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Abstract. Inspired by the behaviour of the human visual system, a spiking neu-
ral network is proposed to detect moving objects in a visual image sequence. 
The structure and the properties of the network are detailed in this paper. Simu-
lation results show that the network is able to perform motion detection for dy-
namic visual image sequence. Boundaries of moving objects are extracted from 
an active neuron group. Using the boundary, a moving object filter is created to 
take the moving objects from the grey image. The moving object images can be 
used to recognise moving objects. The moving tracks can be recorded for fur-
ther analysis of behaviours of moving objects. It is promising to apply this ap-
proach to video processing domain and robotic visual systems.  
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1   Introduction 

A football player can promptly perform a series of actions to capture a football when 
he sees the moving football toward him. The information of the moving football con-
veys to the brain through the visual system. The retina contains complex circuits of 
neurons that extract salient information from visual inputs. Signals from photorecep-
tors are processed by retinal interneurons, integrated by retinal ganglion cells and sent 
to the brain by axons of retinal ganglion cells. Different cells respond to different 
visual features, such as light intensity, colour or moving objects [1–5]. Mammalian 
retinas contain approximately 55 distinct cell types, each with a different function [1]. 
A retinal cell type responds to upward motion has been identified in [6]. Results in [7] 
demonstrate that information for segmenting scenes by relative motion is represented 
as early as visual cortex V1. To detect moving objects, the brain must distinguish 
local motion within the scene from the global image. The findings in [8] show how a 
population of ganglion cells selective for differential motion can rapidly flag moving 
objects, and even segregate multiple moving objects. In [9], it is shown that neurons 
compute internal models of the physical laws of motion. These findings are shown 
some principles for the brain to detect moving objects in the psychological or  
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statistical level. What are the exact neuronal circuits for motion detection? How can 
we simulate the neuronal circuits in electronic circuits and then apply them to artifi-
cial intelligent systems? This is the motivation of this paper. Jeffress [22-24] applied 
the time difference principle of axonal delay to account for sound localisation [11,13]. 
Based on spiking neuron model and axonal delay [10-14], a neuronal circuit is pro-
posed to explain how a spiking neural network can detect moving objects in an image 
sequence. The neuronal circuit has been simulated in software and embedded in a 
simulation system. Combining with the traditional image processing approaches, the 
system can demonstrates retrieval of moving objects from an image sequence. 

The remainder of this paper is organized as follows. In Section 2, axonal delays are 
used to construct a spiking neural network which is used to simulate the visual cortex 
for motion detection, and the principle of motion detection is described. The network 
model is based on conductance-based integrate-and-fire neurons. The behaviours of 
the neural network with the axonal delay are represented by a set of equations in  
Section 3. Simulation system and results for motion detection are presented in Section 4. 
Discussions about the network are given in Section 5. 

2   Spiking Neural Network Model for Motion Detection 

The human visual system performs motion detection very efficiently. Neuroscientists 
have found that there are various receptive fields from simple cells in the striate cor-
tex to those of the retina and lateral geniculate nucleus (see page 236-248 in [15]), 
and the axonal delay causes a phase shift for a spike train [10-14]. Inspired by the 
axonal delay mechanism, a spiking neural network model is proposed to detect mov-
ing objects. Its structure is shown in Fig. 1. Suppose that the first layer represents 
photonic receptors for an image from visual system. Each pixel of the image corre-
sponds to a receptor. The intermediate layer is composed of two neuron arrays. N1 
neuron array and N2 neuron array have the same size as the receptor layer. N1 and N2 
neuron array are connected to neurons in output layer. As shown in Fig.1, receptor 
Nr(x, y) is connected to N1(x, y) through excitatory synapse without delay and 
through inhibitory synapse with an axonal delay Δt. Similarly, the neuron Nr(x, y) is 
also connected to N2(x, y) through excitatory synapse with an axonal delayΔt and 
through inhibitory synapse without delay. Let SNr(x, y, t) represent current from re-
ceptor Nr(x, y). If the current from receptor Nr(x, y) is stable, i.e. current SNr(x, y, t) is 
equal to current SNr(x, y, t-Δt), the excitatory input and the inhibitory input of neuron 
N1(x, y) can be balanced by adjusting the parameters of synapses, and then neuron 
N1(x, y) is silent. If the current of receptor Nr(x, y) becomes stronger, i.e. the current 
SNr(x, y, t) is larger than current SNr(x, y, t-Δt), the balance is broken, and then neuron 
N1(x, y) will generate spikes if SNr(x, y, t) is larger enough than SNr(x, y, t-Δt). If the 
current of receptor Nr(x, y) becomes weaker, neuron N1(x, y) does not fire. In this 
case, input neuron N2(x, y) through inhibitory synapse becomes weaker, but input 
through excitatory synapse is still strong. Neuron N2(x, y) will fire if SNr(x, y, t) is 
smaller enough than SNr(x, y, t-Δt). Therefore, the gray scale changes of pixels in the 
image are reflected in the output neuron layer, i.e. Neuron N(x’, y’) will fire if Neuron 
N1 or Neuron N2 fires. Therefore, the moving object corresponds to high firing-rate 
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Fig. 1. Spiking neural network model for motion detection 

neurons in the output layer. The object can be obtained by binding these highly active 
neurons in the output layer. 

3   Spiking Neuron Model and Simulation Algorithms 

Simulation results show that the conductance-based integrate-and-fire model is very 
close to the Hodgkin and Huxley neuron model [16-21]. Therefore, this model is 
applied to the aforementioned network model. Let Gx,y (t) represent gray scale of 

image pixel at point (x,y) at time t, , ( )ex
x yq t  represent peak conductance caused by 

excitatory current SNr(x, y, t) from a receptor at point (x,y), and , ( )ih
x yq t  represent peak 

conductance caused to inhibitory current SNr(x, y, t) from a receptor at point (x,y).  For 
simplicity, suppose that each receptor can transform a gray scale value to peak con-
ductance by the following expressions. 

, ,( ) ( )ex
x y x yq t G tα= ; , ,( ) ( )ih

x y x yq t G tβ=  (1) 

where α and β  are constants. According to the conductance based integrate-and-fire 
model [20-21], neuron N1 is governed by the following equations. 
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where 1_ ( , ) ( )N ex x yg t and 1_ ( , ) ( )N ih x yg t are the conductance for excitatory and inhibitory 

synapses respectively, τex and τih  are the time constants for excitatory and inhibitory 
synapses respectively, Δt is the axonal delay, 1( , ) ( )N x yv t is the membrane potential of 

neuron N1, Eex and Eih are the reverse potential for excitatory and inhibitory synapses 
respectively, cm represents a capacitance of the membrane, gl represents the conduc-
tance of membrane, ex is short for excitatory and ih for inhibitory, Aex is the mem-
brane surface area connected to a excitatory synapse, and Aih is the membrane surface 

area connected to a inhibitory synapse, 1_ ( , )N ih x yw represents the strength of inhibitory 

synapses, 1_ ( , )N ex x yw represents the strength of excitatory synapses. 1_ ( , )N ih x yw and 

1_ ( , )N ex x yw are adjusted so that neuron N1 dose not fire when , ( )x yG t = , ( )x yG t t− Δ . 

By analogy, membrane potential of Neuron N2 is governed by the equation as  
follows.  
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where 2( , ) ( )N x yv t represents the membrane potential of neuron N2. Note that changes 

of conductance of excitatory synapses have a delay comparing with Neuron N1, but 
changes of conductance of inhibitory synapses have not any delay that is different 
from Neuron N1. When the membrane potential of Neuron N1 and N2 reaches a 
threshold vth the neuron generates a spike respectively. These spikes are transferred to 
corresponding neuron in output layer. Let SN1(t) represent a spike train which is gen-
erated by neuron N1. 

1

1 1 .
( )

0 1 .N

if neuron N fires at timet
S t

if neuron N does not fire at timet

⎧
= ⎨
⎩

 (6) 

By analogy, let SN2(t) represent spike trains for neurons N2. Neuron Nx’,y’ in the output 
layer is governed by the following equations. 
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Note that intermediate neurons are connected to output Neuron Nx’,y’ only by excita-
tory synapses. Let Sx’,y’ (t) represent spike train generated by Neuron Nx’,y’ in output 
layer. The firing rate for Neuron Nx’,y’ is calculated by the following expression. 

', ' ', '
1

( ) ( )
t T

x y x y
t

r t S t
T

+
= ∑  (9) 

Plotting rx’,y’(t) as a grey image, white areas indicate neuron groups with high firing 
rate. Drawing the outside boundaries of firing neuron groups, boundaries of moving 
objects are extracted.  

4    Simulation Results 

This model is used to simulate biologically inspired neuronal behaviours. Learning 
mechanism is not required. The parameters are set corresponding to biologic neurons. 
Following parameters for the network ware used in the experiments. vth = -60 mv. 
vreset = -70 mv. Eex= 0 mv.  Eih= -75 mv. El= -70 mv. gl =1.0 μs/mm2. cm=10 nF/mm2. 
τex=2 ms. τih=2 ms. Aih=0.028953 mm2. Aex=0.014103 mm2. These parameters can be 
slightly adjusted to get good quality of output image. The architecture of simulation 
system is shown in Fig. 2.  
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Fig. 2. The architecture of simulation system 

The system takes an image from the image sequence each time step. The image is 
transferred to a grey scale image. The grey image presents to the spiking neural net-
work (SNN) for motion detection. The moving objects can be detected by the SNN 
based on the equations in Section 3. The edges of firing neuron groups are used to 
determine the boundaries of the moving objects. Using the boundaries of the objects, 
a filter is generated to take out of moving objects from background. Therefore, the 
moving object in the grey image is transferred to the output image. The results of 
simulations are shown in Fig. 3. Images (a), (c), (e) and (g) are original image from 
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(a) A frame of image in the sequence             (b)The moving car has been detected. 

 
(c) Another frame from the sequence             (d) The car has been detected from (c). 

 
(e) People in an original image                       (f) The people has been detected from (e)  

 
      (g) People in an original image                     (h) The people has been detected from(g) 

Fig. 3. Results of simulations 

image sequence, where as (b), (d), (f) and (h) are corresponding outputs of the simula-
tion system. A simplified model based on the principle is implemented using C++ in 
Windows XP. This program can be used to demonstrate the dynamic properties for 
SNN motion detection in real time. 
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5   Discussion 

Inspired by biological findings, a neuronal circuit for motion detection is proposed in 
this paper. The neuronal circuit is based on axonal delay using spiking neuron model 
and it can be used to explain how a spiking neural network in the visual system can 
detect moving objects. Further research is required to establish the actual mechanisms 
employed by the visual cortex to determine motion. However, the proposal presented 
here can be used in artificial intelligent systems. Since the circuit is based on spiking 
neuron model, other findings in the human visual system can be integrated into the 
system to process more complicated moving objects tracking and recognition. It would 
be very promising to create more powerful image processing system using more bio-
logical principles found in the visual system, for example, this can be extended to deal 
with the coloured images. This is a very interesting topic for further study. 
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