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Abstract. Though it arouses more and more curiosity, the HJ iterative algorithm has never been derived in mathematical  
terms to date. We attempt in this paper to describe it from a statistical point of  view. For instance the updat ing term of  the 
synaptic efficacies matrix cannot  be the gradient of  a single C a functional contrary to what is sometimes understood. In fact, 
we show that the HJ algorithm is actually searching common  zeros of  n functionals by pipelined stochastic iterations. Based 
on simulat ion results, advantages and limitations as well as possible improvements  are pointed out after a short theoretical 
analysis. 

Zusammenfassung. Obwohl er mehr  und  mehr  Interesse weckt, ist der iterative HJ-algori thmus noch nie au f  mathemat ischem 
Wege hergeleitet worden. In diesem Beitrag versuchen wir, ihn von einem statistischen Gesichtspunkt  aus zu beschreiben. 
Zum Beispiel kann der Erneuerungsterm der synaptischen Wirksamkeitsmatrix nicht der Gradient  eines einzelnen C 2- 
Funktionals sein - obwohl er gelegentlich so interpretiert wird. Wir zeigen, dab der HJ-Algori thmus in der Tat gemeinsame 
Nullstellen von n Funkt ionalen mittels stochastischer, im Pipelining ausgefiihrter Iterationen sucht. Auf  der Grundlage von 
Simulat ionen werden Vorteile und  Bergrenzungen sowie mrgl iche  Verbesserungen nach kurzer theoretischer Analyse dargelegt. 

R6sum6. Bien qu'il 6veille maintenant  de plus en plus de curiosit6, l 'algorithme it&atif HJ n 'a  jusqu '~  pr6sent jamais  6t6 
justifi6 en termes math6mat iques  rigoureux. Par exemple, le terme de remise ~ jour  des poids synaptiques ne peut  pas ;~tre 
le gradient d 'une  fonctionnelle unique de classe C 2, contrairement h ce qui est paffois reconnu. Nous  essayons dans cet 
article de le pr6senter en empruntant  une approche statisique. Nous  montrons  que I 'algorithme HJ recherche en r6alit6 les 
z6ros communs  de n fonctionnelles par des it6rations stochastiques pipelin6es. Apr~s une courte analyse th6orique, et en 
nous appuyant  sur des simulations,  nous soulignons les avantages et les limitations de l 'algorithme, ainsi qu 'un  certain nombre 
d'am61iorations possibles. 

Keywords. Signal and image processing, stochastic processes, mixture, neural networks, principal components ,  independent  
components ,  inverse problem. 

Introduction 

This paper  deals with the so-called 'source separ- 

ation'  problem, which is still quite unknown by 
the signal processing community.  Because of its 
numerous possible applications, in particular in 
image processing or antenna array processing, this 
subject begins to receive a greater attention. It may 
be described in a few words as follows. Suppose 
we receive n random signals on n discrete sensors, 

and suppose these signals are propagating from n 
source locations through a deterministic linear 

medium. Assuming the source signals are statisti- 
cally independent,  the problem consists of  recover- 
ing them from observed signals only. The assump- 
tions we are allowed to resort to are only the 
linearity of  the t ransformation and the indepen- 
dence assumption. The terminology is not yet 
established for this kind of  problem, and we can 
talk about blind equalization as well as deconvol- 
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ution. But what is important to stress here is that 

we deal with a multichannel problem, which con- 

fers it very particular features. As shown in [2], 

multichannel deconvolution can formally be split 

into monic deconvolution and instantaneous 
source separation. We shall restrict our attention 

to the latter problem, called in short 'source separ- 
ation'. 

This simplified problem has been already 

studied following various approaches,  including 

[2,4, 6], that we shall not investigate here. We 
rather devote the paper  to an alternative presenta- 
tion of the HJ algorithm introduced in [5], attempt- 

ing to solve the problem in an iterative manner. 
Our aim is not to give a perfect solution, since to 

date there does not exist any, but to point out what 
are the advantages and limitations of  the selected 

algorithm, and to raise a few open questions. 

1. Properties inherent in the problem 
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diagonal matrix; in other words, we may have 

FA = PA [2]. The consequence is that among the 
n 2 unknowns (the entries of  F),  n of them are 
undetermined. It suffices to impose n entries in F 

to get a well-posed problem. One way of doing 

this would be to impose that the variances of  the 

outputs si(t) be all equal to 1 [2]. Another way is 

to look for a matrix A with unit diagonal entries, 
that is, for a matrix F of  the form 

F = ( I + C )  ~, w i t h D i a g { C } = 0 .  (3) 

This constraint is assumed in the HJ algorithm. 

Now, it remains to find matrix C, that is, only 
n ( n - 1 )  unknowns. Ideally, there are several 
equivalent solutions given by 

C = AP[Diag(AP)]  -~ - I, (4) 

where P describes the set of  permutations in 
dimension n, namely n! distinct solutions. For 

instance, for n = 2  and if we denote by a o the 
entries of  A, there exist two solutions since two 

different permutations exist: 

and 

Let xi(t)  denote n unknown processes, 1 <~ i ~< n; 

these processes will be referred to as 'source'  pro- 

cesses in the rest of  the paper. They are assumed 

zero-mean, stationary up to the fourth order, and 
mutually independent for convenience, though 
these assumptions are not necessarily always 
required in practice. Denote by ei(t) the observa- 
tions obtained by an unknown memoryless linear 

transform of  the sources. Then we have in compact  
form the relation between both vector-processes e 
and x: 

e ( t ) = A x ( t ) ,  (1) 

where A is an unknown n x n matrix. The goal is 

to retrieve the unknown source processes x~(t) 
from ej(t), by using solely their statistical indepen- 
dence. It is obvious that the solution, if it is obtain- 
able, is necessarily given by a linear transform: 

s( t)  = Fe(t) .  (2) 

Notice that if a process x( t )  has independent com- 
ponents, then so do the process PAx( t ) ,  where P 
is any permutat ion matrix and A any regular 
Signal processing 

[c,2, c21] = [ a,2/ a22, a2,/ all] 

[c,=, c2,] = [a , , /a2 , ,  a22/a,2]. 

The first idea we could think of is to resort to a 
second-order description of the stochastic proces- 

ses, namely to use a quadratic optimisation 
criterion. Unfortunately, this will leave us with a 
large indetermination. In fact, there are n(n - 1 ) / 2  
second order cross moments  and their cancellation 
provides us with n ( n -  1)/2 quadratic equations, 
which is half  less than the number  of  unknowns. 

For instance, the solution given by the principal 
components  analysis (PCA) of the covariance 
matrix E{s ( t ) s ( t )  T} provides uncorrelated outputs 

si(t), that may not be pairwise independent 
whenever they are non-Gaussian,  PCA is not the 
unique solution of the system of second order 
equations, but it is one solution that has orthogonal 
columns. Moreover, Gaussian processes in the 
strict sense are rarely observed in the real world. 
For these two reasons the PCA solution is not 
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satisfactory. The need of  n ( n - 1 ) / 2  additional 

equations may be faced by utilizing higher-order 
statistics. 

2. A measure of ~atist ical independence 

Let s be a random vector with entries s i. Mutual 

independence of  the variables {s~] 1 <~ i<~ n} is 
satisfied if and only if the joint probability density 

function, p~(v), equals the product  of the marginal 

densities, p~,(v;): 

p~(v)=l]p , , (v~) .  (5a) 

This criterion is not easy to use under this form 

so that one prefers to resort to characteristic func- 

tions. Define the first characteristic function as 

ebb(u) = E{exp(inVs)},  and the second as ~ ( u ) =  

In ~b~(u). If  the variables si are mutually indepen- 
dent, then by definition the joint characteristic 
function ~b,(u) splits into the product  of  n marginal 
characteristic functions ~b~,(u;). This yields by 
taking the logarithm: 

¢,~(u) = E 6~,(u,). (5b) 

This equation means that the function of r, 

variables, 0,(u) ,  separates into a sum of n func- 
tions each of  one variable. This property seems 

much easier to use than (5a). For this purpose, it 

suffices to express n in terms of the unknown 
coefficients, F,j, and to write the cancellation of  all 

the terms involving several variables in the left- 
hand side. For instance, if n = 2, we get 

requires a large superflous effort as explained in 

the following. Suppose we calculate the Taylor 

expansion of  both sides of  (5b). Then all the terms 

in the left-hand side where products between 
different variables ui enter must be zero since there 

are no such terms in the right-hand side. Equating 

terms of both sides for any degree gives new 

equations. The coefficients of  terms of degree N 

in the expansion are called cumulants o f  order N. 

For instance, for n =2 ,  there are three cross- 
cumulants of  order 4: 

/~13 = M13 -- 3 M2oMI1 = 0, 
(6) 

F22 = M 2 2 -  M20Mo2 - 2 M ~ ,  = 0, 

F31 = M31 - 3Mo2Mll = 0, 

where Mo = E{si~} denote the moments  of  order 

i +j ,  and the Fljs are the corresponding cumulants,  

F~ = cum{si~, sJ~}. General  expressions of  
cumulants may be found in [1]. 

In this framework, one will restrict ourselves to 
pairwise independence. But pairwise indepen- 

dence of the outputs implies mutual independence 

because outputs are linear funct ions of the sources 
(remind that sources are assumed mutually 
independent).  Pairwise cumulants have been 
shown to provide a sufficiently large set of  
equations to conclude, even for n > 2 [2]. Now let 

us turn to the HJ algorithm which is an adaptive 

means to cancel high-order cumulants. 

6 , (u , ,  u2) = ~,s,(u,) + 0,2(u2), 3. HJ adaptation rule 

which implies 

$e(Fi lu l  + F21u2, F12ul + F22u2) 

= ~,~,(u,) + ¢,$2(u2). 

Such a procedure is possible if the characteristic 
function of the observation, ~e(v), is known. In 
practice, it can always be estimated since e is 
observed. However,  the estimation of probabili ty 
density functions and characteristic functions 

3.1. Searching the zeros o f  a function 

Let ~ ( z )  be a real deterministic function defined 
as the expectation of a random function ¢[z, s(z)],  

s ( z )  being a random variable depending on the 
unknown parameter,  z. One of the simplest ways 
of finding the zeros of ~ ( z )  is to run the algorithm 

z (k  + 1) : z (k )  + ~cI , (z(k)) ,  

/x is a constant, 0 < Iz < 1. 
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It is easy to see that if @(z) > 0, then z increases, 

whereas if @(z) < 0, z decreases. This iteration is 

thus able to find the zeros of ~ (z )  that have a 
negative derivative. A similar iteration may be used 

to find the zeros with positive derivative just by 

changing the sign of ~. In a stochastic approxima- 

tion context, ~ (z )  is unknown to the user as well 

as the probability density of ~o. However, one 

may substitute ¢[z, s(z)] for @(z) in the above 

iteration, yielding the Robbins-Monro 

stochastic iteration [7, pp. 42-43]: 

z(k+l)=z(k)+tz~[z(k),s(z(k))].  (7) 

Convergence in probability of the Markov process 

z ( k + l )  to a root of ~ (z )  needs among other 

conditions that /~ depends on k [8]. More pre- 

cisely, the sequence ~(k)  must be non-summable 
and /x(k) 2 must be summable. I f /x (k )  does not 

tend to zero, then z(k) will be able only to achieve 

a neighborhood of the root but there will be a 

non-zero residual. This is what occurs in the HJ 

algorithm, but it could be easily palliated if 

required, for instance by setting tz(k)=l.~o/k. 
However, a minimal positive value of /z(k) is 

desired in a non-stationary environment in order 

to track a slowly varying phenomenon. It turns out 

as we shall see in the next subsection that the HJ 

algorithm also defines a Markov process, and 

therefore could be studied with the help of  the 

standard tools for this purpose [7]. As announced 

in our introduction, this is however out of our 

present scope and we postpone this study to a 

future paper. 

3.2. Searching common zeros of several functions 

Now, let the dimension of z be larger than 1, 

say n, and assume we observe n functions 
~i[z, s(z)]. Denote ¢i(z)  = E{~o~[z, s(z)]} and 

assume we know in advance that the system 

{~i(z) = 011 < i <  n} admits at least one solution. 
The previous iteration may be used along each 
coordinate in turn. In such a case, the ith com- 

ponent of z is updated only once each n steps, if 
n is the dimension of z, according to a relaxation 

scheme: 

step k=qn+r: zr(k+l)=zr(k) 

+ l.~r[z(k), s(z(k))], 

O<r~n,  qcN. 

For instance if n = 2, the relaxation can be written 

as 

k odd: 

z~(k + 1) = 7,1(k ) +/z~0,[z(k), s(z(k))], 

k even: 

z~(k+ 1) = ZE(k) + p,q~2[z(k), s(z(k))]. 

3.3. HJ algorithm as a pipelined search 

The HJ algorithm may be seen as a pipelined 

version of  the above algorithm. It acts exactly in 
the same manner as if n relaxations were executed 

in parallel. For the sake of clarity let us explicit 

the iteration in the n = 2 case. 

iteration k: 

z,(k + 1 ) = z,(k) + p,~,[z(k), s(z(k))] 

Vi~ {1 , . . . ,  n}. (8a) 

The difference with the relaxation scheme 

described earlier is that iterations along each coor- 

dinate are computed all together at the same time 

step. If the step is very small, the principle does 

not change much and the difference may be viewed 

as a pipeling operation. On the other hand, if the 

step is too large, then algorithm (8) may not con- 

verge. 
Omitting the high-pass filter that was originally 

implemented together with function g, the adapta- 

tion rule used in the HJ algorithm may be written 

a s  

co(k+ 1) = cu(k) + p,~u[C(k), s(C(k))], 

i# j ,  i , j~n,  

where 

~%[C(k), s(C(k))] =f[s,(C(k))]g[sj(C(k))], 

with s(C(k)) = [ I +  C(k)]-~e(k), (8b) 

Signal processing 
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and the functions f (s )  and g(s) are suggested to 

be (i) different, (ii) odd [5]. Clearly, iteration (8b) 

is attempting to simultaneously cancel the n (n - 1) 
functions E{f(si)g(s~)} with respect to the entries 

of C. Now assume the sources have zero-mean 

even probability densities. Then all odd order 

moments E{x~ p+~} are zero, and consequently all 

odd order moments E{s~ p+~} aim to vanish. This 

implies that if f and g are odd, E{f(s~)g(sj)} 
expand into a combination of  cross cumulants of 
the form 2p+l 2q+l cum{si , s t }. This makes the connec- 

tion between the choice of  functions f ( s )  and g (s) 

made in [5] and the criterion defined in Section 2. 

Let us review the conditions recommended for 

functions f and g: (i) They must be different from 

each other in order for the matrix C to be able to 

take unsymmetric values, this is necessry. Condi- 

tion (ii) is sufficient (but not necessary) to insure 

the functions Fq(C) to coincide with a combina- 

tion of  cross-cumulants, thus vanishing when the 

components of s(t) are independent. In the next 

section, we shall point out some of  the convergence 
limitations which are definitely due not only to the 

search algorithm but also to the choice of the 

functionals themselves. 

3.4. Separation of statistically dependent signals 

As shown in the previous sections, it is sufficient 

that the sources x~ and x2 satisfy for at least two 

values of  the pair (i,j) c 1~2: cum{xl, 3 }  = 0. It 

turns out that variables x~ and x2 are statistically 

independent if and only if all the cross-cumulants 
are equal to zero. But it is possible to exhibit two 

variables having ony a small number of null cross- 
cumulants. The separation is then still possible if 

there are at least two of  them (known in advance) 

that are null. Of course the exact form of the 

cumulants must be known in advance. For 

instance, let h be any even function and x a zero- 
mean random variable symmetrically distributed. 

Then a mixture of the sources x~ = x and x2 = h(x) 
may be identified by using 2 functionals of  the 
form E{xPx2 q} with p odd, since these moments are 

always null. 

4. Behavior of  the HJ  algorithm 

The purpose of  this section is to show various 

conditionings of the HJ algorithm, and in par- 
ticular those that cause problems. In order to bring 

out more insights in its behavior, the functionals 

on which algorithm (8b) is based are accurately 

estimated on a few examples in Section 4.3. 

4. I. Explicit computation of the functionals 
cancelled implicitly by HJ 

For given inputs, it is possible to estimate accur- 

ately both functionals as functions of the unknown 

transform parameter, C. For this purpose, assume 

we observe e(t) for 1 <~ t <~ T. Then the functionals 

d~i~(C) may be approximated by 

1 T 
~iJ(C) = T  ~ f[si(t)]g[s~(t)]' 

t = t  

with s ( t ) = [ I + C ]  ~e(t). (9) 

For each value of C to be scanned, a large average 

must be calculated involving a rather important 

computational burden. For this reason, we have 

decided to restrict ourselves to a one-dimensional 

study (n = 2 but one parameter), since incidentally 

this does not restrict the generality as pointed out 

below. 

4.2. Restriction to a one-dimensional study 

Our present investigation focuses on the case 
n = 2 for the sake of clarity; nonetheless the results 

are representative of the behavior at higher 
dimensions since all outputs are processed pair- 

wise. Now, matrix C has only two free parameters, 

c~2 and c2t. The first goal of the algorithm is to 

provide uncorrelated outputs, and the next is con- 

cerned with higher-order independence. This first 
task is less interesting to study for two reasons: 

(a) there exist many classical methods carrying it 
out, (b) the HJ algorithm has been shown to con- 

verge quite rapidly to uncorrelated outputs 

whereas the next phase dealing with higher order 
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independence takes a fairly larger amount of  iter- 
ations [5]. In this section, we shall restrict the study 
to uncorrelated (but statistically dependent) 
inputs. In such a case, the matrix C to estimate is 
necessarily skew-symmetric. So denote from now 
on c~2= 0 and c21 = - 0 .  Assume the inputs e~(t) 
and e2(t) are uncorrelated (at order 2). Then 

algorithm HJ is attempting to cancel simul- 
taneously 

• ,2[01 = E{f(s,)g(sz)} 

and 

~z,[ O ] = E { f  ( s2)g( sl) }, 
where 

e,(t)-Oe2(t) 
s , ( t ) -  1+02 

e~(t) + Oel(t) 
and Sa( t ) -  1 + 0  2 

P Comon et al. / Blind separation of  sources, Part H 

4.3. Simulation examples 

In this section, we have retained f ( s )=  s 3 and 
g(s) =atan(10 s). Figures 1 and 2 show the func- 
tionais q~ii(0) obtained for an average of length 
T = 2 0 0 0  with two types of  inputs. Inputs are 
obtained from independent sources via the 

orthogonal transform 

A=[0 .319  0.948;-0.948 0.319]. 

In the first case (Fig. 1), the sources are identically 
and uniformly distributed white processes, with 
zero-mean and unit variance. The ideal solutions 
are, from (4), 0 = 3 and 0 = -0.3. Attention of the 
reader is attracted on the fact that Figs. l(b) and 
2(b) plot qb2~ as a function of  -c2~ and not c2~, in 
order to make it easier to compare solutions 0 
obtained in Figs. l(a, b) and 2(a, b). Thus, attrac- 
tors of  HJ are the zeros with positive derivative in 

(10) Figs. l(b) and 2(b), and negative derivative in 
Figs. l(a) and 2(a). 
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Fig. 1. Separat ion of  two identically and uniformly distributed processes mixed by an or thogonal  t ransform. (a) Functional  ~ z [ 0 ]  
as a funct ion of  0 = c~2. Attractors for ct2 are -0 .3 ,  +3 with associated attraction basins: ] -2 .1 ,  0.5[, ]0.5, +oo[. (b) Funct ional  
~2~[0] as a funct ion of  O = -c2~. Attractors for -ca~ are -0 .3  and +2.4 with associated attraction basins: ] -1 .8 ,  0.5[ and ]0.5, +oo[. 
Attractor +2.4 is inaccurately estimated (we expected +3) because the derivative of  q'Pz~[0] is almost  null; an other  consequence is 

that  this attractor is fairly slow. Attractors are spotted with a cross. 
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Fig. 2. Separation of  binary and ternary white random processes mixed by an orthogonal transform. (a) Functional ~ ,~[0]  as a 
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Fig. 4. Evolu t ion  o f  the  va lues  t aken  by ( q 2 ,  c2~) in the condi t ions  descr ibed in Fig. 2. Again  pa ramete r s  (cl2 , c2t) were left free. 
(a) The  a lgor i thm seems  to converge  to a n e i g h b o r h o o d  of  ( - 0 . 5 ,  0.4), which  is not  correct  but  ant ic ipa ted  by Fig. 2. The  cross  
indicates  the  averaged  va lue  o f  the  last 10 iterates. (b) This  shows  more  precisely the  behav ior  o f  the a lgor i thm a r o u n d  the poin t  
( - 0 . 5 ,  0.4) with a s tar t ing va lue  ( - 0 . 4 ,  0.4) and  a smal le r  s tep imposed  b y / z  = 5-10 -4. The  a lgor i thm is not  converg ing  but  descr ibes  
a cycle in the  plane.  Within  2000 i terat ions,  the a lgor i thm has  descr ibed  one  round  and  half.  This  shows  the d rawbacks  tha t  may  

ap pea r  w hen  run n ing  the  a lgor i thm with unsymmet r i ca l ly  d is t r ibuted sources.  
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In Fig. 1 we can see that the attractors obtained 

(spotted with a cross) coincide approximately with 

the solutions expected. However,  one can check 

that if {c~2, -c2]} is intialized to {-2.5, -2.5}, then 
the algorithm diverges to {-oo, -oo}; if it is initial- 

ized to {3, 3} then it converges fairly slowly. As an 

example,  the behavior  of  the actual adaptive 
algorithm is represented in the {c~2, c2~}-plane in 

Fig. 3. The correct value is attained after 2000 

iterations with tz = 0.02. 
On the other hand, our second example sheds 

light on more embarassing results: some correct 

attractors have split into two close spurious attrac- 
tors (Fig. 2). In this example,  the sources x~ and 
x2 take only values in {-0.65, 1.53} and 
{ - v ~ ,  0, v~} respectively, with probabilities 
{0.70, 0.30} and {1/4, 1/2, 1/4}. As a consequence, 

the sources are zero-mean and of  unit variance, 
and source x] is unsymmetrically distributed. Let 

us dwell a little longer on this particular example.  
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Figure 2(a) shows that attractor -0.3 does not exist 
any more, but attractors -0 .6  and -0.1 have 

appeared;  as a result there is an unstable basin 

limit at -0 .3.  Figure 4(a) reports a typical experi- 

ment run with null starting value that led to a 

solution {c~2,-c2~} belonging to a neighborhood 

of  {-0 .6 , -0 .3} .  Figure 4(b) shows that the 
algorithm is actually cycling in the {c]2, c2t} plane. 

This may be observed in Fig. 5 as well, where the 

values taken by the outputs tend periodically to 
cluster. Thus we get a quite inaccurate solution, 

which was anticipated by our analysis. Note that 

attractor -0.1 has been skipped in that case, 

because of  too little averaging at the beginning of  
the process. Recall that Fig. 2 corresponds to 

sources with unsymmetric probabili ty densities. 
In the stochastic HJ algorithm, there is always 

a phase of  fast convergence corresponding to the 

decorrelation up to order 2, and a phase of  slow 

evolution where the algorithm tries to obtain out- 
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Fig.  5. S ince  s o u r c e s  t a k e  d i s c r e t e  v a l u e s  in f ini te  sets ,  it is p o s s i b l e  to  c h e e k  c o n v e r g e n c e  o f  t h e  a l g o r i t h m  in a g l a n c e  b y  l o o k i n g  

a t  t h e  o u t p u t  s igna l s .  W e  m a y  n o t i c e  t h a t  t h e  v a l u e s  a r e  c l u s t e r i n g  p e r i o d i c a l l y ,  b u t  d o  no t  t e n d  to  c o n v e r g e  as  t he  n u m b e r  o f  

i t e r a t i o n s  t e n d  to inf in i ty .  T h i s  c o n f i r m s  t h e  r e m a r k s  m a d e  in Fig. 4 (b ) .  
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puts statistically independent up to higher orders. 
The success of  the second phase is in general 
compromised when one source is unsymmetrically 
distributed. Our simulations focused on the second 

phase since the mixing matrix was orthogonal. 

5. Improvements to the method 

implemented and first extensions to convolution 
mixings are discussed. 

As a conclusion, it must be said that this problem 
is related to the solution of  overdetermined systems 
of  non-linear equations with several variables 
which are difficult to solve, even if the non-linearity 
is merely polynomial because the ring of  poly- 
nomials is not principal any more in this case. 

The Robbins-Monro algorithm has specific limi- 
tations that are shared with the HJ algorithm. For 
instance, the speed of convergence of a sequence 
x(k) to a zero x0 of  O(x) depends upon the ratio 
min{O(x)/(X-Xo)}. On the other hand, odd 
moments are not always the adequate tool for 
testing statistical independence. The possible 
improvements are two-fold. Firstly, the iterative 
search can be speeded up, or even replaced by a 
direct computation when it is feasible [3] in order 
to get rid of  the initialization sensitivity. In the 
case where the funct ionalsf  and g are polynomials, 
this could also be taken into account in the zero- 
finding routine. Secondly, one can change the 
nature of the functionals, by using cumulants for 
instance. More precisely, a single functional could 
be defined as the sum of  the squares of all cross- 
cumulants of order three and four, and would then 

be a polynomial in the (unknown) mixing com- 
ponents and in the (known) observation 
cumulants. Its minimization would consequently 
be very easy to perform and would allow us to 
cope with sources with unsymmetric densities. In 
[2, 3] some of  these improvements have been 
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