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Abstract

The stochastic approximation method is behind the solution to many im-
portant, actively-studied problems in machine learning. Despite its far-
reaching application, there is almost no work on applying stochastic ap-
proximation to learning problems with general constraints. The reason for
this, we hypothesize, is that no robust, widely-applicable stochastic ap-
proximation method exists for handling such problems. We propose that
interior-point methods are a natural solution. We establish the stability
of a stochastic interior-point approximation method both analytically and
empirically, and demonstrate its utility by deriving an on-line learning al-
gorithm that also performs feature selection via L1 regularization.

1 Introduction

The stochastic approximation method supplies the theoretical underpinnings behind many
well-studied algorithms in machine learning, notably policy gradient and temporal dif-
ferences for reinforcement learning, inference for tracking and filtering, on-line learn-
ing [1, 17, 19], regret minimization in repeated games, and parameter estimation in prob-
abilistic graphical models, including expectation maximization (EM) and the contrastive
divergences algorithm. The main idea behind stochastic approximation is simple yet pro-
found. It is simple because it is only a slight modification to the most basic optimization
method, gradient descent. It is profound because it suggests a fundamentally different way
of optimizing a problem—instead of insisting on making progress toward the solution at
every iteration, it only requires that progress be achieved on average.

Despite its successes, people tend to steer clear of constraints on the parameters. While
there is a sizable body of work on treating constraints by extending established optimization
techniques to the stochastic setting, such as projection [14], subgradient (e.g. [19, 27]) and
penalty methods [11, 24], existing methods are either unreliable or suited only to specific
types of constraints. We argue that a reliable stochastic approximation method that handles
constraints is needed because constraints routinely arise in the mathematical formulation of
learning problems, and the alternative approach—penalization—is often unsatisfactory.

Our main contribution is a new stochastic approximation method in which each step is the
solution to the primal-dual system arising in interior-point methods [7]. Our method is easy
to implement, dominates other approaches, and provides a general solution to constrained
learning problems. Moreover, we show interior-point methods are remarkably well-suited to
stochastic approximation, a result that is far from trivial when one considers that stochastic
algorithms do not behave like their deterministic counterparts (e.g. Wolfe conditions [13]
do not apply). We derive a variant of Widrow and Hoff’s classic “delta rule” for on-line
learning (Sec. 5). It achieves feature selection via L1 regularization (known to statisticians



as the Lasso [22] and to signal processing engineers as basis pursuit [3]), so it is well-suited
to learning problems with lots of data in high dimensions, such as the problem of filtering
spam from your email account (Sec. 5.2). To our knowledge, no method has been proposed
that reliably achieves L1 regularization in large-scale problems when data is processed on-
line or on-demand. Finally, it is important that we establish convergence guarantees for our
method (Sec. 4). To do so, we rely on math from stochastic approximation and optimization.

2 Overview of algorithm

In their 1952 research paper, Robbins and Monro [15] examined the problem of tuning a
control variable x (e.g. amount of alkaline solution) so that the expected outcome of the
experiment F (x) (pH of soil) attains a desired level α (so your Hydrangea have pink blos-
soms). When the distribution of the experimental outcomes is unknown to the statistician
or gardener, it may be still possible to take observations at x. In such case, Robbins and
Monro showed that a particularly effective way to achieve a response level α = 0 is to take
a (hopefully unbiased) measurement yk ≈ F (xk), adjust the control variable according to

xk+1 = xk − akyk (1)

for step size ak > 0, then repeat. Provided the sequence {ak} behaves like the harmonic
series (see Sec. 4.1), this algorithm converges to the solution F (x⋆) = 0.

Since the original publication, mathematicians have extended, generalized, and further weak-
ened the convergence conditions; see [11] for some of these developments. Kiefer and Wol-
fowitz re-interpreted the stochastic process as one of optimizing an unconstrained objective
(F (x) acts as the gradient vector) and later Dvoretsky pointed out that each measurement
y is actually the gradient F (x) plus some noise ξ(x). Hence, the stochastic gradient algo-
rithm. In this paper, we introduce a convergent sequence of nonlinear systems Fµ(x) = 0 and
interpret the Robbins-Monro process {xk} as solving a constrained optimization problem.

procedure IP–SG (Interior-point stochastic gradient)
for k = 1, 2, 3, . . .
• Set max. step size âk and centering parameter σk.
• Set barrier parameter µk = σkzT

k c(xk)/m.
• Run simulation to obtain gradient observation yk.
• Compute primal-dual search direction (∆xk, ∆zk)

by solving equations (6,7) with ∇f(x) = yk.
• Run backtracking line search to find largest

ak ≤ min{âk, 0.995 mini(−zk,i/∆zk,i)} such
that c(xk−1 + ak∆xk) < 0, and mini( · ) is
over all i such that ∆zk,i < 0.

• Set xk = xk−1 + ak∆xk and zk = zk−1 + ak∆zk.

Figure 1: Proposed stochastic gradient algorithm.

We focus on convex optimization
problems [2] of the form

minimize f(x)
subject to c(x) ≤ 0,

(2)

where c(x) is a vector of inequality
constraints, f(x) and c(x) have con-
tinous partial derivatives, and mea-
surements yk of the gradient at xk are
noisy. The feasible set, by contrast,
should be known exactly. To simplify
our exposition, we do not consider
equality constraints; techniques for
handling them are discussed in [13].
Convexity is a standard assumption made to simplify analysis of stochastic approximation
algorithms and, besides, constrained, non-convex optimization raises unresolved complica-
tions. We assume standard constraint qualifications so we can legitimately identify optimal
solutions via the Karush-Kuhn-Tucker (KKT) conditions [2, 13].

Following the standard barrier approach [7], we frame the constrained optimization problem
as a sequence of unconstrained objectives. This in turn is cast as a sequence of root-finding
problems Fµ(x) = 0, where µ > 0 controls for the accuracy of the approximate objective
and should tend toward zero. As we explain, a dramatically more effective strategy is to
solve for the root of the primal-dual equations Fµ(x, z), where z represents the set of dual
variables. This is the basic formula of the interior-point stochastic approximation method.

Fig. 1 outlines our main contribution. Provided x0 is feasible and z0 > 0, every subsequent
iterate (xk, zk) will be a feasible or “interior” point as well. Notice the absence of a suffi-
cient decrease condition on ‖Fµ(x, z)‖ or suitable merit function; this is not needed in the
stochastic setting. Our stochastic approximation algorithm requires a slightly non-standard
treatment because the target Fµ(x, z) moves as µ changes. Fortunately, convergence under
non-stationarity has been studied in the literature on tracking and adaptive filtering. The
next section is devoted to deriving the primal-dual search direction (∆x,∆z).



3 Background on interior-point methods

We motivate and derive primal-dual interior-point methods starting from the logarithmic
barrier method. Barrier methods date back to the work of Fiacco and McCormick [6] in
the 1960s, but they lost favour due to their unreliable nature. Ill-conditioning was long
considered their undoing. However, careful analysis [7] has shown that poor conditioning is
not the problem—rather, it is a deficiency in the search direction. In the next section, we
exploit this very analysis to show that every iteration of our algorithm produces a stable
iterate in the face of: 1) ill-conditioned linear systems, 2) noisy observations of the gradient.

The logarithmic barrier approach for the constrained optimization problem (2) amounts to
solving a sequence of unconstrained subproblems of the form

minimize fµ(x) ≡ f(x) − µ
∑m

i=1 log(−ci(x)), (3)

where µ > 0 is the barrier parameter, and m is the number of inequality constraints.
As µ becomes smaller, the barrier function fµ(x) acts more and more like the objective.
The philosophy of barrier methods differs fundamentally from “exterior” penalty methods
that penalize points violating the constraints [13, Chapter 17] because the logarithm in (3)
prevents iterates from violating the constraints at all, hence the word “barrier”.

The central thrust of the barrier method is to progressively push µ to zero at a rate which
allows the iterates to converge to the constrained optimum x⋆. Writing out a first-order
Taylor-series expansion to the optimality conditions ∇fµ(x) = 0 about a point x, the Newton
step ∆x is the solution to the linear equations ∇2fµ(x)∆x = −∇fµ(x). The barrier Hessian
has long been known to be incredibly ill-conditioned—this fact becomes apparent by writing
out ∇2fµ(x) in full—but an analysis by Wright [25] shows that the ill-conditioning is not
harmful under the right conditions. The “right conditions” are that x be within a small
distance1 from the central path or barrier trajectory, which is defined to be the sequence of
isolated minimizers x⋆

µ satisfying ∇fµ(x⋆
µ) = 0 and c(x⋆

µ) < 0. The bad news: the barrier
method is ineffectual at remaining on the barrier trajectory—it pushes iterates too close to
the boundary where they are no longer well-behaved [7]. Ordinarily, a convergence test is
conducted for each value of µ, but this is not a plausible option for the stochastic setting.

Primal-dual methods form a Newton search direction for both the primal variables and the
Lagrange multipliers. Like classical barrier methods, they fail catastrophically outside the
central path. But their virtue is that they happen to be extremely good at remaining on
the central path (even in the stochastic setting; see Sec. 4.2). Primal-dual methods are also
blessed with strong results regarding superlinear and quadratic rates of convergence [7].

The principal innovation is to introduce Lagrange multiplier-like variables zi ≡ −µ/ci(x).
By setting ∇xfµ(x) to zero, we recover the “perturbed” KKT optimality conditions:

Fµ(x, z) ≡

[

∇xf(x) + JT Z1
CZ1 + µ1

]

= 0, (4)

where Z and C are matrices with z and c(x) along their diagonals, and J ≡ ∇xc(x). Forming
a first-order Taylor expansion about (x, z), the primal-dual Newton step is the solution to

[

W JT

ZJ C

] [

∆x
∆z

]

= −

[

∇xf(x) + JT Z1
CZ1 + µ1

]

, (5)

where W = H+
∑m

i=1 zi∇
2
xci(x) is the Hessian of the Lagrangian (as written in any textbook

on constrained optimization), and H is the Hessian of the objective or an approximation.
Through block elimination, the Newton step ∆x is the solution to the symmetric system

(W − JT ΣJ)∆x = −∇xfµ(x), (6)

where Σ ≡ C−1Z. The dual search direction is then recovered according to

∆z = −(z + µ/c(x) + ΣJ∆x). (7)

Because (2) is a convex optimization problem, we can derive a sensible update rule for the
barrier parameter by guessing the distance between the primal and dual objectives [2]. This
guess is typically µ = −σzT c(x)/m, where σ > 0 is a centering parameter. This update is
supported by the convergence theory (Sec. 4.1) so long as σk is pushed to zero.

1See Sec. 4.3.1 of [7] for the precise meaning of a “small distance”. Since x must be close to the
central path but far from the boundary, the favourable neighbourhood shrinks as µ nears 0.



4 Analysis of convergence

First we establish conditions upon which the sequence of iterates generated by the algorithm
converges almost surely to the solution (x⋆, z⋆) as the amount of data or iteration count goes
to infinity. Then we examine the behaviour of the iterates under finite-precision arithmetic.

4.1 Asymptotic convergence

A convergence proof from first principles is beyond the scope of this paper; we build upon
the martingale convergence proof of Spall and Cristion for non-stationary systems [21].

Assumptions: We establish convergence under the following conditions. They may be
weakened by applying results from the stochastic approximation and optimization literature.

1. Unbiased observations: yk is a discrete-time martingale difference with respect to
the true gradient ∇f(xk); that is, E(yk |xk,history up to time k) = ∇f(xk).

2. Step sizes: The maximum step sizes âk bounding ak (see Fig. 1) must approach
zero (âk → 0 as k → ∞ and

∑

∞

k=1 â2
k < ∞) but not too quickly (

∑

∞

k=1 âk = ∞).
3. Bounded iterates: lim supk ‖xk‖ < ∞ almost surely.
4. Bounded gradient estimates: for some ρ and for every k, E(‖yk‖) < ρ.
5. Convexity: The objective f(x) and constraints c(x) are convex.
6. Strict feasibility: There must exist an x that is strictly feasible; i.e. c(x) < 0.
7. Regularity assumptions: There exists a feasible minimizer x⋆ to the problem (2)

such that first-order constraint qualification and strict complementarity hold, and
∇xf(x),∇xc(x) are Lipschitz-continuous. These conditions allow us to directly apply
standard theorems on constrained optimization for convex programming [2, 6, 7, 13].

Proposition: Suppose Assumptions 1–7 hold. Then θ⋆ ≡ (x⋆, z⋆) is an isolated (locally
unique within a δ-neighbourhood) solution to (2), and the iterates θk ≡ (xk, zk) of the
feasible interior-point stochastic approximation method (Fig. 1) converge to θ⋆ almost surely;
that is, as k approaches the limit, ||θk − θ⋆|| = 0 with probability 1.

Proof: See Appendix A.

4.2 Considerations regarding the central path

The object of this section is to establish that computing the stochastic primal-dual search
direction is numerically stable. (See Part III of [23] for what we mean by “stable”.) The
concern is that noisy gradient measurements will lead to wildly perturbed search directions.
As we mentioned in Sec. 3, interior-point methods are surprisingly stable provided the
iterates remain close to the central path, but the prospect of keeping close to the path
seems particularly tenuous in the stochastic setting. A key observation is that the central
path is itself perturbed by the stochastic gradient estimates. Following arguments similar
to those given in Sec. 5 of [7], we show that the stochastic Newton step (6,7) stays on target.

We define the noisy central path as θ(µ, ε) = (x, z), where (x, z) is a solution to Fµ(x, z) = 0
with gradient estimate y ≡ ∇f(x) + ε. Suppose we are currently at point θ(µ, ε) = (x, z)
along the path, and the goal is to move closer to θ(µ⋆, ε⋆) = (x⋆, z⋆) by solving (5) or (6,7).
One way to assess the quality of the Newton step is to compare it to the tangent line of the
noisy central path at (µ, ε). Taking implicit partial derivatives at (x, z), the tangent line is

θ(µ⋆, ε⋆) ≈ θ(µ, ε) + (µ⋆ − µ)∂θ(µ,ε)
∂µ

+ (y⋆ − y)∂θ(µ,ε)
∂ε

, such that (8)
[

H JT

ZJ C

]

[

(µ⋆ − µ) ∂x
∂µ

+ (y⋆ − y)∂x
∂ε

(µ⋆ − µ) ∂z
∂µ

+ (y⋆ − y)∂z
∂ε

]

= −

[

y⋆ − y
(µ⋆ − µ)1,

]

. (9)

with y⋆ ≡ ∇f(x) + ε⋆. Since we know that Fµ(x, z) = 0, the Newton step (5) at (x, z) with
perturbation µ⋆ and stochastic gradient estimate y⋆ is the solution to

[

H JT

ZJ C

] [

∆x
∆z

]

= −

[

y⋆ − y
(µ⋆ − µ)1.

]

. (10)

In conclusion, if the tangent line (8) is a fairly reasonable approximation to the central path,
then the stochastic Newton step (10) will make good progress toward θ(µ⋆, ε⋆).



Having established that the stochastic gradient algorithm closely follows the noisy central
path, the analysis of M. H. Wright [26] directly applies, in which round-off error (ǫmachine)
is occasionally replaced by gradient noise (ε). Since stability is of fundamental concern—
particularly in computing the values of W − JT ΣJ , the right-hand side of (6), and the
solution to ∆x and ∆z—we elaborate on the significance of Wright’s results in Appendix B.

5 On-line L1 regularization

In this section, we apply our findings to the problem of computing an L1-regularized least
squares estimator in an “on-line” manner; that is, by making adjustments to each new
example without having to review all the previous training instances. While this problem
only involves simple bound constraints, we can use it to compare our method to existing
approaches such as gradient projection. We start with some background behind the L1,
motivate the on-line learning approach, draw some experimental comparisons with existing
methods, then show that our algorithm can be used to filter spam.

Suppose we have n training examples xi ≡ (xi1, . . . , xim)T paired with real-valued responses
yi. (The notation here is separate from previous sections.) Assuming a linear model and
centred coordinates, the least squares estimate β minimizes the mean squared error (MSE).
Linear regression based on the maximum likelihood estimator is one of the basic statistical
tools of science and engineering and, while primitive, generalizes to many popular statistical
estimators, including linear discriminant analysis [9]. Because the least squares estimator is
unstable when m is large, it can generalize poorly to unseen examples. The standard cure
is “regularization,” which introduces bias, but typically produces estimators that are better
at predicting the outputs of unseen examples. For instance, the MSE with an L1-penalty,

MSE(L1) ≡ 1
2n

∑n
i=1(yi − xT

i β)2 + λ
n
‖β‖1, (11)

not only prevents overfitting but tends to produce estimators that shrink many of the
components βj to zero, resulting in sparse codes. Here, ‖ · ‖1 is the L1 norm and λ > 0
controls for the level of regularization. This approach has been independently studied for
many problems, including statistical regression [22] and sparse signal reconstruction [3, 10],
precisely because it is effective at choosing useful features for prediction.

We can treat the gradient of MSE as a sample expectation over responses of the form
−xi(yi − xT

i β), so the on-line or stochastic update

β(new) = β + axi(yi − xT
i β), (12)

improves the linear regression with only a single data point (a is the step size).2 This is the
famed “delta rule” of Widrow and Hoff [12]. Since standard “batch” learning requires a full
pass through the data for each gradient evaluation, the on-line update (12) may be the only
viable option when faced with, for instance, a collection of 80 million images [16]. On-line
learning for regression and classification—including L2 regularization—is a well-researched
topic, particularly for neural networks [17] and support vector machines (e.g. [19]). On-line
learning with L1 regularization, despite its ascribed benefits, has strangely avoided study.
(The only known work that has approached the problem is [27] using subgradient methods.)

We derive an on-line, L1-regularized learning rule of the form

β
(new)
pos = βpos + a∆βpos z

(new)
pos = zpos + a(µ/βpos − zpos − ∆βposzpos/βpos)

β
(new)
neg = βneg + a∆βneg z

(new)
neg = zneg + a(µ/βneg − zneg − ∆βnegzneg/βneg),

(13)

such that ∆βpos = (xi(yi − xT
i β) − λ

n
+ µ/βpos)/(1 + zpos/βpos)

∆βneg = (−xi(yi + xT
i β) − λ

n
+ µ/βneg)/(1 + zneg/βneg),

and where µ > 0 is the barrier parameter, β = βpos − βneg, zpos and zneg are the Lagrange
multipliers associated with the lower bounds βpos ≥ 0 and βneg ≥ 0, respectively, and a is a
step size ensuring the variables remain in the positive quadrant. Multiplication and division
in (13) are component-wise. The remainder of the algorithm (Fig. 1) consists of choosing µ
and feasible step size a at each iteration. Let us briefly explain how we arrived at (13).

2The gradient descent direction can be a poor choice because it ignores the scaling of the problem.
Much work has focused on improving the delta rule, but we shall not discuss these improvements.



 

 

 

 

 

 

Figure 2: (left) Performance of constrained stochastic gradient methods for different step size
sequences. (right) Performance of methods for increasing levels of variance in the dimensions
of the training data. Note the logarithmic scale in the vertical axis.

It is difficult to find a collection of regression coefficients β that directly minimizes MSE(L1)

because the L1 norm is not differentiable near zero. The trick is to separate the coefficients
into their positive (βpos) and negative (βneg) components following [3], thereby transform-
ing the non-smooth, unconstrained optimization problem (11) into a smooth problem with
convex, quadratic objective and bound constraints βpos, βneg ≥ 0. The regularized delta
rule (13) is then obtained from direct application of the primal-dual interior-point Newton
search direction (6,7) with a stochastic gradient (see Eq. 12), and identity in place of H.

5.1 Experiments

We ran four small experiments to assess the reliability and shrinkage effect of the interior-
point stochastic gradient method for linear regression with L1 regularization; refer to Fig. 1
and Eq. 13.3 We also studied four alternatives to our method: 1) a subgradient method,
2) a smoothed, unconstrained approximation to (11), 3) a projected gradient method, and
4) the augmented Lagrangian approach described in [24]. See [18] for an in-depth discussion
of the merits of applying the first three optimization approaches to L1 regularization. All
these methods have a per-iteration cost on the order of the number of features.

Method. For the first three experiments, we simulated 20 data sets following the procedure
described in Sec. 7.5 of [22]. Each data set had n = 100 observations with m = 40 features.
We defined observations by xij = zij + zi, where zi was drawn from the standard normal
and zij was drawn i.i.d. from the normal with variance σ2

j , which in turn was drawn from
the inverse Gamma with shape 2.5 and scale ν = 1. (The mean of σ2

j is proportional to ν.)
The regression coefficients were β = (0, . . . , 0, 2, . . . , 2, 0, . . . , 0, 2, . . . , 2)T with 10 repeats in
each block [22]. Outputs were generated according to yi = βT xi + ǫ with standard Gaussian
noise ǫ. Each method was executed with a single pass on the data (100 iterations) with
step sizes âk = 1/(k0 + k), where k0 = 50 by default. We chose L1 penalty λ/n = 1.25,
which tended to produce about 30% zero coefficients at the solution to (11). The augmented
Lagrangian required a sequence of penalty terms rk → 0; after some trial and error, we chose
rk = 50/(k0 + k)0.1. The control variables of Experiments 1, 2 and 3 were, respectively, the
step size parameter k0, the inverse Gamma scale parameter ν, and the L1 penalty parameter
λ. In Experiment 4, each example yi in the training set xi had 8 features, and we set the
true coefficients were set to β = (0, 0, 2,−4, 0, 0,−1, 3)T .

Results. Fig. 2 shows the results of Experiments 1 and 2, with error 1
n
‖βexact − βon-line‖1

averaged over the 20 data sets, in which βexact is the solution to (11), and βon-line is the esti-
mate obtained after 100 iterations of the on-line or stochastic gradient method. With a large
enough step size, almost all the methods converged close to βexact. The stochastic interior-
point method, however, always came closest to βexact and, for the range of values we tried, its
solution was by far the least sensitive to the step size sequence and level of variance in the ob-
servations. Experiment 3 (Fig. 3) shows that even with well-chosen step sizes for all methods,

3The Matlab code for all our experiments is on the Web at http://www.cs.ubc.ca/∼pcarbo.



Figure 4: Shrinkage effect for different choices of the L1 penalty parameter.

the stochastic interior-point method still best approximated the exact solution, and its per-
formance did not degrade when λ was small. (The dashed vertical line at λ/n = 1.25 in Fig. 3
corresponds to k0 = 50 and E(σ2) = 2/3 in the left and right plots of Fig. 2.) Fig. 4 shows the

 

 

 

Figure 3: Performance of the methods
for various choices of the L1 penalty.

regularized estimates of Experiment 4. After one
pass through the data (middle)—equivalent to a
single iteration of an exact solver—the interior-
point stochastic gradient method shrank some
of the data components, but didn’t quite dis-
card irrelevant features altogether. After 10 vis-
its to the training data (right), the stochastic al-
gorithm exhibited feature selection close to what
we would normally expect from the Lasso (left).

5.2 Filtering spam

Classifying email as spam or not is most faith-
fully modeled as an on-line learning problem in
which supervision is provided after each email
has been designated for the inbox or trash [5]. An effective filter is one that minimizes mis-
classification of incoming messages—throwing away a good email being considerably more
deleterious than incorrectly placing a spam in the inbox. Without any prior knowledge as
to what spam looks like, any filter will be error-prone at initial stages of deployment.

Spam filtering necessarily involves lots of data and an even larger number of features, so
a sparse, stable model is essential. We adapted the L1-regularized delta rule to the spam
filtering problem by replacing the linear regression with a binary logistic regression [9]. The
on-line updates are similar to (13), only xT

i β is replaced by φ(xT
i β), with φ(u) ≡ 1/(1+e−u).

To our knowledge, no one has investigated this approach for on-line spam filtering, though
there is some work on logistic regression plus the Lasso for batch classification in text
corpora [8]. Needless to say, batch learning is completely impractical in this setting.

Method. We simulated the on-line spam filtering task on the trec2005 corpus [4] contain-
ing emails from the legal investigations of Enron corporation. We compared our on-line clas-
sifier (λ = 10, σ = 1

2 , âi = 1
1+i

) with two open-source software packages, SpamBayes 1.0.3

and Bogofilter 0.93.4. (These packages are publicly available at spambayes.sourceforge.net
and bogofilter.sourceforge.net.) A full comparison is certainly beyond the scope of this paper;
see [5] for a comprehensive evaluation. We represented each email as a vector of normalized
word frequencies, and used the word tokens extracted by SpamBayes. In the end, we had
an on-line learning problem involving n = 92189 documents and m = 823470 features.

true
not spam spam

p
re

d
.

not spam 39382 3291
spam 17 49499

Results for SpamBayes

true
not spam spam

p
re

d
.

not spam 39393 5515
spam 3 47275

Results for Bogofilter

true
not spam spam

p
re

d
.

not spam 39389 2803
spam 10 49987

Results for Logistic + L1

Table 1: Contingency tables for on-line spam filtering task on the trec2005 data set.



Results. Following [5], we use contingency tables to present results of the on-line spam
filtering experiment (Table 1). The top-right/bottom-left entry of each table is the number
of misclassified spam/non-spam. Everything was evaluated on-line. We tagged an email
for deletion only if p(yi = spam) ≥ 97%. Our spam filter dominated SpamBayes on the
trec2005 corpus, and performed comparably to Bogofilter—one of the best spam filters to
date [5]. Our model’s expense was slightly greater than the others. As we found in Sec. 5.1,
assessing sparsity of the on-line solution is more difficult than in the exact case, but we can
say that removing the 41% smallest entries of β resulted in almost no (< 0.001) change.

6 Conclusions

Our experiments on a learning problem with noisy gradient measurements and bound con-
straints show that the interior-point stochastic approximation algorithm is a significant
improvement over other methods. The interior-point approach also has the virtue of being
much more general, and our analysis guarantees that it will be numerically stable.

Acknowledgements. Thanks to Ewout van den Berg, Matt Hoffman and Firas Hamze.
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