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Abstract

We prove that partial type reconstruction for the pure polymorphic A-calculus is undecidable by a
reduction from the second-order unification problem, extending a previous result by H.-J. Boehm.
We show further that partial type reconstruction remains undecidable even in a very small pred-
icative fragment of the polymorphic A-calculus, which implies undecidability of partial type recon-
struction for AMY as introduced by Harper, Mitchell, and Moggi.
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1 Introduction

The polymorphic A-calculus, discovered independently by Girard [6] and Reynolds [21], has served
as the basis for many investigations into the nature of polymorphism in programming languages.
While it was known that the simply-typed A-calculus admits principal type schemes and its type
inference problem is decidable [10, 16], an analysis of type inference for the polymorphic A-calculus
has proved more difficult.

There appear to be at least two different notions of type inference, both of which are decidable
over the simply-typed fragment. One naturally arises from an explicitly typed formulation of the
polymorphic A-calculus in the style of Church, in which terms contain enough types to determine
unique types for valid terms. This problem has been called partial type inference by H.-J. Boehm,
who showed that, with certain minor additional assumptions, it is undecidable [1]. This result
has been sharpened by the author in [19], where it is also argued that the problem can be solved
effectively using higher-order unification. The other notion of type inference arises more naturally
from a formulation in the style of Curry, in which terms carry no type information at all, and a
types may be considered properties of untyped terms. This problem has been called type inference,
full type inference, and type reconstruction, and has resisted complete analysis, despite intensive
efforts and some partial answers (see, for example, [14, 12, 4]).

We refer to (a variation of) Boehm’s problem as partial type reconstruction and the other
problem as full type reconstruction. We believe that partial type reconstruction is the practically
more useful problem, and a number of implementations have been based on decidable subcases
(see, for example, [2, 20, 11]). Further discussion can be found in [19].

In this paper we prove that partial type reconstruction for the pure polymorphic A-calculus is
undecidable. This proof is a slightly modified version of the one sketched in [19]. Analysis of this
proof reveals that the result can be sharpened further in two directions: (1) the problem remains
undecidable even if we allow only type variables to occur in a partially typed term, and (2) the
problem remains undecidable even in a very simple predicative fragment.

The remainder of this paper is organized as follows. In Section 2 we present an explicitly typed
formulation of the pure polymorphic A-calculus and state some elementary properties. In Section 3
we define the partial and full type reconstruction problems for this calculus. In Section 4 we give
a formulation of the second-order unification problem which has been shown to be undecidable by
Goldfarb [8], and which we reduce to partial type reconstruction. In Section 5 we develop this
reduction and undecidability proof for partial type reconstruction. In Section 6 we show how this
result extends to a predicative fragment which is contained in AM% [9].

2 The Polymorphic \-Calculus

Variations of second-order polymorphic A-calculus go back to Girard’s system F [5, 6, 7] and
Reynolds [21]. Here we treat the pure, type-theoretic core of the language, without recursion or ex-
istential types, for example. The undecidability result for this fragment also applies to conservative
extensions of this language, that is, extensions which do not affect typability of the pure fragment
presented here. Extensions by predefined constants, recursion, exceptions, references, dependent
types, functions between types, existential and inductive types would typically be conservative in
this sense. On the other hand, the addition of recursive types or conjunctive types would typically
not be conservative, since more terms in the core language terms become typable.

The starting point for the partial type reconstruction problem, defined in Section 3, is an
explicitly typed calculus, sometimes referred to as a formulation in the style of Church. In Section 3



we will also say more about the relationship to an implicitly typed formulation in the style of Curry
in which the terms contain no type information at all.
Our formulation has two language levels: terms (denoted by M and N) and types (denoted by
T).
Types 7 = al|m —7n|Aa T
Terms M == a|Xer. M| My My | Aa. M | M [7]

We let a range over type variables and z, y, 2z, and sometimes f and ¢ stand for term variables.
The typing judgment also requires a notion of context which assigns types to free term variables.
For technical reasons, we also include declarations for type variables in the context.

Context I' == | z:7 |, a:Type

The empty context is denoted by -, which we omit on the left-hand side of the typability judgment
and at the beginning of context sequences. That is, the context -, a:Type,z:a is abbreviated by
a:Type,z:a. To simplify the technical development we assume that no type or term variable is
declared in a context more than once. We denote the type assigned to a variable z in a context
I' by I'(z). Additionally, we will tacitly apply a-conversion (renaming of bound variables) at the
level of terms and types (where A, A, A bind variables). [7'/a]r denotes the result of substituting
7/ for free occurrences of a in 7, renaming bound variables in 7 as necessary in order to avoid name
clashes. Similary, we write [7/a]I" for the result of substituting 7 for o in I' if no free variable in 7
is declared in T'.

The judgments defining typability and validity in this formulation of the polymorphic A-calculus

are
I'F7:Type 7isvalidin I

I'tM:71 M has type 7in I'
FT Valid T is valid

They are defined by the following sets of inference rules.

[(z)=T71 I'F7r"Type Fa:7"-M:1
— Var Lam
ka7 I'FXae:r’. M7 — 1
r-M:7"—r r=m:r I'a:Typek M : 7
App TLam
r-MM :7 I'FAa. M :Aa. 1
I'-7":Type I'EM:Aa.7
TApp

LM : [ /a]r

The rules Lam and TLam are restricted to the case where z and «, respectively, do not already
occur in I'. In these inference rules we check validity of types in order to ensure that, if I' is valid
(defined below) in the final judgment of a typing derivation, then I' must be valid throughout the
derivation.

I'(a) = Type 'k Type I'F 7y Type
—  TVar Arrow
I'Fa:Type 't — 7 Type

I',a:Typet 7: Type
I'FAa. 7: Type

Delta



Validity of contexts reduces to the validity of the types occurring in it.

FT Valid FT Valid 'k 7 :Type
F - Valid FT,a:Type Valid FT,z:7 Valid

Definition 1 (Validity) A context I' is valid if =1 Valid can be derived using the inference rules
above. A type 7 is valid in context I' if I' - 7 : Type is derivable from the rules above. A term M
is valid in context I' if I' F M : 7 is derivable for some type 7, using the rules above.

In the remainder of the paper we will often abbreviate the phrase of the form “[a judgment]
is derivable” by “[a judgment].” For example, the judgment “I' H M : 7”7 might stand for the
proposition “I' - M : 7 is derivable.”

The polymorphic A-calculus has a number of remarkable properties, such as the Church-Rosser
property and strong normalization for valid terms (see, for example, [7]). We will need only a very
limited set of properties of the calculus, which means that the main undecidability result also holds
in extensions where the stronger properties fail, for example, in an extension by a fixpoint operator.

Proposition 2 (Basic Properties of the Polymorphic A-Calculus)
1. (Weakening) Let M be a term with no free occurrence of x. Then ', z:7' = M 7 iff T M : 7.

2. (Uniqueness of Typing Derivations) Let I be a valid context and let M be a term valid in I
Then there exists a unique (up to a-conversion) T and a unique derivation of I' = M : T.

3. (Decidability) Given a context I' and a term M. Then it is decidable whether I' is valid and
whether M s valid in T

The proofs of these basic properties are immediate and require only very simple inductions. It
is crucial for these properties that terms are explicitly typed.

3 Partial Type Reconstruction

A number of typing problems associated with the polymorphic A-calculus have been considered in
the literature. These have been referred to as type checking, type reconstruction, type inference,
and partial type inference, but no standard terminology appears to exist. Thus we will explicitly
define various notions, beginning with the notion of a partially typed term or preterm, denoted by

P.
Preterms P == a|Axir. P|Pi Py | Aa. P| Pl7]| Ax. P | P[]

The partial type reconstruction problem for preterms arises from partial erasure, in which types
can be omitted, but a “marker” must be left wherever a type has been omitted. Another notion of
partial inference has been considered by McCracken [14].



Definition 3 (Partial Erasure) Let the judgment P < M (read: P is a partial erasure of M) be
defined by the following inference rules.

P<M P<M
<z Av:t. P < Aeir. M Ar. P<Axer. M
P < M,y Py < My P<M
P1P2§M1M2 AO[PSAO[M
P<M P<M
Plr] < M|r] P[] < MI7]

Definition 4 (Partial Type Reconstruction) Given a valid context I' and a preterm P, determine
if there exists a term M wvalid in I' such that P < M. If such an M exists, we call P valid in T
and write I' > P.

We show in Theorem 23 that partial type reconstruction is undecidable. A similar, but techni-
cally weaker result was first reported by H.-J. Boehm [1] and anticipated by Mitchell [17]. Boehm’s
proof requires a fixpoint operator and an uninterpreted type constant in the language. In view of
the undecidability result, restrictions on partially typed terms have been proposed which lead to
a decidable type reconstruction problem (see [2, 11]). Our own view is to allow the full range of
partially typed terms and use a variant of second-order unification to perform type reconstruction
as suggested in [19].

More difficult to analyze than partial type reconstruction has been the problem of full type
reconstruction. In our framework, this problem can be characterized if we introduce untyped terms.

Untyped Terms U == z|AXe.U | Uy U,
The erasure relation now becomes simpler.

Definition 5 (Full Erasure) Let the judgment U < M (read: U is the full erasure of M ) be defined
by the following inference rules.

U<M U<M V<N
r <z Ax. U < Az:r. M UV <MN
U<M U<M
U<Aa. M U< MIr]

Definition 6 (Full Type Reconstruction) Given a valid I' and an untyped term U, determine if
there exists a term M wvalid in T such that U < M.

The decidability of full type reconstruction is still open, despite intensive efforts and a number
of partial results (see, for example, [12, 4]). Unfortunately, our undecidability results seems to bear
no direct relationship to the full type reconstruction problem, nor do we see how our techniques
could be applied.

While one might feel that full type reconstruction is a more fundamental, mathematical problem,
it seems to us that partial type reconstruction is a more useful problem in the context of realistic



programming languages, when augmented with type argument synthesis, which is an orthogonal
issue and beyond the scope of this paper. Further discussion on this issue can be found in [19]. In
particular, we indicate how it could be considered a natural generalization of type inference in the
Damas-Milner calculus [3] which is the basis for type inference in the programming language ML.

To illustrate the difference between partial and full type reconstruction, consider the preterm
Az. xz[]x in the empty context. It can easily be checked that, for example,

Az. z[]z < Az:Aa.a — a. 2 [Aa. o — o]z (= My)

and

Az.z ]z < Az:Aa. a. 2 [(Aa. o) — 7]z (= My)

for any valid type 7. Note that M; and M; are both valid in the empty context. On the other
hand, there does not exist a valid M such that

Ar.xx < M

while both
Az.va < M, and Az, xa < M,

hold. Note that in the simply-typed A-calculus the problems of partial and full type reconstruction
are both decidable and can be solved with essentially the same algorithm based on (first-order)
unification.

Independently of the question of decidability, this example also shows partial type reconstruction
does not have the principal type property. That is, for a preterm P there may be many different
valid terms M; and types 7; such that P < M; and F M, : 7, but the 7, may not be instances of a
common type schema 7 (all of whose instances are types of P).

4 A Unification Logic

We would like to show the undecidability of the partial type reconstruction problem by a reduction
from the unifiability problem of the second-order! fragment of the simply-typed A-calculus. This
problem has been shown to be undecidable in the presence of at least one binary function constant
by Goldfarb [8].

In order to simplify the reduction we define a variant of second-order unification which can
easily be seen as a generalization of the standard formulation. A related formulation in terms of
mized prefizes is given by Miller [15].

The basic notion of the unification logic is that of a formula, and unifiability is replaced by
provability of a formula, as defined below. The basic formulas are equations between types, including
variables ranging over functions between types. This requires types and functions between them
to be classified by kinds and they thus form a “simply-kinded” A-calculus. We use F' to stand
for formulas in the unification logic. Moreover, we use a for type variables, 3 for type variables
which may range over type functions, and o for types and functions between types (which we call
extended types).

Kinds K == Type]| Type — K
Extended Types o al|f|ra.o|oyoy| oy — 0oy | Aa. o
Extended Contexts W | U, a:Type |V, 5:K | ¥, 20
Formulas F == oy =0y | AAF, | T|36:K. F|Va. F

!This notion of “second-order” is not to be confused with the “second-order” as it appears in the phrase “second-
order polymorphic A-calculus.”



The restriction to second order is incorporated directly into this formulation by restricting
function kinds to have domain Type, rather than allowing the more general form K; — K;. We
will drop the by-word “extended” if it is clear that we are referring to an extended type or context.
Validity of extended types is defined as in a simply-typed A-calculus, except that kinds K play the
role ordinarily played by types, and extended types ¢ play the role of terms. The rules for valid
types in Section 2 carry over and the following new rules are added.

U(p)=K V,a:Typeko: K U to:Type — K U oy : Type
Vg K U EAa.o:Type — K Uhopoy: K

We write 01 =g, 02 if 01 and o4 are 37n-convertible in the usual sense, and [o/a]F stands for the
result of substituting ¢ for a in F', renaming bound variables (including those bound by 3 and V)
to avoid name clashes. Provability in the unification logic is defined through the following inference
rules. Note that we restrict ourselves here to ordinary contexts I', containing no declarations of
type functions. This is possible because such type functions may occur only existentially quantified
and thus never enter the context in a derivation establishing provability of a closed formula.

I'F oy Type o1 =gy 02 I'Foy: Type 't F Ik F,
I'toy =0y L' FyAF T
'ko: K 't [o/B]F I'ya:Type b F
'+46:K. F I'tVa. F

The following proposition is obvious from the set of inference rules.

Proposition 7 (Inversion) Let I' be a valid context and F be formula. If F' is provable in I', then
the last inference rule in the derivation of I' = F is uniquely determined.

A well-formed second-order unification problem can be reduced a theorem proving problem in
the unification logic as follows. Let

{Ul :'O'i,...,O'niO':%}

be a set of second-order equations (considering “—” as a single binary function constant) whose
free variables are (31,..., 03, of kinds K,..., K,,, respectively. The interpretation of this set as a
formula is defined as
31Ky .. 3P K. |or = 04| A Ao, = 0l
where
o =o'| =Vay.. Vag.ocay...ap =o' ay...ap
if o and o’ have kind
Type — -+ — Type
[ ——
k
For example, |(Aa. o) = (Aa. fa)| = 33:Type — Type. Va. a — a = Fa.

Theorem 8 Given a formula F. Then provability of F is undecidable even if F' contains no
occurrence of A.



Proof: Goldfarb [8] showed that the second-order unification problem is undecidable in the pres-
ence of at least one binary function constant.

The reduction of this problem to the provability problem in the unification logic above is
straightforward following the notes above and Miller [15]. “—” plays the role of the required
binary function constant; A is not required in order to attain undecidability. O

We also need a notion of type substitution in order to carry out the proofs in Section 3. In this
definition we need to traverse the context from left to right in order to properly account for the
scope of type variables in a context.

Definition 9 (Type Substitution) Let ¥ be an valid extended context. A W-substitution S has the
form [y — o1,...,0, — o0,] such that B1,...,5, (the domain of S) are variables declared in ¥. S
s called valid if SV is a valid context, defined by

S o= -
S(a:Type,¥) = a:Type, SV if a not in the domain of S
S(B:K, V) = [:K,S5V if 3 not in the domain of S
S(K,8) = S(lo/AW)  if[3r o] in S
S(z:0,¥) = 2:50,5V

Here So stands for the usual application of a substitution S to a type o, renaming bound type
variables in order to avoid name clashes. Similarly, SF stands for the result of applying the
substitution S to the formula F. The extension of a substitution S is written as S [ — o], where
3 may not already appear in the domain of 5.

Thus, for example, [§ — a — a](a:Type, 5:Type, 2:5) = a:Type,z:a — a. Although it is by
no means necessary in general, for the purposes of this paper it is convenient to restrict attention
to U-substutitions S such that ¥5 is a valid context without type functions.

Proposition 10 (Elementary Properties of Substitution) Let S be a valid V-substitution and let
o be an extended type such that SV &+ o : K. Then S & [ — o] is a valid (¥, 5:K )-substitution
and (8 [3 — o))F = [o/F(SF).

5 Undecidability of Partial Type Reconstruction

In this section we prove the undecidability of partial type reconstruction from Definition 4. This
is achieved via a translation of formulas in the unification logic to preterms, such that the formula
is provable iff the resulting preterm is valid (typable).

The first lemma is a central but straightforward observation. In the full type reconstruction
problem, there appears to be no way to formulate a corresponding lemma—thus the technique
shown here does not seem to help in dealing with full type reconstruction.

Lemma 11 (Forcing Type Equality) Let I' be a valid context, and let Py, Pz, and P be preterms
with no free occurrences of the variable f. Then I' o Af. f P (f P, P) iff I' o P and there exist
terms My and Mo and a type 7 such that Py < My, Po < My, ' My :7, and '+ My : 7

Proof: First assume that I' o Af. f Py (f P, P). Then there exists a term N valid in I' such
that A\f. fP(fP,P) < N. From the inference rules for < we know that N must have the
form Af:r'. f My (f My M). Since N was assumed to be valid, we can construct a unique typing



derivation for N (see Proposition 2), which is determined by the structure of N. By inspecting
this derivation we can see that it must contain a subderivation of I', f:7/ F M : 7" for some 7.
Furthermore, it must contain subderivations of I', f:7' & My : 7 and T, f:7' - M3 : 7 for some 7
and 7' = 7 — 7" — 7”. Since Py, P,, and P and therefore M;, My, and M do not contain free
occurrences of f, we conclude that I' - My : 7 and I' F M, : 7.

For the other direction we simply have to construct a small typing derivation of I' - A fir —
" — 7" f My (f My M), using the derivations of ' - My : 7, ' My : 7, and I'E M 2 7. O

The pairing lemma allows the pairing of subproblems which might arise in the course of the
reduction, where their interaction is limited to common variables.

Lemma 12 (Pairing) Let I' be a valid context and P, ..., P, be preterms with no free occurrences
of the variable g. Then ' Ag. g P1... P, iff v P; for all 1 << mn.

Proof: Immediate, following simple reasoning as in the proof of Lemma 11. O

Lemma 14 establishes that, given an arbitrary type 7, we can create a preterm P with one free
variable # such that P is valid iff « is assigned the type 7 (up to a-conversion between types, of
course).

Definition 13 (Mapping |z|f) Let I' be a valid context and 7 a valid type in I'. We define the
preterm || by induction on the structure of T.

Case: 7 = «a. Then

lz]f = Azia Af. fa(fz(Ag.g))

Case: T =1 — 5. Then

[ |77 = Az Az AS (2 2) (f 22 (Mg g ([ )1 ([22]1)))
Case: 7 = Aa. 1y. Then?

[e)f ™ = A Az AL (2 [a]) (f 21 (Ag- 9 ([=1) P arype))

We will not need the following lemma directly, but its proof is instructive, as the proof of the
crucial Lemma 19 proceeds by a similar argument.

Lemma 14 (Forcing Types) Given a valid context T' and a type T valid in T. Then T, z:7" o ||
iff ' =71 (up to a-conversion).

Proof: The proof is a straightforward induction over the structure of 7, using Lemmas 11 and 12.

The case of 7 = a follows immediately from Lemma 11.

In the case for 4 — 75 we know by induction hypothesis and Lemma 12 that z; must be
assigned type 7 and zz must be assigned type m5. The sub-preterm (x z1) forces = to be of function
type with domain 71, the type of z;. The range type of # must be equal to the type of z; (by
Lemma 11) and thus 7.

Similarly, in the case of Aa. 71, we know by induction hypothesis that z; must have type 7 in
context ', a:Type. The sub-preterm (2 [a]) forces x to be of type Aa. 1. The type of this type
application, [a/a]r{ = 7{, must be equal to the type of z; by Lemma 11, and thus 7| = 7. O

2The abstraction over g is redundant here, and inserted only for symmetry with the other cases.



In the formula translation in Definition 20, we have to consider variables which are “existential”
and can not be mentioned in the preterm we are constructing. Moreover, some of these variables
might be of second order, that is, type functions. We thus extend the previous translation and
lemma to allow for these.

Definition 15 (Type Closure) Let 3:Type — --- — Type be a type variable. Then 3, the closure
of B, is defined by B = Aoy ... Aay. 0q — -+ — ay, — foq...o.

One of the basic ideas in the translation from formulas to term is that an existentially quantified
variable 4 in a formula F' corresponds to an omitted type in a preterm. That is, 35:Type. F is
translated to a preterm Az. P, where P is the result of translating F’. Where the type variable 3
occurs in F, we use the variable z in P in such a way that the constraints imposed by the equations
in F are equivalent to the constraints on the type of  in P. Thus we need to maintain a mapping
from type variables in F' to term variables in P. It is convenient to maintain this mapping in
a context of a special form, an invertible context. The definition is complicated slightly by type
functions. If an existentially quantified type variable 3 is a type function, we arrange that the
corresponding term variable has the type of the closure of 3.

Definition 16 (Invertible Contexts) An extended context ¥ is called invertible if for each type

variable 5 declared in V there exists a unique term variable x such that V(z) = (. If ¥ is invertible,
we denote the unique variable x such that ¥(z) = 3 by ¥~1(3).

Lemma 17 (Basic Property of Invertible Contexts) Given a valid invertible context ¥ and a valid

U-substitution S. Then SV F¥=1(3): 53.

Definition 18 (Mapping ||z||3) Let ¥ be a valid invertible context and o an extended type (of kind
Type) valid in V. We define a preterm ||z||g by induction on the structure of o. The first case is
a degenerate subcase of the second, exhibiting the basis for this inductive definition.

Case: 0 = a. Then

l2[|§ = Af. fa(f (T7H(a) (Ag. 9))

Case: 0= f30y...0,. Then
2157 = Az Az A Fa (PN Lz 20) Qg g (12015 - (121 §)))
Case: 0 = 0y — 0y. Then
[2ll§ ™7 = Azie Azge AF f (@ 20) (f 22 (Ag- g (2l ([22]1F))
Case: 0 = Aa. oy. Then

l2ll3™ 7 = Aa. Az A f (2 [a]) (f 21 (Ag- 9 (I21]1F crypessyia))

For this mapping we need a stronger property than Lemma 14. We need to guarantee that the
type variables declared in ¥ do not occur in ||z||§. This is necessary, since 33:Type. F' will be
translated to Az. P, where the type of # and the instantation for # will be forced to correspond.
But the type variable 3 itself can not be mentioned in M, because the type assigned to x must
remain unspecified. This property is embodied in next lemma by requiring that ||z||§ must be valid
under any valid ¥-substitution.



Lemma 19 (Forcing Types) Given a valid invertible context ¥, a valid V-substitution S, and an
extended type o valid in V. Then, for any valid type T,

S,z o ||2||g  iff So =g, T
Moreover, SV, z:50 o ||z||  if SV Az ||2]|F.

Proof: The second part of the Lemma is an easy consequence of the first part. The proof of the
first part proceeds by induction on the structure of o, where we take advantage of the second
part for the induction hypothesis. We implicitly rely on some elementary reasoning about typing
derivations as in the proof of Lemma 14.

Case: 0 = a. Then

S,z e ||z||§
iff SO, zire A fa(f(P™Ha))(Ng.g)) by definition
iff SU,z:7E¥Ya):7 and 7/ =3, 7 by Lemma 11
iff 7'=8a=g,7 by Lemma 17

Case: 0 = f0y...0,. Then

S,z e ||z||g

i ST, zr o Az Az AL S (F(RY B[]z 20X g (I llgh) - - - (zal1T)))
it SV, a7, 21:501,...,2,:50,

N PN o1 2 (P2 Qe g (23 - (12§ by ind. hyp.
ifft (SB)(So1)...(S0,)=8(B01...0,) =, T by Lemma 11

Case: 0 = 0y — 09. Then

S, z0’ > ||a||g T2

iff S, 2> Azi. Az Af. f (2 20) (f 22 (Ag. g (|21]l5) (1221197))) by definition
iff SV, a7, 21501, 22:502 0 Af. f(2z21)(fz2(Ag. g(|=1|I§) (|221197))) by ind. hyp.
iff Soy — Soy=5(01 — 03) =3, T by Lemma 11

Case: 0 = Aa. 01. Then

SU, x:7 > HxH@a'gl
iff SU,zir > Ao Az Af. f(zfa])(fz1(Ng. g (\]21\]%17Q:Type721:a))) by definition
iff SV, z:r,a:Type, z1:501 0 Af. f(a[a])(fx1(Ng. g (\]21\]%17Q:Type721:a)))

by ind. hyp.
iff Aa. Soy = S(Aa.oy) =g, T by Lemma 11

O

Now we come to the main part of the undecidability proof: a translation from formulas to
preterms, mapping provability to validity. It follows the ideas discussed informally above.

Definition 20 (Formula Translation) Let ¥ be a valid invertible context. Then we define the
preterm [FY by induction on the structure of F.

10



Case: F' =0y = 0y. Then

[o1 = 021" = Az1 Az AL f 21 (f 22 (Mg g (1=al1F) (N2l §)))

Case: F'= Fi AN Fy. Then
[F A FTY = g g (TRTY) ([F2]Y)

Case: I'=T. Then
[T1Y = Ag. g

Case: F = Va:Type. Fy. Then

[Va:Type. }‘—71-“1J = Aa. \r:«. [Fl"‘lj,OzZType,x:a

Case: F = 316:K. Fy. Then

[35:Type. F1]Y = Az Ag. g (|12l ) ([F1] 10 Tvvess)

U,3:Type,a:f

Theorem 21 (Reduction of Provability to Partial Type Reconstruction) Given a valid, invertible
context ¥, a formula F with free variables declared in V, and a valid V-substitution 5. Then

SU I SF iff SO [F]Y.

Proof: The proof proceeds by induction on the structure of F. The lines not directly justified
follow directly from elementary properties of provability, substitution, and validity.

Case: F = 01 = 03.

Examining the left-hand side of biconditional in the claim yields

SU S(O’l = 0'2)

ift SU I Soy:Type and SV Sop:Type and Soy =g, Soo

Examining the right-hand side yields

SU > [0'1 = 02—“1]
ifft SU > Az Azo. ASf. o (f22 (Mg g (|20 1) (122012)))
ifft SV, z:801,20:800 0 Af. f21(f 22 (Ag. g (||2llg) (|22]157)))
ift Soy =, So2 and Soy and Sog are valid in S¥

by definition
by Lemmas 12 and 19
by Lemma 11

Hence the left-hand and right-hand sides of the theorem are equivalent in this case.

Case: F' = Fi A F5. Then

SU b S(Fy A F)
iff Sk SFy A SF

iff SUHE SF, and SV SF, by Proposition 7
iff SUe[F]Y and SV¥ e [F]Y by induction hypothesis

iff SV Ag. g([F1]Y)([F2]Y) by Lemma 12
iff SO [FyAF]Y by definition

Case: FF' = T. Then SV¥ - T and also SV > Ag. g.

11



Case: F = 16:K. F|. Then

SU  S(IB:K. Fy)

ifft SUkd5:K.5F (possibly after renaming)
iff SU Ik [0/B8]SF, for some o by Proposition 7

iff (S@[B— o) (V,3:K,2:8) (SB[ o])F} by Propositions 10 and 2
iff (S@[B+— o) (¥,3:K,2:08) > [Fﬂf’ﬁj{’l’:ﬁ by induction hypothesis
ifft (S@[Bw— o))V, 270 [Fﬂq”ﬁj"f:ﬁ by Definition 9

iff (S@[B— o])¥peAx.Ng. g (Hng BiType x.ﬁ)([Fﬂ‘I”ﬁ:K@:B) by Lemmas 12 and 19

: 8 7 ‘l&ﬁt[",x:ﬁ

iff S Az. Ag. g (HxH\D,ﬁ:Type,x:E) ([F1] T

iff SV [38:K. F1]Y by definition

Case: F' =Va. Fi. Then

SU t S(Va. Fr)
iff SY Kk Va. SF (possibly after renaming)
it SW,a:Typet SF; by Proposition 7
ifft SV, a:Type,z:a b SF;
iff S(¥,a:Type,z:0) = SF
iff S(¥,a:Type, z:a) > [F}]VTyPem@ by induction hypothesis
iff SV, a:Type,x:a > [Fy]Voilypesa
iff SV Aa. Az:a. [Fy]|VeTypesa
iff SV [Va. F31Y by definition

Corollary 22 Let F' be a closed formula. Then - F iff o [F].

Theorem 23 (Undecidability of Partial Type Reconstruction) In the pure polymorphic A-calculus,
the problem of partial type reconstruction is undecidable.

Proof: The problem of provability in the unification logic is undecidable (see Theorem 8). Since
provability can be reduced to partial type reconstruction by Corollary 22, partial type reconstruc-
tion is undecidable. O

The range of the mapping [F'] mentions only type variables a. Therefore we can strengthen
Theorem 23 further by considering a class of preterms containing only type variables, and those
only in abstractions.

Q == 2|Aw:0.Q[Q1Q2 | A Q| A2. Q[ Q]

Corollary 24 The partial type reconstruction problem for preterms of the form ) is undecidable.

Proof: Let I be closed formula without occurrences of A. Then [F'] has the form of @ above.
By Corollary 22, F'is provable iff [F'] is valid. But provability of F is undecidable, and hence the
limited form of type reconstruction is also undecidable. O

12



Since in any practical language one would like to allow user-specified type annotations, we do
not consider this corollary to be particularly important. We have not investigated the question if
partial type reconstruction would be undecidable even for terms completely devoid of types (except
for placeholders [] and abstractions Aa).

Another straightforward observation is that preterms of the form [F] are in normal form.

Corollary 25 The partial type reconstruction problem for preterms of the form () which are also
in B-normal form is undecidable.

6 Partial Type Reconstruction in Predicative Fragments

One might conjecture that the undecidability of type reconstruction is due to the inherent expressive
power of the pure polymorphic A-calculus. However, this is not the case—even a very simple
predicative fragment has an undecidable partial type reconstruction problem. This can be seen
by carefully examining the proofs showing the undecidability of partial type reconstruction in the
polymorphic A-calculus given in Section 5.2 This means that partial type reconstruction for AM~
(see [18, 9]) is also undecidable.

The polymorphic A-calculus is impredicative in that the domain of quantification (by A)includes
all possible types. The term My = Az:Aa. @ — a. 2 [Aa. @ — a]z introduced in the example at
the end of Section 3 illustrates this impredicativity: Aa. a — «a is instantiated with itself to yield
(Aa. a — a) = (Aa. a — a).

A hierarchy of universes of types can be defined in order to avoid the impredicativity (see, for
example, [13]). Here, we will only use two universes: simple types s and polymorphic types 7. The
calculus is made predicative by insisting that the quantifier A in polymorphic types ranges only over
simple types. This can be enforced syntactically by restricting the application of a polymorphic
function to simple types.

Simple Types s == a|s — s9
Polymorphic Types 7 = a|7m — 7| Aa.T
Stratified Terms M x| Aeir. M| My My | Aae. M| M [s]

The inference rules for the principal judgment I' = M : 7 are restricted in the obvious way. We
refer to the resulting calculus as the predicative fragment of the polymorphic A-calculus.

Theorem 26 Let F' be a formula in the unification logic containing only simple types. Then [F]
is valid in the polymorphic A-calculus iff [ F'] is valid in the predicative fragment of the polymorphic
A-calculus.

Proof: Examination of the proofs of Lemma 19 and Theorem 21 reveals that all omitted types []
in sub-preterms of [F'] will be filled by simple types, if all types in the formula F' are simple and
F' is provable. The only explicit type occuring in [F] is «, which is also a simple type. O

Corollary 27 (Predicative Partial Type Reconstruction) Partial type reconstruction in the predi-
cate fragment of the polymorphic \-calculus is undecidable.

Proof: We only need to note that the provability problem for formulas F' containing only simple
types is undecidable (Theorem 8). a

] am grateful to Robert Harper for this observation.
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