
On the Undecidability ofPartial Polymorphic Type ReconstructionFrank PfenningJanuary 1992CMU-CS-92-105School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213AbstractWe prove that partial type reconstruction for the pure polymorphic �-calculus is undecidable by areduction from the second-order uni�cation problem, extending a previous result by H.-J. Boehm.We show further that partial type reconstruction remains undecidable even in a very small pred-icative fragment of the polymorphic �-calculus, which implies undecidability of partial type recon-struction for �ML as introduced by Harper, Mitchell, and Moggi.
This research was sponsored by the Avionics Laboratory, Wright Research and Development Center, AeronauticalSystems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597.The views and conclusions contained in this document are those of the author and should not be interpreted asrepresenting the o�cial policies, either expressed or implied, of the U.S. government.

Keywords: Polymorphic lambda calculus, type inference, higher-order uni�cation.

1 IntroductionThe polymorphic �-calculus, discovered independently by Girard [6] and Reynolds [21], has servedas the basis for many investigations into the nature of polymorphism in programming languages.While it was known that the simply-typed �-calculus admits principal type schemes and its typeinference problem is decidable [10, 16], an analysis of type inference for the polymorphic �-calculushas proved more di�cult.There appear to be at least two di�erent notions of type inference, both of which are decidableover the simply-typed fragment. One naturally arises from an explicitly typed formulation of thepolymorphic �-calculus in the style of Church, in which terms contain enough types to determineunique types for valid terms. This problem has been called partial type inference by H.-J. Boehm,who showed that, with certain minor additional assumptions, it is undecidable [1]. This resulthas been sharpened by the author in [19], where it is also argued that the problem can be solvede�ectively using higher-order uni�cation. The other notion of type inference arises more naturallyfrom a formulation in the style of Curry, in which terms carry no type information at all, and atypes may be considered properties of untyped terms. This problem has been called type inference,full type inference, and type reconstruction, and has resisted complete analysis, despite intensivee�orts and some partial answers (see, for example, [14, 12, 4]).We refer to (a variation of) Boehm's problem as partial type reconstruction and the otherproblem as full type reconstruction. We believe that partial type reconstruction is the practicallymore useful problem, and a number of implementations have been based on decidable subcases(see, for example, [2, 20, 11]). Further discussion can be found in [19].In this paper we prove that partial type reconstruction for the pure polymorphic �-calculus isundecidable. This proof is a slightly modi�ed version of the one sketched in [19]. Analysis of thisproof reveals that the result can be sharpened further in two directions: (1) the problem remainsundecidable even if we allow only type variables to occur in a partially typed term, and (2) theproblem remains undecidable even in a very simple predicative fragment.The remainder of this paper is organized as follows. In Section 2 we present an explicitly typedformulation of the pure polymorphic �-calculus and state some elementary properties. In Section 3we de�ne the partial and full type reconstruction problems for this calculus. In Section 4 we givea formulation of the second-order uni�cation problem which has been shown to be undecidable byGoldfarb [8], and which we reduce to partial type reconstruction. In Section 5 we develop thisreduction and undecidability proof for partial type reconstruction. In Section 6 we show how thisresult extends to a predicative fragment which is contained in �ML [9].2 The Polymorphic �-CalculusVariations of second-order polymorphic �-calculus go back to Girard's system F [5, 6, 7] andReynolds [21]. Here we treat the pure, type-theoretic core of the language, without recursion or ex-istential types, for example. The undecidability result for this fragment also applies to conservativeextensions of this language, that is, extensions which do not a�ect typability of the pure fragmentpresented here. Extensions by prede�ned constants, recursion, exceptions, references, dependenttypes, functions between types, existential and inductive types would typically be conservative inthis sense. On the other hand, the addition of recursive types or conjunctive types would typicallynot be conservative, since more terms in the core language terms become typable.The starting point for the partial type reconstruction problem, de�ned in Section 3, is anexplicitly typed calculus, sometimes referred to as a formulation in the style of Church. In Section 31

we will also say more about the relationship to an implicitly typed formulation in the style of Curryin which the terms contain no type information at all.Our formulation has two language levels: terms (denoted by M and N) and types (denoted by�). Types � ::= � j �1 ! �2 j ��: �Terms M ::= x j �x:�: M jM1M2 j ��: M jM [�]We let � range over type variables and x, y, z, and sometimes f and g stand for term variables.The typing judgment also requires a notion of context which assigns types to free term variables.For technical reasons, we also include declarations for type variables in the context.Context � ::= � j �; x:� j �; �:TypeThe empty context is denoted by �, which we omit on the left-hand side of the typability judgmentand at the beginning of context sequences. That is, the context �; �:Type; x:� is abbreviated by�:Type; x:�. To simplify the technical development we assume that no type or term variable isdeclared in a context more than once. We denote the type assigned to a variable x in a context� by �(x). Additionally, we will tacitly apply �-conversion (renaming of bound variables) at thelevel of terms and types (where �;�;� bind variables). [� 0=�]� denotes the result of substituting� 0 for free occurrences of � in � , renaming bound variables in � as necessary in order to avoid nameclashes. Similary, we write [�=�]� for the result of substituting � for � in � if no free variable in �is declared in �.The judgments de�ning typability and validity in this formulation of the polymorphic �-calculusare � ` � : Type � is valid in �� `M : � M has type � in �` � Valid � is validThey are de�ned by the following sets of inference rules.�(x) = � Var� ` x : � � ` � 0:Type �; x : � 0 `M : � Lam� ` �x:� 0: M : � 0 ! �� `M : � 0 ! � � `M 0 : � 0 App� `M M 0 : � �; �:Type ` M : � TLam� ` ��: M : ��: �� ` � 0 : Type � `M : ��: � TApp� `M [� 0] : [� 0=�]�The rules Lam and TLam are restricted to the case where x and �, respectively, do not alreadyoccur in �. In these inference rules we check validity of types in order to ensure that, if � is valid(de�ned below) in the �nal judgment of a typing derivation, then � must be valid throughout thederivation. �(�) = Type TVar� ` � : Type � ` �1 : Type � ` �2 : Type Arrow� ` �1 ! �2 : Type�; �:Type ` � : Type Delta� ` ��: � : Type2

Validity of contexts reduces to the validity of the types occurring in it.` � Valid ` � Valid` �; �:Type Valid ` � Valid � ` � : Type` �; x:� ValidDe�nition 1 (Validity) A context � is valid if ` � Valid can be derived using the inference rulesabove. A type � is valid in context � if � ` � : Type is derivable from the rules above. A term Mis valid in context � if � `M : � is derivable for some type � , using the rules above.In the remainder of the paper we will often abbreviate the phrase of the form \[a judgment]is derivable" by \[a judgment]." For example, the judgment \� ` M : �" might stand for theproposition \� `M : � is derivable."The polymorphic �-calculus has a number of remarkable properties, such as the Church-Rosserproperty and strong normalization for valid terms (see, for example, [7]). We will need only a verylimited set of properties of the calculus, which means that the main undecidability result also holdsin extensions where the stronger properties fail, for example, in an extension by a �xpoint operator.Proposition 2 (Basic Properties of the Polymorphic �-Calculus)1. (Weakening) Let M be a term with no free occurrence of x. Then �; x:� 0 `M : � i� � ` M : � .2. (Uniqueness of Typing Derivations) Let � be a valid context and let M be a term valid in �.Then there exists a unique (up to �-conversion) � and a unique derivation of � `M : � .3. (Decidability) Given a context � and a term M . Then it is decidable whether � is valid andwhether M is valid in �.The proofs of these basic properties are immediate and require only very simple inductions. Itis crucial for these properties that terms are explicitly typed.3 Partial Type ReconstructionA number of typing problems associated with the polymorphic �-calculus have been considered inthe literature. These have been referred to as type checking, type reconstruction, type inference,and partial type inference, but no standard terminology appears to exist. Thus we will explicitlyde�ne various notions, beginning with the notion of a partially typed term or preterm, denoted byP . Preterms P ::= x j �x:�: P j P1 P2 j ��: P j P [�] j �x: P j P []The partial type reconstruction problem for preterms arises from partial erasure, in which typescan be omitted, but a \marker" must be left wherever a type has been omitted. Another notion ofpartial inference has been considered by McCracken [14].3

De�nition 3 (Partial Erasure) Let the judgment P � M (read: P is a partial erasure of M) bede�ned by the following inference rules.x � x P � M�x:�: P � �x:�: M P � M�x: P � �x:�: MP1 � M1 P2 � M2P1 P2 � M1M2 P � M��: P � ��: MP � MP [�] � M [�] P � MP [] � M [�]De�nition 4 (Partial Type Reconstruction) Given a valid context � and a preterm P , determineif there exists a term M valid in � such that P � M . If such an M exists, we call P valid in �and write � . P .We show in Theorem 23 that partial type reconstruction is undecidable. A similar, but techni-cally weaker result was �rst reported by H.-J. Boehm [1] and anticipated by Mitchell [17]. Boehm'sproof requires a �xpoint operator and an uninterpreted type constant in the language. In view ofthe undecidability result, restrictions on partially typed terms have been proposed which lead toa decidable type reconstruction problem (see [2, 11]). Our own view is to allow the full range ofpartially typed terms and use a variant of second-order uni�cation to perform type reconstructionas suggested in [19].More di�cult to analyze than partial type reconstruction has been the problem of full typereconstruction. In our framework, this problem can be characterized if we introduce untyped terms.Untyped Terms U ::= x j �x: U j U1 U2The erasure relation now becomes simpler.De�nition 5 (Full Erasure) Let the judgment U � M (read: U is the full erasure of M) be de�nedby the following inference rules.x � x U � M�x: U � �x:�: M U � M V � NU V � M NU � MU � ��: M U � MU � M [�]De�nition 6 (Full Type Reconstruction) Given a valid � and an untyped term U , determine ifthere exists a term M valid in � such that U �M .The decidability of full type reconstruction is still open, despite intensive e�orts and a numberof partial results (see, for example, [12, 4]). Unfortunately, our undecidability results seems to bearno direct relationship to the full type reconstruction problem, nor do we see how our techniquescould be applied.While one might feel that full type reconstruction is a more fundamental, mathematical problem,it seems to us that partial type reconstruction is a more useful problem in the context of realistic4

programming languages, when augmented with type argument synthesis, which is an orthogonalissue and beyond the scope of this paper. Further discussion on this issue can be found in [19]. Inparticular, we indicate how it could be considered a natural generalization of type inference in theDamas-Milner calculus [3] which is the basis for type inference in the programming language ML.To illustrate the di�erence between partial and full type reconstruction, consider the preterm�x: x [] x in the empty context. It can easily be checked that, for example,�x: x []x � �x:��: � ! �: x [��: � ! �]x (= M1)and �x: x []x � �x:��: �: x [(��: �) ! �]x (=M2)for any valid type � . Note that M1 and M2 are both valid in the empty context. On the otherhand, there does not exist a valid M such that�x: xx � Mwhile both �x: xx � M1 and �x: xx � M2hold. Note that in the simply-typed �-calculus the problems of partial and full type reconstructionare both decidable and can be solved with essentially the same algorithm based on (�rst-order)uni�cation.Independently of the question of decidability, this example also shows partial type reconstructiondoes not have the principal type property. That is, for a preterm P there may be many di�erentvalid terms Mi and types �i such that P � Mi and ` Mi : �i, but the �i may not be instances of acommon type schema � (all of whose instances are types of P).4 A Uni�cation LogicWe would like to show the undecidability of the partial type reconstruction problem by a reductionfrom the uni�ability problem of the second-order1 fragment of the simply-typed �-calculus. Thisproblem has been shown to be undecidable in the presence of at least one binary function constantby Goldfarb [8].In order to simplify the reduction we de�ne a variant of second-order uni�cation which caneasily be seen as a generalization of the standard formulation. A related formulation in terms ofmixed pre�xes is given by Miller [15].The basic notion of the uni�cation logic is that of a formula, and uni�ability is replaced byprovability of a formula, as de�ned below. The basic formulas are equations between types, includingvariables ranging over functions between types. This requires types and functions between themto be classi�ed by kinds and they thus form a \simply-kinded" �-calculus. We use F to standfor formulas in the uni�cation logic. Moreover, we use � for type variables, � for type variableswhich may range over type functions, and � for types and functions between types (which we callextended types). Kinds K ::= Type j Type ! KExtended Types � ::= � j � j ��: � j �1 �2 j �1 ! �2 j ��: �Extended Contexts 	 ::= � j 	; �:Type j 	; �:K j 	; x:�Formulas F ::= �1 := �2 j F1 ^ F2 j > j 9�:K: F j 8�: F1This notion of \second-order" is not to be confused with the \second-order" as it appears in the phrase \second-order polymorphic �-calculus." 5

The restriction to second order is incorporated directly into this formulation by restrictingfunction kinds to have domain Type, rather than allowing the more general form K1 ! K2. Wewill drop the by-word \extended" if it is clear that we are referring to an extended type or context.Validity of extended types is de�ned as in a simply-typed �-calculus, except that kinds K play therole ordinarily played by types, and extended types � play the role of terms. The rules for validtypes in Section 2 carry over and the following new rules are added.	(�) = K	 ` � : K 	; �:Type ` � : K	 ` ��: � : Type ! K 	 ` �1 : Type ! K 	 ` �2 : Type	 ` �1 �2 : KWe write �1 =�� �2 if �1 and �2 are ��-convertible in the usual sense, and [�=�]F stands for theresult of substituting � for � in F , renaming bound variables (including those bound by 9 and 8)to avoid name clashes. Provability in the uni�cation logic is de�ned through the following inferencerules. Note that we restrict ourselves here to ordinary contexts �, containing no declarations oftype functions. This is possible because such type functions may occur only existentially quanti�edand thus never enter the context in a derivation establishing provability of a closed formula.� ` �1 : Type �1 =�� �2 � ` �2 : Type� `̀ �1 := �2 � `̀ F1 � `̀ F2� `̀ F1 ^ F2 � `̀ >� ` � : K � `̀ [�=�]F� `̀ 9�:K: F �; �:Type `̀ F� `̀ 8�: FThe following proposition is obvious from the set of inference rules.Proposition 7 (Inversion) Let � be a valid context and F be formula. If F is provable in �, thenthe last inference rule in the derivation of � `̀ F is uniquely determined.A well-formed second-order uni�cation problem can be reduced a theorem proving problem inthe uni�cation logic as follows. Let f�1 := �01; . . . ; �n := �0ngbe a set of second-order equations (considering \!" as a single binary function constant) whosefree variables are �1; . . . ; �m of kinds K1; . . . ;Km, respectively. The interpretation of this set as aformula is de�ned as 9�1:K1 . . .9�m:Km: j�1 := �01j ^ . . . ^ j�n := �0njwhere j� := �0j = 8�1 . . .8�k : � �1 . . .�k := �0 �1 . . .�kif � and �0 have kind Type ! � � � !| {z }k TypeFor example, j(��: �) := (��: � �)j = 9�:Type ! Type: 8�: � ! � := � �.Theorem 8 Given a formula F . Then provability of F is undecidable even if F contains nooccurrence of �. 6

Proof: Goldfarb [8] showed that the second-order uni�cation problem is undecidable in the pres-ence of at least one binary function constant.The reduction of this problem to the provability problem in the uni�cation logic above isstraightforward following the notes above and Miller [15]. \!" plays the role of the requiredbinary function constant; � is not required in order to attain undecidability.We also need a notion of type substitution in order to carry out the proofs in Section 3. In thisde�nition we need to traverse the context from left to right in order to properly account for thescope of type variables in a context.De�nition 9 (Type Substitution) Let 	 be an valid extended context. A 	-substitution S has theform [�1 7! �1; . . . ; �n 7! �n] such that �1; . . . ; �n (the domain of S) are variables declared in 	. Sis called valid if S	 is a valid context, de�ned byS � = �S(�:Type;) = �:Type; S	 if � not in the domain of SS(�:K;) = �:K;S	 if � not in the domain of SS(�:K;) = S([�=�]) if [� 7! �] in SS(x:�;) = x:S�;S	Here S� stands for the usual application of a substitution S to a type �, renaming bound typevariables in order to avoid name clashes. Similarly, SF stands for the result of applying thesubstitution S to the formula F . The extension of a substitution S is written as S� [� 7! �], where� may not already appear in the domain of S.Thus, for example, [� 7! � ! �](�:Type; �:Type; x:�) = �:Type; x:� ! �. Although it is byno means necessary in general, for the purposes of this paper it is convenient to restrict attentionto 	-substutitions S such that 	S is a valid context without type functions.Proposition 10 (Elementary Properties of Substitution) Let S be a valid 	-substitution and let� be an extended type such that S	 ` � : K. Then S � [� 7! �] is a valid (; �:K)-substitutionand (S � [� 7! �])F = [�=�](SF).5 Undecidability of Partial Type ReconstructionIn this section we prove the undecidability of partial type reconstruction from De�nition 4. Thisis achieved via a translation of formulas in the uni�cation logic to preterms, such that the formulais provable i� the resulting preterm is valid (typable).The �rst lemma is a central but straightforward observation. In the full type reconstructionproblem, there appears to be no way to formulate a corresponding lemma|thus the techniqueshown here does not seem to help in dealing with full type reconstruction.Lemma 11 (Forcing Type Equality) Let � be a valid context, and let P1, P2, and P be pretermswith no free occurrences of the variable f . Then � . �f: f P1 (f P2 P) i� � . P and there existterms M1 and M2 and a type � such that P1 � M1, P2 � M2, � ` M1 : � , and � `M2 : � .Proof: First assume that � . �f: f P1 (f P2 P). Then there exists a term N valid in � suchthat �f: f P1 (f P2 P) � N . From the inference rules for � we know that N must have theform �f :� 0: f M1 (f M2M). Since N was assumed to be valid, we can construct a unique typing7

derivation for N (see Proposition 2), which is determined by the structure of N . By inspectingthis derivation we can see that it must contain a subderivation of �; f :� 0 ` M : � 00 for some � 00.Furthermore, it must contain subderivations of �; f :� 0 ` M1 : � and �; f :� 0 ` M2 : � for some �and � 0 = � ! � 00 ! � 00. Since P1, P2, and P and therefore M1, M2, and M do not contain freeoccurrences of f , we conclude that � `M1 : � and � `M2 : � .For the other direction we simply have to construct a small typing derivation of � ` �f :� !� 00 ! � 00: f M1 (f M2M), using the derivations of � ` M1 : � , � `M2 : � , and � ` M : � 00.The pairing lemma allows the pairing of subproblems which might arise in the course of thereduction, where their interaction is limited to common variables.Lemma 12 (Pairing) Let � be a valid context and P1; . . . ; Pn be preterms with no free occurrencesof the variable g. Then � . �g: g P1 . . .Pn i� � . Pi for all 1 � i � n.Proof: Immediate, following simple reasoning as in the proof of Lemma 11.Lemma 14 establishes that, given an arbitrary type � , we can create a preterm P with one freevariable x such that P is valid i� x is assigned the type � (up to �-conversion between types, ofcourse).De�nition 13 (Mapping bxc��) Let � be a valid context and � a valid type in �. We de�ne thepreterm bxc�� by induction on the structure of � .Case: � = �. Then bxc�� = �z:�: �f: f x (f z (�g: g))Case: � = �1 ! �2. Thenbxc�1!�2� = �z1: �z2: �f: f (x z1) (f z2 (�g: g (bz1c�1�) (bz2c�2�)))Case: � = ��: �1. Then2bxc��: �1� = ��: �z1: �f: f (x [�]) (f z1 (�g: g (bz1c�1�;�:Type)))We will not need the following lemma directly, but its proof is instructive, as the proof of thecrucial Lemma 19 proceeds by a similar argument.Lemma 14 (Forcing Types) Given a valid context � and a type � valid in �. Then �; x:� 0 . bxc��i� � 0 = � (up to �-conversion).Proof: The proof is a straightforward induction over the structure of � , using Lemmas 11 and 12.The case of � = � follows immediately from Lemma 11.In the case for �1 ! �2 we know by induction hypothesis and Lemma 12 that z1 must beassigned type �1 and z2 must be assigned type �2. The sub-preterm (xz1) forces x to be of functiontype with domain �1, the type of z1. The range type of x must be equal to the type of z2 (byLemma 11) and thus �2.Similarly, in the case of ��: �1, we know by induction hypothesis that z1 must have type �1 incontext �; �:Type. The sub-preterm (x [�]) forces x to be of type ��: � 01. The type of this typeapplication, [�=�]� 01 = � 01, must be equal to the type of z1 by Lemma 11, and thus � 01 = �1.2The abstraction over g is redundant here, and inserted only for symmetry with the other cases.8

In the formula translation in De�nition 20, we have to consider variables which are \existential"and can not be mentioned in the preterm we are constructing. Moreover, some of these variablesmight be of second order, that is, type functions. We thus extend the previous translation andlemma to allow for these.De�nition 15 (Type Closure) Let �:Type ! � � � ! Type be a type variable. Then �, the closureof �, is de�ned by � = ��1 . . .��n: �1 ! � � � ! �n ! � �1 . . .�n.One of the basic ideas in the translation from formulas to term is that an existentially quanti�edvariable � in a formula F corresponds to an omitted type in a preterm. That is, 9�:Type: F istranslated to a preterm �x: P , where P is the result of translating F . Where the type variable �occurs in F , we use the variable x in P in such a way that the constraints imposed by the equationsin F are equivalent to the constraints on the type of x in P . Thus we need to maintain a mappingfrom type variables in F to term variables in P . It is convenient to maintain this mapping ina context of a special form, an invertible context. The de�nition is complicated slightly by typefunctions. If an existentially quanti�ed type variable � is a type function, we arrange that thecorresponding term variable has the type of the closure of �.De�nition 16 (Invertible Contexts) An extended context 	 is called invertible if for each typevariable � declared in 	 there exists a unique term variable x such that 	(x) = �. If 	 is invertible,we denote the unique variable x such that 	(x) = � by 	�1(�).Lemma 17 (Basic Property of Invertible Contexts) Given a valid invertible context 	 and a valid	-substitution S. Then S	 ` 	�1(�) : S�.De�nition 18 (Mapping kxk�) Let 	 be a valid invertible context and � an extended type (of kindType) valid in 	. We de�ne a preterm kxk�	 by induction on the structure of �. The �rst case isa degenerate subcase of the second, exhibiting the basis for this inductive de�nition.Case: � = �. Then kxk�	 = �f: f x (f (�1(�)) (�g: g))Case: � = � �1 . . . �n. Thenkxk��1...�n	 = �z1 . . .�zn: �f: f x (f ((�1(�)) [] . . . [] z1 . . . zn) (�g: g (kz1k�1) . . . (kznk�n)))Case: � = �1 ! �2. Thenkxk�1!�2	 = �z1: �z2: �f: f (xz1) (f z2 (�g: g (kz1k�1) (kz2k�2)))Case: � = ��: �1. Thenkxk��: �1	 = ��: �z1: �f: f (x [�]) (f z1 (�g: g (kz1k�1	;�:Type;z1:�)))For this mapping we need a stronger property than Lemma 14. We need to guarantee that thetype variables declared in 	 do not occur in kxk�	. This is necessary, since 9�:Type: F will betranslated to �x: P , where the type of x and the instantation for � will be forced to correspond.But the type variable � itself can not be mentioned in M , because the type assigned to x mustremain unspeci�ed. This property is embodied in next lemma by requiring that kxk�	 must be validunder any valid 	-substitution. 9

Lemma 19 (Forcing Types) Given a valid invertible context 	, a valid 	-substitution S, and anextended type � valid in 	. Then, for any valid type � ,S	; x:� . kxk�	 i� S� =�� �:Moreover, S	; x:S� . kxk�	 i� S	 . �x: kxk�	.Proof: The second part of the Lemma is an easy consequence of the �rst part. The proof of the�rst part proceeds by induction on the structure of �, where we take advantage of the secondpart for the induction hypothesis. We implicitly rely on some elementary reasoning about typingderivations as in the proof of Lemma 14.Case: � = �. Then S	; x:� . kxk�	i� S	; x:� . �f: f x (f (�1(�)) (�g: g)) by de�nitioni� S	; x:� ` 	�1(�) : � 0 and � 0 =�� � by Lemma 11i� � 0 = S� =�� � by Lemma 17Case: � = � �1 . . . �n. ThenS	; x:� . kxk�	i� S	; x:� . �z1 . . .�zn: �f: f x (f ((�1(�)) [] . . . [] z1 . . . zn)(�g: g (kz1k�1) . . . (kznk�n)))i� S	; x:�; z1:S�1; . . . ; zn:S�n. �f: f ((�1(�)) [] . . . [] z1 . . . zn) (f x (�g: g (kz1k�1) . . . (kznk�n))) by ind. hyp.i� (S�) (S�1) . . . (S�n) = S(� �1 . . . �n) =�� � by Lemma 11Case: � = �1 ! �2. ThenS	; x:�0 . kxk�1!�2	i� S	; x:� . �z1: �z2: �f: f (xz1) (f z2 (�g: g (kz1k�1) (kz2k�2))) by de�nitioni� S	; x:�; z1:S�1; z2:S�2 . �f: f (xz1) (f z2 (�g: g (kz1k�1) (kz2k�2))) by ind. hyp.i� S�1 ! S�2 = S(�1 ! �2) =�� � by Lemma 11Case: � = ��: �1. ThenS	; x:� . kxk��: �1	i� S	; x:� . ��: �z1: �f: f (x [�]) (f z1 (�g: g (kz1k�1	;�:Type;z1:�))) by de�nitioni� S	; x:�; �:Type; z1:S�1 . �f: f (x [�]) (f z1 (�g: g (kz1k�1	;�:Type;z1:�)))by ind. hyp.i� ��: S�1 = S(��: �1) =�� � by Lemma 11Now we come to the main part of the undecidability proof: a translation from formulas topreterms, mapping provability to validity. It follows the ideas discussed informally above.De�nition 20 (Formula Translation) Let 	 be a valid invertible context. Then we de�ne thepreterm dF e	 by induction on the structure of F .10

Case: F = �1 := �2. Thend�1 := �2e	 = �z1: �z2: �f: f z1 (f z2 (�g: g (kz1k�1) (kz2k�2)))Case: F = F1 ^ F2. Then dF1 ^ F2e	 = �g: g (dF1e) (dF2e)Case: F = >. Then d>e	 = �g: gCase: F = 8�:Type: F1. Thend8�:Type: F1e	 = ��: �x:�: dF1e	;�:Type;x:�Case: F = 9�:K: F1. Thend9�:Type: F1e	 = �x: �g: g (kxk�	;�:Type;x:�) (dF1e	;�:Type;x:�)Theorem 21 (Reduction of Provability to Partial Type Reconstruction) Given a valid, invertiblecontext 	, a formula F with free variables declared in 	, and a valid 	-substitution S. ThenS	 `̀ SF i� S	 . dF e	.Proof: The proof proceeds by induction on the structure of F . The lines not directly justi�edfollow directly from elementary properties of provability, substitution, and validity.Case: F = �1 := �2.Examining the left-hand side of biconditional in the claim yieldsS	 `̀ S(�1 := �2)i� S	 ` S�1 : Type and S	 ` S�2 : Type and S�1 =�� S�2Examining the right-hand side yieldsS	 . d�1 := �2e	i� S	 . �z1: �z2: �f: f z1 (f z2 (�g: g (kz1k�1) (kz2k�2))) by de�nitioni� S	; z1:S�1; z2:S�2 . �f: f z1 (f z2 (�g: g (kz1k�1) (kz2k�2))) by Lemmas 12 and 19i� S�1 =�� S�2 and S�1 and S�2 are valid in S	 by Lemma 11Hence the left-hand and right-hand sides of the theorem are equivalent in this case.Case: F = F1 ^ F2. ThenS	 `̀ S(F1 ^ F2)i� S	 `̀ SF1 ^ SF2i� S	 `̀ SF1 and S	 `̀ SF2 by Proposition 7i� S	 . dF1e	 and S	 . dF2e	 by induction hypothesisi� S	 . �g: g (dF1e) (dF2e) by Lemma 12i� S	 . dF1 ^ F2e	 by de�nitionCase: F = >. Then S	 `̀ > and also S	 . �g: g.11

Case: F = 9�:K: F1. ThenS	 `̀ S(9�:K: F1)i� S	 `̀ 9�:K: SF1 (possibly after renaming)i� S	 `̀ [�=�]SF1 for some � by Proposition 7i� (S � [� 7! �])(; �:K;x:�) `̀ (S � [� 7! �])F1 by Propositions 10 and 2i� (S � [� 7! �])(; �:K;x:�) . dF1e	;�:K;x:� by induction hypothesisi� (S � [� 7! �])	; x:� . dF1e	;�:K;x:� by De�nition 9i� (S � [� 7! �])	 . �x: �g: g (kxk�	;�:Type;x:�) (dF1e	;�:K;x:�) by Lemmas 12 and 19i� S	 . �x: �g: g (kxk�	;�:Type;x:�) (dF1e	;�:K;x:�)i� S	 . d9�:K: F1e	 by de�nitionCase: F = 8�: F1. ThenS	 `̀ S(8�: F1)i� S	 `̀ 8�: SF1 (possibly after renaming)i� S	; �:Type `̀ SF1 by Proposition 7i� S	; �:Type; x:� `̀ SF1i� S(; �:Type; x:�) `̀ SF1i� S(; �:Type; x:�) . dF1e	;�:Type;x:� by induction hypothesisi� S	; �:Type; x:� . dF1e	;�:Type;x:�i� S	 . ��: �x:�: dF1e	;�:Type;x:�i� S	 . d8�: F1e	 by de�nitionCorollary 22 Let F be a closed formula. Then `̀ F i� . dF e.Theorem 23 (Undecidability of Partial Type Reconstruction) In the pure polymorphic �-calculus,the problem of partial type reconstruction is undecidable.Proof: The problem of provability in the uni�cation logic is undecidable (see Theorem 8). Sinceprovability can be reduced to partial type reconstruction by Corollary 22, partial type reconstruc-tion is undecidable.The range of the mapping dF e mentions only type variables �. Therefore we can strengthenTheorem 23 further by considering a class of preterms containing only type variables, and thoseonly in abstractions. Q ::= x j �x:�: Q j Q1Q2 j ��: Q j �x: Q j Q []Corollary 24 The partial type reconstruction problem for preterms of the form Q is undecidable.Proof: Let F be closed formula without occurrences of �. Then dF e has the form of Q above.By Corollary 22, F is provable i� dF e is valid. But provability of F is undecidable, and hence thelimited form of type reconstruction is also undecidable.12

Since in any practical language one would like to allow user-speci�ed type annotations, we donot consider this corollary to be particularly important. We have not investigated the question ifpartial type reconstruction would be undecidable even for terms completely devoid of types (exceptfor placeholders [] and abstractions ��).Another straightforward observation is that preterms of the form dFe are in normal form.Corollary 25 The partial type reconstruction problem for preterms of the form Q which are alsoin �-normal form is undecidable.6 Partial Type Reconstruction in Predicative FragmentsOne might conjecture that the undecidability of type reconstruction is due to the inherent expressivepower of the pure polymorphic �-calculus. However, this is not the case|even a very simplepredicative fragment has an undecidable partial type reconstruction problem. This can be seenby carefully examining the proofs showing the undecidability of partial type reconstruction in thepolymorphic �-calculus given in Section 5.3 This means that partial type reconstruction for �ML(see [18, 9]) is also undecidable.The polymorphic �-calculus is impredicative in that the domain of quanti�cation (by �) includesall possible types. The term M1 = �x:��: � ! �: x [��: � ! �]x introduced in the example atthe end of Section 3 illustrates this impredicativity: ��: � ! � is instantiated with itself to yield(��: � ! �)! (��: �! �).A hierarchy of universes of types can be de�ned in order to avoid the impredicativity (see, forexample, [13]). Here, we will only use two universes: simple types s and polymorphic types � . Thecalculus is made predicative by insisting that the quanti�er � in polymorphic types ranges only oversimple types. This can be enforced syntactically by restricting the application of a polymorphicfunction to simple types.Simple Types s ::= � j s1 ! s2Polymorphic Types � ::= � j �1 ! �2 j ��: �Strati�ed Terms M ::= x j �x:�: M j M1M2 j ��: M j M [s]The inference rules for the principal judgment � `M : � are restricted in the obvious way. Werefer to the resulting calculus as the predicative fragment of the polymorphic �-calculus.Theorem 26 Let F be a formula in the uni�cation logic containing only simple types. Then dFeis valid in the polymorphic �-calculus i� dFe is valid in the predicative fragment of the polymorphic�-calculus.Proof: Examination of the proofs of Lemma 19 and Theorem 21 reveals that all omitted types []in sub-preterms of dF e will be �lled by simple types, if all types in the formula F are simple andF is provable. The only explicit type occuring in dF e is �, which is also a simple type.Corollary 27 (Predicative Partial Type Reconstruction) Partial type reconstruction in the predi-cate fragment of the polymorphic �-calculus is undecidable.Proof: We only need to note that the provability problem for formulas F containing only simpletypes is undecidable (Theorem 8).3I am grateful to Robert Harper for this observation. 13

AcknowledgmentsI am grateful to Robert Harper for pointing out that the proof of undecidability does not dependon impredicative features of the polymorphic �-calculus, to John Greiner for detailed comments onan earlier draft, and to Hans-J. Boehm and Peter Lee for discussions regarding partial polymorphictype reconstruction. This work has been supported in part by the U.S. Air Force under ContractF33615-90-C-1465, ARPA Order No. 7597.References[1] Hans-J. Boehm. Partial polymorphic type inference is undecidable. In 26th Annual Symposiumon Foundations of Computer Science, pages 339{345. IEEE, October 1985.[2] Hans-J. Boehm. Type inference in the presence of type abstraction. In Proceedings of theSIGPLAN'89 Conference on Programming Language Design and Implementation, Portland,Oregon, pages 192{206. ACM Press, June 1989.[3] Luis Damas and Robin Milner. Principal type schemes for functional programs. In Proceedingsof the 9th ACM Symposium on Principles of Programming Languages, pages 207{212. ACMSIGPLAN/SIGACT, 1982.[4] Paolo Giannini and Simona Ronchi Della Rocca. Type inference in polymorphic type disci-pline. In T. Ito and A. R. Meyer, editors, International Conference on Theoretical Aspects ofComputer Software, Sendai, Japan, pages 18{37. Springer-Verlag LNCS 526, September 1991.[5] Jean-Yves Girard. Une extension de l'interpr�etation de G�odel �a l'analyse, et son applicationa l'�elimination des coupures dans l'analyse et la th�eorie des types. In J. E. Fenstad, editor,Proceedings of the Second Scandinavian Logic Symposium, pages 63{92, Amsterdam, London,1971. North-Holland Publishing Co.[6] Jean-Yves Girard. Interpr�etation fonctionelle et �elimination des coupures de l'arithm�etiqued'ordre sup�erieur. PhD thesis, Universit�e Paris VII, 1972.[7] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of CambridgeTracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 1989.[8] Warren D. Goldfarb. The undecidability of the second-order uni�cation problem. TheoreticalComputer Science, 13:225{230, 1981.[9] Robert Harper, John Mitchell, and Eugenio Moggi. Higher order modules and the phasedistinction. In Conference Record of the 17th Annual ACM Symposium on Principles of Pro-gramming Languages, pages 341{354. ACM Press, January 1990.[10] J. Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactionsof the American Mathematical Society, 146:29{60, December 1969.[11] James W. O'Toole Jr. and David K. Gi�ord. Type reconstruction with �rst-class polymorphicvalues. In Proceedings of the SIGPLAN'89 Conference on Programming Language Design andImplementation, Portland, Oregon, pages 207{217. ACM Press, June 1989.14

[12] A. J. Kfoury and J. Tiuryn. Type reconstruction in �nite-rank fragments of the polymorphic�-calculus. Information and Computation, 199? To appear.[13] Daniel Leivant. Finitely strati�ed polymorphism. Information and Computation, 199? Toappear. Available as Technical Report CMU-CS-90-160, School of Computer Science, CarnegieMellon University.[14] Nancy McCracken. The typechecking of programs with implicit type structure. In G. Kahn,D.B. MacQueen, and G. Plotkin, editors, Semantics of Data Types, pages 301{315. Springer-Verlag LNCS 173, 1984.[15] Dale Miller. Uni�cation under a mixed pre�x. Journal of Symbolic Computation, 199? Toappear.[16] Robin Milner. A theory of type polymorphism in programming. Journal of Computer andSystem Sciences, 17:348{375, August 1978.[17] John C. Mitchell. Second-order uni�cation and types. Unpublished notes, June 1984.[18] John C. Mitchell and Robert Harper. The essence of ML. In Proceedings of the 15th ACMSymposium on Principles of Programming Languages, pages 28{46. ACM SIGPLAN/SIGACT,1988.[19] Frank Pfenning. Partial polymorphic type inference and higher-order uni�cation. In Pro-ceedings of the 1988 ACM Conference on Lisp and Functional Programming, Snowbird, Utah,pages 153{163. ACM Press, July 1988.[20] Frank Pfenning and Peter Lee. LEAP: A language with eval and polymorphism. In TAPSOFT'89, Proceedings of the International Joint Conference on Theory and Practice in SoftwareDevelopment, Barcelona, Spain, pages 345{359. Springer-Verlag LNCS 352, March 1989.[21] John Reynolds. Towards a theory of type structure. In Proc. Colloque sur la Programmation,pages 408{425. Springer-Verlag LNCS 19, 1974.
15

