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Abstract— The 4th Generation (4G) wireless communication
systems aim to provide users with the convenience of seamless
roaming among heterogeneous wireless access networks. To
achieve this goal, the support of vertical handoff in mobility
management is crucial. This paper focuses on the vertical handoff
decision algorithm, which determines under what criteria vertical
handoff should be performed. The vertical handoff decision
problem is formulated as a constrained Markov decision process
(CMDP). The objective is to maximize the expected total reward
of a connection subject to the expected total access cost constraint.
In our model, a benefit function is used to assess the quality of
the connection, and a penalty function is used to model signaling
and call dropping. The user’s velocity and location information
are considered when making the handoff decisions. The value
iteration and Q-learning algorithms are used to determine the
optimal policy. Numerical results show that our proposed vertical
handoff decision algorithm outperforms another scheme which
does not consider the user’s velocity.

I. INTRODUCTION

The goal of the 4th Generation (4G) wireless communi-
cation systems is to utilize different access technologies in
order to provide multimedia services to users on an “anytime,
anywhere” basis. Currently, standardization bodies such as 3rd
Generation Partnership Project (3GPP), 3GPP2, and the IEEE
802.21 Media Independent Handover (MIH) working group
are working towards this vision. In the 4G communication
systems, users will have a variety of wireless networks to
choose from in order to send and/or receive their data. A
user can either choose to use Universal Mobile Telecom-
munications System (UMTS) to benefit from a good quality
of service (QoS), Worldwide Interoperability for Microwave
Access (WiMAX) to achieve a high data rate, or wireless local
area network (WLAN) to enjoy a moderate cost. As a result,
seamless mobility must be properly managed to achieve the
goal of the 4G wireless systems, and vertical handoff is a
crucial key for supporting seamless mobility.

Vertical handoff support is responsible for service continuity
when a connection needs to migrate across heterogeneous
wireless access networks. It generally involves three phases
[1], [2]: system discovery, vertical handoff decision, and
vertical handoff execution. During the system discovery phase,
the mobile terminal (MT) receives advertised information from
different access networks. These messages may include their
access costs and QoS parameters for different services. In the
vertical handoff decision phase, the MT determines whether
the current connection should keep using the same network

or switch to another one. The decision is based on the infor-
mation it received during the system discovery phase, and the
current state conditions (e.g., MT’s current location, velocity,
battery status). In the vertical handoff execution phase, the
connections are seamlessly migrated from the existing network
to another. This process involves authentication, authorization,
and also the transfer of context information.

Various vertical handoff decision algorithms have been
proposed in the literature recently. In [3], the vertical handoff
decision is formulated as a fuzzy multiple attribute decision
making problem and two methods are proposed: SAW (Sim-
ple Additive Weighting) and TOPSIS (Technique for Order
Preference by Similarity to Ideal Solution). In [4], an MDP-
based vertical handoff decision algorithm is proposed. The
problem is formulated as an MDP, but the model does not
consider the user’s velocity and location information. In [5],
a vertical handoff decision algorithm based also on dynamic
programming is presented. The model considers the user’s
location and mobility information but assumes there is no
constraint on the user’s total budget for each connection. The
user’s velocity is considered in the vertical handoff decision
algorithm proposed in [6]. In [7], a framework is proposed
to evaluate different vertical handoff algorithms, in which the
MT’s mobility is modeled by a Markov chain. In [8], a utility-
based network selection strategy is presented. A number of
utility functions are examined to capture the tradeoffs between
the users’ preference and their vertical handoff decisions.

In this paper, we propose a vertical handoff decision al-
gorithm for 4G wireless networks. The problem is formu-
lated as a constrained Markov decision process (CMDP).
The objective is to maximize the expected total reward per
connection subject to the expected total access cost constraint.
The contributions of our work are as follows:

• Our proposed model takes into account the resources
available in different networks, and the MT’s information
(e.g., location, velocity). A benefit function is used to
model the bandwidth and delay of the connection. A
penalty function is used to model the signaling incurred
and the call dropping probability. A cost function is used
to capture the access cost of using a specific network.

• We determine the optimal policy for decision making via
the use of value iteration and Q-learning algorithms.

• We evaluate the performance of our proposed algorithm
under different parameters. Numerical results show that



our proposed vertical handoff decision algorithm outper-
forms another scheme which does not consider the user’s
velocity in making the decisions.

The rest of the paper is organized as follows. The system
model is presented in Section II. The CMDP formulation and
optimality equations are described in Section III. Section IV
presents the numerical results and discussions. Conclusions
are given in Section V.

II. SYSTEM MODEL

In this section, we describe how the vertical handoff deci-
sion problem can be formulated as a constrained Markov de-
cision process (CMDP). A CMDP model can be characterized
by six elements: decision epochs, states, actions, transition
probabilities, rewards, and costs [9]. At each decision epoch,
the MT has to choose an action based on its current state.
With this state and action, the MT then evolves to a new state
according to a transition probability function. This new state
lasts for a period of time until the next decision epoch comes,
and then the MT makes a new decision again. For any action
that the MT chooses at each state, there is a reward and a
cost associated with it. The goal of each MT is to maximize
the expected total reward it can obtain during the connection
lifetime, subject to the expected total access cost constraint.

A. States, Actions and Transition Probabilities

We represent the decision epochs by T = {1, 2, . . . , N},
where the random number N indicates the time that the
connection terminates. We denote the state space of the MT
by S, and we only consider finite number of states that an MT
can possibly be in. The state of the MT contains information
such as the current network that the MT connects to, the
available bandwidth and delay that all the networks offer, and
the velocity and location information of the MT. Specifically,
the state space can be expressed as follows:

S = M ×B1 ×D1 × · · · ×B|M | ×D|M | × V × L,

where × denotes the Cartesian product, M represents the set
of available network IDs that the MT can connect to. Bm and
Dm, where m ∈ M , denote the set of available bandwidth
and delay of network m, respectively. V denotes the set of
possible velocity values of the MT, and L denotes the set of
location type (LT ) that the MT can possibly reside in.

Since a finite countable state space is being considered
in this paper, the bandwidth and delay can be quantized
into multiple of unit bandwidth and unit delay, respectively
[9]. Specifically, for network m ∈ M , the set of available
bandwidth Bm = {1, 2, . . . , bmmax}, where bmmax denotes the
maximum bandwidth available to a connection from network
m. For example, the unit bandwidth of WLAN and the UMTS
network can be 500 kbps and 16 kbps, respectively.

Similarly, for network m ∈ M , the set of available delay
Dm = {1, 2, . . . , dm

max}, where dm
max denotes the maximum

delay provided to a connection by network m. For example,
the unit delay of WLAN and the UMTS network can be 50
ms and 20 ms, respectively.

The velocity of the MT is also quantized as multiple of unit
velocity. The set of possible velocity values is

V = {0, 1, 2, . . . , vmax},

where vmax denotes the maximum velocity that an MT can
travel at. For example, the unit of velocity can be 10 km/h.

For the set of location type (LT ) that the MT can possibly
reside in, we have:

L = {1, 2, . . . , lmax},

where lmax denotes the total number of different LT s in
the area of interest. LT s are differentiated by the number of
networks they are covered by.

Let vector s = [i, b1, d1, . . . , b|M |, d|M |, v, l] denote the cur-
rent state of the MT, where i denotes the current network used
by the connection, bm and dm denote the current bandwidth
and delay of network m, respectively, v denotes the current
velocity of the MT, and l denotes the current LT that the MT
resides in. At each decision epoch, based on the current state
s, the MT chooses an action a ∈ As, where the action set
As ⊂ M consists of the IDs of the network that the MT can
potentially switch to. If the chosen action is a, the probability
that the next state s′ = [j, b′1, d

′
1, . . . , b

′
|M |, d

′
|M |, v

′, l′] is:

P [s′|s, a] ={
P [v′|v]P [l′|l]∏m∈M P [b′m, d

′
m|bm, dm], j = a,

0, j �= a,

(1)

where P [v′|v] is the transition probability of the MT’s velocity,
P [l′|l] is the transition probability of the MT’s LT , and
P [b′m, d

′
m|bm, dm] is the joint transition probability of the

bandwidth and delay of network m.
The transition probability of the MT’s velocity is obtained

based on the Gauss-Markov mobility model from [10]. In
this model, an MT’s velocity is assumed to be correlated in
time and can be modeled by a discrete Gauss-Markov random
process. The following recursive realization is used to calculate
the transition probability of the MT’s velocity:

v′ = αv + (1 − α)µ+ σ
√

1 − α2φ, (2)

where v is the MT’s velocity at the current decision epoch,
v′ is the MT’s velocity at the next decision epoch, α is the
memory level (i.e., 0 ≤ α ≤ 1), µ and σ are the mean and
standard deviation of v, respectively, and φ is an uncorrelated
Gaussian process with zero mean and unit variance (i.e., φ ∼
N(0, 1)) which is independent of v. By varying v and counting
the number of different outcomes of v′ according to (2), the
MT’s velocity transition probability matrix (i.e., P [v′|v]) can
be obtained in a simulation-based manner.

For the transition probability of the MT’s LT , we assume
that an access network which has a smaller coverage area (e.g.,
WLAN) always lies within another network that has a larger
coverage area (e.g., WiMAX). Although this assumption might
not hold for the cases when M is large, it is still reasonable if
the number of different networks does not exceed three, which
is a typical case in today’s wireless communication systems.



Fig. 1. Location Type

We define LTl, where l ∈ L, to be the area cov-
ered by networks {1, . . . , l} but not covered by networks
{l + 1, . . . , lmax}. For example, in Fig. 1, lmax is three since
the number of different LT s in the system is equal to three.
We assign the IDs of UMTS, WiMAX, and WLAN to be 1, 2,
and 3, respectively. LT1 is the area covered only by the UMTS
network, LT2 is the area covered by UMTS and WiMAX, but
not WLAN, and LT3 is the area covered by all three networks
(i.e., UMTS, WiMAX, and WLAN). Under this assumption,
the number of different LT s (i.e., lmax) is essentially equal
to the number of different networks (i.e., |M |) in the system.

Let ALTl
denote the total area of LTl and ρl denote the

user density of LTl. The effective area of LTl is:

AE
LTl

= ALTl
ρl. (3)

In real world, the user density in different networks (e.g.,
WLAN and the UMTS network) are not the same [11], [12],
so the density index of each LT is put into consideration to
achieve a more realistic model.

We assume that an MT currently at LTl can only move to
its neighboring LT s (i.e., either LTl+1 or LTl−1) or stay at
LTl at the next decision epoch. This is because the duration
of each decision epoch is too short for the MT to traverse
more than one LT areas. Thus, the probability that an MT’s
next LT is LTl′ given its current LT is LTl is assumed to
be proportional to the effective area of LTl′ . Specifically, the
transition probability of an MT’s LT is defined as follows:

P [l′|l] =




AE
LT

l′∑
ξ=l,l+1

AE
LTξ

, if l = 1,

AE
LT

l′∑
ξ=l−1,l,l+1

AE
LTξ

, if l = 2, . . . , lmax − 1,

AE
LT

l′∑
ξ=l−1,l

AE
LTξ

, if l = lmax.

(4)

Note that the LT where an MT resides in determines its
action set. If an MT is at LTl, its action set As only contains
the entries from 1 to l.

B. Rewards

When an MT chooses an action a in state s, it receives an
immediate reward r(s, a). The reward function depends on the

benefit function and the penalty function, which are explained
below.

For the benefit function of the MT, two aspects are consid-
ered: bandwidth and delay. Let the bandwidth benefit function
represent the benefit that an MT can gain (in terms of
bandwidth) by selecting action a in state s:

fb(s, a) =




1, if bi = max
k∈M

{bk} , a = i,

0, if bi = max
k∈M

{bk} , a �= i,

ba−bi

max
k∈M

{bk−bi} , if bi �= max
k∈M

{bk} , ba > bi,

0, if bi �= max
k∈M

{bk} , ba ≤ bi.

The benefit is being assessed as follows. Given that the MT
is currently connecting to network i. If network i is the one
which offers the highest bandwidth among others, the strategy
is to keep using network i. However, if the MT is not using the
network which has the highest bandwidth, the benefit that it
can obtain is represented by a fraction, in which the numerator
is the MT’s actual increase of bandwidth by choosing action a
in state s, and the denominator is the MT’s maximum possible
increase of bandwidth.

Similarly, a delay benefit function is used to represent the
benefit that an MT can gain (in terms of delay) by choosing
action a in state s:

fd(s, a) =




1, if di = min
k∈M

{dk} , a = i,

0, if di = min
k∈M

{dk} , a �= i,

di−da

max
k∈M

{di−dk} , if di �= min
k∈M

{dk} , da < di,

0, if di �= min
k∈M

{dk} , da ≥ di.

As a result, the total benefit function is given by:

f(s, a) = ωfb(s, a) + (1 − ω)fd(s, a), (5)

where ω is the importance weight given to the bandwidth
aspect with 0 ≤ ω ≤ 1.

We consider two factors for the penalty of the MT. First,
the switching cost penalty function is represented by:

g(s, a) =
{
Ki,a, if i �= a,
0, if i = a,

(6)

where Ki,a is the switching cost from network i to network
a. This penalty function captures the processing and signaling
load incurred when the connection is migrated from one
network to another.

Second, we define the call dropping penalty function as:

q(s, a) =




0, if i = a,
0, if i �= a, 0 < v ≤ Vmin,

v−Vmin

Vmax−Vmin
, if i �= a, Vmin < v < Vmax,

1, if i �= a, v ≥ Vmax,

where Vmax and Vmin denote the maximum and minimum
velocity thresholds, respectively. When MT moves faster, the
probability that the connection will be dropped during vertical
handoff process increases.



The total penalty function of an MT is given by:

h(s, a) = g(s, a) + rq(s, a), (7)

where r ∈ [0, 1] is the MT’s risky index. This factor accounts
for user’s preferences. Some users allow vertical handoff in
order to obtain better QoS although there is a risk that the
connection may be dropped during handoff, whereas some
others may refrain from switching.

Finally, between two successive vertical handoff decision
epochs, the reward function is defined as:

r(s, a) = f(s, a) − h(s, a). (8)

C. Costs

For each period of time that the MT uses network n, it will
incur the following access cost (in monetary units per second):

c(s, a) =
{
ψn, if a = n,
0, otherwise,

(9)

and for each network n where n ∈M , we have:

ψn = bn Cn, (10)

where bn is the available bandwidth in bps and Cn is the access
cost of network n in monetary units per bit. The user has a
budget such that it is willing to spend up to Cmax monetary
units per connection.

III. CMDP FORMULATION AND OPTIMALITY EQUATIONS

In this section, we present the problem formulation and
describe how to obtain the optimal policy. First, some concepts
need to be clarified. The random variable N , which denotes
the connection termination time, is assumed to be geometri-
cally distributed with mean 1/(1 − λ), where λ can also be
interpreted as the discount factor of the model (0 ≤ λ < 1).

A decision rule is a regulation specifying the action selec-
tion for each state at a particular decision epoch. It can be
expressed as δt : S → A. A policy π = (δ1, δ2, . . . , δN ) is a
sequence of decision rules to be used at all N decision epochs.

Let vπ(s) denote the expected discounted total reward be-
tween the first decision epoch and the connection termination,
given that policy π is used with initial state s. We can state
the CMDP optimization problem as:

maximize vπ(s) = Eπ
s

{ ∞∑
t=1

λt−1 r(st, at)

}
,

subject to Cπ(s) = Eπ
s

{ ∞∑
t=1

λt−1 c(st, at)

}
≤ Cmax,

(11)
where Eπ

s denotes the expectation with respect to policy π
and initial state s, and Cπ(s) denotes the expected discounted
total access cost calculated using policy π and initial state s.

Since the optimization problem is to maximize the expected
discounted total reward, we define a policy π∗ to be optimal
in Π if vπ∗

(s) ≥ vπ(s) for all π ∈ Π. A policy is said to be
stationary if δt = δ for all t. A stationary policy has the form
π = (δ, δ, . . . , δ), and for convenience we denote π simply by

δ. A policy is said to be deterministic if it chooses an action
with certainty at each decision epoch. We refer to stationary
deterministic policies as pure policies [13].

To solve (11), we can use the Lagrangian approach [9], [14]
to reduce it into an equivalent unconstrained MDP problem.
By including the Lagrange multiplier β with β > 0, we have:

r(s, a;β) = r(s, a) − βc(s, a). (12)

Then, the optimality equations are given by:

vβ(s) = max
a∈As

{
r(s, a;β) +

∑
s′∈S

λ P [s′|s, a] vβ(s′)

}
, (13)

which can be solved by using the Value Iteration Algorithm
(VIA) [13] with a fixed value of β. The solutions of (13)
correspond to the maximum expected discounted total reward
vβ(s) and the pure policy δβ . Note this pure policy δβ specifies
the network to choose in each state s, such that the expected
discounted total reward is maximized.

The Q-learning algorithm proposed in [14] is used to deter-
mine the proper β (i.e., β∗) for a feasible Cmax. Specifically,
the iteration algorithm is described by the following equation:

βk+1 = βk +
1
k

(Cδβ − Cmax) (14)

where k is the iteration number.
Once β∗ has been obtained, we follow the procedures in

[14] to find the optimal policy for the CMDP problem. As
discussed in [15], the optimal policy for a CMDP with single
constraint is a mixed policy of two pure policies. First, we
perturb β∗ by some ∆β to get β− = β∗−∆β and β+ = β∗+
∆β. Then, we calculate the pure policies δ− and δ+ (using
β− and β−, respectively) and their corresponding expected
discounted total access costs C− = Cδ−

and C+ = Cδ+
.

Next, we define a parameter q such that qC− + (1− q)C+ =
Cmax. The optimal policy δ∗ of the CMDP is a randomized
mixture of two policies (i.e., δ− and δ+), such that at each
decision epoch, the first policy is chosen with probability q
and the second one is chosen with probability 1− q. In other
words, the optimal policy can be described as follows:

δ∗ = qδ− + (1 − q)δ+ (15)

IV. NUMERICAL RESULTS AND DISCUSSIONS

We compare the performance between our proposed
CMDP-based vertical handoff decision algorithm with another
scheme, which is also based on the CMDP but does not
consider the impact on velocity in making the decisions (this
scheme is denoted by CMDP-w/o-velocity). The performance
metric is the expected total reward per connection. The appli-
cation considered is constant bit rate (CBR) voice traffic using
the user datagram protocol (UDP) as the transport protocol.

We consider the scenario that there are two networks in the
system: network 1 is the cellular network and network 2 is
WLAN. The average duration between two successive decision
epochs is 15 secs. For both networks, the unit of bandwidth
and delay are equal to 16 kbps and 60 ms, respectively. The
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Fig. 2. Expected total reward under different discount factor (λ).

maximum available bandwidth and delay in network 1 (i.e.,
b1max and d1

max) and network 2 (i.e., b2max and d2
max) are 5

units, 4 units, 15 units, and 4 units, respectively. The unit of the
MT’s velocity is 8 km/h, and the maximum possible velocity
of the MT is 5 units, with the lower and upper thresholds
(i.e., Vmin and Vmax) equal to 1 unit and 5 units, respectively.
For the Gauss-Markov model, the memory level α is 0.5, the
standard deviation of the MT’s velocity σ is 0.1 unit, and the
mean of the MT’s velocity µ is equal to 1 unit. The area of
LT1 and LT2 are assumed to be 75% and 25% of the total area
[16], respectively. The ratio between the user densities ρ1:ρ2

= 1:8. The switching cost K1,2 = K2,1 = 0.5. The importance
weight ω is 0.25, as CBR traffic is more sensitive to delay. The
risky index r of the MT is 0.5. The access cost of networks
1 and 2 are 3 and 1 monetary units per bit, respectively.

For the cellular network, the values of bandwidth and
delay are assumed to be guaranteed for the duration of the
connection (i.e., P [b1, d1|b1, d1] = 1). For WLAN, we esti-
mate such probabilities in a simulation-based manner. In ns-2
simulator [17], a typical IEEE 802.11b WLAN is simulated
in which the users arrive and depart from the network with
an average Poisson rate of 0.2 users per second. The resulting
available bandwidth and delay are rounded according to the
predefined units, and the counting of transitions among states
is performed to estimate the state transition probability of
WLAN (i.e., P [b′2, d

′
2|b2, d2]).

The probability q that determines the randomized optimal
policy in (15) is calculated for different discount factors (i.e.,
different average connection durations). Specifically, for λ
equals to [0.9, 0.95, 0.966, 0.975, 0.98], the corresponding
probabilities q are [0.18, 0.54, 0.66, 0.57, 0.60]. Moreover,
the user’s budget on the expected total access cost is also
predefined for different discount factors. Specifically, for λ
equals to [0.9, 0.95, 0.966, 0.975, 0.98], the corresponding
constraints Cmax are [92, 194, 294, 388, 466].

The expected total reward of users under different discount
factors are shown in Fig. 2. The expected total reward in-
creases as λ becomes larger. This is because the larger λ is,
the longer the average duration of the connection becomes.
With the same constraint on the expected total access cost,
the CMDP algorithm achieves a higher expected total reward
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Fig. 4. Expected total reward under different user’s budget on expected total
access cost (Cmax).

than the CMDP-w/o-velocity scheme does. For example, when
λ equals to 0.975 (i.e., the average duration of connection is
600 secs), for which the predefined constraint is 388 monetary
units, the CMDP algorithm achieves 23% higher expected
total reward than the CMDP-w/o-velocity algorithm does. The
reason is that when an MT does not consider its velocity, the
connection might be dropped during the handoff process and
needs to be re-established. The associated QoS degradation
and extra signaling and processing costs decrease the actual
reward it will gain by performing the handoff.

Fig. 3 shows the expected total reward of a user versus
the mean of its velocity. As the user moves faster, the ex-
pected total reward that the CMDP algorithm achieves remains
unchanged. This is because the CMDP algorithm effectively
avoids dropped calls by taking the user’s velocity into con-
sideration. For example, handoffs are only performed when
the user’s velocity is not likely to cause a dropped call. For
the CMDP-w/o-velocity algorithm, the expected total reward
decreases as the user’s velocity increases. The reason is that as
the user becomes faster, the decrease in the actual reward (e.g.,
QoS degradation and extra signaling and processing costs)
associated with the issue that the model does not consider
the effect of user’s velocity becomes more significant.

The expected total reward a user can obtain versus its budget
on the expected total access cost is shown in Fig. 4. As the
user’s budget increases, the expected total reward becomes
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Fig. 5. Expected total reward under different switching cost (K1,2, K2,1).
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Fig. 6. Expected total reward under different access cost of the cellular
network (C1).

larger. The reason is that the more money that a user can
spend on a connection, the more reward it will obtain. For the
same budget, the CMDP algorithm always achieves a higher
reward than the CMDP-w/o-velocity scheme does. The reason
is the CMDP algorithm can fully utilize the user’s budget and
avoid dropped calls to achieve the optimal reward, while the
total reward obtained by the CMDP-w/o-velocity scheme is
reduced because of the dropped connections.

Fig. 5 shows the expected total reward under different
switching costs. When K1,2 and K2,1 increase, the expected
total reward of both schemes decrease. The expected total
reward of the CMDP algorithm decreases slower than the
CMDP-w/o-velocity algorithm does. This is because as the
switching costs increase, the decrease on the actual reward
achieved by the CMDP-w/o-velocity scheme is also larger.
Since for the same number of dropped calls, the extra signaling
and processing costs increase as K1,2 and K2,1 increase.

Fig. 6 shows the expected total reward of a user versus the
access cost of the cellular network. As C1 increases (while C2

is fixed), the expected total reward becomes smaller for both
algorithms. The reason is that in order to take advantage of
the cellular network, users need to pay more as the price of
the cellular network increases. This can also be viewed as the
user’s budget becomes smaller. Thus, the expected total reward
of the user decreases. For the same constraint on the expected
total access cost, the CMDP scheme achieves a better expected

total reward than the CMDP-w/o-velocity scheme does.

V. CONCLUSIONS

In this paper, we propose a vertical handoff decision al-
gorithm for 4G wireless networks. Our work considers the
connection duration, QoS parameters, mobility and location
information, network access cost, and the signaling load
incurred on the network for the vertical handoff decision. The
algorithm is based on CMDP formulation with the objective
of maximizing the expected total reward of a connection.
The constraint of the problem is on the user’s budget for the
connection. A stationary randomized policy is obtained when
the connection termination time is geometrically distributed.
Numerical results show that our CMDP-based algorithm out-
performs another scheme which does not consider the user’s
velocity in making the decisions.
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