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ABSTRACT Often the theoretical virtue of simplicity in a theory does
not fit with the practical necessities of working with it. We present as a
case study an implementation in a generic theorem prover (Isabelle) of a
theory (F'Sp) which at first sight seems to lake all the facilties needed to be
practically usable. However, we show that we can use the facilties available
in Isabelle to provide all the structuring facilities (modules, abstraction,
etc.) that are needed without compromising the simplicity of the original
theory in any way, resulting in a thouroghly practical implementation. We
further argue that it would be difficult to build a custom implemenation
as effective.

§1 INTRODUCTION

A great many logics have been proposed as tools in computer science, especially
for all sorts of formal, machine checked reasoning. However, if we try to im-
plement these theories in some practical manner, we find that what has been
proposed by theoreticians as a practical tool has to be augmented in all sorts
of ways before it really becomes a practical tool. Essentially, the basic tools of
structured programming and other facilties need to be imported. Unfortunately,
this means that a proof theory which originally could be summarised on a page
or so, grows to fill a manual, and is augmented with descision procedures an
other extras, which can be difficult to verify.

A suggested solution to this problem is what have become known as ‘Logical
frameworks’: systems designed to be suitable for implementing a wide range of
different logics easily, so that they can be presented in a uniform manner to users,
allowing the same theorm proving facilties to be reused across a wide range of
implemented theories, instead of having to be rebuilt from scratch each time.
The basic idea of a logical framework (we will be concentrating in particular here
on the Isabelle system) is to make it easier to implement logics, via some sort
of equation of the Syntax + Axioms + Rules = Theorem prover form; but in fact
we get more than that. Because a logical framework based system is generic, its
implementors can afford to invest in much more powerful facilties, since they are
likely to be reused in a range of different contexts (in fact, since they don’t know



what those contexts will be, they have to provide powerful and general tools so as
to improve the possibility that they are usable any particular context). But since
this machinery is developed prior to the implementation of any particular theory
it must be independent of the details of such theories. Thus given an initial
proposal for a theory to be implemented, a logical framework based system
should not only be able to provide a much quicker implemenation (via the
equation given above) but also might be able to provide some, or all of the
structuring facilities that are needed for practical proof development, so that
they are actually independent of the theory to implemented. If this is so, then
the theory itself does not have to be extended, and thus can be implemented in
a way that is closer to the original proposal.

Feferman’s F'Sy [3] is such a theory, in this case as nominated as a suitable
vehicle for machine checked metatheory. While it is simple (20 or so axioms in
a three sorted first-order logic), it so primitive that it is not at all clear that it is
practically usable (especially in the form that Feferman gives it). It comes with
none of the structuring facilities which we usually depend on when developing
large theories (modularity, abstraction, etc.), but these have to be provided
somehow in the implementation. We show how we can we can get these directly
from Isabelle.

81.1 Contributions We see this paper as making the following contributions.
We show the effectiveness of a generic theorem prover such as Iabelle for dealing
with an unusual logic and how its facilties can be exploited to provide a great
deal of high-level structuring of development in such a theory, without having
to introduce such structuring facilties into the logic to be implemented itself,
and thus complicating it unnecessarily. We also claim that this case example is
an argument that implementation in a generic system can in the end sometimes
be more effective than a custom implementation, since so many of the facilties
our implementation provides are exploit the powerful facilities that a generic
system has to provide (in fact the design is directly driven by the facilities
Isabelle provides).

Secondly, and independently We demonstrate that F.Sy is a plausible the-
ory for real computer supported theory development, by presenting the first
practical implementation®

81.2 Outline of paper The outline of the rest of this paper is as follows: In §2
and §3 we briefly describe F'Sy as background, in §4 we discuss the facilities
that we want to provide for theory definition in our implementation, in §5 we
describe how we have provided these, in §6 we describe some of the tools for
proving theorems in FSp, in §7 we then briefly outline some of the theory
development we have performed, and in §8 we present our conclusions.

180 far as we, or Feferman, know.



§2 THE THEORY F'Sy

F'Sy is a theory in the tradition of Godel’s incompleteness results: one can think
of it as a ‘rational reconstruction’ of the results of the preliminary development
that that Godel did in arithmetic (i.e. building tools for doing ‘gddel-numbering’)
to prove his theorems, and is a conservative extension of primitive recursive
arithmetic. The details can be found in [3].

A first impression is that the theory is very simple, and, as we have said,
there are various reasons for not adulterating that simplicity, so it should be
implemented pretty much as it stands: as a three-sorted classical first order,
finitely axiomatisable theory of s-expressions, primitive recursive functions and
recursively enumerable classes, that resembles Pure Lisp. A summary outline
of Feferman’s definition is as follows:

e There is the sort S of s-expressions. This is contains a leaf object nil, and
is closed under a pairing function (-, -); equality is defined in the obvious
way over s-expressions.

e There is the sort F' of functions. All functions are of the form S — S and
function application is denoted by ‘, so that if f is a function and t is an
s-expressions then f‘t is a function application of sort S. we have a small
set of basic functions on s-expressions, Id (identity), m1,m2 (car and cdr),
and Dec (decide). Most of these should be well known, apart, perhaps,
from the last which behaves as follows:

. _Ja=b —c
Dec(((a,b),c),d) { atb —d
There are also constant functions K (a) of sort S — S, where K (a)b = a.
The basic functions can be combined using combinators of the form F' x
F — F, of which there are three, as follows. Composition, _* _, where
(f *g)‘t = f'(g't); pairing, [-, ], where [f, g]‘t = (f‘t, ¢‘t); and structural
recursion, Rec(., -), where, if h = Rec(f, g),
h‘nil = mnil
hi(a,nil) = fa
hi(a, (b)) = g'((((a,b),c), h'(a, b)), h*(a,c))

Finally, equality on functions is defined extensionally.

e There is the sort C of classes. We are given the class containing only nil,

i.e. {nil} and have binary intersection and union U and N, as well as the
inverse image of a class ¢ under a function f, f~!c where t € f~lc <
fiteec.
More complicated, we can also build recursively enumerable classes I'c¢(a, b),
which is the class containing a and closed under the rule t1,t2/t, where
((t,t1),t2) € b. Equality, and the subset relation, on classes are defined
extensionally.

e Finally, we have induction. Over the universe,

nil € ¢ — Ya,b(a,b € ¢ — (a,b) € ¢) = Vz(z € ¢)



and over inductively defined sets,
d Cec—Va,b,c(byc€c— ((a,b),c) e’ —acc)— Ic(d, ") Ce

F'Sy is intended for building Goédel-encoding of formal languages and theo-
ries, and this is done by building classes that define well formed, or provable,
formulae; e.g. we could define the class of all well-formed formulae of first or-
der logic (encoded as s-expressions). When we try to do this, however, it soon
becomes clear that enormous and painstaking effort is needed to build these by
hand and at the end the definitions are not are not intuitive; further, when we
try to prove that what we have produced has the properties that we want, we
find, almost invariably, that it is full of hard to correct errors. Further, there is
no way to structure developments very effectively.

We do, however, have a theorem that characterises which classes we are
able, in theory, to define, in the form of a comprehension principle. Given the
definition
DEFINITION 1 We define the class of X9-formulae to be the class containing
equalities and inequalities between S sorted terms, and set membership, and
closed under disjunction, conjunction and existential quantification of S sorted
variables.
then we have a comprehension theorem,

THEOREM 1 (FEFERMAN) Given a X.9-formula P[z] with one free variable x of
type S, there exists a class ¢, such that F'Sy F x € ¢ < Plx].

Y9-formulae provide an expressive specification language: with them we can
define any recursively enumerable set of s-expressions (which includes sets of
provable formulae, of course). But this comprehension result is a meta-theorem;
it is neither a schematic axiom nor a theorem of F'Sy, and while we could add
it as an axiom to the theory directly, that is precisely the sort of extension that
we want to avoid. How we provide comprehension is in fact one of the main
facilities that we document.

§3 ISABELLE
The Isabelle pds [5] comes as a collection of extensions for an SML programming
system. It cannot accurately be described as a program that just happens to be
written in SML; the relationship between the two is much closer than that. We
work with Isabelle directly through the SML command line, meaning that we
also have direct access to SML to program extensions, or as a tactic language; a
powerful but safe facility—the strong typing acting as an effective prophylaxis
against accidental, unnoticed damage being done to an implemented theory.
The system is based on the observation dating back to the Automath [2]
project, that a good foundation for a generic pds is type-theory, or typed lambda
calculus, since it is possible to encode the proof systems of many logics (par-
ticularly those that can be reasonably expressed in a natural deduction style)
directly in the V, — fragment of such a theory and that in doing this we fi-
nesse the traditionally ubiquitous problems with variable binding or capture,



and substitution.? For details of the type theory provided by Isabelle see [5].

We can think of Isabelle as a collection of tools for deriving and manipulating
terms in type theory.

It is important to stress several unusual points about Isabelle. The terms
that are derived in it are terms in a typed lambda calculus, some of which
happen to encode terms in a declared logic, but these are not the only terms
Isabelle works with: other terms represent rules in declared logic, and these can
be derived too. In fact perhaps the best way to think of Isabelle is as basically a
system for deriving rules rather than theorems; theorems are simply a degenerate
case of rules with no premises and no schematic variables. Also, Isabelle is not,
based on rewriting; lambda terms (i.e. encoded rules) are combined together
rather by (higher order) unification and proofs are thus built by resolving rules
represented as implicational terms in the type-theory against forumalae to be
proved (also terms in type theory). This has some interesting effects; for instance
we can use the same rule for both forward and backwards proof (since unification
is ‘bidirectional’), and it is possible to have metavariables in formulae that are
to be proven, which can be instantiated in the course of the proof, picking up
information from rules as they are used.

The details of how Isabelle allows access to the type theory through SML
are as follows:

e A new data-type theory for packaging the collections of constant defini-

tions that make up a declared theory.

e Functions for combining and extending theorys; i.e. if we have defined a
theory encoding first-order logic and call it Pred, we can extend it with
definitions for natural numbers to generate a new theory which we might
call Nat, or combine Nat with, say, List to generate a theory of naturals
and lists which inherits all the theorems that have been proven for either.

o A new data-type thm for the axioms of the theorys we have defined, and
also for the terms we have derived in the ‘theory’s we have defined. In
fact, and importantly, in Isabelle there is no distinction between derived
and basic theorems of a theory, they are all just thms.

Along with the the basic system, we also get some tools for building things like
rewrite systems, and a few predefined logics, including sorted classical first-order
logic.

Since classical first order logic is already available, we can immediately de-
fine, as an extension of it, a basic system for F'Sy, all we have to do is declare
sorts S, F, C' then we can type in the axioms literally (allowing for the restric-
tions that a typewriter imposes compared to a typesetting system) as we find
them in [3]. And we have a naive implementation of FSy.

20f course, F'Sp is in a completely different tradition to this, and we have to build our
own binding mechanism, but is intended for different purposes—we do find it pleasing that
one framework logic should be so effective for implementing another.



84 THE BASIC IMPLEMENTATION

As we have already said, a naive implementation of F'Sy is not usable, but we
can take stock of what it does make available (in Isabelle).

What this mostly amounts to is an effective method for modularising devel-
opment. We have said that in Isabelle we can define a theory as an extension of
another; thus the idea of a theory simply as a definitional extension of another
is very natural: we simply add a new constant, and make it equivalent to the
formula or term that it is abbreviating in the new extended theory.

Now, since a theory in F'Sy is basically a collection of F'Sy terms, we can
take over this facility for abbreviation as definitional extension in a new theory
and use it for defining new F'Sy theories, each of which is a new Isabelle theory,
albeit only a definitional extension. For a collection of classes, functions and s-
expressions that we want to define as a module, we make a definitional extension
of some earlier theory (which might be root F'Sy, or itself some extension) and
package these together as a new theory. Then we can prove the basic theorems
that show that the definitions have the properties we want. From then on, all
the the messy details of the implementation work can be hidden behind the
abbreviations for the definitions, and theorems about them. And since we can
combine these theories in Isabelle, with the result inheriting the theorems of its
ancestors, we have a simple but effective tool for structuring the development
of large theories as collections of small ones.

There are two ways to define a new theory as an extension of an old. The
the first, ‘basic’ way is to use the extend_theory function that comes with
the system. This is messy, since it takes a large and complicated collection
of half a dozen or more arguments. The second is to use the Isabelle front
end; this is a preprocessor that takes files which contain the equivalent of the
information needed by extend_theory, but in a much more readable format,
generates the theory and packages it, along with the various new axioms and
other declarations that have been added, as an SML structure. Unfortunately
neither of these methods is really suitable. The second method is not suitable
because to use it we need to type the details of terms in by hand, and we have
already explained why we want to avoid that). The first is unsuitable not only
because here too, we would need to type the terms in by hand, but because it is
simply too complicated (since we are only interested in definitional extensions).

84.1 What do we need? At this point we have to consider in more detail exactly
what we need to be able to do in an implementation. We automatically have
a way to structure theories declared in F'Sy, but anything else has to be built.
And we know that we want to avoid having to construct, by hand, large terms
to be assigned to abbreviations.

If a collection of definitions is constructed by hand (as happened in [4]) then
the first thing that has to be done is to prove a collection of theorems describing
(and checking) what those definitions actually do; i.e. translating them back into
logical propositions. For instance we know from the comprehension theorem



(theorem 1) that there is a close relationship between F'Sy classes and a certain
class of logical formulae, and we have explained that this relationship is central
to how we use the theory, so, if possible, we would like direct access to it.
But as well as classes, we also want to define new functions, where there is no
clear relationship like for classes. However, the idea that allows us to provide
comprehension can be generalised (if not so elegantly) to provide a mechanism
for generating terms from statements of their extensional properties.

The facilities for constructing classes and functions that we have imple-
mented are very effective for connecting a defined object to a formula giving its
properties. However they are also ‘bottom up’, since they build objects out of
basic components. This is very safe, or course, since it ensures that everything
we define is a definitional extension of F'Sy. This means that the ‘top down’
approach to development is not possible. Thus we also provide a way to add,
temporarily, new constants to the theory, along with new axioms, instead of just
definitional extensions perhaps so that development on it can be postponed, or
maybe continued in parallel.

We shall describe each of these in turn in the next section.

85 BUILDING DEFINITIONS

Thus we have defined a new function extend_FSO_theory (by analogy with
extend_theory) which takes the theory to be extended and a list of definitions
and returns a package of a new theory and an association list of useful theo-
rems that we have been able to generate automatically. Currently four sorts of
definitions can be put on this list, and we discuss them one at a time.

85.1 Simple constants The first sort of definition allows the definition of simple
constants where we can type the body of the definition in whole.

For instance, in a theory of natural numbers, the natural numbers can be
modeled as lists of nils; i.e. 0 ~> nil, s(0) ~ (nil,nil), s(s(0)) ~ (nil, (nil, nil))
etc. Then on the list of definitions would be the declarations

def ("zero", "nil"),
def("s", "[const(nil),Id]l")

which results in the new theory containing the new name zero for nil and the
new function s, where s‘¢ = (nil,t). Note that this last fact is a theorem that
we have to prove, def declarations are so general that it is not possible to
extract any extra information from them; however we can see the beginning of
an abstract interface here: we can try to provide a set of theorems that talk
about the abstract behaviour of s and zero in the natural numbers, without
regard to their implementation.

§5.2 Comprehension A def declaration is not really different from the sort of
declarations that the standard Isabelle front end can handle. More interesting
is comprehension. We would like to make this available in some convenient way.
The secret to doing this is to examine the proof (on paper) of the comprehension
theorem. This shows, by induction on the structure of X9-formulae, that it is



always possible to construct a suitable class. Most of the cases are easy; for
instance there is an obvious equivalence between N,U, and A,V. The most
tricky case is for 3, were we have to show that given z € ¢ « P[m‘z, mo‘x],
then there is some construction Fz(c) such that @ € Ex[c| iff Jy.Plx,y]. The
construction of Ex is a bit tedious but not impossible (see [3] for the details).

Unfortunately the type theory of Isabelle is too weak to formalise all of this
argument, since it does not support induction. The induction is the only thing
that cannot be formalised though; all the step cases are provable; i.e. we can
derive rules for each possible reduction step needed by the proof. Then, since
rules in Isabelle are implicational formulae in higher order logic, and proofs are
built by resolving those rule against the formula to be proven, the equivalent of
the induction can be implemented as a simple backchaining algorithm (which is,
in fact, deterministic, since there is exactly one rule that resolves against each
case in the definition of X9-formulae.

Thus for existential quantifiers, we can prove the rule

Ve(x € z « Plm‘z, ma‘z])
Vz(x € Ex[z] « Ja(Pla, x]))

(given some z such that..., then there is some z’ (actually Ex[z]) such that

Thus, if we wanted to define the class of the ‘less than’ relation, we could
start with a goal of the form

Ve(x € 7c < Jw,y, z(x = (y,2) A plus'(xz,w) = 2))
(where ?c is a metavariable hole in the goal). We can immediately apply the
rule for the existential case, which reduces the goal to
Va(x € 7d « Jy, z(m's = (y,2) A plus(ma'z, m1'z) = 2))

now 7c has been instantiated with Ex[?d]. We can repeat this step twice more,
then we change to the rule for A and so on. Eventually we have only goals of
the form

Ve(r € 7e &z €d)
which can be made true by unifying with

Ve(x €y < x € y)
which sets e equal to d, then we can look at ?c to see what it has been in-
stantiated with, which gives us the class term we are looking for. This way, not
only do we generate the class term that we want from the property we want
it to satisfy, but we get, for free a theorem that states that it satisfies that
property.® This approach is similar to the idea that Basin suggests in [1], as a
general method for program synthesis.

We have implemented this so that we can write a definition, directly, as

comp("1tC", "(y,z)", "EX w. plus‘(y,w)=z")

3Essentially the induction which was not possible in Isabelle has been added informally,
using SML.



(i.e. the class of all instances of the term (y,z) such that...) Then the whole
procedure just described is performed automatically: first an equivalent term,
with just one free variable, is constructed, which has the form

x:7c <> EX y z w. x = (y,2) & plus‘(y,w)=z

then this is set as the goal to be proven and the proof procedure we have just
described is run on it. The class is generated and attached to a name, then a
version of the theorem defining the comprehension relation, only with the new
name substituted for the generated class term, is proven and returned.

Thus we have solved both problems at once: the constant defining the class
has been generated, automatically from a clear specification, and at the same
time, a theorem connecting the specification and the class together by a logical
equivalence has been proved, so it should never, in future, be necessary to unfold
this class definition to get at what is inside it.

85.3 general synthesis We have described a powerful method for building classes
in F'Sy as conservative extensions, but general though it is, it is not always suit-
able, and anyway we also want to define, similarly, new functions as conservative
extensions; and unfortunately no similarly elegant solution is available for that.

However the situation can be improved far beyond having to piece functions
together by hand out of primitives, and then proving that the result has the right
properties. In fact, we can extend the idea that we have just used to implement
the comprehension theorem to a much larger class of synthesis problems.

Above, we have a uniform procedure which when given theorem-with-a-hole
of a particular form, can fill out that hole. But in general no such uniform
procedure is available; instead, a custom proof has to be provided. As an
example, consider the ‘less than’ ordering again, only this time we want to
define it as a function, not as a relation. We can adopt the same method to
synthesise it, starting with a formula-with-a-hole that we try to prove, as follows:

Nt‘nil = false A 71t (a, zero) = false A
t¢(a, s‘a) = true A (a # b — 7t (a, s'b) = ?1t‘(a, b))

The 71t here can be filled in in exactly the same way as 7c above, resulting in a
definition that can be read off, and theorem giving properties of that definition.
The difference here is that we have to find a proof ourselves.

This can still be partially automated though. We just have to arrange to tell
the system somehow what the right way to go about proving this goal, apart
from the results are the same. Thus we find the entry

sch_def ("1t",
"?1t‘nil=true & ?1t‘(a,zero)=false &
?1t‘(a,s‘a)=true) & (a"=b --> ?1t‘(a,s‘b)=71t‘(a,b))"
ltsynthtac)

where the extra argument, ltsynthtac, is a program to prove the goal, that re-
places the uniform proof procedure for comprehension. Assuming that 1tsynthtac



doesn’t fail, the result of running it is exactly like before: the new function is

synthesised and attached to a new constant, and the theorem that has been

proved is returned, with the new abbreviation replacing the synthesised term.
In fact, we could have defined 1tC in the same way, by giving the definition

sch_def ("1tC",
"x:71tC <> EX y z w. x = (y,z) & plus‘(y,w)=z",
comprehension_tac)

As we said, this is clearly not quite as elegant as that for comprehension,
for all sorts of reasons: it requires a user to build the tactic that is to be
given as a parameter, which can be quite tricky, and it does not guarantee that
the theorem returned is an exact and complete description of the object that
has been synthesised, but it is, nonetheless, very effective, and, of course, very
general.

85.4 top down specification It is part of the received wisdom that large systems
should, at least in part, be developed ‘top down’; i.e. the implementation should
be developed by repeatedly refining the abstract definition into somethingc on-
crete. This, it is argued, helps to keep the development under intellectual con-
trol. We cannot do this with the facilities we have defined so far: anything we
define has be be built from the ground up. We add a fourth sort of entry on
the range of possible definitions, to allow a top down style. This looks very like
sch_def, but has one less parameter.

abstract("1t",
"1t ‘nil=true & 1t‘(a,zero)=false &
1t¢‘(a,s‘a)=true) & (a“=b --> 1t‘(a,s‘b)=1t‘(a,b))")

(notice that the formula has no holes) With comp and sch_def a definitional ex-
tension of the given theory is generated and a theorem about it is proven. With
abstract this process is short-circuited: no effort is made to try to generate a
suitable definition, or prove a theorem. The new theory is extended with a new
constant 1t, and a new axiom defining its behaviour. This is dangerous because
this extension is not definitional and the associated theorem is not a theorem of
F'Sy (there is nothing to stop us adding a false axiom), but as was said earlier,
abstract is supposed to be used only as a temporary, stop-gap, measure, and
removed before the end.

§5.5 Taking stock If we take stock of what we have done in this section we see a
single idea, presented in a variety of ways. We have tried constantly to hide the
details of F'Sy definitions behind abbreviations, which we treat as new objects,
with new defining axioms, added to the theory. FSy is, in fact really being
used only as an underlying foundation to the extension we define. However, if
we really need to, we can, at any time, strip these levels of abstraction away,
leaving the unadorned theory, since everything is, in the end, just a definitional
extension. We will extend this theme in the next section, when we talk about
how Isabelle allows us to implement rewriting.



§6 IN USE

We have described a modification of Isabelle that we have found to be a practical
way of building theories as definitional extensions of F.Sy. We now show that
it is a practical way of working in those theories. There are several aspects to
this work, which we will discuss in turn.

86.1 Induction As we have said earlier, a lot of the work involved in using F'Sy,
is building classes. This work is more ubiquitous even than we have implied,
since the typical method of proof in the theory is induction, of one sort or
anther, and induction is only available over classes, in spite of the fact that we
almost never want actually to do this. Again, as a result of the comprehension
theorem we know that there is an equivalent class for any ¢ predicate, and
thus we have induction over this class of formulae (which is enough in for most
practical things). The metatheory of Isabelle will not allow us to prove derived
rules of this form; e.g. we cannot prove as a single metatheorem that

Plnil] Va,y(Plz] — Ply] — Pl(z,y)])
Vo Plx]
(where P is a ¥9-formula). We are, however able to prove something almost

identical in the rule:
deVa(x € ¢ & Plx]) Plnil] Vx,y(Plz] — Ply] — Pl(z,v)])

Va Pz
(no side condition). This produces an extra goal, of course, which corresponds
to the side condition on the previous rule since we know that it is exactly these
classes that is defineable. And the extra goal is not a problem, since it can be
disposed of immediately and automatically with the same tactic that we use to
implement generation by comprehension in comp.

86.2 Rewriting The other large and ubiquitous problem-in-use for F'Sy is term
simplification, since many theorems are proven mostly by selecting a suitable
induction then simplifying the resulting terms. But this work of term simplifi-
cation is tedious and difficult to do by hand.

It maybe not immediately clear why this is a problem. The functions we
are able to define have a well defined structure with obvious rewrites (described
in 2); surely we need only implement this, and arrange for abbreviations to be
unfolded as necessary.

But consider a simple example: we need a function to number the elements
of a list with their positions. We can specify this as follows:

label'l = labeld'(zero,l)
labeld'(n,nil) = nil
labeld(n, (f,r)) = ((n,f),labeld'(s‘n,r))

and it is not hard, though tedious, to define first-order primitive recursive
(i.e. using Rec) versions of label and labeld to satisfy this specification. But



if we try to evaluate the resulting program using the strategy we have just de-
scribed, we discover that the path the evaluation takes looks nothing like the
specification suggests it should be. If the term to be normalised is ground, we
get the result we want, but as ‘raw s-expressions’; that is, many of the abbrevia-
tions in subterms will have been unfolded (and without these abbreviations, the
term is an incomprehensible s-expression built of nothing but nil).* If the term
is not ground, the results will be much worse. In fact the naive term reduction
strategy suggested by the axioms is useless.

What is needed is a rewriting system that respects the specifications, and ab-
stract properties of what has been defined, not the concrete details of the imple-
mentation. However, Isabelle, provides a general rewrite package (term_simp_tac)
that can be effectively used for our purpose. This takes, as a parameter, a set
of equational theorems that are to be used as rewrite rules. These theorems
need not describe the actual normalisation path of a set of terms (the pack-
age accept a diverging set of rules); they must only be provably correct. Thus
once we have verified that label and labeld behave as they should, according to
their specification above (we need induction for this) we can use the equations
that specify their behaviour as their rewrite rules. Such equations are always
available, since whenever a function is defined, the first thing we have to do is
check that it does what it should. In fact if, like in the case of 1t above, which
is defined with a sch_def, we get the desirable rewrite properties at the same
time as we synthesise it.

Thus we have continued the the theme of abstraction that we started in
the last section. There we provided facilities for defining objects in abstract
terms, trying as much as possible to hide the underlying structures used to build
them. Here we bring that process to a conclusion by implementing rewrite for
the functions we define in those same abstract terms, again hiding (and thus
allowing a user in future to ignore) the underlying structure. We are thus able
to provide efficient, and completely abstract interfaces for the various theories
that we build, and we can combine them using just these interfaces.

§7 DEVELOPMENT EXPERIENCE

We have described the basic facilities that we have implemented for working
with F'Sg. We now describe some of the development that we have actually
carried out.

F'Sy is designed for doing proof theory, and therefor for formalising math-
ematical theories. But most theories have some notion of binding, and substi-
tution, and (unlike type theoretic logics for encoding) it does not have these,
so they have to be developed inside the theory. However, with a sufficiently
general idea of what sort of facilities are needed, the work of implementing this
should be reusable for any theory. I.e. rather than define binding for first-order

41t worth mentioning that in this case even the technique that has been used in some
systems, where unfolded abbreviations are tracked, so to be folded back afterwards when
possible, does not work.



logic, the lambda calculus, and higher order logic all separately, we could de-
fine the term structure of each of these on top of some more abstract theory,
and this is what we have done. The largest theory we have implemented is for
the ‘binding structures’ proposed by Talcott [6]. However this is a large and
complicated theory (the implementation details will appear in another paper)
so the development has been structured. In fact we have developed in all the
following theories: natural numbers, lists, finite functions (from lists), and a
general system of binding structures. However the intention of this paper has
been to concentrate on the implementation of F'Sy that we have built, rather
than to report on the details of how theories are developed in it.

88 CONCLUSIONS

At the centre of any formal proof development system are two things: an un-
derlying logic which can be used to build various theories, and a way to make
that work of building as easy as possible, by allowing users to impose various
sorts of structure on the development. This latter might provide (among other
things)

e Modularity: it should be possible to develop parts of a theory as separate
chunks, which can be combined as necessary.

e Top down development: it should be possible to assume that certain theo-
ries are available, even if the supporting development has not been finished,
allowing that effort to be postponed or performed concurrently.

e Abstraction: it should be possible to present an interface to a theory
that hides the (possibly messy) details of the implementation behind an
abstract description of its behaviour.

We have shown that in a system like Isabelle, which provides sophisticated
structuring and development facilities of the sort we have listed, that are pro-
vided prior to, and therefore independent of, any theory we might implement,
we can take a simple (= primitive) theory, in this case F'Sp, lacking any such
facilities and provide them, while preserving the simplicity of the theory. We
have been able to provide a very practical and usable system which is imple-
mented using exactly the axioms that we find in Feferman’s original paper; all
development in the system can easily be unwound to that level.

We even believe it would be difficult to build a custom theorem prover as
effective as what we have produced, since many of the more useful facilities are
inspired directly by what Isabelle provides, and these facilities are so much more
powerful than we can imagine trying to program ‘from scratch’.

System availability Parties interested in getting a copy of the code for the im-
plementation should send e-mail to the address given at the beginning of this
paper); we hope to have it ready for release in the immediate future.
APPENDIX: AN EXAMPLE DEVELOPMENT

In this appendix we list some code, and some sample development from a theory
(of lists).



The Isabelle development of a theory can be packaged inside a structure,
which means that it can present a fairly abstract interface, which is of the
following form:

signature LISTS =
sig val thy : theory
val thms : (string * thm) list
val list_axl : thm
val list_ax2 : thm
val list_ax3 : thm
val ListRecl : thm
val ListRec2 : thm
val ListRecTyping : thm
val injectl : thm
val inject2 : thm
val injectTyping : thm
val mapl : thm
val map2 : thm
val mapTyping : thm
val ListIndg : thm
val List_ss :simpset
end;

i.e., the rest of the system should see the development as consisting of a the-
ory thy, an association list thms which contains a bunch of information about
comprehension generated by the comprehension tactics, that we do not want to
use explicitly (and could not really, even if we wanted to) and a list of theorems
which together (should) present to the rest of the system an abstract view of the
concrete structures that we have developed. Unfortunately the typing of ML is
not enough to make the details of a thm explicit (i.e. what exactly it is a theo-
rem about), but only enough to ensure that it is a theorem of some sort. Thus
the typing details of signature cannot give all the details that we would like.
Then, inside a 1ists:LISTS=struct, end pair we can build concrete objects in
F'Sy, prove theorems about them, and then assign some of these theorems to
the names listed in the signature.

First we build the basic theory, which is a collection of constant definitions,
as follows:

val (thy,thms) =
extend_FSO_theory basics.thy "sorted lists" []
[def ("empty_List", [, "nil"),
comp("base_List", [], "a", "a=empty_List"),
comp("step_List", ["sort"], "re2((h,t),t)", "h:sort"),
def ("List", ["sort"], "I2(base_List, step_List(sort))"),
sch_def ("ListF", ["f"],



"?ListF=Rec(Id,andF * [f*argl,rc2]) * [trueF, Id] &
?ListF‘nil=true & 7ListF‘(a,b)=andF‘(f‘a,?ListF‘b)",
(fn _ => fn _ =>
[...1)),
sch_def ("ListRec", ["base", "step"],
"?ListRec=Rec(base, step * [[[arg0,argl],arg2],rc2]) &
?ListRec‘(a,empty_List)=base‘a &\
?ListRec‘(a, ((b,c)))=step‘(((a,b),c),?ListRec‘(a,c))",
(fn thy => fn _ =>
[...1)),
comp("step_List_x", ["sort"],
"re2((h,t),t)", "h:sort & t:List(sort)"),

def ("Listarg0", [1, "P1 *x P1 x P1"),
def ("Listargl", [1, "P2 x P1 x P1"),
def ("Listarg2", [1, "P2 * P1"),

def ("Listrc", [1, "P2"),

def("inject", ["f"],

"ListRec(P2, f *

[[P1 * Listarg0O, Listargl], Listrcl)"),
def ("map", ["f"],

"inject ([£xP1,P2]) * [[P1, const(empty_List)],P2]")
1;

This constucts a new theory (with the name "sorted lists" as an extension
of the earlier basics.thy and assigns it to thy while at the same time assigning
details about how the various classes generated by the comprehension tactic
correspond to the given first-order predicates, to thms.

Then, using these two, we are able to start developing the theorems that
give the abstract properties of the objects we have just defined. For instance
we can write

val List_axl =
prove_goal thy
"empty_List : List(D)"
(fn _ =>[...1);

which proves that empty_List is a member of the class of lists generated from
any class D (the details of the tactic used to prove it have been replaced with
an ellipsis . ..).

Or, more complex, we can prove one of the axioms that gives the properties
of the inject combinator.

val inject2 =



prove_goal thy
"inject (f) ¢ ((k,b), (h,t))=f¢((k,h),inject(f) ‘ ((k,b),t))"
(fn _ => [...D)

Then finally we have the theorem for induction over lists,

val ListIndg =
prove_goal thy

"[] x:List(C); !'!' x. £‘x = true <-> x:C;
It x. x:X <> P(x); P(empty_List);
' hs. [l h:C; s: List(C); P(s)|] ==> P((h,s))

[1==>P(x)"

(fn [h1, h2, h3, h4, h5] =>
...D1);

and we finish by building a suitable rewriting system List_ss, which rewrites

in terms of these theorems (though it, of course, doesn’t actually have to use

them, or work through them).

Now, if we have chose our theorems well, we have a complete theory of
lists which as far as the rest of the system is concerned, has been effectively
abstracted away from impementational details. We are able to treat the set of
theorems provided by the structure list as though they were simply axioms.
The isolation is not quite complete: we can always go around this abstract
interface, but there should not be much temptation to do so if the theorems are
well chosen, since it is hard and messy to do. (If we wanted to be absolutely
sure about what we have done, we could, of course, check for implementational
bias).
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