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Abstract

This paper argues that probability forecasts convey information on the uncertainties that

surround macro-economic forecasts in a straightforward manner which is preferable to other

alternatives, including the use of confidence intervals. Probability forecasts obtained using a

small benchmark macroeconometric model as well as a number of other alternatives are presented

and evaluated using recursive forecasts generated over the period 1999q1-2001q1. Out of sample

probability forecasts of inflation and output growth are also provided over the period 2001q2-

2003q1, and their implications discussed in relation to the Bank of England’s inflation target

and the need to avoid recessions, both as separate events and jointly. The robustness of the

results to parameter and model uncertainties is also investigated by a pragmatic implementation

of the Bayesian model averaging approach.
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1 Introduction

With few exceptions, macroeconomic forecasts are presented in the form of point forecasts and their
uncertainty is characterized (if at all) by forecast confidence intervals. Focusing on point forecasts
is justified when the underlying decision problems faced by agents and the government are linear
in constraints and quadratic in the loss function; the so-called LQ problem. But for most decision
problems, reliance on point forecasts will not be sufficient and probability forecasts will be needed
(see, for example, Granger and Pesaran, 2000a,b). It is also important that statements about
economic policy are made in probabilistic terms, since the public’s perception of the credibility of
the policy has important implications for its success or failure, irrespective of whether the underlying
decision problem is of the LQ type or not. A prominent example, discussed in Peel and Nobay
(2000), is the choice of an optimal monetary policy in an economy where the government loss
function is asymmetric around the inflation target. In this context, a stochastic approach to the
credibility of the monetary policy will be required, and policy announcements should be made with
reference to probabilistic statements, such as “the probability that inflation will fall in the range
(πL, πU ) is at least α per cent”. Policy targets expressed in terms of a fixed range only partially
account for the uncertainty that surrounds policy making. (See, for example, Yates (1995)).

One of the main advantages of the use of probability forecasts as a means of conveying the
uncertainties surrounding forecasts is their straightforward use in decision theoretic contexts. In a
macroeconomic context, the motivation for the current monetary policy arrangements in the UK is
that it provides for transparency in policy-making and an economic environment in which firms and
individuals are better able to make investment and consumption decisions. The range of possible
decisions that a firm can make regarding an investment plan, for example, represents the firm’s
action space. The ‘states of nature’ in this case are defined by all of the possible future out-turns
for the macro-economy. For example, the investment decision might rely on output growth in the
next period, or the average output growth over some longer period, remaining positive; or interest
might focus on the future path of inflation and output growth considered together. In making a
decision, the firm should define a loss function which evaluates the profits or losses associated with
each point in the action space and given any ‘state of nature’. Except for LQ decision problems,
decisions rules by individual households and firms will generally require probability forecasts with
respect to different threshold values reflecting their specific cost-benefit ratios. For this purpose,
we need to provide estimates of the whole probability distribution function of the events of interest,
rather than point forecasts or particular forecast intervals which are likely to be relevant only to
the decision problem of a few.

The need for probability forecasts is acknowledged by a variety of researchers and institutions.
In the statistics literature, for example, Dawid (1984) has been advocating the use of probability
forecasting in a sequential approach to the statistical analysis of data; the so-called “prequential ap-
proach”. In the macroeconometric modelling literature, Fair (1980) was one of the first to compute
probability forecasts using a macroeconometric model of the US economy. The Bank of England
routinely publishes a range of outcomes for its inflation and output growth forecasts (see Britton,
Fisher and Whitley, 1998, or Wallis, 1999); the National Institute use their model to produce prob-
ability statements alongside their central forecasts (their methods are described in Blake, 1996,
and Poulizac et al., 1996); and in the financial sector, J.P. Morgan presents ‘Event Risk Indicators’
in its analysis of foreign exchange markets. However, it remains rare for forecasters to provide
probability forecasts in a systematic manner. One explanation might be due to the difficulty in
measuring the uncertainties associated with forecasts in the large-scale macroeconometric models
typically employed. Another explanation relates to the various types of uncertainty that are in-

[1]



volved in forecasting. For example, probability forecasts typically provided in the literature deal
with future uncertainty only, assuming that the model and its parameters are known with certainty.
This is true of the probability forecasts published by the National Institute, for example.

This paper considers probability forecasting in the context of a small long-run structural vector
error correcting autoregressive model (VECM) of the UK economy. Particular events of interest
include inflation falling within a pre-specified target range and/or output growth remaining posi-
tive over two subsequent quarters. For this purpose, we provide a pragmatic implementation of the
Bayesian Model Averaging (BMA) approach that allows for parameter as well as model uncertain-
ties. The ‘benchmark’ model used for computation of probability forecasts is based on a revised
and updated version of the model in Garratt et al. (2001, forthcoming) and contains five long-run
relations subject to 23 over-identifying restrictions predicted by economic theory. This version,
specifically updated for forecasting purposes, employs the long-run relations estimated over a long
sample period starting from 1965q1, but bases the estimation of the short-run coefficients on a
shorter sample period starting from 1985q1. In addition we consider thirteen further models that
focus on alternative assumptions regarding the number of long-run relations and the specification
of an oil price equation, assumed as weakly exogenous with respect to the UK model. These 14
models are used in a probability forecast evaluation exercise over the period 1999q1-2001q1, as well
as for generating out-of-sample point and probability forecasts of inflation and output growth over
the period 2001q2-2003q1. The forecast evaluation exercise is carried out recursively and provides
statistically significant evidence of forecasting performance both for the theory-based model and
for the ‘average’ model using Akaike or equal weights. The average model based on the Schwarz
weights does not perform as well.

In generating out-of-sample probability forecasts, amongst the many possible macroeconomic
events of interest, we focus on the possibility of a “recession” and the likelihood of the inflation rate
falling within the range 1.5%-3.5%, the target range currently considered by the Monetary Policy
Committee (MPC) of the Bank of England. We consider these and a number of related events both
singly and jointly. In particular, based on information available at the end of 2001q1 and using
the benchmark model, we estimate the probability of inflation falling within the Bank of England’s
target range to be relatively high, with only a small probability of a recession. These results seem
to be robust to model uncertainty of the type considered in this paper.

The lay-out of the rest of the paper is as follows. Section 2 considers different sources of forecast
uncertainties and discusses alternative approaches used to deal with them. This Section also gives
a brief review of the computational issues involved in estimation of probability forecasts in the pres-
ence parameter and model uncertainties. Sections 3 and 4 provide an application of the probability
forecasting approach to the UK economy. Section 3 presents the model, its parameter estimates,
and the results of a probability forecast evaluation exercise. Section 4 provides a brief account of
inflation targeting in the UK, presents single and joint event probability forecasts involving output
growth and inflation objectives at different forecast horizons both using the benchmark model and
alternative model averaging procedures. Section 5 offers some concluding remarks. Details of how
probability forecasts are computed are provided in an Appendix.

2 Alternative Approaches to Characterizing Forecast Uncertain-

ties

Generally speaking model-based forecasts are subject to five different types of uncertainties: future,
parameter, model, policy and measurement uncertainties. This paper focusses on the first three

[2]



and considers how to allow for them in the computation of probability forecasts using an error
correcting vector autoregressive model of the UK economy. Policy and measurement uncertainties
pose special problems of their own and will not be addressed in this paper. Future uncertainty refers
to the effects of unobserved future shocks on forecasts, while parameter and model uncertainties
are concerned with the robustness of forecasts to the choice of parameter values (for a given model)
and available alternative models more generally.

The standard textbook approach to taking account of future and parameter uncertainties is
through the use of forecast intervals around point forecasts. Although such forecast intervals may
contain important information about probability forecasts of interest to a particular decision maker,
they do not allow for a full recovery of the forecast probability distribution function which is needed
in decision making contexts where the decision problem is not of the LQ type. The relationships
between forecast intervals and probability forecasts become even more tenuous when forecasts of
joint events or forecasts from multiple models are considered. For example, it would be impossible
to infer the probability of the joint event of a positive output growth and an inflation rate falling
within a pre-specified range from given variable-specific forecast intervals. Many different such
intervals will be needed for this purpose. In fact, even if the primary object of interest is a point
forecast, as we shall see below, consideration of probability forecasts can help clarify how best to
pool point forecasts in the presence of model uncertainty.

Suppose we are interested in a decision problem that requires probability forecasts of an event de-
fined in terms of one or more elements of zt, for t = T+1, T+2, ..., T+h, where zt = (z1t, z2t, ..., znt)

′

is an n× 1 vector of the variables of interest and h is the forecast (decision) horizon. Assume also
that the data generating process (DGP) is unknown and the forecasts are made considering m dif-
ferent models indexed by i (that could be nested or non-nested). Each model, Mi, i = 1, 2, ...,m, is
characterized by a probability density function of zt defined over the estimation period t = 1, 2, ..., T,
as well as the forecast period t = T + 1, T + 2, ..., T + h, in terms of a ki × 1 vector of unknown
parameters, θi, assumed to lie in the compact parameter space, Θi. Model Mi is then defined by

Mi : {fi (z1, z2, ...,zT ,zT+1,zT+2, ...,zT+h;θi) , θi∈ Θi} , (1)

where fi(.) is the joint probability density function of past and future values of zt. Conditional on
each model, Mi, being true we shall assume that the true value of θi, which we denote by θi0, is
fixed and remains constant across the estimation and the prediction periods and lies in the interior
of Θi. We denote the maximum likelihood estimate of θi0 by θ̂iT , and assume that it satisfies the
usual regularity conditions so that

√
T
(
θ̂iT − θi0

)
|Mi

a
� N (0,Vθi) ,

where
a
� stands for “asymptotically distributed as”, and T−1Vθi is the asymptotic covariance

matrix of θ̂iT conditional on Mi.1 Under these assumptions, parameter uncertainty only arises
when T is finite. The case where θi0 could differ across the estimation and forecast periods poses
new difficulties and can be resolved in a satisfactory manner if one is prepared to formalize how
θi0 changes over time.

The object of interest is the probability density function of ZT+1,h= (zT+1,zT+2, ...,zT+h) con-
ditional on the available observations at the end of period T , ZT = (z1, z2, ...,zT ). This will be

1In the case of cointegrating vector autoregressive models analysed in the next section, a more general version
of this result is needed. This is because the cointegrating coefficients converge to their asymptotic distribution at a
faster rate than the other parameters in the model. However, the general results of this section are not affected by
this complication.
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denoted by Pr (ZT+1,h |ZT ). For this purpose, models and their parameters serve as intermediate
inputs in the process of characterization and estimation of Pr (ZT+1,h |ZT ). The Bayesian approach
provides an elegant and logically coherent solution to this problem, with a full solution given by
the so-called “Bayesian model averaging” formula (see, for example, Draper (1995), Hoeting et al.
(1999)):

Pr (ZT+1,h |ZT ) =
m∑
i=1

Pr (Mi |ZT ) Pr(ZT+1,h |ZT ,Mi ), (2)

where Pr (Mi |ZT ) is the posterior probability of model Mi,

Pr (Mi |ZT ) =
Pr (Mi)Pr(ZT |Mi )∑m
j=1Pr (Mj)Pr(ZT |Mj )

, (3)

Pr (Mi) is the prior probability of model Mi, Pr(ZT |Mi ) is the integrated likelihood

Pr(ZT |Mi ) =

∫
θi

Pr (θi |Mi ) Pr(ZT |Mi,θi )dθi, (4)

Pr (θi |Mi ) is the prior on θi conditional on Mi, Pr(ZT |Mi,θi ) is the likelihood function of model
Mi, and Pr(ZT+1,h |ZT ,Mi) is the posterior predictive density of model Mi defined by

Pr(ZT+1,h |ZT ,Mi ) =

∫
θi

Pr (θi |ZT ,Mi ) Pr(ZT+1,h |ZT ,Mi,θi )dθi, (5)

in which Pr (θi |ZT ,Mi ) is the posterior probability of θi given model Mi:

Pr (θi |ZT ,Mi ) =
Pr (θi |Mi )Pr(ZT |Mi,θi )∑m

j=1 Pr (Mj)Pr(ZT |Mj )
. (6)

The Bayesian approach requires a priori specifications of Pr (Mi) and Pr (θi |Mi ) for i = 1, 2, ...,m,
and further assumes that one of the m models being considered is the DGP so that Pr (ZT+1,h |ZT )
defined by (2) is proper.

The Bayesian model averaging formula also provides a simple “optimal” solution to the problem
of pooling of the point forecasts, E(ZT+1,h |ZT ,Mi ), studied extensively in the literature (see
Clemen (1989) and Diebold and Lopez (1996) for reviews), namely

E (ZT+1,h |ZT ) =
m∑
i=1

Pr (Mi |ZT )E(ZT+1,h |ZT ,Mi ),

with the variance given by (see, for example, Draper (1995))

V (ZT+1,h |ZT ) =
m∑
i=1

Pr (Mi |ZT )V (ZT+1,h |ZT ,Mi )

+
m∑
i=1

Pr (Mi |ZT ) [E(ZT+1,h |ZT ,Mi )−E (ZT+1,h |ZT )]
2 ,

where the first term accounts for within model variability and the second term for between model
variability.
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There is no doubt that the Bayesian model averaging (BMA) provides an attractive solution
to the problem of accounting for model uncertainty. But its strict application can be problematic
particularly in the case of high-dimensional models such as the vector error correcting model of
the U.K. economy which we shall be considering in the next Section. The major difficulties lie in
the choice of the space of models to be considered, the model priors Pr (Mi), and the specification
of meaningful priors for the unknown parameters, Pr (θi |Mi ). The computational issues, while
still considerable, are partly overcome by Monte Carlo integration techniques. For an excellent
over-view of these issues, see Hoeting et al. (1999). Also see Fernandez et al. (2001a,b) for specific
applications.

Putting the problem of model specification to one side, the two important components of BMA
formula are the posterior probability of the models, Pr (Mi |ZT ), and the posterior density functions
of the parameters, Pr (θi |ZT ,Mi ), for i = 1, ...,m. In what follows we shall consider probability
forecasts of certain events of interest by considering different approximations of Pr (Mi |ZT ) and
Pr (θi |ZT ,Mi ) assuming that T is sufficiently large such that the sample observations dominate the
choice of the priors; in essence adopting a classical stance within an otherwise Bayesian framework.

2.1 Computation of Probability Forecasts

Suppose the joint event of interest is defined by ϕ (ZT+1,h) < a, where ϕ(.) and a are the L × 1
vectors ϕ(.) = (ϕ1(.),ϕ2(.), ...,ϕL(.))

′, a = (a1, a2, ..., aL)
′, ϕl(ZT+1,h) is a scalar function of the

variables over the forecast horizon T +1,..., T + h, and aj is the “threshold” value associated with
ϕj(.). To simplify the exposition, we denote this joint event by Aϕ. The (conditional) probability
forecast associated with this event based on model Mi is given by

πi (a,h;ϕ(.),θi) = Pr [ϕ (ZT+1,h) < a |ZT ,Mi,θi ] . (7)

In practice, we might also be interested in computing probability forecasts for a number of alter-
native threshold values over the range aj ∈ [amin, amax].

If the model is known to be Mi defined by (1) but the value of θi is not known, a point estimate
of πi (a,h;ϕ(.),θi) can be obtained by

πi

(
a,h;ϕ(.),θ̂iT

)
=

∫
Aϕ

fi(ZT+1,h

∣∣∣ZT ,Mi, θ̂iT )dZT+1,h. (8)

This probability distribution function only takes account of future uncertainties that arise from the
model’s stochastic structure, as it is computed for a given density function, Mi, and for a given
value of θi, namely θ̂iT . It is also known as the “profile predictive likelihood”. See, for example,
Bjørnstad (1990).

To allow for parameter uncertainty, we assume that conditional on ZT , the probability distri-
bution function of θi is given by g (θi |ZT ,Mi ). Then

π̃i (a,h;ϕ(.)) =

∫
θi∈Θi

πi (a,h;ϕ(.),θi) g (θi |ZT ,Mi ) dθi, (9)

or, equivalently,

π̃i (a,h;ϕ(.)) =

∫
θi∈Θi

∫
Aϕ

fi(ZT+1,h |ZT ,Mi,θi ) g (θi |ZT ,Mi )dZT+1,hdθi. (10)

In practice, computations of πi

(
a,h;ϕ(.),θ̂iT

)
and π̃i (a,h;ϕ(.)) are typically carried out by stochas-

tic simulations. For further details, see Section 4 and the Appendix.
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In a Bayesian context, g (θi |ZT ,Mi ) is given by (6). Alternatively, in the case where the
asymptotic normal theory applies to θ̂iT , it may be reasonable to compute the probability density
function assuming

θi |ZT ,Mi
a
� N

(
θ̂iT , T

−1V̂θi

)
. (11)

In this case, the point estimate of the probability forecast, πi
(
a,h;ϕ(.),θ̂iT

)
, and the alternative

estimate, π̃i (a,h;ϕ(.)) , that allows for parameter uncertainty are asymptotically equivalent as T →
∞. The latter is the “bootstrap predictive density” described in Harris (1989) who demonstrates
that it performs well in a number of important cases. Also, both of these estimates under Mi tend
to πi (a,h;ϕ(.),θi0), which is the profile predictive likelihood evaluated at the true value θi0. But
for a fixed T, the two estimates could differ, as the applications in Section 4 demonstrate. See
Bjørnstad (1990, 1998) for reviews of the literature on predictive likelihood analysis.

The probability estimates that allow for model uncertainty can now be obtained using the
Bayesian averaging procedure. Abstracting from parameter uncertainty we have

π
(
a,h;ϕ(.),θ̂T

)
=

m∑
i=1

wiT πi

(
a,h;ϕ(.),θ̂iT

)
, (12)

where θ̂T =
(
θ̂
′

1T , ..., θ̂
′

mT

)′

, and the weights, wiT ≥ 0 can be derived by approximating the

posterior probability of model Mi, by (see, for example, Draper (1995))

lnPr (Mi |ZT ) = LLiT −
(
ki
2

)
ln(T ) +O (1) , (13)

where LLiT is the maximized value of the log-likelihood function for model Mi, which is the familiar
Schwarz (1978) Bayesian information criterion for model selection. The use of this approximation
leads to the following choice for wiT

wiT =
exp (∆iT )∑m
j=1 exp(∆jT )

, (14)

where ∆iT = SBCiT − Maxj (SBCjT ) and SBCiT = LLiT −
(
ki
2

)
ln(T ). Alternatively, follow-

ing Burnham and Anderson (1998), one could use Akiake weights defined by ∆iT = AICiT −
Maxj (AICjT ), AICiT = LLiT − ki. While the Schwartz weights are asymptotically optimal if the
DGP lies in the set of models under consideration, the Akiake weights are likely to perform better
when the models under consideration represent mere approximations to a complex and (possibly)
unknowable DGP.

When parameter uncertainty is also taken into account, we have

π̃ (a,h;ϕ(.)) =
m∑
i=1

wiT π̃i (a,h;ϕ(.)) , (15)

where π̃i (a,h;ϕ(.)) is the bootstrap predictive density defined by (10) that makes use of the normal
approximation given by (11). For details of computations when zt follows linear vector error
correcting models see the Appendix.
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2.2 Estimation and Forecasting with Conditional Models

The density function fi(.) can be decomposed in two ways. First, a sequential conditioning decom-
position can be employed to write fi(.) as the product of the conditional distributions on successive
observations on the zt,

fi (Zt;z0,θ) =
t∏

s=2

fi (zs | Zs−1; z0,θi) ,

for given initial values z0. And second, since we frequently wish to distinguish between variables
which are endogenous, denoted by yt, and those which are exogenous, denoted by xt, we can write
zt = (y′

t,x
′
t)
′ and use the factorization:

fi (zt | Zt−1;z0,θ) = fiy (yt | xt,Zt−1;z0,θiy)× fix (xt | Zt−1;z0,θix) , (16)

where fiy (yt | xt,Zt−1; z0,θy) is the conditional distribution of yt given xt under model Mi and
the information available at time t− 1, Zt−1, and fix (xt | Zt−1; z0,θix) is the marginal density of
xt conditional on Zt−1. Note that the unknown parameters θi are decomposed into the parameters
of interest, θiy, and the parameters of the marginal density of the exogenous variables, θix. In the
case where xt is strictly exogenous, knowledge of the marginal distribution of xt does not help with
the estimation of θiy, and estimation of these parameters can therefore be based entirely on the
conditional distribution, fiy (yt | xt,Zt−1;θy).

Despite this, parameter uncertainty relating to θix can continue to be relevant for probability
forecasts of the endogenous variables, yt, and forecast uncertainty surrounding the endogenous
variables is affected by the way the uncertainty associated with the future path of the exogenous
variables is resolved. In practice, the future values of xt are often treated as known and fixed at
pre-specified values. The resultant forecasts for yt are then referred to as scenario (or conditional)
forecasts, with each scenario representing a different set of assumed future values of the exogenous
variables. This approach under-estimates the degree of forecast uncertainties. A more plausible
approach would be to treat xt as strongly (strictly) exogenous at the estimation stage, but to
allow for the forecast uncertainties of the endogenous and the exogenous variables jointly. The
exogeneity assumption will simplify the estimation process but does not eliminate the need for a
joint treatment of future and model uncertainties associated with the exogenous variables and the
endogenous variables.

3 An Application to the UK Economy

3.1 A Cointegrating VAR Model of the UK Economy

In principle, probability forecasts can be computed using any macroeconometric model, although
the necessary computations would become prohibitive in the case of most large scale macroecono-
metric models, particularly if the objective of the exercise is to compute the probabilities of joint
events at different horizons. At the other extreme, the use of small unrestricted VAR models, while
computationally feasible, may not be satisfactory for the analysis of forecast probabilities over the
medium term. An intermediate alternative that we shall follow here is to use a cointegrating VAR
model that takes account of the long-run relationships that are likely to exist in a macro-economy.
A model of this type has been developed for the UK by Garratt et al. (2000, 2001, 2003). This
model is based on a number of long-run relations derived from arbitrage conditions in goods and
capital markets, solvency and portfolio balance conditions. The model comprises six domestic vari-
ables whose developments are widely regarded as essential to a basic understanding of the U.K.
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economy; namely, output, inflation, the exchange rate, the domestic relative to the foreign price
level, the nominal interest rate and real money balances. It also contains three foreign variables:
foreign output, foreign interest rate and oil prices.

The five long-run equilibrium relationships of the model outlined in Garratt et al. (2001) are
given by:

pt − p∗t − et = b10 + b11t+ ξ1,t+1, (17)

rt − r∗t = b20 + ξ2,t+1, (18)

yt − y∗t = b30 + ξ3,t+1, (19)

ht − yt = b40 + b41t+ β42rt + β43yt + ξ4,t+1, (20)

rt −∆pt = b50 + ξ5,t+1, (21)

where pt is the logarithm of domestic prices, p∗t is the logarithm of foreign prices, et is the logarithm
of nominal exchange rate (defined as the domestic price of a unit of the foreign currency), yt is the
logarithm of real per capita domestic output, y∗t is the logarithm of real per capita foreign output,
rt is the domestic nominal interest rate variable, r∗t is the foreign nominal interest rate variable,
ht is the logarithm of the real per capita money stock, we also use the variable pot which is the
logarithm of oil prices and ξi,t+1, i = 1, 2, .., 5, are stationary reduced form errors.

A detailed account of the framework for long run macro-modelling, describing the economic
theory that underlies the relationships in (17) - (21), is provided in Garratt et al. (2001). In brief,
we note here that (17) is the Purchasing Power Parity (PPP) relationship which assumes that,
due to international trade in goods, domestic and foreign prices measured in a common currency
equilibrate in the long-run. The inclusion of a linear trend in the PPP relation is intended to
capture the possible persistent effects of productivity differentials on the real exchange rate known
as Harrod-Balassa-Samuelson effect. Equation (18) is an Interest Rate Parity (IRP) relationship,
which assumes that, under conditions of free capital flows, arbitrage between domestic and foreign
bond holdings will, equilibrate domestic and foreign interest rates in the long-run. Equation (19) is
an “output gap” (OG) relationship implied by a stochastic version of the Solow growth model with
a common technological progress variable in production at home and abroad; (20) is a real money
balance (RMB) relationship, based on the condition that the economy must remain financially
solvent in the long run; and (21) is the Fisher Interest Parity (FIP) relationship which assumes
that, due to inter-temporal exchange of domestic goods and bonds, the nominal rate of interest
should in the long-run equate to the real rate of return plus the (expected) rate of inflation .

The five long-run relations of the model, (17) - (21), can be written compactly as:

ξt = β′zt−1 − b1 (t− 1)− b0, (22)

where zt = (pot , et, r
∗
t , rt,∆pt, yt, pt − p∗t , ht − yt, y

∗
t )

′ , b0 = (b01, b02, b03,b04, b05)
′, b1 = (b11, 0, 0, b41, 0),

ξt = (ξ1t, ξ2t, ξ3t, ξ4t, ξ5t)
′, and

β
′

=




0 −1 0 0 0 0 1 0 0
0 0 −1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 −1
0 0 0 −β42 0 −β43 0 1 0
0 0 0 1 −1 0 0 0 0


 . (23)

Under the assumption that oil prices are “long-run forcing”, efficient estimation of the param-
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eters can be based on the following conditional error correction model:

∆yt = ay −αy

[
β

′

zt−1 − b1(t− 1)
]
+

p−1∑
i=1

Γyi∆zt−i +ψyo∆pot + uyt, (24)

where yt = (et, r
∗
t , rt,∆pt, yt, pt − p∗t , ht − yt, y

∗
t )

′, ay is an 8× 1 vector of fixed intercepts, αy is a
8× 5 matrix of error-correction coefficients, {Γyi, i = 1, 2, ..., p− 1} are 8× 9 matrices of short-run
coefficients, ψyo is an 8× 1 vector representing the impact effects of changes in oil prices on ∆yt,
and uyt is an 8 × 1 vector of disturbances assumed to be IID(0,Σy), with Σy being a positive
definite matrix. This specification embodies the economic theory’s long-run predictions, defined by
(22), by construction.

For oil prices to be long-run forcing for yt, it is required that the error correction terms,
β

′

zt−1 − b1(t − 1), are not statistically significant in the equation for oil prices, although lagged
changes in zt could be statistically significant. See Pesaran et al. (2000) for details. Harbo,
Johansen, Nielson and Rahbek (1998) also provide an alternative analysis and use the concept of
“weak exogeneity” instead of long-run forcing. A general specification that satisfies this condition
is given by

∆pot = ao +

p−1∑
i=1

Γoi∆zt−i + uot, (25)

where Γoi is a 1×9 vector of fixed coefficients and uot is a serially uncorrelated error term distributed
independently of uyt. This specification encompasses the familiar random walk model as a special
case and seems quite general for our purposes.

Combining (24) and (25), and solving for ∆zt yields the following reduced form equation

∆zt = a−α
[
β

′

zt−1 − b1(t− 1)
]
+

p−1∑
i=1

Γi∆zt−i + vt, (26)

where a =
(
ao, a′y − aoψ

′
yo

)′
,α =

(
0, α′

y

)′
, Γi =

(
Γ′
oi, Γ′

yi − Γ′
oiψ

′
yo

)′

and vt =
(
uot, u′

yt − uotψ
′
yo

)′
is the vector of reduced form errors assumed to be iid(0,Σ), where Σ is a positive definite matrix.

3.2 Estimation Results and In-sample Diagnostics

Estimation of the parameters of the conditional model, (24), can be carried out using the long-run
structural modelling approach described in Pesaran and Shin (2002) and Pesaran et al. (2000).
With this approach, having selected the order of the underlying VAR model (using model selection
criteria such as the AIC or the SBC), we test for the number of cointegrating relations using the
conditional model, (24), with unrestricted intercepts and restricted trend coefficients. As shown
in Pesaran et al. (2000), these restrictions ensure that the solution of the model in levels of zt
will not contain quadratic trends. We then compute Maximum Likelihood (ML) estimates of the
model’s parameters subject to exact and over-identifying restrictions on the long-run coefficients.2

If there is empirical support for the existence of five long-run relationships, as suggested by theory,
exact identification in our model requires five restrictions on each of the five cointegrating vectors
(each row of β), or a total of twenty-five restrictions on β. These represent only a subset of the

2The computations were carried out using Pesaran and Pesaran’s (1997) Microfit 4.1.
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restrictions suggested by economic theory as characterized in (23), however. Estimation of the
model subject to all the (exact- and over-identifying) restrictions given in (23) enables a test of the
validity of the over-identifying restrictions, and hence the underlying long-run economic theory, to
be carried out.

Such an empirical exercise is conducted by Garratt et al. (2001) using UK data over the period
1965q1-1999q4. Their results showed that: (i) a VAR(2) model can adequately capture the dynamic
properties of the data; (ii) there are five cointegrating relationships amongst the nine macroeco-
nomic variables; and that (iii) the over-identifying restrictions suggested by economic theory, and
described in (17) - (21) above, cannot be rejected. For the present exercise, we re-estimated the
model on the more up-to-date sample, 1965q1-2001q1. The results continue to support the exis-
tence of 5 cointegrating relations, and are qualitatively very similar to those described in Garratt et
al. (2001). For example, the interest rate coefficient in the real money balance equation, β42, was
estimated to be 75.68 (standard error 35.34), compared to 56.10 (22.28) in the original work, while
the coefficient on the time trend, b41, was estimated to be 0.0068 (0.0010), compared to 0.0073
(0.0012).

Since the modelling exercise here is primarily for the purpose of forecasting, we next re-estimated
the model over the shorter period of 1985q1-2001q1, taking the long-run relations as given. The
inclusion of the long-run relations estimated over the period 1965q1-2001q1 in a cointegrating VAR
model estimated over the shorter sample period 1985q1-2001q1, is justified on two grounds: (i) as
argued by Barassi et al. (2001) and Clements and Hendry (2002), the short-run coefficients are
more likely to be subject to structural change as compared to the long-run coefficients; and (ii) the
application of Johansen’s cointegration tests are likely to be unreliable in small samples. Following
this procedure, we are able to base the forecasts on a model with well-specified long-run relations,
but which is also data-consistent, capturing the complex dynamic relationships that hold across
the macroeconomic variables over recent years.

Table 1 gives the estimates of the individual error correcting relations of the benchmark model
estimated over the 1985q1-2001q1 period. These estimates show that the error correction terms
are important in most equations and provide for a complex and statistically significant set of
interactions and feedbacks across commodity, money and foreign exchange markets. The estimated
error correction equations pass most of the diagnostic tests and compared to standard benchmarks,

fit the historical observations relatively well. In particular, the R
2
of the domestic output and

inflation equations, computed at 0.549 and 0.603 respectively, are quite high. The diagnostic
statistics for tests of residual serial correlation, functional form and heteroskedasticity are well
within the 90 per cent critical values, although there is evidence of non-normal errors in the case
of some of the error correcting equations. Non-normal errors is not a serious problem at the
estimation and inference stage, but can be important in Value-at-Risk analysis, for example, where
tail probabilities are the main objects of interest. In such cases non-parametric techniques for
computation of forecast probabilities might be used. See the Appendix for further details.

3.3 Model Uncertainty

The theory-based cointegrating model is clearly one amongst many possible models that could be
used to provide probability forecasts of the main UK macroeconomic variables. Even if we confine
our analysis to the class of VAR(p) models, important sources of uncertainties are the order of
the VAR, p, the number of the long-run (or cointegrating) relations, r, the validity of the over-
identifying restrictions imposed on the long-run coefficients, and the specification of the oil price
equation. Given the limited time series data available, consideration of models with p = 3 or
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more did not seem advisable. We also thought it would not be worthwhile to consider p = 1 on
the grounds that the resultant equations would most likely suffer from residual serial correlation.
Therefore, we confined the choice of the models to be considered in the BMA procedure to exactly
identified VAR(2) models with r = 0, 1, .., 5 and two alternative specifications of the oil price
equation, namely (25), and its random walk counterpart, ∆pot = ao + uot. Naturally, we also
included our benchmark model in the set (for both specifications of the oil price equation), thus
yielding a total of 14 models to be considered. We shall use these models in the forecast evaluation
exercise below and in Section 4 to investigate the robustness of probability forecasts from the
benchmark model to model uncertainty.

3.4 Evaluation and Comparisons of Probability Forecasts

In the evaluation exercise, each of the fourteen alternative models was used to generate probability
forecasts for a number of simple events over the period 1999q1-2001q1. This was undertaken in
a recursive manner, whereby we first estimated all the 14 models over the period 1985q1-1998q4
and computed one-step-ahead probability forecasts for 1999q1, then repeated the process mov-
ing forward one quarter at a time, ending with forecasts for 2001q1 based on models estimated
over the period 1985q1-2000q4. The probability forecasts were computed for directional events of
interest. In the case of pt − p∗t , et, rt, r

∗
t and ∆p̃t, we computed the probability that these vari-

ables rise next period, namely Pr [∆(pt − p∗t ) > 0 | Ωt−1], Pr [∆et > 0 | Ωt−1]), and so on, where
Ωt−1 = (Zt−1, z0, z−1). For the remaining trended variables, (yt, y

∗
t , ht − yt and pot ), we consid-

ered the event that the rate of change of these variables rise from one period to the next, namely
Pr

[
∆2yt > 0 | Ωt−1

]
, Pr

[
∆2y∗t > 0 | Ωt−1

]
), and so on. The probability forecasts are computed

recursively using the parametric stochastic simulation technique which allow for future uncertainty
and the nonparametric bootstrap technique which allow for parameter uncertainty, as detailed in
the Appendix. To allow for the effect of model uncertainty we employed the BMA formulae, (12)
and (15), with the weights, wiT , set according to the following three schemes: Akiake, Schwarz and
equal weights (wiT = 1/14). The first two are computed using (14). The probability forecasts were
then evaluated using a number of different statistical techniques.

A general approach to evaluation of probability forecasts would be to use the probability integral
transforms

ui(zt) =

∫
zt

−∞

pit (x) dx, t = T + 1, T + 2, ..., T + n,

where pit (x) is the forecast probability density function for model i, and zt, t = T+1, T+2, ..., T+n,
the associated realizations. Under the null hypothesis that pit (x) coincides with the true density
function of the underlying process, the probability integral transforms will be distributed as iid
U [0, 1]. This result, originally due to Rosenblatt (1952), has been used by Dawid (1984) and
more recently by Diebold, Gunther and Tay (1998) in evaluation of probability forecasts. In our
application, we first computed a sequence of one step ahead probability forecasts (with and without
allowing for parameter uncertainty) for the nine simple events set out above over the nine quarters
1999q1, 1999q2, ..., 2001q1, and hence the associated probability integral transforms, ui(zt), for the
benchmark models (with the two specifications of oil price equation), and the three ‘average’ models
(using Akaike, Schwarz and equal weights). To test the hypothesis that these probability integral
transforms are random draws from U [0, 1], we calculated the Kolmogorov-Smirnov statistic, KSin =
supx |Fin(x)− U(x)| , where Fin(x) is the empirical cumulative distribution function (CDF) of the
probability integral transforms, and U(x) = x, is the CDF of iid U [0, 1]. Large values of the
Kolmogorov-Smirnov statistics, KSin, is indicative of significant departures of the sample CDF
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from the hypothesized uniform distribution.3 The test results are summarized in Table 2.
For the over-identified benchmark specification, we obtained the value of 0.111 for the Kolmogorov-

Smirnov statistic when only future uncertainty was allowed for, and the larger value of 0.136 when
both future and parameter uncertainties were taken into account. The corresponding statistics for
the benchmark model with the alternative oil price assumption were 0.123 and 0.136, respectively.
All these statistics are well below the 5% critical value of Kolmogorov-Smirnov statistic (which
for n = 81 is equal to 0.149), and the hypothesis that the forecast probability density functions
coincide with the true ones cannot be rejected. The KS statistics for the probability forecasts based
on the BMA procedure are also well below the 5% critical value with the notable exception of the
forecasts based on the Akaike weights in the absence of parameter uncertainty.

Alternative measures of the accuracy of probability forecasts can be obtained by converting the
probability forecasts into event forecasts by means of probability thresholds. (See, for example, the
discussion in Pesaran and Granger (2000a)). For example, occurrence of an event can be forecast
if its probability forecast exceeds a given threshold value, say 0.5. Applying this procedure to the
events identified above we have 81 event forecasts and their associated realizations. The proportion
of events predicted correctly by the various models are summarized in Table 2. They are all above
60%, with the probability forecasts that allow for parameter uncertainty performing slightly worse,
except for the ones based on the Schwarz weights. It is also interesting to note that the bench-
mark model that does not allow for parameter uncertainty produces the best result. To check the
statistical significance of these estimated proportions, we also computed the PT statistic proposed

in Pesaran and Timmermann (1992) which is defined by PTn =
(
P̂n − P̂ ∗

n

)
/
{
V̂ (P̂n)− V̂ (P̂ ∗

n)
}1

2
,

where n is the number of events considered, P̂n is the proportions of correctly predicted events,
P̂ ∗
n is the estimate of this proportion under the null hypothesis that forecasts and realizations are

independently distributed, and V̂ (P̂n) and V̂ (P̂ ∗
n) are the consistent estimates of the variances of

P̂n and P̂ ∗
n , respectively. Under the null hypothesis, the PT statistic has a standard normal dis-

tribution. For the forecasts based on the benchmark model, we obtained PT = 3.36 when only
future uncertainty was allowed for, and PT = 2.35 when both future and parameter uncertainties
were taken into account. Both of these statistics are statistically significant. The random walk
specification for the oil price equation resulted in PT values of 2.70 and 2.09 in the absence and
presence of parameter uncertainty, respectively. Similar results were also obtained when we allowed
for model uncertainty. Focussing on the average models, Akaike weights performed best followed
by the probability forecasts based on equal weights, with the Schwarz weights coming last. It is,
however, important to note that the PT test turned out to be statistically significant in the case
of all the forecasts, suggesting that forecasting skill identified for the benchmark model is likely to
be robust to parameter and model uncertainties. The results also provide some support in favour
of imposing the theory-based long-run restrictions, although the strength of the evidence seem to
depend on the choice of the oil price equation and whether parameter uncertainty is taken into
account.

4 Probability Forecasts of Inflation and Output Growth

Having shown the viability of the cointegrating VAR model in forecasting, we shall now present out-
of-sample probability forecasts of events relating to inflation targeting and output growth which
are of particular interest for the analysis of macro-economic policy in the UK. Inflation targets

3For details of the Kolmogorov-Smirnov test and its critical values see, for example, Neave and Worthington (1992,
pp.89-93).

[12]



have been set explicitly in the UK since October 1992, following the UK’s exit from the European
Exchange Rate Mechanism (ERM). The Chancellor’s stated objective at the time was to achieve
an average annual rate of inflation of 2%, while keeping the underlying rate of inflation within the
1%-4% range. In May 1997, the policy of targeting inflation was formalized further by the setting
up of the Monetary Policy Committee (MPC), whose main objective is to meet inflation targets
primarily by influencing the market interest rate through fixing the base rate at regular intervals.
Its current remit, as set annually by the Chancellor, is to achieve an average annual inflation rate
of 2.5%, with the rate falling in the target range 1.5%-3.5%.

The measure of inflation used by the MPC is the Retail Price Index, excluding mortgage interest
payments, (RPI-x), and the time horizon over which the inflation objective is to be achieved is not
stated. Inflation rates outside the target range act as a trigger, requiring the Governor of the Bank
of England to write an open letter to the Chancellor explaining why inflation had deviated from the
target, the policies being undertaken to correct the deviation, and how long it is expected before
inflation is back on target. The Bank is also expected to conduct monetary policy so as to support
the general economic policies of the government, so far as this does not compromise its commitment
to its inflation target.

Since October 1992, the Bank of England has produced a quarterly Inflation Report which
describes the Bank’s assessment of likely inflation outcomes over a two-year forecast horizon. In
addition to reviewing the various economic indicators necessary to place the inflation assessment
into context, the Report provides forecasts of inflation over two year horizons, with bands presented
around the central forecast to illustrate the range of inflation outcomes that are considered possible
(the so-called fan charts). The forecasts are based on the assumption that the base rate is left
unchanged. Since November 1997, a similar forecast of output growth has also been provided in
the Report, providing insights on the Bank’s perception of the likely outcome for the government’s
general economic policies beyond the maintenance of price stability. For a critical assessment of
the Bank’s approach to allowing for model and parameter uncertainties, see Wallis (1999).

The fan charts produced by the Bank of England are an important step towards acknowledging
the significance of forecast uncertainties in the decision making process and it is clearly a welcome
innovation. However, the approach suffers from two major shortcomings. First, it seems unlikely
that the fan charts can be replicated by independent researchers. This is largely due to the subjec-
tive manner in which uncertainty is taken into account by the Bank, which may be justified from
a real time decision-making perspective but does not readily lend itself to independent analysis.
Second, the use of fan charts is limited for the analysis of uncertainty associated with joint events.
Currently, the Bank provides separate fan charts for inflation and output growth forecasts, but in
reality one may also be interested in joint events involving both inflation and output growth, and
it is not clear how the two separate fan charts could be used for such a purpose. Here, we address
both of these issues using the benchmark long-run structural model and the various alternative
models discussed in the previous section.

In what follows, we present plots of estimated predictive distribution functions for inflation
and output growth at a number of selected forecast horizons. These plots provide us with the
necessary information with which to compute probabilities of a variety of events, and demonstrate
the usefulness of probability forecasts in conveying the future and parameter uncertainties that
surround the point forecasts. But our substantive discussion of the probability forecasts focuses
on two central events of interest; namely, keeping the rate of inflation within the announced target
range of 1.5 to 3.5 per cent and avoiding a recession. Following the literature, we define a recession
as the occurrence of two successive negative quarterly growth rates. See, for example, Harding and
Pagan (2000).
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4.1 Predictive Distribution Functions

In the case of single events, probability forecasts are best represented by means of probability
distribution functions. Figures 1 and 2 give the estimates of these functions for the four-quarter
moving averages of inflation and output growth for the 1-, 4- and 8-quarters ahead forecast horizons
based on the benchmark model (i.e. the over-identified version of the cointegrating model, (24),
augmented with the oil price equation, (25)). These estimates are computed using the simulation
techniques described in detail in the Appendix and take account of both future and parameter
uncertainties. As before the probability estimates that allow for parameter uncertainty will be
denote by π̃, to distinguish them from probability estimates that do not, which we denote by π.

Figure 1 presents the estimated predictive distribution function for inflation for the threshold
values ranging from 0% to 5% per annum at the three selected forecast horizons. Perhaps not
surprisingly, the function for the one-quarter ahead forecast horizon is quite steep, but it becomes
flatter as the forecast horizon is increased. Above the threshold value of 2.0%, the estimated
probability distribution functions shift to the right as longer forecast horizons are considered,
showing that the probability of inflation falling below thresholds greater than 2.0% declines with
the forecast horizon. For example, the forecast probability that inflation lies below 3.5% becomes
smaller at longer forecast horizons, falling from close to 100% one quarter ahead (2001q2) to 70%
eight quarters ahead (2003q1). These forecast probabilities are in line with the recent historical
experience: over the period 1985q1-2001q1, the average annual rate of inflation fell below 3.5% for
53.9 per cent of the quarters, but were below this threshold value throughout the last two years of
the sample, 1999q1-2001q1.

Figure 2 plots the estimated predictive distribution functions for output growth. These functions
also become flatter as the forecast horizon is increased, reflecting the greater uncertainty associated
with growth outcomes at longer forecast horizons. These plots also suggest a weakening of the
growth prospects in 2001 before recovering a little at longer horizons. For example, the probability
of a negative output growth one quarter ahead (2001q2) is estimated to be almost zero, but rises
to 14% four quarters ahead (2002q1) before falling back to 12% after eight quarters (2003q1).
Therefore, a rise in the probability of a recession is predicted, but the estimate is not sufficiently
high for it to be much of a policy concern (at least viewed from the end of our sample period
2001q1).

4.2 Event Probability Forecasts

Here we consider three single events of particular interest:

A : Achievement of inflation target, defined as the four-quarterly moving

average rate of inflation falling within the range 1.5%-3.5%,

B : Recession, defined as the occurrence of two consecutive quarters

of negative output growth,

C : Poor growth prospects, defined to mean that the four-quarterly moving

average of output growth is less than 1%,

and the joint events A ∩B (Inflation target is met and recession is avoided), and A ∩ C (Inflation
target is met combined with reasonable growth prospects), where B and C are complements of B
and C.
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4.2.1 Inflation and the Target Range

Two sets of estimates of Pr(AT+h | ΩT ) are provided in Table 3 (for h = 1, 2, ..., 8) and depicted
in Figure 3 over the longer forecast horizons h = 1, 2, ..., 24. The first set relates to π, which only
take account of future uncertainty, and the second set relates to π̃ which allow for both future
and parameter uncertainties. Both π and π̃ convey a similar message, but there are nevertheless
some differences between them, at least at some forecast horizons, so that it is important that both
estimates are considered in practice.

Based on these estimates, and conditional on the information available at the end of 2001q1,
the probability that the Bank of England will be able to achieve the government inflation target
is estimated to be high in the short-run but falls in the longer run, reflecting the considerable
uncertainty surrounding the inflation forecasts at longer horizons. Specifically, the probability
estimate is high in 2001q2, at 0.87 (0.80) for π̃ (π), but it falls rapidly to nearer 0.45 by the end
of 2001/early 2002. This fall in the first quarters of the forecast reflect the increasing likelihood of
inflation falling below the 1.5% lower threshold (since the probability of observing inflation above
the 3.5% upper threshold is close to zero through this period). Ultimately, though, the estimated
probability of achieving inflation within the target range settles to 0.38 (0.35) for π̃ (π) in 2003q1.
At this longer forecast horizon, the probabilities of inflation falling below and above the target
range are 0.32 and 0.30, respectively, using π̃ (or 0.42 and 0.23 using π), so these figures reflect the
relatively high degree of uncertainty associated with inflation forecasts even at moderate forecast
horizons. Hence, while the likely inflation outcomes are low by historical standards and there
is a reasonable probability of hitting the target range, there are also comparable likelihoods of
undershooting and overshooting the inflation target range at longer horizons.

4.2.2 Recession and Growth Prospects

Figure 4 shows the estimates of the recession probability, Pr(BT+h | ΩT ) over the forecast horizons
h = 1, 2, ..., 24. For this event, the probability estimates that allow for parameter uncertainty (i.e.
π̃) exceed those that do not (i.e. π) at shorter horizons, but the opposite is true at longer horizons.
Having said this, however, π and π̃ are very similar in size across the different forecast horizons and
suggest a very low probability of a recession: based on the π̃ estimate, for example, the probability
of a recession occurring in 2001q2 is estimated to be around zero, rising to 0.09 in 2002q1. However,
as shown in Table 4, the probability that UK faces poor growth prospects is much higher, in the
region of 0.35 at the end of 2001, falling to 0.3 in 2003q1 according to the π̃ estimates.

Single events are clearly of interest but very often decision makers are concerned with joint
events involving, for example, both inflation and output growth outcomes. As examples here, we
consider the probability estimates of the two joint events, AT+h∩BT+h, and AT+h∩CT+h over the
forecast horizons h = 1, 2, ..., 24. Probability estimates of these events (based on π̃) are presented in
Table 4. Both events are of policy interest as they combine the achievement of the inflation target
with alternative growth objectives. For the event AT+h ∩BT+h, the joint probability forecasts are
similar in magnitude to those that for Pr (AT+h | ΩT ) alone at every time horizon. This is not
surprising since the probability of a recession is estimated to be small at most forecast horizons and
therefore the probability of avoiding recession is close to one. Nevertheless, the differences might be
important since even relatively minor differences in probabilities can have an important impact on
decisions if there are large, discontinuous differences in the net benefits of different outcomes. The
probability forecasts for AT+h∩CT+h are, of course, considerably less than those for Pr (AT+h | ΩT )
alone.

Figure 5 plots the values of the joint event probability over the forecast horizon alongside a
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plot of the product of the single event probabilities; that is Pr (AT+h | ΩT ) × Pr
(
BT+h | ΩT

)
,

h = 1, 2, ..24. This comparison provides an indication of the degree of dependence/independence
of the two events. As it turns out, there is a gap between these of just under 0.1 at most forecast
horizons. But the probabilities are relatively close, indicating little dependence between output
growth prospects and inflation outcomes. This result is compatible with the long-term neutrality
hypothesis that postulates independence of inflation outcomes from output growth outcomes in the
long-run.

Figure 6 also plots the probability estimates of the joint event AT+h∩BT+h, but illustrates the
effects of taking into account model uncertainty. The Figure shows three values of the probability
of the joint event over the forecast horizon, each calculated without taking account of parameter
uncertainty. One value is based on the benchmark model, but the other two show the weighted
average of the probability estimates obtained from the fourteen alternative models described in the
model evaluation exercise of the previous section. The weights in the latter two probability estimates
are set equal in one of the estimates and are the in-sample posterior probabilities of the models
approximated by the Akiake weights in the other. The plots show that estimated probabilities from
the benchmark model are, by and large, quite close to the ‘equal weights’ estimate, but these are
both lower than the AIC-weighted average, by more than 0.1 at some forecast horizons. Again, the
extent to which these differences are considered large or important will depend on the nature of
the underlying decision problem.

5 Concluding Remarks

One of the many problems economic forecasters and policy makers face is conveying to the pub-
lic the degree of uncertainty associated with point forecasts. Policy makers recognize that their
announcements, in addition to providing information on policy objectives, can themselves initiate
responses which effect the macroeconomic outcome. This means that Central Bank Governors are
reluctant to discuss either pessimistic possibilities, as this might induce recession, or more opti-
mistic possibilities, since this might induce inflationary pressures. There is therefore an incentive
for policy makers to seek ways of making clear statements regarding the range of potential macroe-
conomic outcomes for a given policy, and the likelihood of the occurrence of these outcomes, in a
manner which avoids these difficulties.

In this paper, we have argued for the use of probability forecasts as a method of characterizing
the uncertainties that surround forecasts from a macroeconomic model believing this to be superior
to the conventional way of trying to deal with this problem through the use of confidence intervals.
We argue that the use of probability forecasts has an intuitive appeal, enabling the forecaster (or
users of forecasts) to specify the relevant “threshold values” which define the event of interest
(e.g. a threshold value corresponding to an inflation target range of 1.5% to 3.5%). This is in
contrast to the use of confidence intervals which define threshold values only implicitly, through
the specification of the confidence interval widths, and these values may or may not represent
thresholds of interest. A further advantage of the use of probability forecasts compared with the
use of confidence intervals and over other more popular methods is the flexibility of probability
forecasts, as illustrated by the ease with which the probability of joint events can be computed
and analyzed. Hence, for example, we can consider the likelihood of achieving a stated inflation
target range whilst simultaneously achieving a given level of output growth, with the result being
conveyed in a single number. In situations where utility or loss functions are non-quadratic and/or
the constraints are non-linear the whole predictive probability distribution function rather than its
mean is required for decision making. This paper shows how such predictive distribution functions
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can be obtained in the case of long-run structural models, and illustrates its feasibility in the case
of a small macro-econometric model of the UK.

The empirical exercise of the paper provides a concrete example of the usefulness of event proba-
bility forecasting both as a tool for model evaluation and as a means for conveying the uncertainties
surrounding the forecasts of specific events of interest. The model used represents a small but com-
prehensive model of the UK macro-economic which incorporates long-run relationships suggested
by economic theory so that it has a transparent and theoretically-coherent foundation. The model
evaluation exercise not only demonstrates the statistical adequacy of the forecasts generated by
the model but also highlights the considerable improvements in forecasts obtained through the
imposition of the theory-based long-run restrictions. The predictive distribution functions relat-
ing to single events and the various joint event probabilities presented in the paper illustrate the
flexibility of the functions in conveying forecast uncertainties and, from the observed independence
of probability forecasts of events involving inflation and growth, in conveying information on the
properties of the model. The model averaging approach also provides a coherent procedure to take
account of parameter and model uncertainties as well as future uncertainty.

The various probability forecasts presented in the paper are encouraging from the point of view
of the government’s inflation objectives. Taking account of future as well as parameter and model
uncertainties, the probability of inflation falling within the target range is quite high in the short
run, accompanied with only a small probability of a recession. Over a longer forecast horizon
the probability of inflation falling within the target range starts to decline, primarily due to a
predicted rise in the probability of inflation falling below 1.5%, the lower end of the target range.
Overall, however, based on information available at the end of 2001q1, the probability that the
inflation objective is achieved with moderate output growths in the medium term is estimated to
be reasonably high, certainly higher than the probabilities of inflation falling above or below the
target range.

A Appendix: Computation of Probability Forecasts by Stochastic

Simulation

This Appendix describes the steps involved in calculation of probability forecasts based on a vector error correction
model using stochastic simulation techniques. The VAR model underlying the vector error correction model, (26), is
given by

zt =

p∑
i=1

Φizt−i + a0 + a1t+ vt, t = 1, 2, ..., T, (27)

where Φ1 = Im − αβ′ + Γ1, Φi = Γi − Γi−1, i = 2, ..., p − 1, Φp = −Γp−1, a0 = ay − αyb1, a1 = αyb1 and vt is
assumed to be a serially uncorrelated iid vector of shocks with zero means and a positive definite covariance matrix,
Σ. In what follows, we consider the calculation of probability forecasts first for given values of the parameters, and
then taking into account parameter uncertainty.

A.1 Forecasts in the absence of parameter uncertainty

Suppose that the ML estimators of Φi, i = 1, . . . , p, a0, a1 and Σ are given and denoted by Φ̂i, i = 1, . . . , p, â0, â1

and Σ̂, respectively. Then the point estimates of the h-step ahead forecasts of zT+h conditional on ΩT , denoted by
ẑT+h, can be obtained recursively by

ẑT+h =

p∑
i=1

Φ̂iẑT+h−i + â0 + â1(t+ h), h = 1, 2, . . . , (28)
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where the initial values, zT , zT−1, . . . , zT−p+1, are given. To obtain probability forecasts by stochastic simulation,
we simulate the values of zT+h by

z
(r)
T+h =

p∑
i=1

Φ̂iz
(r)
T+h−i + â0 + â1(t+ h) + v

(r)
T+h, h = 1, 2, . . . ; r = 1, 2, ..., R, (29)

where superscript ‘(r)’ refers to the rth replication of the simulation algorithm, and z
(r)
T = zT , z

(r)
T−1 = zT−1,. . . ,

z
(r)
T−p+1 = zT−p+1 for all r. The v

(r)
T+h’s can be drawn either by parametric or nonparametric methods as described

in A.3 below. The probability that ϕ	

(
z
(r)
T+1, . . . , z

(r)
T+h

)
< a	, is computed as

πR

(
a	, h;ϕ	(.), θ̂

)
=
1

R

R∑
r=1

I
(
a	 − ϕ	

(
z
(r)
T+1, . . . , z

(r)
T+h

))
,

where I (A) is an indicator function which takes the value of unity if A > 0, and zero otherwise. To simplify the

notations we denote πR

(
a	, h;ϕ	(.), θ̂

)
by πR (a	). The predictive probability distribution function is now given by

πR (a	) as the threshold values, a	, are varied over the relevant regions.

A.2 Forecasts in the presence of parameter uncertainty

To allow for parameter uncertainty, we use the boot-strap procedure and first simulate S (in-sample) values of zt,

t = 1, 2, ..., T , denoted by z
(s)
t , s = 1, ..., S, where

z
(s)
t =

p∑
i=1

Φ̂iz
(s)
t−i + â0 + â1t+ v

(s)
t , t = 1, 2, ..., T, (30)

realizations are used for the initial values, z−1, . . . , z−p, and v
(s)
t ’s can be drawn either by parametric or nonparametric

methods. Having obtained the S set of simulated in-sample values,
(
z
(s)
1 , z

(s)
2 , . . . , z

(s)
T

)
, the V AR(p) model (27) is

estimated S times to obtain the ML estimates, Φ̂
(s)
i , i = 1, 2, . . . , p, â

(s)
0 , â

(s)
1 and Σ̂(s), s = 1, 2, ..., S.

For each of these boot-strap replications, R replications of the h-step ahead point forecasts are computed as

z
(r,s)
T+h =

p∑
i=1

Φ̂
(s)
i z

(r,s)
T+h−i + â

(s)
0 + â

(s)
1 (t+ h) + v

(r,s)
T+h, h = 1, 2, . . . ; r = 1, 2, ..., R, (31)

and the predictive distribution function is then obtained by

πR,S (a	) =
1

SR

R∑
r=1

S∑
s=1

I
(
a	 − ϕ	

(
z
(r,s)
T+1, . . . , z

(r,s)
T+h

))
,

A.3 Generating Simulated Errors

There are two basic ways that the in-sample and future errors, v
(s)
t and v

(r,s)
T+h respectively, can be simulated so that

the contemporaneous correlations that exist across the errors in the different equations of the VAR model are taken
into account. The first is a parametric method where the errors are drawn from an assumed probability distribution
function. Alternatively, one could employ a non-parametric procedure. These are slightly more complicated and are
based on re-sampling techniques in which the simulated errors are obtained by a random draw from the observed
errors (See, for example, Hall (1992)).

A.3.1 Parametric Approach

Under this approach we assume that the errors are drawn from a multivariate distribution with zero means and
the covariance matrix, Σ̂. To obtain the simulated errors for m variables over h periods we first generate mh

draws from an assumed i.i.d. distribution which we denote by ε
(r,s)
T+i , i = 1, 2, ..., h. These are then used to obtain{

v
(r,s)
T+i , i = 1, 2, ...h

}
computed as v

(r,s)
T+h = P̂

(s)ε
(r,s)
T+h for r = 1, 2, ..., R and s = 1, 2, ..., S, where P̂

(s) is the lower

triangular Choleski factor of Σ̂(s) such that Σ̂(s) = P̂
(s)

P̂
(s)′, and Σ̂(s) is the estimate of Σ in the sth replication of

the boot-strap procedure set out above. In the absence of parameter uncertainty v
(r)
T+h = P̂ε

(r)

T+h with P̂ being the

lower triangular Choleski factor of Σ̂. In our applications, for each r and s, we generate ε
(r,s)
T+i as IIN(0, Im), although

other parametric distributions such as the multi-variate Student t can also be used.
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A.3.2 Non-Parametric Approaches

The most obvious non-parametric approach to generating the simulated errors, v
(r,s)
T+h, which we denote ‘Method

1’, is simply to take h random draws with replacements from the in-sample residual vectors
{
v̂
(s)
1 , . . . , v̂

(s)
T

}
. The

simulated errors thus obtained clearly have the same distribution and covariance structure as that observed in the
original sample. However, this procedure is subject to the criticism that it could introduce serial dependence at longer
forecast horizons since the pseudo-random draws are made from the same set of relatively small T vector of residuals.

An alternative non-parametric method for generating simulated errors, ‘Method 2’, makes use of the Choleski
decomposition of the estimated covariance employed in the parametric approach. For a given choice of P̂(s) a set

of mT transformed error terms
{
ε̂
(s)
1 , . . . , ε̂

(s)
T

}
are computed such that ε̂

(s)
t = P̂

(s)−1
v̂
(s)
t , t = 1, 2, ..., T . The

mT individual error terms are uncorrelated with each other, but retain the distributional information (relating to
extreme values, and so on) contained in the original observed errors. A set of mh simulated errors are then obtained

by drawing with replacement from these transformed residuals, denoted by
{
ε
(r,s)
T+1, . . . , ε

(r,s)
T+h

}
. These are then used

to obtain
{
v
(r,s)
T+1, . . . ,v

(r,s)
T+h

}
, recalling that v

(r,s)
T+h = P̂

(s)ε
(r,s)
T+h for r = 1, 2, ..., R and s = 1, 2, ..., S. Given that the

P̂
(s) matrix is used to generate the simulated errors, it is clear that v

(r,s)
T+h again has the same covariance structure

as the original estimated errors. And being based on errors drawn at random from the transformed residuals, these
simulated errors will also display the same distributional features. Further, given that the re-sampling occurs from the
mT transformed error terms, Method 2 also has the advantage over Method 1 that the serial dependence introduced
through sampling with replacement is likely to be less problematic.

A.3.3 Choice of Approach

The non-parametric approaches described above have the advantage over the parametric approach that they make
no distributional assumptions on the error terms, and are better able to capture the uncertainties arising from
(possibly rare) extreme observations. However, they suffer from the fact that they require random sampling with
replacement. Replacement is essential as otherwise the draws at longer forecast horizons are effectively ‘truncated’
and unrepresentative. On the other hand, for a given sample size, it is clear that re-sampling from the observed
errors with replacement inevitably introduces serial dependence in the simulated forecast errors at longer horizons as
the same observed errors are drawn repeatedly. When generating simulated errors over a forecast horizon, therefore,
this provides an argument for the use of non-parametric methods over shorter forecast horizons, but suggests that
a greater reliance might be placed on the parametric approach for the generation of probability forecasts at longer
time horizons.
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Table 1
Error Correction Specifications for the Over-identified Model: 1985q1-2001q1

Equation ∆(pt-p
∗
t ) ∆et ∆rt ∆r∗t ∆yt ∆y∗t ∆(ht-yt) ∆2p̃t

ξ̂1t
−.020∗

(.010)
.136∗

(.071)
.003
(.004)

.0006
(.001)

.010
(.009)

.002
(.006)

.031∗

(.017)
−.014∗

(.008)

ξ̂2t
−.775
(.664)

−2.59
(4.63)

−593†

(.281)
.117
(.075)

.541
(.592)

.063
(.418)

−1.31
(1.09)

−1.05†

(.508)

ξ̂3t
.022
(.060)

.073
(.414)

.029
(.025)

−.003
(.007)

−.061
(.050)

.057
(.037)

.271
†

(.098)
.087∗

(.045)

ξ̂4t
.010∗

(.006)
.003
(.043)

.004
(.003)

−.001
(.0007)

−.012†

(.005)
.0004
(.004)

−.003
(.010)

.005
(.005)

ξ̂5t
.131
(.239)

2.04
(1.67)

.007
(.101)

−.014
(.027)

.315
(.203)

.060
(.150)

.257
(.393)

1.26
(.183)

∆(pt−1-p
∗
t−1)

.275
(.176)

−.588
(1.23)

−.030
(.074)

.007
(.020)

.136
(.149)

.031
(.111)

−.066
(.289)

.163
(.134)

∆et−1
.020
(.022)

.210
(.155)

−.0001
(.009)

.0004
(.003)

.019
(.029)

−.012
(.014)

.059
(.037)

−.025
(.017)

∆rt−1
−.025
(.404)

−3.90
(2.81)

.214
(.171)

.053
(.046)

.190
(.342)

.025
(.254)

−.296
(.665)

.960†

(.309)

∆r∗t−1
−.839
(1.23)

5.74
(8.59)

−.120
(.522)

.407†

(.139)
.784
(1.05)

−.732
(.775)

−2.42
(2.03)

1.15
(.943)

∆yt−1
−.090
(.177)

−1.47
(1.23)

.009
(.075)

−.017
(.020)

.439†

(.150)
.343

†

(.111)
−.782†

(.291)
.252∗

(.135)

∆y∗t−1
−.052
(.229)

.489
(1.51)

.131
(.097)

.072†

(.026)
.351∗

(.194)
.184
(.053)

.386
(.377)

.147
(.175)

∆(ht−1-yt−1)
.023
(.086)

−.081
(.588)

−.029
(.036)

−.001
(.010)

−.057
(.073)

−.007
(.053)

−.255∗

(.141)
−.023
(.066)

∆2p̃t−1
−.064
(.171)

.860
(1.19)

−.012
(.072)

−.008
(.019)

−.019
(.145)

−.049
(.107)

−.194
(.281)

.017
(.131)

∆pot−1
−.005
(.005)

.006
(.036)

−.0001
(.002)

−.0009
(.0006)

.012†

(.004)
.005
(.003)

.006
(.009)

.003
(.004)

∆pot−1
−.010†

(.005)
−.019
(.032)

.002
(.002)

−.0007
(.0005)

−.010†

(.004)
−.001
(.003)

−.001
(.007)

.004
(.003)

R
2

.365 .089 .017 .476 .549 .371 .378 .603

σ̂ .005 .032 .002 .001 .004 .003 .008 ..003

χ2
SC [4] 4.31 3.16 9.40∗ 1.91 5.74 7.29 7.40 5.89

χ2
FF [1] 3.04 0.76 3.49∗ 2.26 0.86 2.31 0.02 0.98

χ2
N [2] 3.53 11.2† 7.13† 0.27 1.91 1.47 33.9† 26.0†

χ2
H [1] 0.01 0.01 1.08 0.01 0.83 0.84 0.17 .057

Table 2
Evaluation of Probability Forecasts

Allowing for Future Allowing for Future and
Models Uncertainty Parameter Uncertainties

KSn P̂n PTn KSn P̂n PTn

Bench (∆pot :eq (25)) 0.111 0.679 3.356 0.136 0.617 2.354

Bench (∆pot : Random walk) 0.123 0.642 2.701 0.136 0.605 2.094

Equal Weights 0.062 0.630 2.346 0.111 0.630 2.322

Akaike Weights 0.160 0.642 2.701 0.136 0.630 2.451

Schwarz Weights 0.111 0.605 1.873 0.099 0.617 2.109
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Table 3
Single Events Probability Estimates for Inflation

Forecast Pr(∆p < 1.5%) Pr(∆p < 2.5%) Pr(∆p < 3.5%) Pr(1.5% < ∆p < 3.5%))
Horizon π π̃ π π̃ π π̃ π π̃

2001q2 0.199 0.133 0.975 0.923 1.000 1.000 0.801 0.867

2001q3 0.440 0.277 0.886 0.740 0.995 0.968 0.555 0.691

2001q4 0.543 0.368 0.838 0.689 0.978 0.904 0.435 0.536

2002q1 0.448 0.295 0.688 0.538 0.885 0.766 0.437 0.471

2002q2 0.374 0.248 0.586 0.445 0.776 0.657 0.402 0.409

2002q3 0.404 0.289 0.593 0.486 0.774 0.685 0.370 0.396

2002q4 0.423 0.318 0.607 0.516 0.770 0.706 0.347 0.388

2003q1 0.420 0.325 0.602 0.519 0.748 0.704 0.328 0.379

Table 4
Single and Joint Probability Estimates Involving Output Growth and Inflation

Pr(Recession) Pr(∆y<1%) Pr(1.5% < ∆p < 3.5%, Pr(1.5% < ∆p<3.5%,
Forecast No Recession) ∆y >1%)
Horizon π̃ π̃ π̃ π̃

2001q2 0.000 0.045 0.867 0.830

2001q3 0.116 0.330 0.630 0.498

2001q4 0.082 0.349 0.501 0.381

2002q1 0.091 0.377 0.428 0.300

2002q2 0.092 0.313 0.374 0.279

2002q3 0.088 0.313 0.364 0.272

2002q4 0.089 0.304 0.356 0.270

2003q1 0.091 0.294 0.348 0.268

Notes to Table 1: The five error correction terms, estimated over the period 1965q1-2001q1, are given by

ξ̂1,t+1= pt−p∗t−et−4.8566, ξ̂2,t+1 = rt−r∗t−0.0057, ξ̂3,t+1= yt−y∗t+0.0366, ξ̂5,t+1= rt−∆p̃t−0.0037,

and ξ̂4,t+1= ht−yt+75.68(35.34)rt+0.0068(0.001)t+ 0.1283. Standard errors are given in parenthesis. “∗” indicates
significance at the 10% level, and “†” indicates significance at the 5% level. The diagnostics are chi-squared statistics for serial

correlation (SC), functional form (FF), normality (N) and heteroscedasticity (H).

Notes to Table 2: The forecast evaluation statistics are based on one-step-ahead forecasts obtained from models

estimated recursively, starting with the forecast of events in 1999q1 based on models estimated over 1985q1-1998q4 and ending

with forecasts of events in 2001q1. The events of interest are described in Section 3. KSn is the Kolmogorov-Smirnov statistic.

The 5% critical value of KSn for n = 81 is equal to 0.149, P̂n is the proportion of events correctly forecast to occur, PTn is

the Pesaran and Timmermann (1992) test statistic which has a standard normal distribution.

Notes to Table 3 : The probability estimates for inflation relate to the four quarterly moving average of inflation

defined by 400×(pT+h−pT+h−4), where p is the natural logarithm of the retail price index. The probability estimates (π
and π̃) are computed using the model reported in Table 2, where π only takes account of future uncertainty,and π̃ accounts

for both future and parameter uncertainties. The computations are carried out using 2,000 replications. See the Appendix for

computational details.

Notes to Table 4: The probability estimates for output growth are computed from the forecasts of per capita output,

assuming a population growth of 0.22% per annum. Recession is said to have occured when output growth (measured, quarter
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on quarter, by 400× ln (GDPT+h/GDPT+h−1) becomes negative in two consecutive quarters. Also see the notes to

Table 3.

Figure 1: Predictive Distribution Functions for Inflation Using
the Benchmark Model and allowing for Parameter Uncertainty
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Figure 2: Predictive Distribution Functions for Output Growth Using
the Benchmark Model and allowing for Parameter Uncertainty
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.

Figure 3: Probability Estimates of Inflation
Falling within the Target Range using the Benchmark Model
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Figure 4: Probability Estimates of a Recession using
the Benchmark Model
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Figure 5: Probability Estimates of Meeting the Inflation Target
without a Recession†
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† The difference between the product and joint event probabilities measures the degree of independence between
events A and Not B. All probability estimates plotted take into account both future and parameter uncertainty.

Figure 6: Probability Estimates of Meeting the Inflation Target without
a Recession computed from Different Models (future uncertainty only)
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