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Quantity precommitment and Bertrand 
competition yield Cournot outcomes 

David M. Kreps* 

and 

Jose A. Scheinkman** 

Bertrand's model of oligopoly, which gives perfectly competitive outcomes, assumes that. 
(1) there is competition over prices and (2) production follows the realization of demand. 
We show that both of these assumptions are required. More precisely, consider a two-stage 
oligopoly game where, first, there is simultaneous production, and, second, after production 
levels are made public, there is price competition. Under mild assumptions about demand, 
the unique equilibrium outcome is the Cournot outcome. This illustrates that solutions to 
oligopoly games depend on both the strategic variables employed and the context (game 
form) in which those variables are employed. 

1. Introduction 

* Since Bertrand's (1883) criticism of Cournot's (1838) work, economists have come 
to realize that solutions to oligopoly games depend critically on the strategic variables that 
firms are assumed to use. Consider, for example, the simple case of a duopoly where each 
firm produces at a constant cost b per unit and where the demand curve is linear, 
p = a - q. Cournot (quantity) competition yields equilibrium price p = (a + 2b)/3, while 
Bertrand (price) competition yields p = b. 

In this article, we show by example that there is more to Bertrand competition than 
simply "competition over prices." It is easiest to explain what we mean by reviewing the 
stories associated with Cournot and Bertrand. The Cournot story concerns producers who 
simultaneously and independently make production quantity decisions, and who then bring 
what they have produced to the market, with the market price being the price that equates 
the total supply with demand. The Bertrand story, on the other hand, concerns producers 
who simultaneously and independently name prices. Demand is allocated to the low-price 
producer(s), who then produce (up to) the demand they encounter. Any unsatisfied demand 
goes to the second lowest price producer(s), and so on. 

There are two differences in these stories: how price is determined (by an auctioneer 
in Cournot and by price "competition" in Bertrand), and when production is supposed 
to take place. We demonstrate here that the Bertrand outcome requires both price com- 
petition and production after demand determination. Specifically, consider the following 
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game between expected profit maximizing producers: In a first stage, producers decide 
independently and simultaneously how much they will produce, and this production takes 
place. They then bring these quantities to market, each learns how much the other pro- 
duced, and they engage in Bertrand-like price competition: They simultaneously and 
independently name prices and demand is allocated in Bertrand fashion, with the proviso 
that one cannot satisfy more demand than one produced for in the first stage. 

In this two-stage game, it is easy to produce one equilibrium. Let each firm choose 
the Cournot quantity. If each firm does so, each subsequently names the Cournot price. 
If, on the other hand, either chooses some quantity other than the Cournot quantity, its 
rival names price zero in the second stage. Since any defection in the first stage will result 
in one facing the demand residual from the Cournot quantity, and since the Cournot 
quantity is the best response to this residual demand function, this is clearly an equilib- 
rium. What is somewhat more surprising is that (for the very special parameterization 
above and for a large class of other symmetric parameterizations) the Cournot outcome 
is the unique equilibrium outcome. Moreover, there is a perfect equilibrium that yields 
this outcome. (The strategies above constitute an imperfect equilibrium.) This note is 
devoted to the establishment of these facts. 

One way to interpret this result is to see our two-stage game as a mechanism to 
generate Cournot-like outcomes that dispenses with the mythical auctioneer. In fact, an 
equivalent way of thinking about our game is as follows: Capacities are set in the first 
stage by the two producers. Demand is then determined by Bertrand-like price compe- 
tition, and production takes place at zero cost, subject to capacity constraints generated 
by the first-stage decisions. It is easy to see that given capacities for the two producers, 
equilibrium behavior in the second, Bertrand-like, stage will not always lead to a price 
that exhausts capacity. But when those given capacities correspond to the Cournot output 
levels, in the second stage each firm names the Cournot price. And for the entire game, 
fixing capacities at the Cournot output levels is the unique equilibrium outcome. This 
yields a more satisfactory description of a game that generates Cournot outcomes. It is 
this language that we shall use subsequently. 

This reinterpretation in terms of capacities suggests a variant of the game, in which 
both capacity creation (before price competition and realization of demand) and pro- 
duction (to demand) are costly. Our analysis easily generalizes to this case, and we state 
results for it at the end of this article. 

Our intention in putting forward this example is not to give a model that accurately 
portrays any important duopoly. (We are both on record as contending that "reality" has 
more than one, and quite probably more than two, stages, and that multiperiod effects 
greatly change the outcomes of duopoly games.) Our intention instead is to emphasize 
that solutions to oligopoly games depend on both the strategic variables that firms are 
assumed to employ and on the context (game form) in which those variables are employed. 
The timing of decisions and information reception are as important as the nature of the 
decisions. It is witless to argue in the abstract whether Cournot or Bertrand was correct; 
this is an empirical question or one that is resolved only by looking at the details of the 
context within which the competitive interaction takes place. 

2. Model formulation 
* We consider two identical firms facing a two-stage competitive situation. These firms 
produce perfectly substitutable commodities for which the market demand function is 
given by P(x) (price as a function of quantity x) and D(p) = P`(p) (demand as a function 
of price p). 

The two-stage competition runs as follows. At the first stage, the firms simultaneously 
and independently build capacity for subsequent production. Capacity level x means that 
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up to x units can be produced subsequently at zero cost. The cost to firm i of (initially) 
installing capacity level xi is b(xi). 

After this first stage, each firm learns how much capacity its opponent installed. Then 
the firms simultaneously and independently name prices Pi chosen from the interval 
[0, P(O)]. If PI < P2, then firm 1 sells 

z= min (xi, D(p1)) (1) 

units of the good at price p, (and at zero additional cost), for a net profit of p1z1 - b(x1). 
And if p1 < P2, firm 2 sells 

Z2= min (x2, max (0, D(p2) - x1)) (2) 

units at price P2 for a net profit of P2Z2 - x2). If P2 < Pl, symmetric formulas apply. 
Finally, if P2 = Pl, then firm i sells 

z = min (x, Dp) + max D(p? ) - xi)) = min (xi, max ( 2 D(pj) -X)) (3) 
at price Pi, for net profits equal to pizi - b(xi). (In (3), and for the remainder of the article, 
subscript j means not i. Note the use of the capacity and subsequent production termi- 
nology.) 

Each firm seeks to maximize the expectation of its profits, and the above structure 
is common knowledge between the firms. At this point the reader will notice the particular 
rationing rule we chose. Customers buy first from the cheapest supplier, and income 
effects are absent. (Alternatively, this is the rationing rule that maximizes consumer sur- 
plus. Its use is not innocuous-see Beckmann (1965) and Levitan and Shubik (1972).) 

The following assumptions are made: 

Assumption 1. The function P(x) is strictly positive on some bounded interval (0, X), on 
which it is twice-continuously differentiable, strictly decreasing, and concave. For x 2 X, 
P(X) = 0. 

Assumption 2. The cost function b, with domain [0, oo) and range [0, oo), is twice- 
continuously differentiable, convex, and satisfies b(O) = 0 and b'(0) > 0. To avoid trivi- 
alities, b'(O) < P(O)-production at some level is profitable. 

3. Preliminaries: Cournot competition 

* Before analyzing the two-stage competition formulated above, it will be helpful to 
have on hand some implications of the assumptions and some facts about Cournot com- 
petition between the two firms. Imagine that the firms engage in Cournot competition 
with (identical) cost function c. Assume that c is (as b), twice-continuously differentiable, 
convex, and nondecreasing on [0, oo). Note that from Assumption 1, for every y < D(O) 
the function x - xP(x + y) - c(x) is strictly concave on [0, y - x). Define 

rc(y) = argmax xP(x + y) - c(x). 
OsxsX-y 

That is, rc(y) is the optimal response function in Cournot competition if one's rival puts 
y on the market. It is the solution in x of 

P(x + y) + xP'(x + y) - c'(x) = 0. (4) 

Lemma 1. (a) For every c as above, rc is nonincreasing in y, and rc is continuously 
differentiable and strictly decreasing over the range where it is strictly positive. 
(b) r't 2-1, with strict inequality for y such that rc(y) > 0, so that x + rc(x) is nonde- 
creasing in x. 
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(c) If c and d are two cost functions such that c' > d', then rc < rd. 
(d) If y > rc(y), then rc(rc(y)) < y. 

Proof. (a) For any y, we have 

P(rC(y) + y) + rJ(y)P'(rJ(y) + y) - c'(rc(y)) = 0. 

Increase y in the above equation while leaving rc(y) fixed. This decreases the (positive) 
first term and decreases the second (it becomes more negative). Thus the concavity of 
xP(x + y) - c(x) in x implies that, to restore equality, we must decrease rc(y). Where P 
is strictly positive, the decrease in rc(y) must also be strict. And the differentiability of rc 
follows in the usual fashion from the smoothness of P and c. 

For (b), increase y by h and decrease rc(y) by h in the equation displayed above. The 
first (positive) term stays the same, the second increases (becomes less negative), and the 
third increases. Thus the left-hand side, at y + h and rc(y) - h, is positive. The strict 
concavity of the profit function ensures, therefore, that rc(y + h) > rc(y) - h (with the 
obvious qualifications about values y for which rc(y) = 0). 

For (c) and (d), arguments similar to (b) are easily constructed. 

Because of (d), the picture of duopoly Cournot competition is as in Figure 1. For 
every cost function c, there is a unique Cournot equilibrium, with each firm bringing 
forward some quantity x*(c). Moreover, for c and d as in part (c) of the lemma, it is clear 
that x*(c) < x*(d). In the next section, the case where c is identically zero plays an 
important role. To save on subscripts and arguments, we shall write r(y) for ro(y) and x* 
for x*(O). Also, we shall write R(y) for r(y)P(r(y) + y), the revenue associated with the 
best response to y when costs are identically zero. 

FIGURE 1 

THE PICTURE OF COURNOT COMPETITION UNDER THE ASSUMPTIONS OF THE MODEL 
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(The astute reader will notice that the analysis to follow does not require the full 
power of Assumptions 1 and 2. All that is really required is that, for each y < D(O), the 
functions x - xP(x + y) - b(x) and x - xP(x + y) are strictly quasi-concave 
(on (0, X - y)), and that rh and r appear as in Figure 1. The former does require that 
p - pD(p) is strictly concave where it is positive, but this is not quite sufficient. In any 
event, we shall continue to proceed on the basis of the assumptions given, as they do 
simplify the arguments that follow.) 

4. The capacity-constrained subgames 

* Suppose that in the first stage the firms install capacities xi and x2, respectively. 
Beginning from the point where (xI, x2) becomes common knowledge, we have a proper 
subgame (using the terminology of Selten (1965)). We call this the (x,, x2) capacity- 
constrained subgame-it is simply the Edgeworth (1897) "constrained-capacity" variation 
on Bertrand competition. It is not a priori obvious that each capacity-constrained subgame 
has an equilibrium, as payoffs are discontinuous in actions. But it can be shown that the 
discontinuities are of the "right" kind. For subgames where x1 = x2, the existence of a 
subgame equilibrium is established by Levitan and Shubik (1972) in cases where demand 
is linear and marginal costs are constant. Also for the case of linear demand and constant 
marginal costs, Dasgupta and Maskin (1982) establish the existence of subgame equilibria 
for all pairs of x, and x2, and their methodology applies to all the cases that we consider. 
(We shall show how to "compute" the subgame equilibria below.) 

The basic fact that we wish to establish is that for each (x , x2), the associated subgame 
has unique expected revenues in equilibrium. (It is very probably true that each subgame 
has a unique equilibrium, but we do not need this and shall not attempt to show it.) 
Moreover, we shall give formulas for these expected revenues. 

For the remainder of this section, fix a pair of capacities (xi, x2) and an equilibrium 
for the (x,, x2) subgame. Let f-t be the supremum of the support of the prices named by 
firm i; that is, ft, = inf {p:firm i names less than p with probability one}. And let pi be 
the infimum of the support. Note that if mini xi ? D(O), then, as in the usual Bertrand 
game with no capacity constraints, p-j = pi = 0. And if mini xi = 0, we have the monopoly 
case. Thus we are left with the case where 0 < mini xi < D(O). 

Lemma 2. For each i, pi ? P(xI + x2). 

Proof By naming a price p less than P(xI + x2), firm i nets at most pxi. By naming 
P(x, + x2), firm i nets at worst P(xI + x2)(x, + x2 - x) = P(x1 + x2)xi. 

Lemma 3. If P-1 = ft2 and each is named with positive probability, then 

pi =i = P(xI + x2) and xi < r(x1), for both i = 1 and i = 2. 

Proof Suppose that p, = 12 and each is charged with positive probability. Without loss of 
generality, assume xi 2 x2, and suppose that p, = P2 > P(xI + X2). By naming a price 
slightly less than p,, firm 1 strictly improves its revenues over what it gets by naming p,. 
(With positive probability, it sells strictly more, while the loss due to the lower price is 
small.) Thus 51 = 12 ' P(xI + X2). By Lemma 2, we know that Pi = Pi = P(xI + X2) for 
i= 1, 2. 

By naming a higher price p, firm i would obtain revenue (D(p) - x)p, or, letting 
x = D(p) - x>, xP(x + x>). This is maximized at x = r(x1), so that were r(xj) < xi, we 
would not have an equilibrium. 

Lemma 4. If xi < r(x1) for i = 1, 2, then a (subgame) equilibrium is for each firm to 
name P(x1 + x2) with probability one. 
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Proof. The proof of Lemma 3 shows that naming a price greater than P(x, + x2) will not 
profit either firm in this case. (Recall that xP(x + xj) is strictly concave.) And there is 
no incentive to name a lower price, as each firm is selling its full capacity at the equilib- 
rium price. 

Lemma 5. Suppose that either PfI > fi2, or that -l1 = fi2 and P-2 is not named with positive 
probability. Then: 

(a) f-1 = P(r(x2) + x2) and the equilibrium revenue of firm 1 is R(x2); 
(b) xi > r(x2); 
(c) PI = P2, and neither is named with positive probability; 
(d) xI ? x2; and 
(e) the equilibrium revenue of firm 2 is uniquely determined by (xl, x2) and is at least 

(x2/x1)R(x2) and at most R(x2). 

Proof. For (a) and (b): Consider the function 

_(p) = p. [min (xl, max (0, D(p) - X2 

In words, ,(p) is the revenue accrued by firm 1 if it names p and it is undersold by its 
rival. Under the hypothesis of this lemma, firm 1, by naming p,1, nets precisely _(pI), as 
it is certain to be undersold. By naming any price p > p,, firm 1 will net precisely _(p). 
If firm 1 names a price p < p,, it will net at least ~(p). Thus, if we have an equilibrium, 
_(p) must be maximized at p. 

We must dispose of the case X2 ? D(O). Since (by assumption) D(O) > mini xi, 
x2 2 D(O) would imply D(O) > xl. Thus, in equilibrium, firm 2 will certainly obtain strictly 
positive expected revenue. And, therefore, in equilibrium, 12 > 0. But then firm 1 must 
obtain strictly positive expected revenue. And if x2 ? D(O), then '(p31) = 0. That is, 
x2 > D(O) is incompatible with the hypothesis of this lemma. 

In maximizing _(p), one would never choose p such that D(p) - X2 > xI or such 
that D(p) < x2. Thus, the relevant value of p lies in the interval [P(xl + x2), P(x2)]. For 
each p in this interval, there is a corresponding level of x, namely x(p) = D(p) - x2, such 
that ,(p) = x(p)P(x(p) + x2). Note that x(p) runs in the interval [0, x,]. But we know 
that 

argmax x(p)P(x(p) + x2) = r(x2) A x1, 
x(P)E[O,X1 1 

by the strict concavity of xP(x + x2). If the capacity constraint x, is binding (even weakly), 
then pI = P(x, + x2), and Lemma 2 implies that we are in the case of Lemma 3, thus 
contradicting the hypothesis of this lemma. Hence it must be the case that the constraint 
does not bind, or r(x2) < x, (which is (b)), p, = P(r(x2) + x2), and the equilibrium revenue 
of firm 1 is R(x2) (which is (a)). 

For (c): Suppose that pi < pj. By naming pi, firm i nets pi(D(pi) A xi). Increasing 
this to any level p E (pi, p1) nets p(D(p) A xi). Thus, we have an equilibrium only if 
D(pi) < xi and pi is the monopoly price. (By the strict concavity of xP(x), moving from 
pi in the direction of the monopoly price will increase revenue on the margin.) That is, 
pi = P(r(O)). But pi < pI = P(r(x2) + x2) < P(r(O)), which would be a contradiction. Thus 
Pi = P2. We denote this common value by p in the sequel. This is the first part of (c). 

-For the second part of (c), note first that p > P(x, + x2). For if p = P(xI + x2), then 
by naming (close to) p, firm 1 would make at most P(xI + x2)x,. Since x, > r(x2) and 
the equilibrium revenue of firm 1 is R(x2), this is impossible. 

Suppose that the firm with (weakly) less capacity named p with positive probability. 
Then the firm with higher capacity could, by naming a price slightly less than p, strictly 
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increase its expected revenue. (It sells strictly more with positive probability, at a slightly 
lower price.) Thus, the firm with weakly less capacity names p with zero probability. Since 
p is the infimum of the support of the prices named by the lower capacity firm, this firm 
must therefore name prices arbitrarily close to and above p. But if its rival named p with 
positive probability, the smaller capacity firm would do better (since p > P(xI + x2)) to 
name a price just below p than it would to name a price just above p. Hence, neither 
firm can name p with positive probability. 

For (d) and (e): By (c), the equilibrium revenue of firm i must be p(D(p) A xi). We 
know that p < p, = P(x2 + r(x2)), so that D(p) > D(P(x2 + r(x2))) = x2 + r(x2) and thus 
D(p) > x2. Hence, firm 2 certainly gets px2 in equilibrium. Firm 1 gets no more than 
pxl, so that the bounds in part (e) are established as soon as (d) is shown. 

Suppose that x2> xI. Then D(p) > xl, and firm l's equilibrium revenue is pxl. We 
already know that it is also R(x2), so that we would have p = R(x2)/xI, and firm 2 
nets R(x2)x2/xl. By naming price P(r(xl) + xl) (>pl - P(r(x2) + x2)), firm 2 will net 
R(xl). We shall have a contradiction, therefore, if we show that x, > r(x2) implies 
x,R(xl) > x2R(x2). 

Let 0(x) = xR(x) = xr(x)P(r(x) + x). We have 

0'(x) = r(x)P(r(x) + x) + xr'(x)P(r(x) + x) + xr(x)P'(r(x) + x)(r'(x) + 1) 

= (r(x) - x)P(r(x) + x) + x(r'(x) + 1)(P(r(x) + x) + r(x)P'(r(x) + x)). 

The last term is zero by the definition of r(x), so that we have 

0'(x) = (r(x) - x)P(r(x) + x). 

Thus x2R(x2) - x,R(xl) = 0(x2) - 0(xI) = 
fX2 (r(x) - x)P(r(x) + x)dx. The integrand 
Xi 

is positive for x < x* and strictly negative for x > x*. We would like to show that the 
integral is negative, so that the worst case (in terms of our objective) is that in which 
x, < x* and x2 is as small as possible. Since x, > r(x2), for every x, < x* the worst case 
is where x2 is just a bit larger than r-'(xl). We shall thus have achieved our objective (of 
contradicting x2> xI, by showing that the integral above is strictly negative) if we show 
that for all x < x*, 0(x) - 0(r-'(x)) 2 0. 

But 0(x) - 0(r-'(x)) = xr(x)P(x + r(x)) - r-'(x)xP(r-'(x) + x). This is nonnegative 
if and only if r(x)P(x + r(x)) - r-'(x)P(r-'(x) + x) 2 0, which is certainly true, since r(x) 
is the best response to x. 

Lemma 6. If x, 2 X2 and x, > r(x2), there is a (mixed strategy) equilibrium for the 
subgame in which all the conditions and conclusions of Lemma 5 hold. Moreover, this 
equilibrium has the following properties. Each firm names prices according to continuous 
and strictly increasing distribution functions over an (coincident) interval, except that 
firm 1 names the uppermost price with positive probability whenever x, > x2. And if 
we let Ti(p) be the probability distribution function for the strategy of firm i, then 

P(P) ' T2(P): firm l's strategy stochastically dominates the strategy of firm 2, with strict 
inequality if x, > x2. 

Remarks. The astute reader will note that the first sentence is actually a corollary to the 
previous lemmas and to the (as yet unproven) assertion that every subgame has an equi- 
librium. The actual construction of an equilibrium is unnecessary for our later analysis, 
and the casual reader may wish to omit it on first reading. It is, however, of sufficient 
independent interest to warrant presentation. In the course of this construction, we obtain 
the second part of the lemma, which is also noteworthy. At first glance, it might be thought 
that firm 1, having the larger capacity, would profit more by underselling its rival, and 
therefore it would name the (stochastically) lower prices. But (as is usual with equilibrium 
logic) this is backwards: Each firm randomizes in a way that keeps the other firm indifferent 
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among its strategies. Because firm 1 has the larger capacity, firm 2 is more "at risk" in 
terms of being undersold, and thus firm 1 must be "less aggressive." 

Proof Refer to Figure 2. There are five functions depicted there: pD(p), p(D(p) -x2), 

p(D(p) - xl), pxl, and px2 . Note that: 
(i) pxI = p(D(p) - x2) and px2 = p(D(p) - x,) at the same point, namely 

P(x1 + X2)- 
(ii) pxl = pD(p) at the point where p(D(p) - xl) vanishes, and similarly for 2. 
(iii) The first three functions are maximized at P(r(O)), P(r(x2) + x2), and 

P(r(xl) + xi), respectively. 
(iv) Because P is concave, the first three functions are strictly concave on the range 

where they are positive. And every ray from the origin of the form px crosses each of 
these three functions at most once. (The latter is a simple consequence of the fact that 
D(p) is decreasing.) 

Now find the value p = P(r(x2) + x2). This is p, . Follow the horizontal dashed line 
back to the function p(D(p) A xl). We have drawn this intersection at a point p where 
D(p) > xl, but we have no guarantee that this will happen. In any event, the level of p 
at this intersection is p. Follow the vertical dashed line down to the ray px2. The height 
Px2 will be the equilibrium revenue of firm 2. Note that even if the first intersection 
occurred at a point where x, > D(p), this second intersection would be at a level p where 
D(p)> x2, since X2 = D(p) at P(x2), which is to the right of P(r(x2) + x2). Also, note that 
these intersections occur to the right of P(xl + x2), since R(x2) > xIP(x, + x2). 

Suppose that firm 1 charges a price p E [p, p,]. If we assume that firm 2 does not 
charge this price p with positive probability, then the expected revenue to firm 1 is 

E,(p) = U2(p)p(D(p) - x2) + (1 - 2(p))p(D(p) A xl), 

where b2 is the distribution function of firm 2's strategy. A similar calculation for firm 
2 yields 

E2(p) = 4 ,(p)p[max (D(p) - xi, 0)] + (1 - 4b1(p))px2. 

(Note that for p E [p, p,], we know that D(p) - X2 > O.) 
Solve the equations E,(p) = R(x2) (=p(D(p) A xi)) and E2(p) = px2 in 42(P) and 

?,(p), calling the solutions T2(p) and 'I(p), respectively. Note that: 
(v) Both functions are continuous and begin at level zero. 

FIGURE 2 

DETERMINING THE SUBGAME EQUILIBRIUM 
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(vi) The function "P2(P) is strictly increasing and has value one at -1. To see this, 
note that p(D(p) - x2) is getting closer to, and p(D(p) A xi) is getting further from, R(x2) 
as p increases. And R(x2) = p -(D( -)-x2). 

(vii) The function TI(p) is strictly increasing, everywhere less than or equal to one, 
and strictly less than one if xl > x2 . (If x, = x2, then it is identical to "A2(P).) To see this, 
note first that for p 2 P(xl), 'I1(p) = 1 - p/p. And for values of p in the range 
p < p < P(x,), we have R(x2) = pxl, and, thus, 

)- (P - P)X2 

- p(D(p) - x-x2) 

and 
2(P)- (p - p)x, 

2(P) - p(D(p) - x- x2) 

That is, for p between p and P(xl), '' = x2I2/x1. Noting step (vi), the result is obvious. 
(viii) I"(p) < T2(P) for all p. This is immediate from the argument above for p in 

the range p < p < P(x,). For p 2 P(x,), note that pD(p) is receding from R(x2) more 
quickly than px2 is receding from px2 [since p(D(p) - x2) is still increasing], and 
p(D(p) - x2) is increasing, hence approaching R(x2) more quickly than the constant 
function zero is approaching px2. 

(ix) px2 2 R(x,). To see this, note first that px, 2 R(x2). Thus px2 ? x2R(x2)/xI . To 
get the desired result, then, it suffices to show that R(x) < x2R(x2)/x , or x,R(xl) X x2R(X2) 
(with strict inequality if xi > x2.) Recall that xi > x2. If x2 2 x*, then the result follows 
easily from the formula x,R(xl)- x2R(x2) = Jx' (r(x) - x)P(r(x) + x)dx. If x2 < x*, then 

X2 

x2> r(x,) (since (xl > r(x2)), and the argument from the previous lemma applies. 
Putting all these points together, we see that we have an equilibrium of the desired 

type if firm 1 names prices according to the distribution 'I, and firm 2 names them 
according to "'2. Each firm is (by construction) indifferent among those strategies that 

FIGURE 3 
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are in the support of their (respective) distribution functions. The levels of p, and p are 
selected so that firm 1 has no incentive to name a price above the first or below the 
second. Since firm 2 gets no more than R(xl), it has no incentive to go above p,1; neither 
(by construction) will it gain by naming a price below p. 

Since the construction of the equilibrium took us rather far afield of our main ob- 
jective, we end this section by compiling the results established above that are important 
to subsequent analysis: 

Proposition 1. (Refer to Figure 3.) In terms of the subgame equilibria, there are three 
regions of interest. 

(a) If xi < r(x,) for both i = 1 and i = 2 (which is labelled as region I in Figure 3), the 
unique equilibrium has both firms naming price P(x, + x2) with certainty. The equilibrium 
revenues are, therefore, x,P(xI + x2) for firm i. 
(b) If xI 2 X2 and xl > r(x2) (labelled region IIA in Figure 3), then, in equilibrium, firm 
1 has expected revenue R(x2), and firm 2 has expected revenue determined by (xl, x2) and 
somewhere between R(x2) and x2R(x2)/xI. If x2 < D(O), the equilibrium is the randomized 
one constructed in Lemma 6; if x2- D(O), both firms net zero and name price zero with 
certainty. 
(c) If x2 ? xl and x2> r(xl) (labelled region IIB in Figure 3), then, in equilibrium, firm 
2 has expected revenue R(xl), and firm 1 has expected revenue determined by (xl, x2) and 
somewhere between R(xl) and x,R(xl)/x2. Similar remarks apply concerning xl ? D(O) as 
appear in (b). 
(d) The expected revenue functions are continuous functions of xl and x2. 

4. Equilibria in the full game 
* We can now show that in the full game there is a unique equilibrium outcome. We 
state this formally: 

Proposition 2. In the two-stage game, there is a unique equilibrium outcome, namely the 
Cournot outcome: xi = X2 = x*(b), and Pi = P2 = P(2x*(b)). 

Proof. The proposition is established in four steps. 

Step 1: preliminaries. Consider any equilibrium. As part of this equilibrium firm i chooses 
capacity according to some probability measure Ai with support Si C R. Let us denote 
by bi(x1, x2) the (possibly mixed) strategy used by firm i in the (xl, x2) subgame. Except 
for a ,A X , null subset of SI X 52, 4i(xI, X2) must be an optimal response to b,(x1, x2). 
That is, Qi = {(Xl, X2): 4i(XI, X2) is an optimal response to 41(xl, x2)} is such that 
(A1 X t2)(QIf nQ2) = 1. (For subgame perfect equilibria Qfl n Q2= R2, but we do not wish 
to restrict attention to such equilibria.) In particular, if E(xi) = {xj :(xI, X2) E Ql n Q2} 

and Xi = {xi E Si:Au(E(xi)) = 1}, then i,(X,i) = 1. Let 7ri denote the expected profit of 
firm i in this equilibrium and lri(xi) the expected profit when capacity xi is built. If 
Xi = {xi E Xi:7ri(xi) = 7ri}, then again ,Ai(Xi) = 1. Let x-i and xi denote the supremum and 
infimum of Xi. Because the subgame equilibrium revenue functions are continuous in 
xl and x2, and because revenues are bounded in any event, xl and xi must yield expected 
profit 7ri if firm j uses its equilibrium quantity strategy A,i and firms subsequently use 
subgame equilibrium price strategies. 

Assume (without loss of generality) that xl X2. 

Step 2: xl 2 rb(x2). Suppose contrariwise that xl < rb(x2). For every xl < xl, the subgame 
equilibrium revenue of firm 2, if it installs capacity x2, is x2P(xI + x2). That is, 

= fr' (x2P(x_ + x?2) - - I _,( \ 
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If firm 2 increases its capacity slightly, to say, x2 + E, where it remains true that 
x, < rb(x2 + e), then the worst that can happen to firm 2 (for each level of xi) is that 
firm 2 will net (X2 + )P(xI + x2 + E)- b(-X2 + e). Since for all x, < -, x2 + e < rb(x1), 
it follows that (x2 + )P(xI + x2 + E) - bCX2 + E) > x2P(xI + x2)- b(x2), and this 
variation will raise firm 2's profits above 7r2. This is a contradiction. 

Step 3: x1 < rb(x2). Suppose contrariwise that x, > rb(x2). By building x,, firm 1 nets 
revenue (as a function of x2) R(x2) ifxl > r(x2) and xIP(x, + x2) if xI< r(x2), assuming 
that a subgame equilibrium ensues. That is, 

7r= (R(x2)- b(x-1))u2(dx2) + 
f (I P(x, + x2) - b(x1))k12(dx2). (5) 

(r- I((Xl ),X2] [2,r- 1(l) 

Consider what happens to firm l's expected profits if it lowers its capacity from x 
to just a bit less-say, to x, - E, where x, - e > rb(x2). Then the worst that can happen 
to firm 1 is that firm 2 (after installing capacity according to /L2) names price zero. This 
would leave firm 1 with residual demand D(p) - X2 (where x2 < x2). Firm 1 can still 
accrue revenue R(x2) if ,-eC > r(x2) and (, - E)P(x2 + x - e) otherwise. Thus, the 
expected profits of firm 1 in this variation are at least 

T (R(x2)- b(x-,- -ENAdX2) 

+ f ((X - E)P(X2 + Xl - E) - b(x,I - E))12(dx2). (6) 
[x2,r r(Xt -i)) 

We shall complete this step by showing that for small enough E, (6) exceeds (5), thereby 
contradicting the assumption. 

The difference (6) minus (5) can be analyzed by breaking the integrals into three 
intervals: [r-'(x, - E), x2I, [x2, r-'(x-)], and (r-'(x,), r E'G* - e)). Over the first interval, 
the difference in integrands is 

(R(x2)- b(x.,)) - (R(x2) -b(x-e)) = Eb'(x,) + o(E). 

Note well that b'(x,) is strictly positive. Over the second interval, the difference in inte- 
grands is 

((,- E)P(,- E + X2) -b( I ))-( P( I + X2) -dX)) 

= E(b'(xi) - x,P'(x,) - P(x, + x2)) + 0(E). 

Here the term premultiplied by E is strictly positive except possibly at the lower boundary 
(where it is nonnegative), since by step 2, x,1 rb(x2) ? rb(x2). Over the third interval, the 
difference in the integrands is no more than O(E), because of the continuity of 
xP(x + x2) - b(x). Thus as E goes to zero, the integral over the first interval will be strictly 
positive O(E) if ;2 puts any mass on (r-'(x), x2]. The integral over the second interval 
will be strictly positive O(E) if,.2 puts any mass on (rd'(s), r-'(x,)]. The integral over the 
third interval must be o(E), since it is the integral of a term O(E) integrated over a vanishing 
interval. The hypothesis x > r-( ) implies that /12 puts positive mass on either 
(rq'(xI), r'(x,)] or on (r-'(x), x2] (or both). Hence for small enough E, the difference 
between (6) and (5) will be strictly positive. This is the desired contradiction. 

Step 4. The rest is easy. Steps 2 and 3 imply that x, = rb(x2) = rb(x2), and hence that firm 
2 uses a pure strategy in the first round. But then firm l's best response in the first round 
is the pure strategy rb(x2). And firm 2's strategy, which must be a best response to this, 
must satisfy x2 = rb(xl) = rb(rb(x2)). This implies that x2 = x*(b), and, therefore, 
xi = rb(x*(b)) = x*(b). Finally, the two firms will each name price P(2x*(b)) in the second 
round (as long as both firms produce x*(b) in the first round, which they will do with 
probability one); this follows immediately from Step 1 and Proposition 1. 
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5. The case b 0 
* When b 0 it is easy to check that the Cournot outcome is an equilibrium. In this 
case, however, there are other equilibria as well. If imperfect equilibria are counted, then 
one equilibrium has x, = x2 = D(O) (or anything larger) and p, P2 0. Note well that 
each firm names price zero regardless of what capacities are installed. This is clearly an 
equilibrium, but it is imperfect, because if, say, firm 1 installed a small capacity and the 
subgame equilibrium ensued, each would make positive profits. 

There are also other perfect equilibria, although it takes a bit more work to establish 
them. Let x, 2 D(O). If firm 2 installs capacity greater than D(O), it will net zero profits 
(assuming a subgame equilibrium follows). If it installs x2 < D(O), then its profits 
(in a perfect equilibrium) are p (x2)x2, where p (x2) < p(O) solves the equation 
p(x2)D(p(x2)) = R(x2). Hence, in any perfect equilibrium where xi 2 D(O), x2 must be 
selected to maximize p(x2)x2 = R(x2)x2/D(p(x2)). The numerator in the last expression 
is increasing for x2 < x* and is decreasing thereafter. (See the proof of Lemma 5.) And 
as p(x2) decreases in x2, the denominator increases in x2. Thus, the maximizing x2 is less 
than x*. But as long as firm 2 chooses capacity less than x*, the best revenue (in any 
subgame equilibrium) that firm 1 can hope to achieve is R(x2), which it achieves with 
any x, 2 D(0). Thus, we have a perfect subgame equilibrium in which firm 1 chooses 
xi > D(0) and firm 2 chooses x2 to maximize p(x2)x2. 

6. When both capacity and production are costly 
* In a slightly more complicated version of this game, both capacity (which is installed 
before prices are named and demand is realized) and production (which takes place after 
demand is realized) would be costly. Assuming that each of these activities has a convex 
cost structure and that our assumptions on demand are met, it is easy to modify our 
analysis to show that the unique equilibrium outcome is the Cournot outcome computed 
by using the sum of the two cost functions. (This requires that capacity is costly on the 
margin. Otherwise, imperfect equilibria of all sorts and perfect equilibria of the sort given 
above will also appear.) It is notable that the cost of capacity need not be very high relative 
to production cost: the only requirement is that it be nonzero on the margin. Thus, 
situations where "most" of the cost is incurred subsequent to the realization of demand 
(situations that will "look" very Bertrand-like) will still give the Cournot outcome. (A 
reasonable conjecture, suggested to us by many colleagues, is that "noise" in the demand 
function will change this dramatically. Confirmation or rejection of this conjecture must 
await another paper.) 
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