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Abstract 
Grammatical inference (or grammar inference) has been 
applied to various problems in areas such as computational 
biology, and speech and pattern recognition but its 
application to the programming language problem domain 
has been limited. We propose a new application area for 
grammar inference which intends to make domain-specific 
language development easier and finds a second application 
in renovation tools for legacy software systems. We discuss 
the improvements made to our core incremental approach to 
inferring context-free grammars. The approach affords a 
number of advancements over our previous genetic-
programming based inference system. We discuss the beam 
search heuristic for improved searching in the solution 
space of all grammars, the Minimum Description Length 
heuristic to direct the search towards simpler grammars, and 
the right-hand-side subset constructor operator.  

1. Introduction 
In [1], Kugel makes a case for programming computers the 
same way children learn – from examples. This idea is 
known as “programming by examples” and involves 
providing the computer with examples (or samples) from 
which a program which correctly classifies the input 
examples can be output by the computer without the 
programmer providing the computer a detailed algorithm on 
how to do so. To accomplish this, it would require the 
computer to compute in the limit - i.e., we would take the 
last output of the computer as its result without requiring it 
to announce when an output is its last. Our work on 
grammar induction, or “programming by examples”, 
elaborates on these ideas; we provide language samples to 
our computer, which then uses the incremental learning 
algorithm to come up with a CFG which can classify or 
parse these language samples without over generalization or 
overspecialization. 
     One of the open problems in the area of domain-specific 
languages (DSLs) [2], also called little languages, is how to 
make domain-specific language development easier for 
domain experts not experienced in programming language 
design. van Deursen et al. [3] state a terse and apt definition  
 

 
for DSL’s : “A DSL is a programming language or 
executable specification language that offers, through 
appropriate notations and abstractions, expressive power 
focused on, and usually restricted to, a particular problem 
domain”. The defining characteristics of DSLs are that they 
are usually declarative, and smaller in size than general-
purpose programming languages. A few of the possible 
approaches to building a DSL are to use parameterized 
building blocks, or by grammar induction. Grammatical 
inference (grammar induction or GI), a subfield of machine 
learning, is the process of learning of grammar from 
training data. Machine learning of grammars finds 
application in diverse domains such as software 
engineering, syntactic pattern recognition and 
computational biology. Gold’s theorem [4], one of the 
seminal results in this area, states that it is impossible to 
identify any of the four classes of languages in the Chomsky 
hierarchy in the limit using only positive samples (unless a 
statistical distribution over all the positive samples is used). 
However, using both negative and positive samples, the 
Chomsky hierarchy languages can be identified in the limit.                
    Our research focus is on designing DSLs using Context-
Free Grammar (CFG) induction techniques. In the software 
engineering and programming language domain, such a 
technique would find application in cases where legacy 
DSLs have been running for many years and their 
specifications no longer exists to assist with evolution of 
their implementations (e.g., as was needed to solve the Y2K 
problem). A survey of programming language usage in 
commercial and research environments has shown that more 
than 500 general-purpose and proprietary programming 
languages are in use today [5]. The Y2K-like problems not 
withstanding, many commercial installations use in-house 
DSLs and a variety of situations can arise (e.g., software 
company went bankrupt) where source implementations 
either need to be recovered or translated to a different 
language dialect. We expect that DSLs would usually be 
small enough so that GI techniques may be applied in a 
tractable manner to recover the underlying grammar from 
sample sources. While semi-automatic techniques as in [5] 
can be used to recover grammar in situations where 



compiler sources and manuals are available, our technique 
is also applicable when such sources are not available, 
whether it be in or outside the domain of software 
engineering (e.g. neural networks, structured data and 
patterns) [6]. In such situations, the grammar needs to be 
extracted solely from artifacts represented as 
sentences/programs written in some unknown language. 
    The importance of CFGs is paramount in programming 
language syntactic design and various other domains. This, 
along with the fact that there has so far been no successful 
solution to the CFG induction problem (see section 2) 
makes for a promising research area to explore. In this 
paper, we briefly discuss our Genetic-Programming [7] 
approach to grammar induction in the next section, and then 
in section 3 we introduce some improvements to our 
incremental approach to inferring grammars (along with 
some initial results) for facilitating DSL development for 
domain experts not conversant with programming language 
development and for recovering legacy DSLs. 

2. Related Work 
Our research problem can be reduced to the problem of 
inferring CFGs from language samples. The grammar 
inference research community has so far been successful 
only in inferring regular languages. Various algorithms like 
RPNI [8] and EDSM [9] have been developed which can 
learn regular languages from positive (the set of strings 
belonging to the target language) and negative samples (the 
set of strings not belonging to the target language). In [10] a 
genetic-programming approach was used for inferring 
regular grammars and compared with the RPNI algorithm.  
Successful learning of CFGs has proved to be more difficult 
than learning regular grammars. Despite various and 
differing attempts at solving the problem of CFG induction 
[11] [12] [13] [14] [15], there has been no one convincing 
solution to the problem as of now. In all the work cited so 
far, experiments were performed on theoretical sample 
languages instead of on real or even toy programming 
languages. Based on the work done in this area so far, we 
conclude that learning CFGs is still an unsolved problem. 
     Our previous work in this area focused on using a 
genetic-programming based system called GenParse to infer 
CFGs for DSLs. It used genetic operators and parameters, 
and encoded the grammar into a chromosome as a list of 
BNF production rules [16]. Chromosomes are evaluated 
using the LISA compiler generator [17] at the end of each 
generation by testing each grammar on a sample of positive 
and negative samples. The system was augmented with 
basic data-mining techniques such as frequent sequences 
[18] in order to approximately infer the sub-languages first. 
These improvements increased the inference capability of 
the GenParse system, and allowed bigger DSLs to be 
inferred. For more details and discussion on the GenParse 
system, please see [7][19]. In the area of Domain-Specific 
Modeling, we have applied grammar inference techniques 

to the problem of metamodel drift, which occurs when 
instance models in a repository are separated from their 
defining metamodel. The resulting system, called MARS 
[25], is a semi-automatic inference system which makes use 
of already existing tools along with new grammar inference 
algorithms to recover metamodels which correctly define 
the mined instance models. 

3. Incrementally Inferring Grammars 
In the current GenParse implementation, whenever a 
positive sample is not accepted (or a negative sample is 
accepted) by the current CFG, the induction engine takes 
these violating samples into account and infers a new CFG 
which then successfully accepts the positive sample (or 
rejects the negative sample). Adapting this behavior so that 
only the minimum number of new production rules are 
added to the existing CFG (which would enable the 
positive/negative sample to be accepted/rejected) would 
allow the search for a suitable CFG to be carried out in an 
incremental and more efficient way. So far, all attempts at 
using incremental grammar construction for CFG inference 
have only succeeded in inferring simple toy grammars 
[11][13]. In this section, we describe improvements to the 
incremental algorithm introduced in [19]. The approach 
makes use of positive samples only since the absence of 
negative examples often arises in practice. We first 
elaborate on the theoretical foundations of the approach, 
and then discuss the improvements made to the algorithm. 
     Input to the algorithm is a set of positive samples (or 
programs) Pos = {S1, S2, ,…, SN }, and the following 
auxiliary functions are used: 

� Position(Tokeni, Si): returns the position of Tokeni 

in sample Si. 
� Prefix(Si, k): returns the first k tokens in sample Si. 
� Suffix(Si, k): returns the last k tokens in sample Si. 
� Length(Si ): returns the length of sample Si 
� Diff(Si, j, k): returns k tokens in program Si starting 

from position j.  
 
A ordering on the samples is described by the relation 
“simpler than” (<*) where Si is simpler than Si+1 (Si <* Si+1) 
iff the following holds: 

� All tokens in Si are also in Si+1 

� If Position (Tokenx, Si) ≤ Position (Tokeny, Si), 

then Position (Tokenx, Si+1) ≤ Position (Tokeny, 

Si+1). 

The simplest case for incremental learning occurs when the 
following condition holds: 
 
Case 1: Prefix(Si, Length (Si)) = Prefix (Si+1, Length (Si)) 

 

This statement denotes that the sample Si+1 is a continuation 
of sample Si, i.e., Si+1 is sample Si with some new tokens 
appended at the end. The initial grammar is constructed 
using the first sample and the algorithm described in [20]. 



The reason for this is to have a better grammar structure as 
a starting point for the incremental inference process as this 
can facilitate a better search process.  
     Case 2 describes the case when the new tokens aren’t 
appended at the end of Si+1, but rather somewhere in the 
middle. Case 3 is the most general of all the cases and 
describes the situation where the samples don’t have any 
specific ordering on them.  

Case 2:  

� Si = Prefix(Si, k) + Suffix (Si, j) and Length(Si)= k + j  
� Si+1 = Prefix(Si, k) + Diff( Si+1, k +1, Length( Si+1) –k-j) 

+ Suffix( Si, j) 
Case 3: 

� Si+1 = Prefix(Si, k) + Diff( Si + 1, k+1, Length(Si+1)-k-j) 
+ Suffix (Si, j) 

� Si = Prefix (Si, k + k1) + Suffix (Si, j + j1) and 
Length(Si) = k + k1 + j + j1 , where k1 >0 or j1 > 0. 

Our current work focus is on designing an improved 
algorithm for case 1. These improvements will also be valid 
for the other cases, and all of the cases will be incorporated 
into one cohesive algorithm. Table 1 details the improved 
algorithm. Due to space restrictions, we only provide a 
short description of these advancements to the algorithm. 
Our first improvement is the introduction of the beam 
search heuristic to the algorithm. At any point in time, a set 
(determined by the user specified variable þ) of suitable 
candidate grammars is stored and used for the next iteration 
of the grammars. Initially, the beam contains only the initial 
grammar. 

     We next introduce the use of the Right Hand Side (RHS) 
subset construction operator (step 2d in Table 2). If the new 
increment exists as a subset of a set of RHS terminals in the 
grammar rules, then those terminals are replaced by a new 
non-terminal and a new rule (NewNT � #subset) is 
appended to the grammar. The entire grammar is scanned 
for similar subsets, all of which are replaced by the new 
non-terminal. Table 1 shows an example of an increment 
(#item #price) which, when encountered, modifies grammar 
(a) to grammar (b). The increment is found as a subset in 
rule 2 of grammar (a). The subset is then merged into a new 
non-terminal and 2 new rules (NewNT� #subset | ε) are 
added. 

Table 1. RHS subset operator 

                   NT1 � #stock  NT2 NT3  
                   NT2 � #item #price #qty NT2 | ε 
                   NT3 � #sales |  ε 

(a) 

                    NT1 � #stock  NT2 NT3 
                    NT2 � NT4 #qty NT2 | ε 
                    NT3 � #sales NT4 | ε 
                    NT4   � #item price | ε 

(b) 

 

When only positive examples are used for inferring a 
grammar (as in our case), overgeneralization can be 
controlled by either i) focusing on inferring a restricted 

class of formal languages (which have been proved to be 

learnable from positive examples only), or ii) using a 
heuristic. For our inference algorithm, we follow the works 
in [21][22] and use the Minimum Description Length 
(MDL) [23] heuristic to direct the search towards compact 
grammars (i.e. few bits are required for encoding). The 
concept of MDL involves encoding a set of data, and then 
transmitting it to a receiver where it can be decoded. MDL 
compresses the grammar as well as encodes the training 
samples using that grammar. Thus, it offers a way to 
compare grammars and choose the one that is able to be 
compressed and encodes the examples using the least 
number of bits. 

     Our MDL heuristic is the sum of two components: 

i) Grammar Description Length (GDL): the bits required to 

encode the grammar rules,  

ii) Samples Description Length (SDL): the bits required to 

encode all examples using a grammar. 

We would like to minimize the values of both the 
components. For computing the GDL, we assume that the 
total number of bits for encoding a rule is the sum of the 
bits required to encode the head of the rule, the body of the 
rule and the end of the rule. Since the rule size can be 
variable, a STOP non-terminal will be appended to each 
rule to indicate the end of the rule. If a grammar has UNT 
unique non-terminals (excluding the STOP non-terminal), 
then the total number of bits required to encode a single 
non-terminal is given by:  βNT = log (UNT + 1). 

     For T unique terminals, the number of bits required is 
given by:  βT = log ( T ). 

     Our approach involves dividing the rules into three 
subsets.  

i) Start rules: these rules have the special property that they 
always have the same head, and as a result the following 
expression gives the number of bits required for encoding 
one rule R of the start subset: 

βR = (NTR + 1) (log (UNT + 1)) + (TR ) (log T). 

NTR and TR are the number of non-terminals and terminals 
in the rule body, respectively.  

ii) Epsilon rules: these rules have a fixed length of 1, that 
is, the LHS non-terminal only. We don’t encode the epsilon 
symbol, and there is no need for a STOP symbol since all 
the rules are of the same size. The number of bits to encode 
an epsilon rule is given by:  

 

βR =  log (UNT + 1). 



Table 2. The Incremental Learning Algorithm 

1. Create initial Grammar G1 from the first sample S1 using the algorithm described in [20]. 

2. While more samples exist, do : 

a. Generate an LR(1) parser for all the grammars (Gi’s) in the Beam and try to parse the next sample. If þ or more than 
þ grammars successfully parse the samples (where þ is the maximum number of grammars to be held in a beam), 
then skip steps b-e.  

b. If Gi fails to parse a sample Sj, reconstruct Gi by making the use of the increment in tokens from Sj-1 to Sj and the 
following sub-steps (c,d and e). 

c. If the increment already exists as the right hand side (RHS) of a rule in the grammar with non-terminal Nx as left 
hand side (LHS), then append Nx to the rule and add the rule Nx � epsilon to the grammar. In some cases, this will 
introduce recursion in the grammar. 

d. Else, if the increment does not exist as the RHS of a rule, perform the RHS subset construction procedure on Gi, if 
possible. If the procedure succeeds, try the appending of the new non-terminal to existing rules as described in the 
latter part of sub-step e. 

e. Else, add the rule Nx � #increment to the grammar. Append a new non-terminal Nx to the first rule and then create 
an LR(1) parser from the grammar and then try to parse all the samples up to and including the violating sample. 
This process is repeated, and Nx appended to all rules in succession (except the epsilon rules) until all the samples 
(up to and including the violating sample) are successfully parsed. Successful grammars are stored in the beam. 

f. Calculate the MDL scores of all the grammars in the Beam, and choose þ grammars with the highest scores. 

 3. If all samples are parsed successfully, output the grammar with the highest MDL score. Else, indicate failure and output 
the sample which can’t be parsed. 

 

iii) All other rules : All other rules are rules which have a 
non-terminal on the LHS and any number of non-terminals 
or terminals on the right hand side. The following equation 
gives the number of bits to encode a rule of this type: 

βR = (NTR + 2) (log (UNT + 1)) + (Tr ) (log T). 

     For computing SDL, we need to estimate the derivation 
power of the grammar. This can be done by counting all the 
sentences which can be generated by a grammar. However, 
this is not possible since a grammar usually generates an 
infinite language. To overcome this, we use a calculation 
method similar to the variability calculation of feature 
diagrams [24], with additional rules to handle recursion. 
The number of all possible different sentences is calculated 
by the rules in Table 3, where NT stands for non-terminals, 
a is a terminal symbol, B denotes a non-terminal or terminal 
symbol, and Var stands for Variability. 

SDL = Log (Var (G)), where G is the grammar. 

Table 3. Rules for SDL calculation 

Var (NT ::= B1 … Bn)  = Var(B1) * … * Var(Bn) 

Var (NT ::= B1 | … | Bn)  = Var(B1) + … + Var(Bn) 

Var (NT ::= a)   = 1      (single terminal) 

Var (NT ::= eps)   = 1      (empty production) 

Var (NT ::= NT B)   = Var(B)       (left recursion) 

Var (NT ::= B NT)   = Var(B)       (right recursion) 

 

 

An experimental run of the DESK DSL is show in Table 4. 
The second column shows the 3 samples used to infer the 
grammar, and the third column shows the incrementally 
constructed grammar after each iteration. The grammar 
inferred after sample 3 successfully parses all samples and 
provides a reasonable generalization of the language being 
inferred. 

 

Table 4. Experimental Run on the DESK  DSL 

i Si Gi 

 

1 

 

print %b 

 

NT1 � #print #id 

 

2 

 

print %b + %b 

 

NT1 � #print #id NT2  

NT2 � ε  

NT2 � #oper+ #id  

 

3 

 

print %b + %b  

where %b = 20 

 

   

   NT1 � #print #id NT2 

   NT2 � #oper+ #id NT3 | ε 

   NT3 � ε 

   NT3 � #where #id #oper= #int 

 



 

In table 4, the increment during iteration 3 is (#where, #id, 
#oper=, #int). At this point, two suitable LR(1) grammars 
can be created and stored in the beam.  

 

Table 5. MDL calculations for the DESK DSL 

 

UNT  = 2 (excluding  NT1 and STOP) , T = 6  

Separator = log (UNT  + 1) 

 

                    NT1 � #print #id NT2 NT3  

                    NT2 � #oper+ #id | ε 

                    NT3 � ε 

                    NT3 � #where #id #oper= #int 

 

         GDL = 1 start rule + separator + 

                     2 epsilon rules + separator  +  2 other rules 

    

        MDL = GDL + SDL = 38.09 + log2(4) = 40.096 bits 

(a) 

 

                    NT1 � #print #id NT2 

                    NT2 � #oper+ #id NT3 | ε 

                    NT3 � ε 

                    NT3 � #where #id #oper= #int 

 

       GDL =  1 start rule + separator +  

                     2 epsilon rules + separator + 2 other rules 

       

        MDL = GDL + SDL = 38.09 + log2(3) = 39.68 bits 

(b) 

 

Both the grammars contain 1 start rule, 2 epsilon rules and 
2 rules of other kinds, but they differ in the location of non-
terminal NT3. The SDL calculation shows that grammar (a) 
has a higher derivation power than grammar (b) because it 
can generate one more sentence and is more general than 
grammar (b). Grammar (b) however is compressed better, 
as the MDL score reveals. Overall, the difference in the 
MDL score between the two grammars isn’t vast. However 
for bigger experiments where a larger number of grammars 
would need to be scored, a bigger variability in the score 
can occur.  

     We are also currently experimenting with an optimal 
value for the beam size. For the DESK DSL, a beam size of 
1 is suitable since it is a small DSL However, for bigger 
DSLs where the search space would be expansive with a 

bigger set of possible solution grammars, a larger beam size 
value might be required.  

4. Future Work and Conclusion 
Solving the problem of CFG inference can lead to solutions 
to many programming language related problems such as 
renovation problems and development of domain-specific 
languages.  In this paper we describe and discuss 
improvements to our incremental learning algorithm. Our 
focus was on case 1 of the learning algorithm, and we 
augment that algorithm with the beam search heuristic to 
better search in the solution space, as well as the MDL 
simplicity heuristic to direct the beam search towards 
simpler grammars to control overgeneralization. A RHS 
subset constructor operator is also introduced. 

     Our future work involves continuing work on the 
incremental learning algorithm, specifically developing an 
all inclusive algorithm which can handle all the cases 
described, and further investigating the MDL heuristic for 
bigger DSLs. We are also experimenting with the size of 
the beam to observe its affects on the quality of the inferred 
grammars for DSLs of varying size.  

Since CFGs are widely used in many other domains, the 
results of this work will be directly applicable in many 
different fields such as software system renovation, 
development of domain-specific languages, syntactic 
pattern recognition, computational biology and natural 
language acquisition.  
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