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Abstract

The categories of monoids, comonoids and bimonoids over a sym-
metric monoidal category C are investigated. It is shown that all of
them are locally presentable provided C’s underlying category is. As
a consequence numerous functors on and between these categories are
shown to be part of an adjoint situation; in particular, the category of
comonoids is monoidally closed.
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1 Introduction

The interest in coalgebraic structures has risen quite impressively over the
last two decades (see e.g. [4]). While this was on the one hand due to certain
aspects of computer science and therefore restricted to the set based case,
more recently the methods developed there and the module based case, orig-
inating from H. Hopf’s observation of the existence of a“comultiplication”
on certain homology groups, are starting to converge (see e.g. [10]).

It is in this spirit that in the present note we focus explicitely on the
notion of monoid over a symmetric monoidal category C (a concept classical
to category theory) and its dual notion of comonoid. Restricting ourselves
to those C whose underlying category is locally presentable as, e.g., the
category Set of sets or ModR of modules over a commutative ring R, we
∗Granting of sabbatical leave from my permanent affiliation, University of Bremen,

Germany, is gratefully acknowledged, as is the hospitality of Tshwane University of Tech-
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show that the categories of monoids and comonoids respectively over C (and
even the category of bimonoids) share this property. This not only yields
a lot of completeness and cocompleteness results but also, by use of the
Special Adjoint Functor Theorem (SAFT), a wealth of adjoint situations in
and between the categories occuring here naturally.

In a sequel to this paper we shall—based on the results presented here—
investigate corresponding properties of categories of Hopf monoids and Hopf
algebras in particular.

We would like to make the following comment concerning monoids, in
particular the existence of free monoids. For the results presented here
it would have been sufficient to rely on the classical criterion as given
by MacLane (see [8]). Our preference to the functor-algebra approach is
mainly due to the attempt to provide a uniform treatment of monoids and
comonoids; note however, that this approach also guarantees the existence
of free monoids, where the classical one might fail.

2 Monoids and comonoids

2.1 Admissible monoidal categories. In the sequel we will assume that
C = (C,−⊗−, I, a, l, r, s) is a symmetric monoidal category, where a, (l, r, s)
denote the natural isomorphisms expressing associativity (left and right unit
law, symmetry) and which — except for the symmetry — we will suppress
occasionally. We moreover assume that C is a locally presentable category
(though some of the results hold more generally).

Definition A symmetric monoidal category C with C locally presentable
will be called admissible, provided for each C in C the functor C ⊗ − is
finitary (i.e., if C ⊗− preserves directed colimits).

Our main, but not sole, example of an admissible monoidal category will
be the category ModR of R–modules w.r.t. a commutative ring R. Also
every locally presentable category is admissible w.r.t. to binary product
−×−.

Remarks

1. If C is monoidally closed it is clearly admissible (but not conversely
— see 3.3).

2. If C is admissible, for each n ∈ N, the “nth tensor power functor”

Tn : C −→ C
C 7−→ ⊗nC

is finitary (see [9]).
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3. If C is admissible we can form (by our (co)completeness assumptions)
the functors

T+ : C −→ C
C 7−→ (C ⊗ C) + I

and T× : C −→ C
C 7−→ (C ⊗ C)× I

and these are finitary, too; for T+ this is obvious, for T× it follows from
2. and local presentability of C.

4. A morphism T+C → C is usually denoted by [m, e] withm : C⊗C → C
and e : I → C its components; analogously, a morphism C → T×C
with coordinates µ : C → C ⊗ C and ε : C → I will be denoted by
〈µ, ε〉.

2.2 The categories MonC and ComonC. The category MonC of
monoids over C then is defined as usual: its objects are triples (C,C⊗C m−→
C, I

e−→ C) such that the diagrams

C ⊗ C ⊗ C
m⊗1C //

1C⊗m

��

C ⊗ C

m

��
C ⊗ C m

// C

C ⊗ I
1C⊗e //

rC

 (IIIIIIIIIIII

IIIIIIIIIIII C ⊗ C

m

��

I ⊗ C
e⊗1Coo

lC
v~ uuuuuuuuuuuu

uuuuuuuuuuuu

C

commute. A monoid homomorphism (C,m, e) −→ (C ′,m′, e′) then is any
f : C → C ′ making the diagrams

C ⊗ C m //

f⊗f

��

C

f

��
C ′ ⊗ C ′

m′
// C ′

I
e //

e′
��?

??
??

??
??

? C

f

��
C ′

commutative.
The category ComonC of comonoids over C is defined to be (MonCop)op,

i.e., its objects are triples (C,C
µ−→ C ⊗ C, C ε−→ I) such that the diagrams

C
µ //

µ

��

C ⊗ C

1C⊗µ

��
C ⊗ C

µ⊗1C

// C ⊗ C ⊗ C

C ⊗ Ìh

r−1
C IIIIIIIIIIII

IIIIIIIIIIII
C ⊗ C

1C⊗εoo ε⊗1C // I ⊗ C

C

µ

OO

l−1
C

6>uuuuuuuuuuuu

uuuuuuuuuuuu

commute, while a comonoid homomorphism (C, µ, ε) −→ (C ′, µ′, ε′) is any
f : C → C ′ making the diagrams
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C
µ //

f

��

C ⊗ C

f⊗f

��
C ′

µ′
// C ′ ⊗ C ′

C
ε //

f

��

I

C ′

ε′

??����������

commute.
In particular, MonModR equals AlgR, the categories of R–algebras,

while ComonModR =: CoalgR is called the category of R–coalgebras.
A monoid (C,m, e) is called commutative iff m = m ◦ sC with sC : C ⊗

C → C ⊗ C the symmetry; dually, a comonoid (C, µ, ε) is called cocommu-
tative, provided that µ = sC ◦ µ. By cMonC and cocComonC, respec-
tively, we denote the categories of commutative monoids (cocommutative
comonoids) with all (co)monoid homomorphisms. One has cocComonC =
(cMonCop)op.

For later use we note

Lemma The symmetry s of C induces functorial isomorphisms

(−)op : MonC −→ MonC
(C,m, e) 7−→ (C,m ◦ sC , e)

and
(−)op : ComonC −→ ComonC

(C, µ, ε) 7−→ (C, sC ◦ µ, ε)

respectively.

2.3 Lifting adjunctions. It is well known (see e.g. [12]) that every
monoidal functor F : C → C′ induces a functor F̂ : MonC → MonC′ by
F̂ (C,m, e) = (FC,Fm,Fe).

Lemma Let the monoidal functor F : C→ C′ have a right adjoint G with
counit ε : FG→ 1C′. Then F̂ has a right adjoint G̃ with counit ε̃ such that

• the following diagram commutes

MonC′ G̃ //

|−|′

��

MonC

|−|

��
C′

G
// C

and

• |ε̃(C,m,e)|′ = εC holds for each (C,m, e) in MonC′.
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Proof: Given a monoid (C,m, e) over C′ define a monoid G̃(C,m, e) =
(GC, m̄, ē) by commutativity of the following diagrams:

FGC ⊗ FGC ∼ //

εC⊗εC

��

F (GC ⊗GC) Fm̄ // FGC

εC

��
C ⊗ C m

// C

J
∼ //

e
((RRRRRRRRRRRRRRRR FI

F ē // FGC

εC

��
C

Then εC : F̂ G̃(C,m, e) → (C,m, e) is a monoid homomorphism. If now
f : F̂ (C ′,m′, e′) = (FC ′, Fm′, F e′) → (C,m, e) is any monoid homomor-
phism then the C′-morphism f ] : C ′ → GC corresponding to f by adjunc-
tion is easily seen to be a monoid homomorphism (C ′,m′, e′) → G̃(C,m, e)
which proves that εC indeed is F̂ -couniversal for (C,m, e). �

2.4 The cartesian case. Clearly, MonSet is just the category Monoids
of ordinary monoids (when Set is considered a monoidal category by binary
products), and, somewhat more generally: if C is monoidal with − ⊗ − =
− × −, the binary product, and I = 1, the terminal object, then MonC is
the category of monoid objects in C. We will call this the cartesian case.
Forming comonoids in the cartesian case seems to be uninteresting at this
stage: each C–object C carries precisely one cartesian comonoid structure:
(C,∆, !) with ∆: C −→ C × C the diagonal and ! : C −→ 1 the unique
morphism. Thus, in this case, C ' Comon(C,−×−, 1).

2.5 Functor algebras and –coalgebras. Recall that, given an endofunc-
tor F : K −→ K on some category K the category AlgF of F–algebras has
objects (K,FK α−→ K) with K,α in K and morphisms (K,α) −→ (K ′, α′)
such K–morphisms f : K −→ K ′ making the diagram

FK
α //

Ff

��

K

f

��
FK ′

α′
// K ′

commute. The category CoalgF of F–coalgebras is (AlgF op)op, i.e., it
has objects (K,K α−→ FK) with α,K in K and morphisms f : (K,α) −→
(K ′, α′) those f : K −→ K ′ such that

K
α //

f

��

FK

Ff

��
K ′

α′
// FK ′
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commutes. AlgF and CoalgF thus are concrete categories over K with
obvious forgetful functors.

We recall the following facts about these categories.

Facts (See [1] and [2])

1. The underlying functor AlgF → K creates limits and those colimits
which are preserved by F ; consequently, it is monadic as soon as it
has a left adjoint.

2. If K is cocomplete and F preserves directed colimits, then AlgF → K
has a left adjoint.

3. The underlying functor CoalgF → K creates colimits and those limits
which are preserved by F ; it is comonadic as soon as it has a right
adjoint. (This is just the dual of 1. above.)

4. If K is a locally presentable category and F preserves directed colimits,
then CoalgF −→ K has a right adjoint.

5. If K is locally presentable and F preserves directed colimits the cate-
gories AlgF and CoalgF are accessible.

Remarks Let C be an admissible monoidal category. By the previous
facts (and the identifications of (C,m, e) and (C, [m, e]), and, respectively
(C, µ, ε) and (C, 〈µ, ε〉)) we obtain:

1. The category AlgT+ is finitary monadic over C and contains MonC
as a full subcategory.

2. The category CoalgT× is comonadic over C and contains ComonC
as a full subcategory.

2.6 Closure properties. Investigating MonC and ComonC as subcat-
egories of AlgT+ and CoalgT×, respectively, it is important to get further
information on these embeddings.

Proposition

1. MonC is closed in AlgT+ with respect to the formation of limits and
of directed and absolute colimits.

2. ComonC is closed in CoalgT× with respect to colimits and absolute
limits.
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Proof: Assume
(
(C,m, e) πi−→ (Ci,mi, ei)

)
I

is a limit in AlgT+ with all
(Ci,mi, ei) satisfying the associativity axioms. By a simple diagram chase
one obtains (in C)

∀i ∈ I πi ◦m ◦ (m⊗ 1C) = πi ◦m ◦ (1C ⊗m).

Since AlgT+ −→ C preserves limits, the πi are jointly cancellable. Thus
(C,m, e) is associative.

Let now
(
(Ci,mi, ei)

di−→ (C,m, e)
)
i

be a directed colimit in AlgT+ with
all (Ci,mi, ei) satisfying the associativity axiom. Now a simple diagram
chase gives (again in C)

∀i ∈ I m ◦ (m⊗ 1C) ◦ (di ⊗ di ⊗ di) = m ◦ (1C ⊗m) ◦ (di ⊗ di ⊗ di).

Since T 3 is finitary and AlgT+ −→ K preserves directed colimits we can
jointly cancel the di ⊗ di ⊗ di. The argument concerning absolute colimits
is the same.

Analogous arguments show satisfaction of the unitary laws for (C,m, e).
Statement 2. is dual to the first part of 1. �

Corollary Let C be an admissible monoidal category. Then

1. MonC is finitary monadic over C.

2. MonC is a locally λ–presentable category provided C is.

Proof: Since the Eilenberg–Moore category of a finitary monad on a locally
λ–presentable category is locally λ–presentable again, 2. follows from 1.

Since AlgT+ is a locally finitely presentable category (see 2.5) it fol-
lows from the previous proposition (by the reflection theorem for accessible
categories [2, 2.48]) that MonC is reflective in AlgT+. Consequently, the
forgetful functor MonC −→ C is finitary and has a left adjoint. Monadic-
ity of AlgT+ and closure of MonC under absolute coequalizers now proves
monadicity (using the Beck–Paré–Theorem). �

Remarks Using essentially the same arguments one obtains

1. cMonC is closed in MonC under limits, directed colimits and absolute
colimits.

cMonC is reflective in MonC and finitary monadic over C. cMonC
is a locally presentable category.

2. cocComonC is closed in ComonC under colimits and absolute limits.
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2.7 ComonC as an equifier. Since the arguments used above w.r.t.
MonC cannot be dualized (the dual of a locally presentable category is —
nearly always — not locally presentable) we need to use a different approach.

Definition ([2, 2.76]) Let F t1, F
t
2 : K −→ Lt (t ∈ T ) be a family of functors

and, for each t ∈ T ,
ϕt, ψt : F t1 −→ F t2

be a pair of natural transformations. Then the full subcategory of K spanned
by those objects K which satisfy ϕtK = ψtK for all t ∈ T is called the equifier
Eq

(
(ϕt, ψt)T

)
of the above family of pairs of natural transformations.

Fact (see [2]) With notation as above the category Eq
(
(ϕt, ψt)T

)
is an

accessible category provided that all functors F t1, F
t
2 are accessible functors.

Now consider the category of T×–coalgebras with its underlying functor
| − | : CoalgT× −→ C. Define natural transformations as follows:

1. ϕ1, ψ1 : | − | −→ T 3 ◦ | − |
ϕ1

(C,[µ,ε]) : = (µ⊗ 1C) ◦ µ, ψ1
(C,[µ,ε]) : = (1C ⊗ µ) ◦ µ

2. ϕ2, ψ2 : | − | −→ | − | ⊗ I
ϕ2

(C,[µ,ε]) : = (1C ⊗ ε) ◦ µ, ψ2
(C,[µ,ε]) : = r−1

C

3. ϕ3, ψ3 : | − | −→ I ⊗ | − |
ϕ3

(C,[µ,ε]) : = (ε⊗ 1C) ◦ µ, ψ3
(C,[µ,ε]) : = l−1

C

Then, obviously,
ComonC = Eq

(
(ϕt, ψt)t=1,2,3

)
.

Since the domain and the codomains of the above natural transformations
clearly are accessible we obtain

Proposition Let C be an admissible monoidal category. Then

1. ComonC is a locally presentable category.

2. ComonC is comonadic over C.

Proof: ComonC is accessible by the above. CoalgT× is cocomplete, since
C is, and ComonC is closed in CoalgT× under colimits. But a cocomplete
accessible category is locally presentable ([2, 2.47]).

To prove 2. we only need to show that the underlying functor
CoalgT× −→ C has a right adjoint. Since this functor preserves all colimits
the special Adjoint Functor Theorem applies (its assumptions are fulfilled
since ComonC is locally presentable). �
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Remarks

1. The same arguments show that cocComonC is locally presentable
and comonadic over C. Since its embedding into ComonC preserves
colimits, it is a coreflective subcategory (again by the SAFT).

2. Clearly, by duality, also MonC can be described as an equifier. Our
approach used for MonC, however, allowed for more: we got an addi-
tional result concerning the degree of local presentability.

3 Lifting admissibility

3.1 Monoidal structures for monoids and comonoids. It is well
known how to lift the tensor product from C to MonC and ComonC,
respectively: one simply defines

• (C1,m1, e1)⊗ (C2,m2, e2) : = (C1 ⊗ C2,m, e) with m =

(C1⊗C2)⊗ (C1⊗C2) C1⊗s⊗C2−−−−−−→ (C1⊗C1)⊗ (C2⊗C2) m1⊗m2−−−−−→ C1⊗C2

and e = I ' I ⊗ I e1⊗e2−−−−→ C1 ⊗ C2,

• (C1, µ1, ε1)⊗ (C2, µ2, ε2) : = (C1 ⊗ C2, µ, ε) with µ =

C1⊗C2
µ1⊗µ2−−−−→ (C1⊗C1)⊗ (C2⊗C2) C1⊗s⊗C2−−−−−−→ (C1⊗C2)⊗ (C1⊗C2)

and ε = C1 ⊗ C2
ε1⊗ε1−−−→ I ⊗ I ' I.

By these constructions and I made into a monoid and comonoid respec-
tively in the obvious way MonC and ComonC become symmetric monoidal
categories again (see [7]). We will always consider MonC and ComonC as
endowed with these monoidal structures. Note that the tensor product of
two (co)commutative (co)monoids is a (co)commutative (co)monoid again
and that, moreover, the following holds:

Fact With the monoidal structures defined above cMonC and cocComonC
are symmetric monoidal categories and, moreover,

1. (C1,m1, e1) ι1−→ (C1,m1, e1)⊗ (C2,m2, e2) ι2←− (C2,m2, e2)

with ι2 = C1 ' C1 ⊗ I
1C1
⊗e2−−−−−→ C1 ⊗ C2

and ι2 = C2 ' I ⊗ C2

e1⊗1C2−−−−−→ C1 ⊗ C2 is a coproduct in cMonC.

2. (C1, µ1, ε1) π1←− (C1, µ1, ε1)⊗ (C2, µ2, ε2) π2−→ (C2, µ2, ε2)

with π1 = C1 ⊗ C2

1C1
⊗ε2−−−−→ C1 ⊗ I ' C1

and π2 = C1 ⊗ C2

ε1⊗1C2−−−−→ I ⊗ C2 ' C2 is a product in cocComonC.
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3.2 The case of comonoids. It has been observed by Barr [3] that
cocComonC is cartesian closed. Using the idea of Barr’s proof together
with the results of 2.7 we obtain

Proposition If C is an admissible monoidal category, then ComonC and
cocComonC are admissible. If C is even monoidally closed, then so are
ComonC and cocComonC, where cocComonC is then in fact cartesian
closed.

Proof: Each functor (C, µ, ε) ⊗ − on ComonC and cocComonC, re-
spectively, preserves those colimits which are preserved by C ⊗ − on C,
since the underlying functors of the categories of comonoids create colimits.
Since these categories are locally presentable, the Special Adjoint Functor
Theorem applies. �

3.3 The case of monoids It is clear that for monoids we cannot expect
the same to hold; for example, the category of commutative R–algebras, i.e.,
cMonModR is not a cocartesian closed category. We do get, however, the
following result:

Proposition Let C be an admissible monoidal category, then MonC and
cMonC are admissible.

Proof: Since the underlying functors of the categories of (commutative)
monoids create directed colimits the arguments of the proof above apply
here as well. �

4 Bimonoids

Having seen that both of the categories, MonC and ComonC, are again
suitable to build categories of monoids and comonoids over them one should
have the following fact in mind:

Fact (Eckmann-Hilton Principle). The category of monoids over MonC
is isomorphic to cMonC (see e.g. [6]). By duality, the category of comonoids
over ComonC is isomorphic to cocComonC.

Thus only the constructions MonComonC and ComonMonC can be
of interest.

4.1 The category BimonC. The following is well known (see e.g.[12]):

Fact For any symmetric monoidal category C and data

- C ∈ Cobj

- m : C ⊗ C, e : I −→ C ∈ Cmor

- µ : C −→ C ⊗ C, ε : C −→ I ∈ Cmor
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such that

a. (C,m, e) ∈MonCobj

b. (C, µ, ε) ∈ ComonCobj

the following conditions are equivalent:

i) µ : (C,m, e) −→ (C,m, e)⊗ (C,m, e) and
ε : (C,m, e) −→ I are monoid homomorphisms.

ii) m : (C, µ, ε)⊗ (C, µ, ε) −→ (C, µ, ε) and
e : I −→ (C, µ, ε) are comonoid homomorphisms.

Quintuples C = (C,m, e, µ, ε) satisfying the above conditions then are called
bimonoids in C. These form a category BimonC when using as morphisms
f : C = (C,m, e, µ, ε) → (C ′,m′, e′, µ′, ε′) = C′ those C morphisms f : C →
C which simultaneously are both, a monoid homomorphism (C,m, e) →
(C ′,m′, e′) and a comonoid homomorphism (C, µ, ε)→ (C ′, µ′, ε′).

By the definition of the monoidal structures on MonC and ComonC,
respectively, condition ii) above means that (C,m, e) is not only a monoid
in C as required by a., but even a monoid in ComonC, while i) says that
(C, µ, ε) is even a comonoid in MonC. We thus observe

Lemma Up to concrete isomorphism of categories one has

MonComonC = BimonC = ComonMonC.

From this and the results of 2.6, 2.7 and 3.2 we obtain immediately

Proposition For any admissible monoidal category C the category BimonC
is locally presentable. It is finitary monadic over ComonC and comonadic
over MonC.

Remark Note that the adjoints of BimonC → MonC and BimonC →
ComonC can, alternatively, be constructed as lifts of the adjoints of MonC→
C and ComonC→ C respectively using Lemma 2.3.

In the sequel we occasionally will use the following notation concerning
bimonoids: If C = (C,m, e, µ, ε) is bimonoid, Cm : = (C,m, e) will denote
its monoid part and cC = (C, µ, ε) its comonoid part. We then will write
C = (cC, Cm). In case of C = ModR we might use Ca instead of Cm. Also
BialgR : = BimonModR. Given a bimonoid C = (cC, Cm) then so are

• Ccop : =
(
(cC)op, Cm

)
.

• Cmop : =
(cC), (Cm)op

)
.
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• Cop : =
(
(cC)op, (Cm)op

)
.

This defines functorial isomorphisms

(−)cop, (−)mop, (−)op : BimonC −→ BimonC.

4.2 Commutative and cocommutative bimonoids. A bimonoid is
called commutative and cocommutative respectively, provided its underlying
monoid is commutative or its underlying comonoid is cocommutative. By
cBimonC and cocBimonC respectively we denote the full subcategories of
BimonC spanned by the commutative or cocommutative bimonoids. Then
cBimonC = ComoncMonC and cocBimonC = MoncocComonC; the
latter is even the category of cartesian monoids in cocComonC.

Again from previous results we obtain most of the following

Proposition

1. cBimonC is a locally presentable category. It is comonadic over cMonC.
cBimonC is a reflexive subcategory of BimonC closed w.r.t. directed
colimits, and, consequently monadic over ComonC.

2. cocBimonC is a locally presentable category. It is finitary monadic
over cocComonC. cocBimonC is a coreflexive subcategory of BimonC
and, consequently, comonadic over MonC .

Proof: Only the (co)reflexivity statements still need proofs. These however
follow from (the dual of) Lemma 2.3 applied to the embeddings cMonC ↪→
MonC and cocComonC ↪→ ComonC (use Remark 1. in 2.6 and 2.7). �

Note that the proof above in fact even shows the following

Facts

1. The cofree bimonoid over a commutative monoid C is commutative
and, thus, the cofree commutative bimonoid over C.

2. The free bimonoid over a cocommutative comonoid C is cocommutative
and, thus, the free cocommutative bimonoid over C.

which, however, could also have been obtained without resorting to the
lifting argument of 2.3 by rather applying the following simple observation
to the appropriate functorial isomorphisms taking opposites.

Lemma Let

C
I //

U

��

C

U

��
K

J
// K
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be a commutative diagram with equivalences I and J . Let FixI and FixJ
denote the full subcategories of C and K spanned by the objects fixed by I
and J respectively.

If U maps FixI into FixJ , then so does any adjoint of U .

4.3 Summary. We might summarize our results thus far by the following
diagram in which

• all categories are locally presentable,

• all arrows labelled fm are finitary monadic functors,

• all arrows labelled cm are comonadic functors,

• all hooked arrows are accessible embeddings with r denoting a reflec-
tive and c a coreflective one.

BimonC
cm

��

fm

��

cocBimonC
) 	 c

66mmmmmmmmmmm

fm
��

cBimonC
4 T

r

ggOOOOOOOOOOO

cm
��

ComonC

cm

++XXXXXXXXXXXXXXXXXXXXXXXXXXX cocComonC? _coo

cm

((QQQQQQQQQQQQQ cMonC � � r //

fm

wwoooooooooooo
MonC

fm
ssgggggggggggggggggggggggg

C

References
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