against the choices of the document’s author for several reasons: this

method of evaluation is simple, can be carried out automatically, and allows the comparison of

different extraction schemes. However, there are several disadvantages to using author

keyphrases as a standard—primarily that authors do not always choose keyphrases that best

describe the content of their paper. Authors might choose phrases to slant their work a certain

way, or to maximize its chance of being noticed by particular searchers. Also, keyphrases are

often chosen hastily, just before a document is finalized. Finally, one can argue that authors are

in any case poorly qualified to choose phrases to describe their work for others.

This problem raises two issues. First, the variance in author choices makes it more difficult for

an automatic extraction scheme to perform well. Second, Kea’s incorrect choices (those that did

not match an author choice) are not necessarily poor keyphrases. A more revealing approach

might be to use human judges to independently assess the quality of Kea’s phrases, without

using the original author’s choices at all (Jones and Paynter, 2002).

13

Results

Overall effectiveness

Our first experiment assessed Kea’s overall effectiveness, when extracting up to 20 keyphrases

per test document. This experiment used 50 training documents, the standard 500-document

test set, and a global corpus of 100 documents. Selected results are shown in Table 4, and

illustrated in Figure 2.

In Figure 2, the lowest line shows the average number of correct identifications. The upper lines

show three limits on possible performance. The first shows how many keyphrases the author

assigned: clearly it is not possible for any algorithm to do better than this using our measure of

success. The asymptote shows that the test set has an average of 5.4 author-assigned

keyphrases per document. The second line from the top indicates the number of keyphrases that

appear in the document’s text. No method of keyphrase extraction (as opposed to assignment)

can possibly identify keyphrases that do not appear in the text. The third gives the number of

keyphrases appearing within the candidate phrases (see Section 2.1).

Figure 2 thus illustrates where Kea loses ground. The difference between the two middle lines

represents how many keyphrases are not selected by the candidate selection process. The

0

1

2

3

4

5

6

0 5 10 15 20
N

um
be

r
of

 "
co

rr
ec

t"
 k

ey
ph

ra
se

s
Number of phrases output

assigned by author

assigned by Kea

appearing in text

appearing in candidate phrases

Figure 2 Overall performance

Keyphrases
extracted

Average matches with
author keyphrases

5 0.93

10 1.39

15 1.68

20 1.88

Table 4 Overall performance

14

difference between the bottom two lines represents how much better the machine learning

scheme could conceivably do in finding the authors’ keyphrases from among the candidates.

The error bars on the lowest line (which are so small as to be barely visible) represent variance

due to the choice of training documents. If one considers the population of all training sets of

size 50, there is a 99% chance that the population mean lies within the error bar. Using training

sets of only 50 documents represents the realistic situation where there are not many documents

available with known keyphrases. Although the results for any given training set will differ, we

can be 99% sure that Figure 2 accurately portrays the expected result over different training

sets.

Effect of size and source of global corpus

We carried out a series of tests to determine how the size and source of the global corpus affect

performance. As described in Section 2.2, the global corpus is used to build a document

frequency file used in TF×IDF calculations. We were interested in the corpus’ size since a larger

global corpus will more closely approximate a phrase’s true frequency in general use. We were

also interested in the source of the global corpus’ documents—in particular, whether the

similarity of these documents to the test documents would affect performance.

To test the effect of the source, we built different global corpuses from: an independent set of

similar documents, the training set, the training and test sets, the test set alone, and a set of

documents containing a different kind of material. In our trials, no one global corpus

significantly outperformed the others.

0

0.5

1

1.5

2

1 10 100 1000

N
um

be
r

of
 "

co
rr

ec
t"

 k
ey

ph
ra

se
s

Number of documents in document-frequency file

5 phrases output

15 phrases output

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120

N
um

be
r

of
 "

co
rr

ec
t"

 k
ey

ph
ra

se
s

Number of training documents

15 phrases output

5 phrases output

Figure 3 Effect of number of documents used
when calculating TF×IDF

Figure 4 Performance against number of
training files

15

Documents
in corpus

Average #
matches

(5 extracted)

Average #
matches

(15 extracted)
0 ? ?

1 0.674 1.307

5 0.738 1.445

10 0.822 1.560

50 0.884 1.644

100 0.868 1.644

1000 0.854 1.596

Table 5 Effect of varying global corpus size

To test the effect of global corpus size, we tested Kea using corpuses of different sizes. For

these trials, we used a training set of 130 documents, and the standard 500-document test set.

All global corpuses were formed randomly from the CSTR documents without author-assigned

keyphrases. As shown in Table 5 and in Figure 3, there is little to be gained by increasing the

size of the global corpus beyond about ten documents, and after 50 documents, there is no

further improvement. However, the document-frequency file is crucial for good results: without

one, performance drops off dramatically.

Figure 3 plots the number of keyphrases matched against the size of the global corpus. The

error bars give 95% confidence intervals for the number of correct keyphrases extracted from a

test document, given the particular training set.

0

1

2

3

4

5

6

0 5 10 15 20
N

um
be

r
of

 "
co

rr
ec

t"
 k

ey
ph

ra
se

s
Number of keyphrases

assigned by author

appearing in abstract text

appearing in candidate phrases

assigned by Kea

Figure 5 Number of correct keyphrases against number of phrases
extracted

16

Effect of training set size

Our third experiment investigated whether the number of training documents (those with

keyphrases identified) affects performance. We were interested in the practical problem of how

many training documents are necessary for good results. In this experiment, we use a standard

global corpus of 100 CSTR documents, and the standard test set. We varied the size of the

training set from 1 to 130 documents, and tested Kea’s performance with each set.

Our results (Table 6 and Figure 4) show that performance improves steadily up to a training set

of about 20 documents, and smaller gains are made until the training set holds 50 documents.

Figure 4 plots the number of correctly-identified keyphrases, when 5 and 15 phrases are

extracted, against the number of documents used for training. The error bars show 99%

confidence limits.

These results indicate that good extraction performance can be had with a relatively small set of

training documents. In a real-world situation where a collection without any keyphrases is to be

Training
documents

Average #
matches

(5 extracted)

Average #
matches

(15 extracted)
0 0.684 1.266

1 0.717 1.301

5 0.819 1.508

10 0.840 1.542

20 0.869 1.625

50 0.898 1.650

100 0.908 1.673

Table 6 Effect of varying training set size

Document
length

Average #
matches

(5 extracted)

Average #
matches

(15 extracted)
Full text 0.909 1.712

Abstracts 0.655 1.028

Table 7 Effect of varying document length

17

processed, human experts need only read and assign keyphrases to about 25 documents in order

to extract keyphrases from the rest of the collection.

Effect of document length

Our final experiment considered whether Kea’s performance suffers when it only uses the

abstracts of documents to extract keyphrases, and compares it to performance on the full text.

This experiment used the standard training, testing, and global corpus sets, except that

documents with no abstract were ignored (leaving 110 training documents and 429 testing

documents).

Table 7 shows the number of correct keyphrases extracted using both the short and full

documents. As expected, Kea extracts fewer keyphrases from abstracts than from the full

document text.

Figure 5 plots curves for the short document trial only. The four solid lines, from top to bottom,

indicate: the number of keyphrases assigned by the author, the number appearing in the

shortened document, the number that appear in the candidate list, and the number that are

correctly identified by Kea. The dashed line is the number of correct keyphrases identified when

using the full document text. The main reason for the reduced performance when using abstracts

seems to be that—not surprisingly—far fewer of the author’s keyphrases appear in the abstract

than can be found in the entire document.

CONCLUSION
We have described and evaluated an algorithm for automatically extracting keyphrases from

text. Our results show that Kea can on average match between one and two of the five

keyphrases chosen by the average author in this collection. We consider this to be good

performance. Although Kea finds less than half the author’s phrases, it must choose from many

thousands of candidates; also, it is highly unlikely that even another human would select the

same set of phrases as the original author.

At present, Kea’s performance is sufficient for the applications it was designed for: providing

support for summarizing, browsing, searching and clustering in cases where manual keyphrase

assignment is infeasible. It can and will greatly assist designers and users of large document

collections.

18

ACKNOWLEDGMENTS
We would like to thank Peter Turney for sharing his datasets, discoveries, and experiences.

REFERENCES

Brandow, R., Mitze, K. and Rau, L.R. (1994) “The automatic condensation of electronic

publications by sentence selection.” Information Processing and Management, 31 (5).

Caumanns, J. (1999) “A fast and simple stemming algorithm for German words.” Technical

Report B99-16, Center für Digitale Systeme, Freie Universität Berlin.

Domingos, P. and Pazzani, M. (1997) “On the optimality of the simple bayesian classifier under

zero-one loss.” Machine Learning, 29 (2/3), 103–130.

Dumais, S. T., Platt, J., Heckerman D., and Sahami M. (1998). “Inductive learning algorithms

and representations for text categorization.” Proceedings of ACM-CIK International

Conference on Information and Knowledge Management, pp 148–155

Fayyad, U.M. and Irani, K.B. (1993) “Multi-interval discretization of continuous-valued

attributes for classification learning.” Proc IJCAI’93, 1022–1027.

Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C. and Nevill-Manning, C.G. (1999) “Domain-

specific keyphrase extraction.” Proc. Sixteenth International Joint Conference on

Artificial Intelligence, Morgan Kaufmann Publishers, San Francisco, CA, pp. 668-673.

Gutwin, C., Paynter, G.W., Witten, I.H., Nevill-Manning, C.G. and Frank, E. (1998)

“Improving browsing in digital libraries with keyphrase indexes.” J. Decision Support

Systems, vol. 27, no 1-2, Nov. 1999, pp. 81-104.

Johnson, F.C., Paice, C.D., Black, W.J. and Neal, A.P. (1993) “The application of linguistic

processing to automatic abstract generation.” J Documentation and Text Management 1.

Jones, S. and Paynter, G.W. (2002) "Automatic extraction of document keyphrases for use in

digital libraries: evaluation and applications". Journal of the American Society for

Information Science and Technology (JASIST), 53 (8), 653-677.

Krulwich, B. and Burkey, C. (1996) “Learning user information interests through the extraction

of semantically significant phrases.” AAAI Spring Symposium on Machine Learning in

Information Access, Stanford, CA; March.

Kucera, H. and Francis, W.N. (1967) Computational analysis of present-day American

English. Brown University Press, Providence.

19

Kupiec, J., Pedersen, J. and Chen, F. (1995) “A trainable document summarizer.” Proc SIGIR,

ACM Press, 68–73.

Lovins, J.B. (1968) “Development of a stemming algorithm.” Mechanical Translation and

Computational Linguistics, 11, 22–31.

Munoz, A. (1996) “Compound key word generation from document databases using a

hierarchical clustering ART model.” Intelligent Data Analysis, 1 (1).

Steier, A.M. and Belew, R.K. (1993) “Exporting phrases: A statistical analysis of topical

language.” Proc Symposium on Document Analysis and Information Retrieval, 179-190.

Turney, P.D. (2000), “Learning algorithms for keyphrase extraction.” Information Retrieval, 2

(4), 303-336.

Witten, I.H. (1999) “Browsing around a digital library.” Proc. Australasian Computer Science

Conference, Auckland, New Zealand, 1–14.

Witten, I.H. and Frank, E. (2000) Data mining: Practical machine learning tools and

techniques with Java implementations. Morgan Kaufmann, San Francisco.

20

APPENDIX: USING KEA
The latest version of Kea is Kea-3.0, a Java implementation that basically follows the ideas

presented above. It differs slightly from the version described above in the pre-processing step

(i.e. in how candidate keyphrases are generated). Also, the global frequencies are based on the

training data rather than a separate corpus. The online documentation gives more detailed

information.

Kea is distributed under the GNU General Public License, and can be downloaded from

http://www.nzdl.org/Kea/. It includes a cut-down version of WEKA (Witten and Frank, 2000),

a widely-used machine learning workbench whose full form is available from

http://www.cs.waikato.ac.nz/ml/weka, also under the GNU General Public License.

Installation
To install Kea, download the archive file and use the jar utility included in every standard Java

distribution to expand it. This creates a directory called Kea-3.0.

Kea is implemented as a set of Java classes. To run it, first tell the Java Virtual Machine where

to look for the classes. One way of doing this is to add Kea-3.0 (the directory containing the

Kea code) to the CLASSPATH environment variable that is used by the Java Virtual Machine.

Under Linux, do this:

a) Set KEAHOME to Kea-3.0.

b) Add $KEAHOME to your CLASSPATH environment variable.

The on-line documentation, generated automatically from the source code, is located in a

directory called doc. To have the documentation handy,

c) Bookmark $KEAHOME/doc/packages.html in your web browser.

Getting started

Building a keyphrase extraction model

To extract keyphrases for new documents, you must first build a keyphrase extraction model

from a set of documents for which you have author-assigned keyphrases. Preferably these

documents will be from the same domain as those from which you intend to extract keyphrases.

a) Create a directory containing the documents to be used to train Kea.

21

b) Rename the document files in that directory so that they end with the suffix ".txt".

c) Delete the author-assigned keyphrases from those documents and put them into separate

".key" files. For example, for a document file called doc1.txt, move its keyphrases into a new

file called doc1.key. Each keyphrase must be on a separate line.

d) Build the keyphrase extraction model by running the KEAModelBuilder:

java KEAModelBuilder –l <name_of_directory> –m <name_of_model>

This uses the documents in <name_of_directory> to build a keyphrase extraction model, and

saves it in <name_of_model>.

KEAModelBuilder has several other options, shown in Table 8 (run it with no arguments to see

the list).

Option Meaning

–l <directory name> Specifies name of directory

–m <model name> Specifies name of model

–e <encoding> Specifies encoding

–d Turns debugging mode on

–k Use keyphrase frequency statistic

–p Disallow internal periods

–x <length> Sets the maximum phrase length (default: 3)

–y <length> Sets the minimum phrase length (default: 1)

–o <number> The minimum number of times a phrase
needs to occur (default: 2)

–s <name of stopwords class> The list of stopwords to use (default:
StopwordsEnglish)

–t <name of stemmer class> The stemmer to use (default:
IteratedLovinsStemmer)

–n Do not check for proper nouns

Table 8 Options for KEAModelBuilder

22

The –e option specifies a different character encoding supported by Java. For example, to

extract keyphrases from Chinese documents encoded using GBK, specify "–e GBK". The –d

option generates some output that shows the progress of the model builder.

If –k is set, the keyphrase frequency attribute is used in the model (Frank et al., 1999). This can

improve accuracy if the training and test documents come from the same domain. For example,

to extract keyphrases from papers on radiology, where the training documents are about

radiology, use this option.

If –p is set, KEA does not consider phrases with internal periods as candidate keyphrases. It is

important to use this if a full stop is not always followed by white space in the documents.

The last three options, –s, –t and –n allow Kea to be adapted for different languages by

changing the list of stopwords, the stemmer, and the policy for whether capitalized words can

be keywords.

Extracting keyphrases

To extract keyphrases, place the documents in an empty directory and rename them to end with

the suffix ".txt". A previously-built keyphrase extraction model can be applied to the new

documents using:

java KEAKeyphraseExtractor –l <name_of_directory> –m <name_of_model>

For each document in the directory, this creates a .key file containing five extracted keyphrases.

However, existing .key files will not be overwritten. Instead, the keyphrases present in that file

Option Meaning

–l <directory name> Specifies name of directory

–m <model name> Specifies name of model

–e <encoding> Specifies encoding

–n Specifies number of phrases to be output

(default: 5)

–d Turns debugging mode on

–a Also write stemmed phrase and score into

".key" file

Table 9 Options for KEAKeyphraseExtractor

23

will be used to evaluate the extraction model. To do this, KEAKeyphraseExtractor compares

the stemmed extracted phrases with the stemmed versions of the phrases in the .key file and

reports the number of hits among the total number of extracted phrases for those documents

that have associated .key files.

Table 9 shows the options for KEAKeyphraseExtractor.

To get good results, the input text for Kea should be as “clean” as possible. For example,

HTML tags etc. in the input documents should be deleted before the model is built and before

keyphrases are extracted from new documents.

Examples
The Kea archive file contains two small example collections, each split into train and test

directories. Note that these collections are only included to show how the system can be applied

to actual documents. Due to lack of data, the accuracy is low on both examples.

Collection A

This is a collection of abstracts of computer science technical reports. To build a model from

the training data, use:

java KEAModelBuilder –l CSTR_abstracts_train –m CSTR_abstracts_model

To evaluate that model on the test data, use:

java KEAKeyphraseExtractor –l CSTR_abstracts_test –m CSTR_abstracts_model

Collection B

This is small collection of Chinese documents in GBK encoding. To build a model from the

training data, use:

java KEAModelBuilder –l Chinese_train –m Chinese_model –e GBK

To evaluate that model on the test data, use:

java KEAKeyphraseExtractor –l Chinese_test –m Chinese_model –e GBK

