
Incrementally Inferring Context-Free Grammars for Domain-Specific
Languages

 Faizan Javed

Department of Computer and
Information Sciences

University of Alabama at Birmingham
1300 University Boulevard

Birmingham, AL 35294-1170, USA

javedf@cis.uab.edu

Marjan Mernik

Faculty of Electrical Engineering and
Computer Science

University of Maribor
Smetanova 17

2000 Maribor, Slovenia

marjan.mernik@uni-mb.si

 Alan Sprague, Barrett Bryant

Department of Computer and
Information Sciences

University of Alabama at Birmingham
1300 University Boulevard

Birmingham, AL 35294-1170, USA

{sprague, bryant}@cis.uab.edu

Abstract
Grammatical inference (or grammar inference) has been
applied to various problems in areas such as computational
biology, and speech and pattern recognition but its
application to the programming language problem domain
has been limited. We propose a new application area for
grammar inference which intends to make domain-specific
language development easier and finds a second application
in renovation tools for legacy software systems. We discuss
the improvements made to our core incremental approach to
inferring context-free grammars. The approach affords a
number of advancements over our previous genetic-
programming based inference system. We discuss the beam
search heuristic for improved searching in the solution
space of all grammars, the Minimum Description Length
heuristic to direct the search towards simpler grammars, and
the right-hand-side subset constructor operator.

1. Introduction
In [1], Kugel makes a case for programming computers the
same way children learn – from examples. This idea is
known as “programming by examples” and involves
providing the computer with examples (or samples) from
which a program which correctly classifies the input
examples can be output by the computer without the
programmer providing the computer a detailed algorithm on
how to do so. To accomplish this, it would require the
computer to compute in the limit - i.e., we would take the
last output of the computer as its result without requiring it
to announce when an output is its last. Our work on
grammar induction, or “programming by examples”,
elaborates on these ideas; we provide language samples to
our computer, which then uses the incremental learning
algorithm to come up with a CFG which can classify or
parse these language samples without over generalization or
overspecialization.
 One of the open problems in the area of domain-specific
languages (DSLs) [2], also called little languages, is how to
make domain-specific language development easier for
domain experts not experienced in programming language
design. van Deursen et al. [3] state a terse and apt definition

for DSL’s : “A DSL is a programming language or
executable specification language that offers, through
appropriate notations and abstractions, expressive power
focused on, and usually restricted to, a particular problem
domain”. The defining characteristics of DSLs are that they
are usually declarative, and smaller in size than general-
purpose programming languages. A few of the possible
approaches to building a DSL are to use parameterized
building blocks, or by grammar induction. Grammatical
inference (grammar induction or GI), a subfield of machine
learning, is the process of learning of grammar from
training data. Machine learning of grammars finds
application in diverse domains such as software
engineering, syntactic pattern recognition and
computational biology. Gold’s theorem [4], one of the
seminal results in this area, states that it is impossible to
identify any of the four classes of languages in the Chomsky
hierarchy in the limit using only positive samples (unless a
statistical distribution over all the positive samples is used).
However, using both negative and positive samples, the
Chomsky hierarchy languages can be identified in the limit.
 Our research focus is on designing DSLs using Context-
Free Grammar (CFG) induction techniques. In the software
engineering and programming language domain, such a
technique would find application in cases where legacy
DSLs have been running for many years and their
specifications no longer exists to assist with evolution of
their implementations (e.g., as was needed to solve the Y2K
problem). A survey of programming language usage in
commercial and research environments has shown that more
than 500 general-purpose and proprietary programming
languages are in use today [5]. The Y2K-like problems not
withstanding, many commercial installations use in-house
DSLs and a variety of situations can arise (e.g., software
company went bankrupt) where source implementations
either need to be recovered or translated to a different
language dialect. We expect that DSLs would usually be
small enough so that GI techniques may be applied in a
tractable manner to recover the underlying grammar from
sample sources. While semi-automatic techniques as in [5]
can be used to recover grammar in situations where

compiler sources and manuals are available, our technique
is also applicable when such sources are not available,
whether it be in or outside the domain of software
engineering (e.g. neural networks, structured data and
patterns) [6]. In such situations, the grammar needs to be
extracted solely from artifacts represented as
sentences/programs written in some unknown language.
 The importance of CFGs is paramount in programming
language syntactic design and various other domains. This,
along with the fact that there has so far been no successful
solution to the CFG induction problem (see section 2)
makes for a promising research area to explore. In this
paper, we briefly discuss our Genetic-Programming [7]
approach to grammar induction in the next section, and then
in section 3 we introduce some improvements to our
incremental approach to inferring grammars (along with
some initial results) for facilitating DSL development for
domain experts not conversant with programming language
development and for recovering legacy DSLs.

2. Related Work
Our research problem can be reduced to the problem of
inferring CFGs from language samples. The grammar
inference research community has so far been successful
only in inferring regular languages. Various algorithms like
RPNI [8] and EDSM [9] have been developed which can
learn regular languages from positive (the set of strings
belonging to the target language) and negative samples (the
set of strings not belonging to the target language). In [10] a
genetic-programming approach was used for inferring
regular grammars and compared with the RPNI algorithm.
Successful learning of CFGs has proved to be more difficult
than learning regular grammars. Despite various and
differing attempts at solving the problem of CFG induction
[11] [12] [13] [14] [15], there has been no one convincing
solution to the problem as of now. In all the work cited so
far, experiments were performed on theoretical sample
languages instead of on real or even toy programming
languages. Based on the work done in this area so far, we
conclude that learning CFGs is still an unsolved problem.
 Our previous work in this area focused on using a
genetic-programming based system called GenParse to infer
CFGs for DSLs. It used genetic operators and parameters,
and encoded the grammar into a chromosome as a list of
BNF production rules [16]. Chromosomes are evaluated
using the LISA compiler generator [17] at the end of each
generation by testing each grammar on a sample of positive
and negative samples. The system was augmented with
basic data-mining techniques such as frequent sequences
[18] in order to approximately infer the sub-languages first.
These improvements increased the inference capability of
the GenParse system, and allowed bigger DSLs to be
inferred. For more details and discussion on the GenParse
system, please see [7][19]. In the area of Domain-Specific
Modeling, we have applied grammar inference techniques

to the problem of metamodel drift, which occurs when
instance models in a repository are separated from their
defining metamodel. The resulting system, called MARS
[25], is a semi-automatic inference system which makes use
of already existing tools along with new grammar inference
algorithms to recover metamodels which correctly define
the mined instance models.

3. Incrementally Inferring Grammars
In the current GenParse implementation, whenever a
positive sample is not accepted (or a negative sample is
accepted) by the current CFG, the induction engine takes
these violating samples into account and infers a new CFG
which then successfully accepts the positive sample (or
rejects the negative sample). Adapting this behavior so that
only the minimum number of new production rules are
added to the existing CFG (which would enable the
positive/negative sample to be accepted/rejected) would
allow the search for a suitable CFG to be carried out in an
incremental and more efficient way. So far, all attempts at
using incremental grammar construction for CFG inference
have only succeeded in inferring simple toy grammars
[11][13]. In this section, we describe improvements to the
incremental algorithm introduced in [19]. The approach
makes use of positive samples only since the absence of
negative examples often arises in practice. We first
elaborate on the theoretical foundations of the approach,
and then discuss the improvements made to the algorithm.
 Input to the algorithm is a set of positive samples (or
programs) Pos = {S1, S2, ,…, SN }, and the following
auxiliary functions are used:

� Position(Tokeni, Si): returns the position of Tokeni

in sample Si.
� Prefix(Si, k): returns the first k tokens in sample Si.
� Suffix(Si, k): returns the last k tokens in sample Si.
� Length(Si): returns the length of sample Si
� Diff(Si, j, k): returns k tokens in program Si starting

from position j.

A ordering on the samples is described by the relation
“simpler than” (<*) where Si is simpler than Si+1 (Si <* Si+1)
iff the following holds:

� All tokens in Si are also in Si+1

� If Position (Tokenx, Si) ≤ Position (Tokeny, Si),

then Position (Tokenx, Si+1) ≤ Position (Tokeny,

Si+1).

The simplest case for incremental learning occurs when the
following condition holds:

Case 1: Prefix(Si, Length (Si)) = Prefix (Si+1, Length (Si))

This statement denotes that the sample Si+1 is a continuation
of sample Si, i.e., Si+1 is sample Si with some new tokens
appended at the end. The initial grammar is constructed
using the first sample and the algorithm described in [20].

The reason for this is to have a better grammar structure as
a starting point for the incremental inference process as this
can facilitate a better search process.
 Case 2 describes the case when the new tokens aren’t
appended at the end of Si+1, but rather somewhere in the
middle. Case 3 is the most general of all the cases and
describes the situation where the samples don’t have any
specific ordering on them.

Case 2:

� Si = Prefix(Si, k) + Suffix (Si, j) and Length(Si)= k + j
� Si+1 = Prefix(Si, k) + Diff(Si+1, k +1, Length(Si+1) –k-j)

+ Suffix(Si, j)
Case 3:

� Si+1 = Prefix(Si, k) + Diff(Si + 1, k+1, Length(Si+1)-k-j)
+ Suffix (Si, j)

� Si = Prefix (Si, k + k1) + Suffix (Si, j + j1) and
Length(Si) = k + k1 + j + j1 , where k1 >0 or j1 > 0.

Our current work focus is on designing an improved
algorithm for case 1. These improvements will also be valid
for the other cases, and all of the cases will be incorporated
into one cohesive algorithm. Table 1 details the improved
algorithm. Due to space restrictions, we only provide a
short description of these advancements to the algorithm.
Our first improvement is the introduction of the beam
search heuristic to the algorithm. At any point in time, a set
(determined by the user specified variable þ) of suitable
candidate grammars is stored and used for the next iteration
of the grammars. Initially, the beam contains only the initial
grammar.

 We next introduce the use of the Right Hand Side (RHS)
subset construction operator (step 2d in Table 2). If the new
increment exists as a subset of a set of RHS terminals in the
grammar rules, then those terminals are replaced by a new
non-terminal and a new rule (NewNT � #subset) is
appended to the grammar. The entire grammar is scanned
for similar subsets, all of which are replaced by the new
non-terminal. Table 1 shows an example of an increment
(#item #price) which, when encountered, modifies grammar
(a) to grammar (b). The increment is found as a subset in
rule 2 of grammar (a). The subset is then merged into a new
non-terminal and 2 new rules (NewNT� #subset | ε) are
added.

Table 1. RHS subset operator

 NT1 � #stock NT2 NT3
 NT2 � #item #price #qty NT2 | ε
 NT3 � #sales | ε

(a)

 NT1 � #stock NT2 NT3
 NT2 � NT4 #qty NT2 | ε
 NT3 � #sales NT4 | ε
 NT4 � #item price | ε

(b)

When only positive examples are used for inferring a
grammar (as in our case), overgeneralization can be
controlled by either i) focusing on inferring a restricted

class of formal languages (which have been proved to be

learnable from positive examples only), or ii) using a
heuristic. For our inference algorithm, we follow the works
in [21][22] and use the Minimum Description Length
(MDL) [23] heuristic to direct the search towards compact
grammars (i.e. few bits are required for encoding). The
concept of MDL involves encoding a set of data, and then
transmitting it to a receiver where it can be decoded. MDL
compresses the grammar as well as encodes the training
samples using that grammar. Thus, it offers a way to
compare grammars and choose the one that is able to be
compressed and encodes the examples using the least
number of bits.

 Our MDL heuristic is the sum of two components:

i) Grammar Description Length (GDL): the bits required to

encode the grammar rules,

ii) Samples Description Length (SDL): the bits required to

encode all examples using a grammar.

We would like to minimize the values of both the
components. For computing the GDL, we assume that the
total number of bits for encoding a rule is the sum of the
bits required to encode the head of the rule, the body of the
rule and the end of the rule. Since the rule size can be
variable, a STOP non-terminal will be appended to each
rule to indicate the end of the rule. If a grammar has UNT
unique non-terminals (excluding the STOP non-terminal),
then the total number of bits required to encode a single
non-terminal is given by: βNT = log (UNT + 1).

 For T unique terminals, the number of bits required is
given by: βT = log (T).

 Our approach involves dividing the rules into three
subsets.

i) Start rules: these rules have the special property that they
always have the same head, and as a result the following
expression gives the number of bits required for encoding
one rule R of the start subset:

βR = (NTR + 1) (log (UNT + 1)) + (TR) (log T).

NTR and TR are the number of non-terminals and terminals
in the rule body, respectively.

ii) Epsilon rules: these rules have a fixed length of 1, that
is, the LHS non-terminal only. We don’t encode the epsilon
symbol, and there is no need for a STOP symbol since all
the rules are of the same size. The number of bits to encode
an epsilon rule is given by:

βR = log (UNT + 1).

Table 2. The Incremental Learning Algorithm

1. Create initial Grammar G1 from the first sample S1 using the algorithm described in [20].

2. While more samples exist, do :

a. Generate an LR(1) parser for all the grammars (Gi’s) in the Beam and try to parse the next sample. If þ or more than
þ grammars successfully parse the samples (where þ is the maximum number of grammars to be held in a beam),
then skip steps b-e.

b. If Gi fails to parse a sample Sj, reconstruct Gi by making the use of the increment in tokens from Sj-1 to Sj and the
following sub-steps (c,d and e).

c. If the increment already exists as the right hand side (RHS) of a rule in the grammar with non-terminal Nx as left
hand side (LHS), then append Nx to the rule and add the rule Nx � epsilon to the grammar. In some cases, this will
introduce recursion in the grammar.

d. Else, if the increment does not exist as the RHS of a rule, perform the RHS subset construction procedure on Gi, if
possible. If the procedure succeeds, try the appending of the new non-terminal to existing rules as described in the
latter part of sub-step e.

e. Else, add the rule Nx � #increment to the grammar. Append a new non-terminal Nx to the first rule and then create
an LR(1) parser from the grammar and then try to parse all the samples up to and including the violating sample.
This process is repeated, and Nx appended to all rules in succession (except the epsilon rules) until all the samples
(up to and including the violating sample) are successfully parsed. Successful grammars are stored in the beam.

f. Calculate the MDL scores of all the grammars in the Beam, and choose þ grammars with the highest scores.

 3. If all samples are parsed successfully, output the grammar with the highest MDL score. Else, indicate failure and output
the sample which can’t be parsed.

iii) All other rules : All other rules are rules which have a
non-terminal on the LHS and any number of non-terminals
or terminals on the right hand side. The following equation
gives the number of bits to encode a rule of this type:

βR = (NTR + 2) (log (UNT + 1)) + (Tr) (log T).

 For computing SDL, we need to estimate the derivation
power of the grammar. This can be done by counting all the
sentences which can be generated by a grammar. However,
this is not possible since a grammar usually generates an
infinite language. To overcome this, we use a calculation
method similar to the variability calculation of feature
diagrams [24], with additional rules to handle recursion.
The number of all possible different sentences is calculated
by the rules in Table 3, where NT stands for non-terminals,
a is a terminal symbol, B denotes a non-terminal or terminal
symbol, and Var stands for Variability.

SDL = Log (Var (G)), where G is the grammar.

Table 3. Rules for SDL calculation

Var (NT ::= B1 … Bn) = Var(B1) * … * Var(Bn)

Var (NT ::= B1 | … | Bn) = Var(B1) + … + Var(Bn)

Var (NT ::= a) = 1 (single terminal)

Var (NT ::= eps) = 1 (empty production)

Var (NT ::= NT B) = Var(B) (left recursion)

Var (NT ::= B NT) = Var(B) (right recursion)

An experimental run of the DESK DSL is show in Table 4.
The second column shows the 3 samples used to infer the
grammar, and the third column shows the incrementally
constructed grammar after each iteration. The grammar
inferred after sample 3 successfully parses all samples and
provides a reasonable generalization of the language being
inferred.

Table 4. Experimental Run on the DESK DSL

i Si Gi

1

print %b

NT1 � #print #id

2

print %b + %b

NT1 � #print #id NT2

NT2 � ε

NT2 � #oper+ #id

3

print %b + %b

where %b = 20

 NT1 � #print #id NT2

 NT2 � #oper+ #id NT3 | ε

 NT3 � ε

 NT3 � #where #id #oper= #int

In table 4, the increment during iteration 3 is (#where, #id,
#oper=, #int). At this point, two suitable LR(1) grammars
can be created and stored in the beam.

Table 5. MDL calculations for the DESK DSL

UNT = 2 (excluding NT1 and STOP) , T = 6

Separator = log (UNT + 1)

 NT1 � #print #id NT2 NT3

 NT2 � #oper+ #id | ε

 NT3 � ε

 NT3 � #where #id #oper= #int

 GDL = 1 start rule + separator +

 2 epsilon rules + separator + 2 other rules

 MDL = GDL + SDL = 38.09 + log2(4) = 40.096 bits

(a)

 NT1 � #print #id NT2

 NT2 � #oper+ #id NT3 | ε

 NT3 � ε

 NT3 � #where #id #oper= #int

 GDL = 1 start rule + separator +

 2 epsilon rules + separator + 2 other rules

 MDL = GDL + SDL = 38.09 + log2(3) = 39.68 bits

(b)

Both the grammars contain 1 start rule, 2 epsilon rules and
2 rules of other kinds, but they differ in the location of non-
terminal NT3. The SDL calculation shows that grammar (a)
has a higher derivation power than grammar (b) because it
can generate one more sentence and is more general than
grammar (b). Grammar (b) however is compressed better,
as the MDL score reveals. Overall, the difference in the
MDL score between the two grammars isn’t vast. However
for bigger experiments where a larger number of grammars
would need to be scored, a bigger variability in the score
can occur.

 We are also currently experimenting with an optimal
value for the beam size. For the DESK DSL, a beam size of
1 is suitable since it is a small DSL However, for bigger
DSLs where the search space would be expansive with a

bigger set of possible solution grammars, a larger beam size
value might be required.

4. Future Work and Conclusion
Solving the problem of CFG inference can lead to solutions
to many programming language related problems such as
renovation problems and development of domain-specific
languages. In this paper we describe and discuss
improvements to our incremental learning algorithm. Our
focus was on case 1 of the learning algorithm, and we
augment that algorithm with the beam search heuristic to
better search in the solution space, as well as the MDL
simplicity heuristic to direct the beam search towards
simpler grammars to control overgeneralization. A RHS
subset constructor operator is also introduced.

 Our future work involves continuing work on the
incremental learning algorithm, specifically developing an
all inclusive algorithm which can handle all the cases
described, and further investigating the MDL heuristic for
bigger DSLs. We are also experimenting with the size of
the beam to observe its affects on the quality of the inferred
grammars for DSLs of varying size.

Since CFGs are widely used in many other domains, the
results of this work will be directly applicable in many
different fields such as software system renovation,
development of domain-specific languages, syntactic
pattern recognition, computational biology and natural
language acquisition.

5. REFERENCES
[1] Kugel, P. It's time to think outside the computational

box. Communications of the ACM 48(11): pp. 32-37
(2005).

[2] Mernik, M., Heering, J., and Sloane, A.M. When and
How to Develop Domain-Specific Languages. ACM

Computing Surveys, 37(4):pp. 316-344, December
2005.

[3] van Deursen, A., Klint, P., and Visser, J. Domain-
Specific Languages: An Annotated Bibliography. ACM

SIGPLAN Notices, 35(6):26-36, 2000.

[4] Gold, E. M. Language Identification in the Limit.
Information and Control, 10: pp. 447-474, 1967.

[5] Lämmel, R., and Verhoef, C. Semi-automatic grammar
recovery. Software –Practice & Experience,
31(15):1395-1438, December 2001.

[6] Mernik, M, Črepinšek, M., Kosar, T., Rebernak, D.,
and Žumer, V. Grammar-based systems: Definition and
Examples, Informatica, 28(3): pp. 245-255, 2004.

[7] Črepinšek, M., Mernik, M., Bryant, B., Javed, F., and
Sprague, A. Inferring Context-Free Grammars for
Domain-Specific Languages. In Proceedings of the

Fifth Workshop on Language Description, Tools and

Applications (LDTA 2005), J. Boyland, G. Hedin

(Eds.), pp. 64 - 81, 2005.

[8] Oncina, J., and Garcia, P. Inferring regular languages
in polynomial update time. In N. Perez de la Blanca, A.
Sanfeliu, and E. Vidal, editors, Pattern Recognition

and Image Analysis, volume 1 of Series in Machine

Perception and Artificial Intelligence, pp. 49 – 61.
World Scientific, Singapore, 1992.

[9] Lang, K.J., Pearlmutter, B. A., and Price, R. A. Results
of the Abbadingo One DFA Learning Competition and
a new Evidence-Driven State Merging Algorithm,
Fourth International Colloquium on Grammatical

Inference, Lecture Notes In Computer Science, Vol.
1433, pp. 1-12, Ames, IA, July 1998, Springer-Verlag.

[10] Dupont, P. Regular Grammatical Inference from
Positive and Negative Samples by Genetic Search: the
GIG method. In Rafael C. Carrasco and Jose Oncina,
editors, Proceedings of the Second International ICGI

Colloquium on Grammatical Inference and

Applications, of Lecture Notes in Artificial

Intelligence, vol. 862 , pp. 236-245, Berlin, September,
Springer-Verlag, 1994.

[11] Sakakibara, Y. Learning Context-Free Grammars using
Tabular Representations. Pattern Recognition 38
(2005): pp. 1272-1383.

[12] Laxminarayana, J. A., and Nagaraja, G. Inference of a
Subclass of Context-Free Grammars using Positive
Samples. In ECML/PKDD 2003 Workshop on

Learning Context-Free Grammars, 2003.

[13] Nakamura K., and Ishiwata, T. Synthesizing Context-
Free Grammars from Sample Strings based on
Inductive CYK Algorithm. In Proceedings of
Grammatical Inference: Algorithms and Applications,

5
th

 International Colloquium, ICGI 2000, Lecture

Notes in Artificial Intelligence, vol. 1891, pp. 186-
195, Lisbon, Portugal, September 11 – 13, 2000,
Springer-Verlag.

[14] Oates, T., Armstrong, T., Harris, J., and Nejman, M.
Leveraging Lexical Semantics to Infer Context-Free
Grammars. In ECML/PKDD 2003 Workshop on

Learning Context-Free Grammars, 2003.

[15] Nakamura, K., and Matsumoto, M. Incremental
learning of Context Free Grammars based on Bottom-
Up Parsing and Search. Pattern Recognition 38 (2005):
pp. 1384-1392.

[16] Wyard, P. Representational Issues for Context Free
Grammar Induction Using Genetic Algorithm.
Proceedings of the 2nd International Colloquium on

Grammatical Inference and Applications, Lecture

Notes in Artificial Intelligence, vol. 862, pp. 222 -235,
Springer-Verlag, 1994.

[17] Mernik, M., Lenič, M., Avdičaušević, E., Žumer, V.,
LISA: An Interactive Environment for Programming
Language Development, Proceedings of the 11

th

International Conference on Compiler Construction,

CC’2002, Lecture Notes in Computer Science, vol.
2304, pp. 1 – 4, 2002, Springer-Verlag.

[18] Jiawei, H., and Kamber, M., Data Mining: Concepts
and Tehniques, Morgan-Kaufmann Publishers, 2001.

[19] Črepinšek, M., Mernik, M., Bryant, B., Javed, F., and
Sprague, A. Context-Free Grammar Inference for
Domain-Specific Languages, submitted to Science of

Computer Programming (invited). Technical Report

UABCIS-TR-2006-0301-1, UAB, 2006.

[20] Nevill-Manning, C. G., and Witten, I. H. Compression
and Explanation using Hierarchical Grammars. The

Computer Journal, 40:103-116, 1997.

[21] Langley, P., and Stromsten, S. Learning Context-Free
Grammars with a Simplicity Bias. In Proceedings of
Machine Learning: ECML 2000, 11

th
 European

Conference on Machine Learning, Lecture Notes in

Artificial Intelligence, vol. 1810, pp. 220-228,
Barcelona, Catalonia, Spain, May 31 – June 2,
Springer-Verlag, 2000.

[22] Petasis, G., Paliouras, G., Spyropoulos, C. D. and
Halatsis, C. eg-GRIDS: Context-Free Grammatical
Inference from Positive Examples using Genetic
Search”. In Proceedings of the 7th International

Colloquium on Grammatical Inference (ICGI 2004),

Lecture Notes in Artificial Intelligence, vol.3264, pp.
223 – 234, Springer, 2004.

[23] Rissanen, J. Stochastic Complexity in Statistical

Inquiry, World Scientific Publishing Co., Singapore,
1989.

[24] Kang, K.C., Cohen, S.G., Hess, J.A., Novak W.E.,
and Peterson, A.S. Feature-Oriented Domain Analysis
(FODA) Feasibility Study, Technical Report,

CMU/SEI-90-TR-21, ADA 235785, Software
Engineering Institute, CMU, Pittsburgh, PA, 1990.

[25] MARS: MetAmodel Recovery System:
http://www.cis.uab.edu/softcom/GenParse/mars.htm

