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Abstract

Research in animal learning and behavioral neuroscience has distinguished
between two forms of action control: a habit-based form, which relies on
stored action values, and a goal-directed form, which forecasts and
compares action outcomes based on a model of the environment. While
habit-based control has been the subject of extensive computational
research, the computational principles underlying goal-directed control in
animals have so far received less attention. In the present paper, we
advance a computational framework for goal-directed control in animals
and humans. We take three empirically motivated points as founding
premises: (1) Neurons in dorsolateral prefrontal cortex represent action
policies, (2) Neurons in orbitofrontal cortex represent rewards, and (3)
Neural computation, across domains, can be appropriately understood as
performing structured probabilistic inference. On a purely computational
level, the resulting account relates closely to previous work using Bayesian
inference to solve Markov decision problems, but extends this work by
introducing a new algorithm, which provably converges on optimal plans.
On a cognitive and neuroscientific level, the theory provides a unifying
framework for several different forms of goal-directed action selection,
placing emphasis on a novel form, within which orbitofrontal reward
representations directly drive policy selection.

1 Goal-directed action control

In the study of human and animal behavior, it is a long-standing idea that reward-based
decision making may rely on two qualitatively different mechanisms. In habit-based
decision making, stimuli elicit reflex-like responses, shaped by past reinforcement [1]. In
goal-directed or purposive decision making, on the other hand, actions are selected based on
a prospective consideration of possible outcomes and future lines of action [2]. Over the past
twenty years or so, the attention of cognitive neuroscientists and computationally minded
psychologists has tended to focus on habit-based control, due in large part to interest in
potential links between dopaminergic function and temporal-difference algorithms for
reinforcement learning. However, a resurgence of interest in purposive action selection is
now being driven by innovations in animal behavior research, which have yielded powerful
new behavioral assays [3], and revealed specific effects of focal neural damage on goal-
directed behavior [4].

In discussing some of the relevant data, Daw, Niv and Dayan [5] recently pointed out the
close relationship between purposive decision making, as understood in the behavioral
sciences, and model-based methods for the solution of Markov decision problems (MDPs),
where action policies are derived from a joint analysis of a transition function (a mapping



from states and actions to outcomes) and a reward function (a mapping from states to
rewards). Beyond this important insight, little work has yet been done to characterize the
computations underlying goal-directed action selection (though see [6, 7]). As discussed
below, a great deal of evidence indicates that purposive action selection depends critically on
a particular region of the brain, the prefrontal cortex. However, it is currently a critical, and
quite open, question what the relevant computations within this part of the brain might be.

Of course, the basic computational problem of formulating an optimal policy given a model
of an MDP has been extensively studied, and there is no shortage of algorithms one might
consider as potentially relevant to prefrontal function (e.g., value iteration, policy iteration,
backward induction, linear programming, and others). However, from a cognitive and
neuroscientific perspective, there is one approach to solving MDPs that it seems particularly
appealing to consider. In particular, several researchers have suggested methods for solving
MDPs through probabilistic inference [8-12]. The interest of this idea, in the present
context, derives from a recent movement toward framing human and animal information
processing, as well as the underlying neural computations, in terms of structured
probabilistic inference [13, 14]. Given this perspective, it is inviting to consider whether
goal-directed action selection, and the neural mechanisms that underlie it, might be
understood in those same terms.

One challenge in investigating this possibility is that previous research furnishes no ‘off-the-
shelf’ algorithm for solving MDPs through probabilistic inference that both provably yields
optimal policies and aligns with what is known about action selection in the brain. We
endeavor here to start filling in that gap. In the following section, we introduce an account
of how goal-directed action selection can be performed based on probabilisitic inference,
within a network whose components map grossly onto specific brain structures. As part of
this account, we introduce a new algorithm for solving MDPs through Bayesian inference,
along with a convergence proof. We then present results from a set of simulations
illustrating how the framework would account for a variety of behavioral phenomena that
are thought to involve purposive action selection.

2 Computational model

As noted earlier, the prefrontal cortex (PFC) is believed to play a pivotal role in purposive
behavior. This is indicated by a broad association between prefrontal lesions and
impairments in goal-directed action in both humans (see [15]) and animals [4]. Single-unit
recording and other data suggest that different sectors of PFC make distinct contributions.
In particular, neurons in dorsolateral prefrontal cortex (DLPFC) appear to encode task-
specific mappings from stimuli to responses (e.g., [16]): “task representations,” in the
language of psychology, or “policies” in the language of dynamic programming. Although
there is some understanding of how policy representations in DLPFC may guide action
execution [15], little is yet known about how these representations are themselves selected.
Our most basic proposal is that DLPFC policy representations are selected in a prospective,
model-based fashion, leveraging information about action-outcome contingencies (i.e., the
transition function) and about the incentive value associated with specific outcomes or states
(the reward function). There is extensive evidence to suggest that state-reward associations
are represented in another area of the PFC, the orbitofrontal cortex (OFC) [17, 18]. As for
the transition function, although it is clear that the brain contains detailed representations of
action-outcome associations [19], their anatomical localization is not yet entirely clear.
However, some evidence suggests that the enviromental effects of simple actions may be
represented in inferior fronto-parietal cortex [20], and there is also evidence suggesting that
medial temporal structures may be important in forecasting action outcomes [21].

As detailed in the next section, our model assumes that policy representations in DLPFC,
reward representations in OFC, and representations of states and actions in other brain
regions, are coordinated within a network structure that represents their causal or statistical
interdependencies, and that policy selection occurs, within this network, through a process of
probabilistic inference.

2.1 Architecture

The implementation takes the form of a directed graphical model [22], with the layout shown
in Figure 1. Each node represents a discrete random variable. State variables (s),



representing the set of m possible world states, serve the role played by parietal and medial
temporal cortices in representing action outcomes. Action variables (a) representing the set
of available actions, play the role
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separate set of nodes is included for each discrete time-step up to the planning horizon.

The conditional probabilities associated with each variable are represented in tabular form.
State probabilities are based on the state and action variables in the preceding time-step, and
thus encode the transition function. Action probabilities depend on the current state and its
associated policy variable. Utilities depend only on the current state. Rather than
representing reward magnitude as a continuous variable, we adopt an approach introduced by
[23], representing reward through the posterior probability of a binary variable (u). States
associated with large positive reward raise p(u) (i.e, p(u=1|s)) near to one; states associated
with large negative rewards reduce p(u) to near zero. In the simulations reported below, we
used a simple linear transformation to map from scalar reward values to p(u):
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In situations involving sequential actions, expected returns from different time-steps must be
integrated into a global representation of expected value. In order to accomplish this, we
employ a technique proposed by [8], introducing a “global” utility variable (ug). Like u, this
is a binary random variable, but associated with a posterior probability determined as:*

p(”c)=%2p(ui) (2)

where N is the number of u nodes. The network as whole embodies a generative model for
instrumental action. The basic idea is to use this model as a substrate for probabilistic
inference, in order to arrive at optimal policies. There are three general methods for
accomplishing this, which correspond three forms of query. First, a desired outcome state
can be identified, by treating one of the state variables (as well as the initial state variable)
as observed (see [9] for an application of this approach). Second, the expected return for
specific plans can be evaluated and compared by conditioning on specific sets of values over
the policy nodes (see [5, 21]). However, our focus here is on a less obvious possibility,
which is to condition directly on the utility variable ug, as explained next.

2.2 Policy selection by probabilistic inference: an iterative algorithm

Cooper [23] introduced the idea of inferring optimal decisions in influence diagrams by
treating utility nodes into binary random variables and then conditioning on these variables.
Although this technique has been adopted in some more recent work [9, 12], we are aware of
no application that guarantees optimal decisions, in the expected-reward sense, in multi-step
tasks. We introduce here a simple algorithm that does furnish such a guarantee. The
procedure is as follows: (1) Initialize the policy nodes with any set of non-deterministic
priors. (2) Treating the initial state and uc as observed variables (ug = 1),” use standard belief

! Note that temporal discounting can be incorporated into the framework through minimal
modifications to Equation 2.

% In the single-action situation, where there is only one u node, it is this variable that is treated as
observed (u = 1).



propagation (or a comparable algorithm) to infer the posterior distributions over all policy
nodes. (3) Set the prior distributions over the policy nodes to the values (posteriors)
obtained in step 2. (4) Go to step 2. The next two sections present proofs of monotonicity
and convergence for this algorithm.

2.2.1 Monotonicity

We show first that, at each policy node, the probability associated with the optimal policy will rise
on every iteration. Define 7* as follows:

n',n*),Vn’ = (3)

p(uG\n*,n*)>p(uG

where 7" is the current set of probability distributions at all policy nodes on subsequent time-steps.
(Note that we assume here, for simplicity, that there is a unique optimal policy.) The objective is
to establish that:

p(x)> p() ()
where t indexes processing iterations. The dynamics of the network entail that
()= p(7.|u) )

where 7 represents any value (i.e., policy) of the decision node being considered. Substituting this
into (4) gives

wo)> () ©

From this point on the focus is on a single iteration, which permits us to omit the relevant
subscripts. Applying Bayes’ law to (6) yields

p(n:—l
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Canceling, and bringing the denominator up, this becomes
p(u(;\n*)>2p(u(;\n)p(n) (8)
Rewriting the left hand side, we obtain
gp(u(;‘n*)p(ﬂ)>gp(u(;‘ﬂ)p(n) ©)
Subtracting and further rearranging:
Slpeol) - plugl)]p(x) >0 (10)
()=l o)+ 3 [l ol )] of) 0 an
2 [p(el7) = plucl )] p(#)> 0 (12)

Note that this last inequality (12) follows from the definition of z*.

Remark: Of course, the identity of 7* depends on z". In particular, the policy #* will only be part
of a globally optimal plan if the set of choices &" is optimal. Fortunately, this requirement is
guaranteed to be met, as long as no upper bound is placed on the number of processing cycles.
Recalling that we are considering only finite-horizon problems, note that for policies leading to
states with no successors, #* is empty. Thus &* at the relevant policy nodes is fixed, and is
guaranteed to be part of the optimal policy. The proof above shows that #* will continuously rise.
Once it reaches a maximum, x* at immediately preceding decisions will perforce fit with the
globally optimal policy. The process works backward, in the fashion of backward induction.



2.2.2 Convergence

Continuing with the same notation, we show now that
tim, .., p, (7 fu,) =1 (13)
Note that, if we apply Bayes’ law recursively,
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and so forth. Thus, what we wish to prove is
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or, rearranging,
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Note that, given the stipulated relationship between p(sr) on each processing iteration and p(sr | ug)
on the previous iteration,
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With this in mind, we can rewrite the left hand side product in (17) as follows:
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Note that, given (18), the numerator in each factor of (19) cancels with the denominator in the
subsequent factor, leaving only p(ug|*) in that denominator. The expression can thus be rewritten
as
4
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The objective is then to show that the above equals p(s*). It proceeds directly from the definition
of z* that, for all & other than z*,

p(ug|7)

Pl
Thus, all but one of the terms in the sum above approach zero, and the remaining term equals
p1(r*). Thus,

<1 (21)
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3 Simulations
3.1 Binary choice

We begin with a simulation of a simple incentive choice situation. Here, an animal faces
two levers. Pressing the left lever reliably yields a preferred food (r = 2), the right a less
preferred food (r = 1). Representing these contingencies in a network structured as in Fig. 1
(left) and employing the iterative algorithm described in section 2.2 yields the results in
Figure 2A. Shown here are the posterior probabilities for the policies press left and press
right, along with the marginal value of p(u = 1) under these posteriors (labeled EV for
expected value). The dashed horizontal line indicates the expected value for the optimal
plan, to which the model obviously converges.

A key empirical assay for purposive behavior involves outcome devaluation. Here, actions
yielding a previously valued outcome are abandoned after the incentive value of the outcome
is reduced, for example by pairing with an aversive event (e.g., [4]). To simulate this within
the binary choice scenario just described, we reduced to zero the reward value of the food
yielded by the left lever (f.), by making the appropriate change to p(ulf.). This yielded a
reversal in lever choice (Fig. 2B).

Another signature of purposive actions is that they are abandoned when their causal
connection with rewarding outcomes is removed (contingency degradation, see [4]). We
simulated this by starting with the model from Fig. 2A and changing conditional
probabilities at s for t=2 to reflect a decoupling of the left action from the f_ outcome. The
resulting behavior is shown in Fig. 2C.
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Fig 2. Simulation results, binary choice.

3.2 Stochastic outcomes

A critical aspect of the present modeling paradigm is that it yields reward-maximizing
choices in stochastic domains, a property that distinguishes it from some other recent
approaches using graphical models to do planning (e.g., [9]). To illustrate, we used the
architecture in Figure 1 (left) to simulate a choice between two fair coins. A ‘left’ coin
yields $1 for heads, $0 for tails; a ‘right’ coin $2 for heads but for tails a $3 loss. As
illustrated in Fig. 2D, the model maximizes expected value by opting for the left coin.
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Fig 3. Simulation results, two-step sequential choice.

3.3 Sequential decision

Here, we adopt the two-step T-maze scenario used by [24] (Fig. 3A). Representing the task
contingencies in a graphical model based on the template from Fig 1 (right), and using the
reward values indicated in Fig. 3A, yields the choice behavior shown in Figure 3B.
Following [24], a shift in motivational state from hunger to thirst can be represented in the



graphical model by changing the reward function (R(cheese) = 2, R(X) = 0, R(water) = 4,
R(carrots) = 1). Imposing this change at the level of the u variables yields the choice
behavior shown in Fig. 3C. The model can also be used to simulate effort-based decision.
Starting with the scenario in Fig. 2A, we simulated the insertion of an effort-demanding
scalable barrier at S; (R(S2) = -2) by making appropriate changes p(u|s). The resulting
behavior is shown in Fig. 3D.

A famous empirical demonstration of purposive control involves detour behavior. Using a
maze like the one shown in Fig. 4A, with a food reward placed at ss, Tolman [2] found that
rats reacted to a barrier at location A by taking the upper route, but to a barrier at B by taking
the longer lower route. We simulated this experiment by representing the correspondin%
transition and reward functions in a graphical model of the form shown in Fig. 1 (right),
representing the insertion of barriers by appropriate changes to the transition function. The
resulting choice behavior at the critical juncture s, is shown in Fig. 4.
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Fig 4. Simulation results, detour behavior. B: No barrier. C: Barrier at A. D: Barrier at B.

Another classic empirical demonstration involves latent —
learning. Blodgett [25] allowed rats to explore the maze -
shown in Fig. 5. Later insertion of a food reward at si3 -
was followed immediately by dramatic reductions in the |

running time, reflecting a reduction in entries into blind s $
alleys. We simulated this effect in a model based on the | ’/ | '\. /

template in Fig. 1 (right), representing the maze layout
via an appropriate transition function. In the absence of

a reward at s, random choices occurred at each ; :
intersection. However, setting R(s13) = 1 resulted in the . i
set of choices indicated by the heavier arrows in Fig. 5. Fig 5. Latent learning.
4 Relation to previous work

Initial proposals for how to solve decision problems through probabilistic inference in
graphical models, including the idea of encoding reward as the posterior probability of a
random utility variable, were put forth by Cooper [23]. Related ideas were presented by
Shachter and Peot [12], including the use of nodes that integrate information from multiple
utility nodes. More recently, Attias [11] and Verma and Rao [9] have used graphical models
to solve shortest-path problems, leveraging probabilistic representations of rewards, though
not in a way that guaranteed convergence on optimal (reward maximizing) plans. More
closely related to the present research is work by Toussaint and Storkey [10], employing the
EM algorithm. The iterative approach we have introduced here has a certain resemblance to
the EM procedure, which becomes evident if one views the policy variables in our models as
parameters on the mapping from states to actions. It seems possible that there may be a
formal equivalence between the algorithm we have proposed and the one reported by [10].

As a cognitive and neuroscientific proposal, the present work bears a close relation to recent
work by Hasselmo [6], addressing the prefrontal computations underlying goal-directed
action selection (see also [7]). The present efforts are tied more closely to normative
principles of decision-making, whereas the work in [6] is tied more closely to the details of
neural circuitry. In this respect, the two approaches may prove complementary, and it will
be interesting to further consider their interrelations.

% In this simulation and the next, the set of states associated with each state node was limited to the
set of reachable states for the relevant time-step, assuming an initial state of s;.
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