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I. Executive Summary
 

 This study represents a first effort towards the goal of developing a
comprehensive COTS integration cost modeling tool.  The approach taken was to first
examine a wide variety of sources in an attempt to identify the most significant factors
driving COTS integration costs, and to develop a mathematical form for such a model.
These sources ranged from already existing cost models to information gathered in a
preliminary high level data collection survey.  Once the form and candidate drivers had
been identified, the next step was to gather project level COTS integration effort data in a
second round data collection exercise.  This project level data was then used to calibrate
and validate the proposed model. Data from both a graduate level software engineering
class and from industrial sources were used in calibration attempts. The industrial data
proved problematic, however, so for the purposes of this study, the final calibration of the
model was based upon the student projects.
 The final result was a cost model following the general form of the well-known
COCOMO software cost estimation model, but with an alternate set of cost drivers. The
scope of the model is also narrow, addressing only initial integration coding costs. The
predictive power of the model at this stage is only fair, but it was demonstrated that with
appropriate data, the accuracy of the model could be greatly improved.
 Finally, the richness to the problem of capturing all significant costs associated
with using COTS software offers many worth-while directions in which to expand the
scope of this model.
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II. Mapping of COTS Study Contractual Requirements to Report
Contents

 
 
 
 Task 4.1.8.1 - Sentence 11

 Analyze SEI Risk Repository and other sources for COTS experience factors.
 Reference Report:  Sections IV and VI, Appendices C and D.
 

 Task 4.1.8.1- Sentences 2 and 3
 Prepare COTS experience questionnaire and data request letter for government
 review. Incorporate government comments and provide questionnaire to selected
 users.
 Reference Report:  Sections IV and VI.D, Appendix D2.
 

 Task 4.1.8.2 - Sentence 1
 Investigate candidate functional forms for the COTS integration cost model.
 Reference Report:  Sections IV and V.
 

 Task 4.1.8.2 - Sentence 2
 Collect and analyze initial questionnaire responses.
 Reference Report:  Sections IV and VI.D.
 

 Task 4.1.8.2 - Sentence 3
 Develop initial cost model and test on small initial data sample.
 Reference Report:  Sections IV, VII, VIII.A, VIII.B and IX, Appendix B1.
 

 Task 4.1.8.3 - Sentence 1
 Collect and analyze further questionnaire and cost data.
 Reference Report:  Sections IV and VIII.A , Appendix D3.
 

 Task 4.1.8.3 - Sentence 2
 Update initial cost model based on data collected.
 Reference Report:  Sections IV and VIII.C, Appendix B2.
 
 Task 4.1.8.4
 Prepare a report on guidelines for scoping COTS integration cost and schedules.
 Reference Report:  All Sections, with special note of Section XI.

                                                          
1 B.W. Boehm, Technical Proposal: Added Tasks for Contract F30602-94-C-1095, “Next Generation
Software Processes and Their Environment Support,” USC Center for Software Engineering, January 4,
1996.
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III. Introduction/Topic Background Placing COTS Research in Context
 

 One of the more significant changes in the software development market over the
past twenty years is the greatly increased emphasis being placed on building systems
incorporating pre-existing software, with special emphasis being placed upon the use of
commercial-off-the-shelf (COTS) software components. This is especially true with
respect to software systems being purchased by the United States federal government,
most notably within the Department of Defense. Increasingly, new DoD procurement
contracts are calling for mandated levels of COTS component use. In 1993, the Navy
went so far as to establish a policy stating that the selection of a government in-house or
procured software solution and not a COTS based solution was to be taken as a rejection
of a comparable COTS solution. This shift in policy meant that Navy procurers now had
to justify why they were not using COTS software.

 The rationale for requiring COTS based systems is that they will involve less
development time by taking advantage of existing, market proven, vendor supported
products, thereby reducing overall system costs.  But there is a trade-off in the COTS
approach in that software development time can indeed be reduced but generally at the
cost of an increase in software integration work. COTS software also brings with it a host
of unique risks quite different from those associated with software developed in-house.
 Once again, the elusive software silver bullet remains just that, elusive. The use of COTS
components in and of themselves will not slay the monster of upwardly spiraling software
procurement costs.  COTS components are not the Universal Solution.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 However, under the correct conditions, they can still be the right solution, offering
the most cost-effective, shortest schedule approach to assembling major software
systems.  They are the right solution when they lie at the intersection of the three
determinants of feasibility:  technical, economic, and strategic constraints. The key then
to success in using COTS components is being able to identify whether they fit the
current procurement situation, technically, economically, and strategically.

Figure 1- Considerations in evaluating the
feasibility of COTS components.
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 Technically, they have to be able to supply the desired functionality at the required
level of reliability.  Economically, they have to be able to be incorporated and maintained
in the new system within the available budget and schedule.  Strategically, they have to
meet the needs of the system operating environment—which includes technical, political,
and legal considerations—now, and as that environment is expected to evolve in the
future.

 Technical and strategic feasibility is determined during the candidate COTS
products assessment phase, which occurs at the start of a COTS integration activity. How
to determine the viability of a COTS product in either of these two dimensions is not a
trivial question. Each of these dimensions is worthy of its own formal study, and as such
generally remains outside the scope of the research detailed in this report.

 It is the third dimension, determining economic feasibility, which provided the
fundamental motivation for this COTS Integration Cost Modeling study.
 Also, this current study did not arise out of a vacuum. It was conducted as part of an
overall effort currently underway at the University of Southern California to enhance the
utility of the well-known COCOMO software cost estimation model first published by
Dr. Barry Boehm in 19812.  This broader effort is designed to update COCOMO to reflect
how software development has evolved from the days when the model was first
developed in the 1970s,  to where modern software development practice is heading as
the software industry moves into the 21st century.  The release of the updated COCOMO
II3 model this past year was the first major milestone in this effort.  The completion of
this current study and the prototype COTS Integration Cost Calculator which
accompanies it is another.

 The remainder of this report will discuss how the COTS cost model and calculator
tool was developed. It will also discuss the model’s relationship to the more general
COCOMO software cost estimation model.  (As such a familiarity in the reader with at
least the basics of the COCOMO model is assumed.)

                                                          
2 B.W. Boehm, Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ, 1981.
3 B. W. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy and R. Selby, “Cost Models for Future
Software Life Cycle Process: COCOMO 2.0,” Annals of Software Engineering Special Volume on Software
Process and Product Management, J. D. Arthur and S.M. Henry, Eds., J.C. Balter AG, Science Publishers,
Amsterdam, The Netherlands, 1995, Vol. 1, pp.45-60.



5

IV. Scope of Study/Overview of Methodology
 
 This study was performed over a sixteen-month period beginning in March of
1996. During that time the mandate was to develop a basic model form and
accompanying prototype tool with the ultimate goal of being able to reasonably and
consistently predict the cost of a given COTS software integration effort.
 But COTS integration efforts are not all of a kind.  COTS products can be used in
essentially three ways: 1) as a component of a tool bed, 2) as a component of a system
development infrastructure, and 3) as a component of a new application.
 
 

 
 Currently the problem of COTS software being integrated as infrastructure or as
part of a tool bed can be addressed within the COCOMO II model itself via the following
drivers: Platform Volatility (PVOL) and developer Platform Experience (PEXP) for
COTS as infrastructure; and Use of Software Tools (TOOL) and developer Language and
Tool Experience (LTEX) for COTS as tools.  The problem which remains currently
unaddressed by COCOMO is that depicted in the upper half of Figure 2, in which COTS
components are being integrated as part of an application.  It is this problem which was
addressed by the COTS integration model developed in this study.
 
 The course of the study ran along traditional lines. It began with a general review
of the available literature to learn what ideas others may have developed regarding this

1

Problem Context

                           COTS      and Custom
                         Applications Components
----------------
New
Modeling
Problem
----------------

                              COTS Infrastructure                           COTS Tools
                             COCOMO II  PVOL, PEXP                          LTEX, TOOL

                                            Cost Modeling Currently Addressed
                                                        Within COCOMO II

Figure 2 - COTS Integration task being addressed.
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COTS integration issue.  The interesting result was the discovery that many people are
talking about COTS, a number are even offering good ideas on how to approach the
problem from a risk management perspective, but there is a dearth of information in the
public domain on true empirical models, on the problem of actually predicting the cost of
performing a COTS integration task. One important exception, however, is a COTS
integration cost model developed by Loral Federal Systems, which offered a good
jumping off point for the development of the USC COTS integration cost model. 4

 In addition to the general literature review, an examination was done on information
related to COTS integration found in the Risk Repository of the Software Engineering
Institute at Carnegie-Mellon University. Of particular help was information that was
available in the form of lexical maps. These maps were derived from dozens of
statements collected from software professionals around the country concerning the risks
involved with COTS integration, visually emphasizing the relative importance of the key
concerns relating to COTS integration which were to be found in the professionals’
statements.
 The information extracted from the repository became the first part of the kernel
of ideas, which ultimately lead to the concepts captured in the cost drivers defined for the
USC COTS integration model.
 A synthesis of the ideas gleaned from the literature review, including the Loral
model, the COCOMO model, and the SEI Risk Repository lead to the creation of a first
round data collection survey.  The approach to data collection in this study was two fold.
The intention was to conduct a first round of data collection within industry with the goal
of both prioritizing a candidate set of COTS integration effort influence factors, and also
identifying potential sources of COTS integration experience. The first round survey was
very successful with regard to the former, but only marginally so in regard to the latter.
None-the-less, enough information was learned from the first survey--along with the
considerable help of a panel of industry experts who examined that information--to refine
those candidate effort influence factors into the cost drivers which appear in the version
1.0 of the USC model.
 At this point a second round industry survey was drafted asking for specific
project level information, including actual effort and sizing data of past COTS integration
projects.  In addition, the survey asks each cost driver defined for the model to be rated on
a five point scale from very low through very high according to the development
conditions that obtained for the COTS project being reported. This project specific data
was needed to actually calibrate the parameter values of the model.
 The second round data collection effort is still on-going at USC, but enough
industry data was procured within the time frame of this study, combined with other
sources of data, to attempt an experimental calibration of the USC COTS model.
 The other data used to help calibrate the model came from two sources.  The first was
sizing and effort data obtained from a set of recently completed student COTS integration

                                                          
4 T. Ellis, “COTS Integration in Software Solutions—A Cost Model,” in Systems Engineering in the Global
Marketplace, NCOSE International Symposium, St. Louis, MO, July 24-26, 1995.  (While the details of the
Loral model, including its specific functional form, remain proprietary, the general parameters of the model
have been published and will be discussed in Section VI.  Another proprietary COTS integration model has
been developed by Seer Technologies, Los Angeles, CA., but was unavailable for review during this study.)
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projects. The second was a two round Delphi5 exercise conducted with the participation
of several industry professionals with the intent of establishing preliminary parameter
values for the model drivers.
 Ultimately, it was in fact these latter two sources of data, which formed the basis
for the current calibration offered in version 1.0 of the USC COTS modeling tool.
 

                                                          
5 O. Helmer, Social Technology, Basic Books, NY, 1966. (The Delphi technique, named for the mystical
oracle at Delphi in Greece, is a methodology for arriving at group consensus. It was originally developed at
the RAND Corp.)
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V. Modeling Background
 

A.  Literature Review/Other Models

 An examination of the public literature revealed an interesting phenomenon.
There has been much discussion in recent years about the topic of COTS integration, but
most of it has been restricted to framing the issue in qualitative terms. Several good
offerings along these lines help to define key issues of concern pertaining to COTS
integration, flagging risks in using COTS software and suggesting strategies for avoiding
or mitigating those risks.
 However, quantitative COTS integration models available for review in the public
domain were almost non-existent.  Of the few out there, one interesting model has been
proposed by Dr. Richard Stutzke6 of SAIC. It is still bare bones, but it is centered on the
issue of COTS volatility, that is, the frequency with which a COTS vendor releases new
versions of its software.  (This has been identified as one of two primary determinants in
the cost of using COTS software, the other being the actual size of the interface or “glue”
code needed to integrate a given COTS product.7) His model suggests a way of
quantifying the added cost associated with using a COTS product that has a significant
volatility.
 In brief, Dr. Stutzke proposes the following formula:
 

 Extra Cost due to Volatility = CV*AC*IS*(CS + CC)
 where
 CV = component volatility (number of new releases of the COTS component over

 life of the project).
 AC = architectural coupling (number of other components which interface with
                       the given COTS component).
 IS = apparent interface size in terms of the number of entry points, procedures, 

functions or other methods used to access the COTS component, weighted 
by the number of arguments passed.

 CS = cost of screening the COTS component and all the other components with 
which it interfaces to determine the impact of a new release.

 CC = cost of making changes to impacted components.
 

 As of this writing no attempt has yet been made to implement this model. It also
addresses only one aspect associated with integrating COTS software, but it is an
important aspect.

                                                          
6 R. Stutzke, “Costs Impact of COTS Volatility,” Knowledge Summary: Focused Workshop on COCOMO
2.0, USC Center for Software Engineering, May 16-18, 1995.
7 See Ellis, footnote 4, p6.



9

 *  *  *
 Still another approach to modeling COTS integration costs has been taken at
SAIC8.  This second model addresses more the end user costs of using COTS software.
The model takes this form:
 

 COTS integration cost = [(Cost of COTS product license) * (Number of licenses)]
+ (COTS product Training cost) + (COTS interface or glue code cost)

 

 Again, this model highlights some important sources of cost, but ignores the
details of determining the last term, the cost of developing the COTS product glue code.

 

 *  *  *
 An alternate model that it attempts to address this very issue of estimating the cost
of developing COTS interface code has been described by Mr. Tim Ellis9 of Loral Federal
Systems.  Mentioned previously, this model is also well into the implementation stage,
having been calibrated to a number of internal Loral COTS integration projects, with
more continually being added to the model’s calibration database.  As of May 1995, an
accuracy of plus or minus 15% was being claimed for its effort predictions against the
Loral database.
 Mr. Ellis describes the COTS integration model in these general terms:
 

      Work Units  = IQ�(Size, Drivers) (1)
      Productivity = Labor-months/Work Unit (2)
 Estimated Effort in LM = WU*P (3)
 where
 Size = the size of the COTS interface or glue code in function points.
 Drivers = a set of seventeen COTS integration cost drivers.
 LM = labor-months.
 P = productivity.
 WU = work units.
 

 The greatest influence the Loral model had on the development of the USC COTS
integration cost model came from its seventeen cost drivers, which served as one of the
starting points in the definition of the USC COTS model drivers.  As such, the Loral
drivers are discussed more fully in section VI.B.
 

 *  *  *
 The COCOMO II model itself was examined as a potential modeling source. It
too influenced the USC COTS model via its drivers, which are discussed in section VI.C.
In the end COCOMO also provided the USC COTS model its basic form, primarily
                                                          
8 M. Karpowich, T. Sanders and R. Verge, “An Economic Analysis Model for Determining the Custom vs.
Commercial Software Tradeoff,” in T. Gulledge and W. Hutzler, Analytical Methods in Software
Engineering Economics, Springer-Verlag, 1993.
9 See Ellis, footnote 4, p6.
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because this form is well understood at USC, both in terms of its behavior, and in the
approach needed to calibrate such a model.
 The post-architecture model of COCOMO II takes the following general form10:
 

 PM = A*{[(Size)*(1+Brak/100)](1.01 + .01 SF j
j=
∑

1

5

)}* EMi
i=
∏

1

17

+ (auto adaptation effort)

where
 PM = person-months.
 A = linear scaling constant.
 Size = size of coding effort as a function of new and adapted code.
 Brak = percentage of code discarded due to requirements volatility.
 SFj = five non-linear scaling factors.
 EMi = seventeen effort multipliers.

 

 *  *  *
 

 Before the option of a stand-alone model using the basic COCOMO form was
decided upon (number 4 below), several approaches were considered for the USC COTS
model in relation to the COCOMO II model:
 
1) Use the COCOMO II Reuse model.
 
 The advantage here is that unmodified, so-called “black box” COTS software and

reuse software could be handled by the COCOMO model in the same fashion.  The
disadvantage is that the total size of the COTS component is generally thought to be
irrelevant, and the Assessment & Assimilation (AA) and Percentage of Integration &
Test Modification (IM) COCOMO parameters are not adequate descriptors of the
factors affecting COTS integration effort.

 
2) Include a COTS integration effort multiplier or exponent factor in COCOMO II.
 
 The advantage here is that such parameters capture the fact that some COTS

integration effects scale with the size of the overall system being developed. The
disadvantage is that some COTS integration effects do not scale with the size of the
overall system. Also, a single factor is again not really enough to capture the range of
factors affecting a COTS integration effort.

                                                          
10 See Boehm, et al, footnote 3, p.4.
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3) Imbed a COTS integration effort submodel within COCOMO II and add its output to

the other development effort estimated by COCOMO.
 
 The advantage here is that such a submodel offers the flexibility to tailor portions of

the COCOMO model to COTS integration phenomenology. The disadvantage is that
COCOMO II is already fairly complex.  Also, it may be hard to separate out COTS
integration effort from other development effort.

 
4) Develop a stand-alone COTS integration estimation model and relate its estimate

externally to COCOMO effort estimates.
 
 The advantage here is that such a model is not bound by COCOMO II constraints.

Also, data analysis is likely to be much cleaner, separating COTS integration effort
from other development effort.  The disadvantage is that the proper relation of such a
model to COCOMO II is not necessarily obvious, particularly for projects
incorporating a significant mix of new and COTS components.

 These options and their pros and cons are summarized in table V.1 on the
following page.  As was indicated, approach 4 was the one finally selected, because a
stand-alone model at this stage in USC’s COTS integration modeling efforts seemed the
simplest yet most complete approach.  It also had the advantage of not perturbing the
COCOMO model with elements that were not yet well understood. Addressing the proper
way to relate such a model to COCOMO II is discussed in section X.
 Finally, note that approach 3 has not been permanently ruled out. Now that an
independent COTS model has been developed, future effort at USC will explore the
feasibility of associating the COTS integration model more directly with COCOMO II.
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Option Pro Con
 

• Use COCOMO II reuse
model

 

• Consistent: Black Box
SW reuse handled
same way

 

• Total size may be
irrelevant

• Assessment &
Assimilation (AA),
Integration & Test
Modification (IM)
insufficient descriptors

• COTS-integration effort
multiplier or exponent
factor

 

• Some COTS
integration effects scale
with size of product
being developed

 

• Many COTS integration
effects do not: equally
expensive for small or
large self-originated SW

• Single factor not enough

• COTS-integration effort
added to other
development effort

 

• Flexibility to tailor
portions of model to
COTS integration
phenomenology

 

• COCOMO II getting
pretty complex already

• Data: may be hard to
separate out COTS
integration effort

 

• Standalone
COTS-driven estimation
model

 

• Flexibility: no
COCOMO II
constraints

• Ease of data analysis

 

• Relation to COCOMO
II unclear, particularly
for mixed development
and COTS integration
projects

Table V.1 - COTS Integration modeling options in relation to
COCOMO II.
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 B. Related Topic—Software Reuse
 

 Closely related to the topic of COTS software is software that is being reused.  In
fact, it might be proper to class COTS software components as a subset—or at least an
alternate set—of reuse software components.  But reuse software differs from COTS
software in three significant ways: 1)  reuse components are not necessarily able to
operate as stand-alone entities (as is assumed to be the case with most components
defined as COTS software);  2) reuse software generally is acquired internally within the
software developing organization (by definition COTS components must come from
outside); and 3) reuse software usually requires access to the source code, whereas with
COTS components access to the source code is rare (references to so-called “white box”
COTS not-withstanding).
 In light of the preceding, COTS software and reuse software share similar—but
not identical—benefits and risk factors.
 
 The advantages touted for reuse software are familiar ones:

 

• Reduced effort and development time, translating to reduced costs.
• Increased system quality.
• Added functionality not otherwise achievable.
 

 The pitfalls associated with reuse software are also familiar:
 

• Lack of functionality (does less than advertised).
• Never does exactly what is needed.
• Unable to interoperate with other software components.
• Lack of support/documentation from originating developers.
 

 However, pitfalls probably not associated often with reuse software that pertain to COTS
software are the following:

 

• Component volatility/frequent product upgrades.
• licensing issues.

     Bottom line, the sources of costs associated with reuse software are also similar to
those of COTS software:

• Potential Reuse software components must be identified (parallels COTS
component screening).

• The feasibility of reuse components in the context of the overall system must be
determined (parallels COTS component assessment).

• The reuse component must be integrated and tested (parallels integration and test
of COTS components).
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C.  COTS Related Definitions

     There is controversy in defining exactly just what is meant by the term “COTS”
software. Some software practitioners insist that the term must apply only to products
which are truly used off-the-shelf  “as is,” with no tailoring of the COTS product source
code to the particular application into which it is to be integrated allowed. Others give a
nod to the reality that as much as 30% of procured off-the-shelf products must be
modified in some fashion before being suitable for use11, and thus allow these modified
products also to be referred to as COTS components.  This study favors defining COTS
components as those in which no source code is provided with the product (separate from
any required API software).  Commercial software components that include modifiable
source code are considered to be reuse components. In either case, the following terms are
frequently associated with COTS software:

 

 API – application program interface.

 Black Box COTS - internal code modifications not allowed.

 COTS - commercial-off-the-shelf.

 COTS Assessment/Qualifying - determining the feasibility of potential COTS

components for the current application.

 GFE - government furnished equipment.

 GFS - government furnished software (see GOTS).

 GOTS - government-off-the-shelf (see GFS).

 MOTS - modified-off-the-shelf (see White Box COTS).

 NDI – non-developmental item (not developed in-house).

 NOTS - not-off-the-shelf.

 OTS - off-the-shelf.

 Reuse software - reusable software components built in-house, or obtained from outside,

and for which the source code is available.

 ROTS - research-off-the-shelf.

 White Box COTS - some internal code modifications permitted (see MOTS).

                                                          
11 Mr. Marvin Carr, SEI.
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VI. Derivation of CSE Proposed Influence Factors/Cost Drivers
 

 The thirteen cost drivers which appear in the version 1.0 of the USC COTS
integration cost model have been derived as the result of a synthesis of four major
sources: the SEI Risk Repository, the Loral COTS integration cost model, COCOMO II,
and the USC Round 1 COTS data collection survey.  Over a two day period in November,
1996, an expert industry panel gathered as part of a conference on COTS integration
sponsored by the USC Center for Software Engineering, reviewed the information
available from these four sources. The panel then set about the task of reducing this
information into a workable set of sufficient and reasonable drivers for the USC COTS
model by prioritizing the various factors influencing COTS integration effort as indicated
in the various sources. Once prioritized, the most important concepts were then combined
and refined until the current set of thirteen drivers was established.
 Sections VI. A through D discuss each source individually, with section VI.E
describing how the synthesis was achieved.
 

A.  SEI Risk Repository/Risk Taxonomy/Lexical Maps
 

 The SEI Software Engineering Risk Repository (SERR) is an archive of
statements that have been methodically collected from highly experienced software
professionals that identify potential risks facing software development efforts. A subset
numbering 77 of the SERR statements directly addresses risks related to COTS
integration.
 As an aid to analyzing the SERR statements, the SEI also has a tool that produces
lexical mappings based upon the concepts found in the statements.  These maps are able
to provide quick and visual emphasis to the most important concepts captured in the
SERR.
 In the case of the COTS related statements, thirteen lexical maps were produced,
one of which is reproduced in Figure 3.  (The complete set of COTS related SERR
statements and lexical maps is found in Appendix C.) The boxes in the figure represent
key concepts.  The lines between boxes represent associations of concepts with other
concepts.  The thicknesses of the lines represent the strength of the association between
concepts, the thicker the line, the stronger the association.  Strength in this case is defined
as the relative percentage of occurrences of like pairs of concepts within the SERR
statements.  For example, if two concepts are paired within 50 out of the 77 SERR
statements related to COTS integration, the relative percentage of occurrences of that
pairing is 50/77 equal to 65%, which is considered a strong association, and thus would
be represented in the map by a thick line between those concepts.  The maps thus provide
qualitative flags to quantitative measures, allowing for quick divination of the most
important concepts relating to the risks of COTS integration.
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 Two other figures related to the lexical maps have also been reproduced here.
Figure 4 is called the Results Network. Each node in the figure represents one of the
thirteen COTS based lexical maps.  The arrows between some of the nodes indicate a two
way occurrence of paired key words or concepts in the connected maps above a given
frequency level.
 Figure 5 is called the Results Distribution.  The quantity appearing on the
increasing Y axis called “coupling” represents the strength of internal connections
appearing in the lexical maps.  The quantity appearing on the increasing X axis called
“cohesion” represents the strength of external connections between the maps.  Thus,
concepts appearing in maps falling in quadrant I of Figure 5 represent the best candidates
for potential COTS integration cost factors.

 

 

 

 

 

Figure 3 - SEI  lexical map.
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Figure 4 - Results Network.
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 Based upon an analysis of these maps and the associated SERR statements, the
following items were identified as important COTS integration risk concerns:
 

• Documentation

• Performance

• Maturity

• Interface

• Verification

• Vendor Support/Upgrades

• Data Rights

 These items represented the first set of potential COTS integration effort drivers.
 

Figure 5 - Results Distribution.
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B.  Loral Model Drivers
 

 The next source of potential drivers came from the Loral COTS integration model
described in section V.A.  The Loral drivers were examined in terms of the utility of their
definitions and universality of their potential application. The more a given driver seemed
to apply to COTS integration situations likely to be encountered by a broad base of
developers, the more important the concepts being captured by that driver were
potentially assumed to be.
 The complete set of seventeen Loral drivers12 is as follows:
 

• Product Maturity:  Measures the length of time the product has been in the
marketplace, existence of extensive alpha/beta testing programs, size of the market
segment, number of bug fixes per release, and adherence to industry standards.

 

• Vendor Maturity:  Measures the length of time the vendor has been in the business,
vendor reputation, and size of product line.

 

• Configurability/Customization:  Number of configuration options, and effort needed
to customize the product.

 

• Installation Ease:  Effort needed for product installation.
 

• Ease to Upgrade:  Measures the level of difficulty to upgrade the COTS software from
one release to the next and the impact to the applications being developed.

 

• Vendor Cooperation:  Represents willingness of vendors to modify their product
based on suggestions or enhancements recommended by the user.  The more
cooperative the vendor,  the more functionality is provided thus reducing new
development and glue code.

 

• Product Support Services:  Types of services offered by the vendor to support the
product (i.e., 24-hour hotline, seminars, trouble ticketing, etc.).

 

• Product Support Quality:  Responsiveness of the vendor to answer user questions.
 

• User, Administrator, & Installation Documentation:  Quality of documentation
offered.

 

• Ease of Use for End User:  How intuitive is the product for the end user.
 

• Ease of Use for Administrator:  How intuitive is the product for the administrator.

                                                          
12 See Ellis, footnote 4, p6.
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• End User & Administrative Training:  Types and quality of training available.
 

• Administrative Effort:  Amount of time spent by system administrator to regularly
maintain the system.

 

• Portability:  Portability of the product between platforms.
 

• Previous Product Experience:  Amount of experience that personnel have had
developing/using/integrating the product.

 

• Expected Release Frequency:  Amount of time between product upgrades and
releases. For every product upgrade, testing must be performed to ensure that no new
incompatibilities have been introduced.  This is a key cost driver that can adversely
affect the integration phases of COTS products.

 

• Application or System COTS Package:  Is the COTS software an application or
system type of product.
 

 

C.  COCOMO II Drivers
 

 The cost drivers and scaling factors appearing in the post-architecture model of
COCOMO II were also examined in terms of their potential applicability to COTS
integration activities.  Again, appropriateness of definition and broad-based applicability
were the key items of concern.
 The COCOMO II post-architecture model drivers13 are as follows:

 

 Non-linear scale factors:
 

• Precedentedness:  If the product is similar to several that have been developed before
then the precedentedness is high.

 

• Development Flexibility:  Captures the amount of constraints the product has to meet.
The more flexible the requirements, schedules, interfaces, etc., the higher the rating.

 

• Architecture/Risk Resolution:  Captures the thoroughness of definition and freedom
from risk of the software architecture used for the product.

                                                          
13 See Boehm, et al, footnote 3, p.4.
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• Team Cohesion:  Accounts for the sources of project turbulence and extra effort due
to difficulties in synchronizing the project’s stakeholders: users, customers,
developers, maintainers, interfacers, others.

 

• Process Maturity:  Based upon the SEI’s Capability Maturity Model (CMM) ratings
of organization-wide software development process maturity.
 

 

 Linear Effort Multipliers:
 

 Product Drivers
 

• Required Software Reliability:  Measure of the extent to which the software must
perform its intended function over a period of time.

 

• Database Size:  Measure of the affect large data requirements has on product
development.

 

• Required Reusability:  Accounts for the additional effort needed to construct
components intended for reuse on the current or future projects.

 

• Documentation Match to Life-cycle Needs:  Measures the suitability of the project’s
documentation to its life-cycle needs.

 

• Product Complexity:  Measures complexity of software under development in five
areas: control operations, computational operations, device-dependent operations,
data management operations, and user interface management operations.
 

 Platform Drivers
 

• Execution Time Constraint:  Measure of the execution time constraint imposed upon
a software system.

 

• Main Storage Constraint:  Measures the degree of main storage constraint imposed on
a software system or subsystem.

 

• Platform Volatility:  Measure of the degree of volatility/rate of change in the complex
of hardware and software (operating system, DBMS, etc.) that the product under
development calls upon to perform its tasks.
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 Personnel Drivers
 

• Analyst Capability:  Analysts are personnel that work on requirements, high level
design, and detailed design.

 

• Programmer Capability:  Measure of the capability of the programmers as a team
rather than as individuals, and considers ability, efficiency, thoroughness, and the
ability to communicate and cooperate.

 

• Applications Experience:  Measure of the project team’s overall level of experience
building the current type of product under development.

 

• Platform Experience:  Measures the project team’s experience with modern and
powerful platforms, including more graphic user interface, database, networking, and
distributed middleware capabilities.

 

• Language and Tool Experience:  Measure of the level of programming language and
software tool experience of the project team.

 

• Personnel Continuity:  Measure of the development project’s annual personnel
turnover rate.

 

 Project Drivers
 

• Use of Software Tools:  Measure of the extent advanced software development tools
are used during development.

 

• Multi-site Development:  Measure of the nature of project development site locations
(from fully collocated to international distribution), and communication support
between those sites (from surface mail and phone access to full interactive
multimedia).

 

• Required Development Schedule:  Measure of the schedule constraint imposed on the
project; defined in terms of the percentage schedule stretch-out or acceleration with
respect to a nominal schedule for a project requiring a given amount of effort.  
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D.  Round 1 Survey Influence Factors
 

 The final initial source of potential COTS model cost drivers came from the first
round COTS data collection survey conducted as part of this study.  This survey was
distributed to an industry contact list supplied by the ESC, and asked participants to
prioritize a set of twenty proposed COTS integration cost influence factors into three
groups, from most significant, to intermediately significant, to least significant, with
roughly an equal number of factors assigned to each category.  The survey responses were
then tabulated to determine the overall vote for what industry experts felt were the most,
to least, significant (potential) factors affecting COTS integration costs.  (A total of some
800 surveys were distributed, with a return rate of about 4.5%.  A copy of the survey form
can be found in Appendix D.)
 The proposed factors as they were defined in the survey are provided below,
followed by a discussion of the survey results:

 The Vendor
 

• Vendor Maturity: How strongly is effort/productivity affected by how long the COTS
product vendor has been in business?  Are they  a new start-up without a track record?
Or have they been around awhile and established a reputation for quality, reliability
and customer support?

 

• Vendor Cooperation:  How strongly is effort/productivity affected by the extent to
which the COTS product vendor provides technical, training and other support as
needed specifically to help you incorporate their product into your system?  Does the
vendor offer a lot of assistance? Or no assistance?

 
• Vendor Restrictions:  How strongly is effort/productivity affected by the extent to

which the vendor demands special licensing, royalty or copyright arrangements for the
use of its COTS  product? Does the vendor impose significant restrictions? Or no
restrictions?

  The Developer

• General COTS Software Integration Experience:  How strongly is effort/productivity
affected by the extent of the experience the development staff has with incorporating
COTS products into new systems?  Have they done this kind of job before?  Or have
they no experience with this kind of job?
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• Specific COTS Product Experience:  How strongly is effort/productivity affected by
the extent of the experience the development staff has with the particular COTS
product (or products) being considered for incorporation into the new system? Do
they have a lot of experience with the given COTS products?  Or no experience with
those products?

  The User
 

• User Restrictions: How strongly is effort/productivity affected by the extent to which
the user demands special licensing, royalty or copyright arrangements from the vendor
to accept the use of a COTS product? Does the user impose significant restrictions?
Or no restrictions?

 

• User COTS Product Experience:  How strongly is effort/productivity affected by the
extent to which the user has experience working with the particular COTS product (or
products) being considered for incorporation into the new system? Does the user have
a lot of experience with the given COTS products?  Or no experience with those
products?

  The New System
 

• New System Complexity: How strongly is effort/productivity required to incorporate
available COTS products into  its design affected by the complexity of the new
system under development? (For example,  would a hard real-time system be more
conducive to the use of  COTS transaction  processing software than an interactive
query system?)

  The COTS Software
 

• COTS Product Technical Complexity:  How strongly is effort/productivity affected by
the technical complexity of the COTS  product (or products) selected for
incorporation into a new larger system?  Are the  COTS products simple or complex?

 

• COTS Product Maturity: How strongly is effort/productivity affected by how long
the COTS product has been available?  How many copies have been sold?  Has the
product established a reputation for utility and reliability? Or have only a few copies
been sold, leaving the product without a known track record?

 

• COTS Product Volatility:  How strongly is effort/productivity affected by how often
new releases of the COTS product are issued by the vendor?  Does the product
undergo frequent and significant updates?  Or is it stable and remain relatively non-
changing during the life of the larger system being developed?
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• COTS Product Documentation:  How strongly is effort/productivity affected by the
extent to which the COTS product comes with the necessary documentation to install,
maintain and use the product? Does the software come with extensive and well-
written documentation?  Or does it come with little documentation?

 

• COTS Product Vendor Support:  How strongly is effort/productivity affected by the
extent to which the vendor offers technical support for the COTS product?  Does the
vendor provide extensive support for its products?  Or no support?

 

• COTS Product Ease of Installation:  How strongly is effort/productivity affected by
the ease or difficulty anticipated to install and integrate the COTS product? Are the
interfaces required between the COTS product and the larger system simple or
complex?

 

• COTS Product Ease of Maintenance or Upgrade:  How strongly is effort/productivity
affected by the ease or difficulty anticipated to maintain or upgrade the COTS
product, particularly after it has been integrated into the larger system?  Are upgrades
to the COTS product simple to perform, or difficult?

 

• COTS Product Ease of Customization: How strongly is effort/productivity affected by
the ease or difficulty anticipated to customize or modify the COTS product to make it
suitable for use in the larger system if adaptation is necessary?  Is customization
simple, or difficult?

 

• COTS Product Portability:  How strongly is effort/productivity affected by the
portability of the COTS product across platforms? Is the product easily portable, or
difficult to port?

 

• COTS Product Ease of Use:  How strongly is effort/productivity affected by the ease
or difficulty anticipated for the user to operate the COTS product, particularly after it
has been integrated into the larger system?   Is the product easy, or difficult to use?

 

• COTS Product Training:  How strongly is effort/productivity affected by the extent of
the training the user will require learning to operate the COTS product?  Will the user
need a lot of training, or little training?

 

• COTS Product Dedicated Database:  How strongly is effort/productivity affected by
the extent to which the COTS product has specialized data needs?  Does the product
require a specialized database?  Or require the population of new elements within an
existing database?  Or are the product’s specialized data needs minimal?
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 Round 1 Survey Results
 
 800+ surveys were mailed, requesting the prioritization of twenty candidate cost
drivers (top seven, middle seven, bottom six in influence on COTS integration cost).
Thirty-six responses came back, giving about a 4.5% return, which is slightly better than
typical for such mailings. Of those surveys returned, however, the responses were
reasonably consistent:

Cost Influence Factor Votes for Degree of Influence
Most Intermediate Least

 COTS S/W  Volatility 20 10 3
 COTS S/W Technical Complexity 19 15 0
 Vendor Cooperation 17 15 1
 New System Complexity 17 10 3
 COTS S/W  Vendor Support 16 15 2
 Vendor Maturity 12 16 6

Table VI.1 - Round 1 survey results indicating most influential COTS cost drivers.

Cost Influence Factor Votes for Degree of Influence
Most Intermediate Least

COTS S/W  Documentation 4 26 2
COTS S/W  Ease of Installation 4 20 9
General COTS S/W  Integration Experience 9 18 8
COTS S/W  Ease of Maintenance or Upgrade 10 17 6
COTS S/W  Training 4 17 13
Vendor Maturity 12 16 6
COTS S/W  Ease of Use 9 16 7
Specific COTS Product Experience 12 15 7
COTS S/W  Ease of Customization 9 14 9

Table VI.2 - Round 1 survey results indicating intermediately influential COTS cost drivers.

Cost Influence Factor Votes for Degree of Influence
Most Intermediate Least

COTS S/W Portability 6 7 19
User Restrictions 6 9 18
Vendor Restrictions 6 10 17
COTS S/W Dedicated Database 6 11 15
User COTS Product Experience 5 13 15

    Table VI.3- Round 1 survey results indicating least influential COTS cost drivers.
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E.  Expert Panel Input Leading to Synthesis of Items A through D

As part of a conference on COTS integration issues hosted by USC in November,
1996, a panel of experienced software professionals14 met over a two day period and
examined the information presented in sections VI.A through VI.D.  Out of discussion of
this information, the panel identified five major sources of COTS integration effort
(COTS assessment; COTS tailoring, tuning, and installation; COTS glue code
development; and application volatility due to the presence of COTS products).  The
COCOMO and Loral drivers were then assessed in terms of their relation to these five
sources of effort.

Next, from all the sources listed previously of potential COTS integration cost
drivers, and while keeping the source of effort assessments just performed on the
COCOMO and Loral drivers in mind, the panel mixed and matched cost drivers and their
definitions, eliminating some, combining others, until a new set of potential cost drivers
was created which represented a synthesis of the drivers from all the previous sources.
Then again, the panel made an assessment of these new drivers relative to their impact on
the five previously identified sources of COTS integration effort.

Finally, those drivers deemed to have the most impact across those five effort sources
were selected as the set of drivers that would appear in version 1.0 of the USC COTS
integration cost model.

The Five Identified Sources of COTS Integration Effort

• COTS Assessment:  Refers to the activity required to determine which COTS
components are viable candidates for integration., based upon the technical,
economic, and strategic considerations discussed in section III.

 

• COTS Tailoring, Tuning and Installation:  many COTS products can’t be tailored at
all (some would argue that a true COTS product can never be tailored), but problems
with tailoring are often compensated for by adding more functionality in the glue
code; however good documentation often makes tailoring, configuring, etc., much
simpler.

 

• COTS Glue Code Development:  This effort can be small or large, depending upon
the cleanliness and openness of the COTS product external interface elements, and
how much additional functionality must be added to the glue code for the reasons
noted above under COTS tailoring. This effort is usually large, however, and in fact is
almost invariably the source of greatest required effort during the integration task.

                                                          
14 Panel members: Christopher Abts (USC), Barry Boehm (USC), Marvin Carr (SEI), Sunita Devnani
(USC), Roger Dziegiel (Rome Laboratories), Gary Thomas (Raytheon E-Systems), and Peggy Wells
(USAF/ESC).
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• Application Volatility due to COTS Products:  This can be a very large effort to
manage and/or contain, because the developer rarely has much control over when and
how often the COTS vendor releases new versions of its product. This can become
particularly acute if the overall software development project encompasses a large
system whose development is spread out over a significant period of time.  During
that same period, the COTS products vendors, in order to stay competitive within
their markets, have likely released multiple updates of their own products, which by
default can lead to significant volatility in the main application software as the
developer struggles to keep in step with the COTS vendors.

 

• Added Application IV&V Effort:  COTS products usually come with more
functionality than is needed, but the developer dare not forego doing IV&V on the
entirety of functionality offered by the COTS product to avoid unexpected
interactions and problems.

Driver Assessments by The Five Sources of COTS Integration Effort

COCOMO II Source of COTS Integration Effort
Cost Factor COTS COTS Glue Code Application System

Assessment Tailoring Development Volatility IV&V

Reliability, Data, Complexity, Docum’n  +  ++  +  ++

Required Reuse  +  +

Platform Difficulty  +  +  ++  +  +

Personnel Capability  ++  +  ++  ++  ++

Process (tools, sites, etc.)  +  +  +

Schedule  +  +  +

Architecture/Risk Resolution  +  ++  ++  ++

Blank = minimal driver contribution to named source of effort; + = moderate contribution; ++ = strong
contribution.

Table VI.4 -COCOMO II cost factors by source of COTS integration effort
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Loral Source of COTS Integration Effort
Cost Factor COTS COTS Glue Code Application System

Assessment Tailoring Development Volatility IV&V

Product  Maturity  +  +  ++  ++  +

Vendor Maturity  +  +  +  

Configurability   ++  +   

Installation Ease   +    

Vendor Cooperation  +  +  ++  +  ++

Product Support Service  +  +  ++

Product Support Quality  +  +   ++
 
Documentation Quality  +  +  +  ++

Ease of Use for End User  +  +

Ease of Use for Administrator  +  +

Training  +  +  +

Administration Effort  +

Portability  +

Previous Product Experience  +  ++

Blank = minimal driver contribution to named source of effort; + = moderate contribution; ++ = strong
contribution.

Table  VI.5 -Loral cost factors by source of COTS integration effort



30

Major Significance

COTS COTS Glue App. Integ.
Factor Ass. Tailor Code Volatil. V&V

COTS Product and Documentation Maturity  + +  + +  + +  + +  + +

Vendor Extension Responsiveness  +  +  + +  +  + +

Integrator Experience with COTS Product  + +  + +  + +  + +  + +

Reliability*  + +  + +  +  + +

Complexity of COTS Product and Application  +  + +  + +  + +

Integrator Personnel Capability  + +  +  + +  + +  + +

Integrator Architecture/Risk Resolution  +  + +  + +  + +

COTS Compliance with Open Interface Standards  +  + +  + +  +  + +

Performance*  + +  +  + +  + +  + +

*  COTS reliability/performance relative to required system reliability/performance.

Two "++" indicates significant influence of the given factor under the given activity.
One "+" indicates moderate influence of the given factor under the given activity.
A blank indicates minor influence of the given factor under the given activity.

Table VI.6 - Revised candidate COTS integration cost drivers: perceived influence by activity.



31

The final set of cost drivers chosen for version 1.0 of the USC COTS integration cost
model were those factors determined to be of major and intermediate significance by the
panel according to the assessments by effort source indicated in tables VI.6 and VI.7.

Intermediate Significance

COTS COTS Glue App. Integ.
Factor Ass. Tailor Code Volatil. V&V

Integrator Experience with COTS Integration  +  +  +  +  +

Vendor Maturity and Product Support  +  +  +  +  + +

Vendor Provided Training  +  +  +  +

Portability*  +  +  + +  +

Minor Significance

Integrator Process Maturity  +  +  +

COTS Configurability, Customization,  + +  +
& Ease of Installation

*  COTS portability relative to required system portability.

Two "++" indicates significant influence of the given factor under the given activity.
One "+" indicates moderate influence of the given factor under the given activity.
A blank indicates minor influence of the given factor under the given activity.

Table VI.7 - Revised candidate COTS integration cost drivers: perceived influence by activity.
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VII.  Mathematical Model
 

A.  COTS Integration Life-cycle
 
 COTS integration activities follow their own unique life-cycle, adding the
additional step of pre-qualifying or assessing COTS components to the traditional
software development cycle of determine requirements, design, code, integrate, test, and
deliver.  Figure 6 shows this assessment activity occurring prior to the main project
development phase, but in fact can occur during the opening stages of the project as well.
The key concept is that sometimes system requirements dictate which COTS components
can feasibly be used, and sometimes it is the availability (or lack there-of) of certain
COTS components which determine the final system requirements.
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

B. COTS Integration Activity Phases Covered
  

 The USC COTS integration cost model covers the following phases of COTS
integration activity:
 

• Preliminary code design
• Detailed code design
• Code and Unit Test
• Integration and Test
 

 Note the effort resulting from COTS assessment activities lies outside the scope
of this model.

Figure 6 - COTS integration life-cycle.
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C.  Equations
 

The USC COTS integration cost model version 1.0 takes the following form:

                COST = (PM)*($$/PM)

where
UFP = estimated sizing of the COTS glue code in Unadjusted Function Points.

BRAK = estimated percentage of glue code breakage during development. This is
code that must be reworked due to changes in requirements or release of an
updated COTS product.

ESIZE = effective size of the developed glue code.

A = a linear scaling constant calibrated to provide an accurate effort estimate
when all effort multipliers are nominal.

B = a nonlinear scaling constant that accounts for the influence of factors that
have exponential rather than multiplicative affects. This is temporarily set = 1
for modeling simplicity, with the expectation that later versions of the model
will offer the opportunity to more precisely calibrate this parameter.

EM = the thirteen effort multipliers or cost drivers, each of which assumes one of
five possible values based upon the following ratings: very low, low,
nominal, high, and very high. Nominal ratings always have a multiplier value
of 1.0.  The other ratings typically have a multiplier value some small
percentage above or below 1.0. Derived as explained in section VI.E, these
cost drivers are defined explicitly in the following section VII.D.

PM = the estimated effort in person-months for the COTS integration task.
(Person-months is the preferred reporting unit, but as will be seen later on,
for reasons of scale it became necessary to provide the effort estimate under
the calibrated version 1.0 of this model in terms of person-hours.)

$$/PM = estimated average labor rate per person-month.

ESIZE UFP (1.0 BRAK /100)

PM A (ESIZE)B (EM )
i

i 1

13

= ∗ +

= ∗ ∗
=

∏
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D. Definition of Terms/Cost Drivers

Cost Driver Definitions

CPDM - COTS Product and Documentation Maturity:  How many copies of the COTS
product have been sold?  How long has it been on the market? Has the product
established a reputation for utility and reliability, i.e., a known track record?  Does the
product come with the necessary, well-written documentation to install, maintain, and use
the package?

CVEW - COTS Vendor Product Extension Willingness:  How willing is the vendor of the
COTS product to modify the design of their software to meet your specific needs, either
by adding or removing functionality or by changing the way it operates?

CIEP - COTS Integrator Experience with Product:  How much experience does the
development staff have with running, integrating, and maintaining the COTS product?

CREL - COTS Reliability:  Does the COTS product meet or exceed the same standards of
reliability as is required of the system as a whole into which the product is being
integrated?

Thirteen Effort Multipliers (EMi)

• CPDM - COTS Product and Documentation Maturity
• CVEW - COTS Vendor Product Extension Willingness

• CIEP - COTS Integrator Experience with Product

• CREL - COTS Reliability

• CPAX - COTS Product and Application Complexity

• CIPC - COTS Integrator Personnel Capability

• CIAR  - COTS Integrator Architecture/Risk Resolution

• CCOS - COTS Compliance with Open Interface Standards

• CPER - COTS Performance

• CIXI  - COTS Integrator Experience with COTS Integration

• CVMS - COTS Vendor Maturity and Product Support

• CVPT - COTS Vendor Provided Training

• CPRT - COTS Portability
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CPAX - COTS Product and Application Complexity:  What kind of system are you
building? Pushing software technology to state-of-the-art? Real time transaction
monitoring, or basic file maintenance? Are there difficult synchronization issues? Does
the system have to balance conflicting criteria (e.g., security, safety, accuracy, ease of use,
speed)?

CIPC - COTS Integrator Personnel Capability:  What are the overall software
development skills and abilities that your personnel bring to the COTS product
integration task?

CIAR - COTS Integrator Architecture/Risk Resolution:  How much effort is expended by
your integration staff in ensuring that potential risks to the COTS integration task are
identified and mitigated, including through the examination of potential architectural
mismatches between the COTS components and the overall system, or between the
COTS components themselves? How thorough is the project’s Software Architecture
Review?

CCOS - COTS Compliance with Open Interface Standards:  How well does the COTS
product comply with accepted industry external and internal interface standards?

CPER - COTS Performance:  How well does the COTS product meet or exceed the same
standards of performance as is required of the system as a whole into which the product is
being integrated?

CIXI - COTS Integrator Experience with COTS Integration:  How much experience does
the development staff have with assessing, integrating, and adapting to upgrades of
COTS products in general?

CVMS - COTS Vendor Maturity and Product Support:  How long has the vendor been in
business? Are they a known quantity, or are they a new start-up? Have their products
established a reputation for reliability? Even if they have been in business for awhile, how
well do they provide technical support for their products (either directly or through third
parties)?

CVPT - COTS Vendor Provided Training:  How much training will the vendor provide
(either directly or through third parties)?

CPRT - COTS Portability:  How well does the COTS product meet or exceed the same
standards of portability as is required of the system as a whole into which the product is
being integrated?
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Rating Scales
 

Each of the drivers needs to be rated on a scale ranging from Very Low to Very
High as they apply to the circumstances of a given COTS component integration effort.
The criteria for making these determinations is listed in the table below:

Driver VL L N H VH
CPDM Product in pre-

release beta test.
Product on

market less than
1 year.

Product on
market between
1 and 2 years.

Product on
market between
2 and 5 years.

Product on
market more
than 5 years.

CVEW Vendor will not
change the
product.

Vendor will
make minor

changes only.

Vendor will
make one major
change or a few
minor ones, but

not both.

Vendor will
make one or two
major changes
and any minor
ones desired.

Vendor will
change the

product any way
you desire
essentially

without
restriction.

CIEP Staff on average
has no

experience with
the product.

Staff on average
has less than 1

year’s
experience with

the product.

Staff on average
has between 1
and 2 years’

experience with
the product.

Staff on average
has between 2
and 5 years’

experience with
the product.

Staff on average
has more than 5

years’
experience with

the product.

CREL Product does not
meet system

level reliability
standards,
mandating

extensive added
effort per line of

glue code to
compensate.

Product has
some moderate

reliability
shortfalls,
mandating

moderate added
effort per line of

glue code to
compensate.

Product meets
system level
reliability

standards, but
does not exceed
them, requiring
essentially no

added effort per
line of glue code
to compensate.

Product
moderately

exceeds system
level reliability

standards,
allowing

moderate effort
savings per line
of glue code.

Product well
exceeds system
level reliability

standards,
allowing further
effort savings

per line of glue
code.

CPAX Product and/or
system greatly

lags mainstream
levels of
currently

achievable
modern design;
i.e., this use of
technology is
“primitive.”

Product and/or
system

moderately lags
mainstream

levels of
currently

achievable
modern design;

i.e., it is not
innovative.

Product and/or
system achieves

mainstream
levels of
currently

accepted modern
design; i.e., it is

up to date.

Product and/or
system

approaches or
reaches state-of-
the-art, without
breaking new

ground in
software design.

Product and/or
system pushes

beyond state-of-
the-art, breaking
new ground in

software design.
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Driver VL L N H VH
CIPC Staff on average

has well below
average

capability as
compared to

industry
accepted

standards for
skill levels
expected of
personnel

according to
time on the job.

Staff on average
has below
average

capability as
compared to

industry
accepted

standards for
skill levels
expected of
personnel

according to
time on the job.

Staff on average
has average
capability as
compared to

industry
accepted

standards for
skill levels
expected of
personnel

according to
time on the job.

Staff on average
has above
average

capability as
compared to

industry
accepted

standards for
skill levels
expected of
personnel

according to
time on the job.

Staff on average
has well above

average
capability as
compared to

industry
accepted

standards for
skill levels
expected of
personnel

according to
time on the job.

CIAR No risk
mitigation is

done.

Little risk
mitigation is
done, with no
addressing of
architectural

issues.

Standard risk
mitigation/archit

ectural
assessment is
performed.

Marginally more
risk mitigation is
done, with some

assessment of
architectural

issues.

Extensive risk
mitigation is
done, with

particular and
special attention

paid to
architectural

issues.

CCOS Product uses
non-standard,

proprietary
interfaces.

Product uses
non-standard,

non-proprietary
interfaces.

Product uses a
mix of standard

and non-standard
interfaces, some
of which may be

proprietary.

Product uses a
mix of standard

and non-standard
interfaces, none

of which are
proprietary.

Product uses
exclusively open
industry standard

interfaces.

CPER Product does not
meet system

level
performance

standards,
mandating

extensive added
effort per line of

glue code to
compensate.

Product has
some moderate

performance
shortfalls,

mandating some
additional effort
per line of glue

code to
compensate.

Product meets
system level
performance

standards, but
does not exceed
them, requiring
essentially no

additional effort
per line of glue

code to
compensate.

Product
moderately

exceeds system
level

performance
standards,

allowing some
savings in effort
per line of glue

code.

Product well
exceeds system

level
performance

standards,
allowing further
effort savings

per line of glue
code.
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Driver VL L N H VH
CIXI Staff on average

has no
experience with

COTS
integration.

Staff on average
has less than 1

year’s
experience with

COTS
integration.

Staff on average
has between 1
and 2 years’

experience with
COTS

integration.

Staff on average
has between 2
and 5 years’

experience with
COTS

integration.

Staff on average
has more than 5

years’
experience with

COTS
integration.

CVMS Vendor in
business less

than 6 months;
weak product

support.

Vendor in
business
between

6months and 2
years; basic

product support.

Vendor in
business

between 2 and 5
years;

reasonable
product support.

Vendor in
business

between 5 and
10 years; strong
product support.

Vendor in
business more
than 10 years;

excellent product
support.

CVPT Vendor provides
no training.

Vendor provides
roughly ¼ of the
needed training.

Vendor provides
roughly ½ of the
needed training.

Vendor provides
roughly ¾ of the
needed training.

Vendor provides
as much training

as needed.

CPRT Product does not
meet system

level portability
standards,
mandating

extensive added
effort per line of

glue code to
compensate.

Product has
some moderate

portability
shortfalls,
mandating
moderate

additional effort
per line of glue

code to
compensate.

Product meets
system level
portability

standards, but
does not exceed
them, requiring
essentially no

additional effort
per line of glue

code to
compensate.

Product
moderately

exceeds system
level portability

standards,
allowing some

savings in effort
per line of glue

code.

Product well
exceeds system
level portability

standards,
allowing further
effort savings

per line of glue
code.

 

 Table VII.1 - Parameter rating criteria.
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E. Delphi Experiment

The Delphi Technique15 is a means of guiding a group of informed individuals to a
consensus of opinion on some issue.  Participants are asked to make some assessment
regarding an issue, individually in a preliminary round, without consulting the other
participants in the exercise.  The first round results are then collected, tabulated, and then
returned to each participant for a second round, during which the participants are again
asked to make an assessment regarding the same issue, but this time with knowledge of
what the other participants did in the first round.  The second round usually results in a
narrowing of the range in assessments by the group, pointing to some reasonable middle
ground regarding the issue of concern.

This is a useful technique for coming to some conclusion regarding an issue when the
only information available is based more on “expert opinion” than hard empirical data.

As applied in this study, it was used as means of obtaining consensus on what might
be reasonable initial values for the thirteen effort multiplier parameters.  These Delphi
derived parameter values were then used as a starting point for the model calibration
activity described in section VIII.

Specifically, for each of the thirteen parameters, the participants were asked to
provide a productivity range (PR) value.  (The actual Delphi instrument used to conduct
the exercise can be found in Appendix D.) This PR value represents the greatest range in
impact a given driver might be reasonably expected to have on overall integration effort
between the driver’s most favorable and least favorable settings.  For example, one driver
might cause a 150% increase in effort between its most and least favorable settings, while
another driver might cause only a 75% increase in effort between its most and least
favorable settings.  (PR values of 150% and 75% would be indicated by values of 2.5 and
1.75 respectively in the participant responses.)

The final PR values resulting from the concluded Delphi exercise were then plugged
into a formula as described in section VII.F to derive the initial set of parameter values
used to begin the model calibration.

   The results of the Delphi experiment are shown in tables VII.2 amd VII.3 on the
following pages.

                                                          
15 See Helmer, footnote 5, p.7.
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Round 1 COTS Delphi Analysis

PR - Productivity Range

initial resp. 1 resp. 2 resp. 3 resp. 4 resp. 5 resp. 6 resp. 7 mean median mode range

1 CPDM COTS Product and Documentation Maturity 1.83 2.20 2.50 N/C N/C 1.79 10.00 2.00 3.00 1.92 1.83 1.79 - 10.00

2 CVEW COTS Vendor Product Extension Willingness 1.61 1.50 1.28 1.80 2.00 1.76 0.00 1.50 1.43 1.56 1.50 0 - 2.00

3 CIEP COTS Integrator Experience with Product 1.77 N/C 1.50 1.50 2.66 1.64 3.00 2.90 2.09 1.77 1.50&1.77 1.50 - 3.00

4 CREL COTS Reliability 1.56 2.00 1.67 N/C 1.20 1.40 3.00 N/C 1.74 1.56 1.56 1.20 - 3.00

5 CPAX COTS Product and Application Complexity 1.77 2.50 2.25 N/C 2.66 N/A* 10.00 1.80 2.84 2.03 1.77 0 - 10.00

6 CIPC COTS Integrator Personnel Capability 2.78 N/C 2.13 N/C 3.33 1.97 1.38 1.80 2.37 2.46 2.78 1.38 - 3.33

7 CIAR COTS Integrator Architecture/Risk Resolution 2.04 2.20 2.46 N/C 2.00 2.11 N/C 2.00 2.11 2.04 2.04 2.00 - 2.46

8 CCOS COTS Compliance with Interface Standards 1.39 N/C 1.39++ 1.50 1.20 N/C N/C 1.40 1.38 1.39 1.39 1.20 - 1.50

9 CPER COTS Performance 1.49 1.75 1.65 1.20 1.20 1.52 N/C 1.50 1.48 1.50 1.20&1.49 1.20 - 1.75

10 CIXI COTS Integrator Experience with COTS Integration 1.49 1.35 1.33 N/C 3.33 1.39 N/C 1.70 1.70 1.49 1.49 1.33 - 3.33

11 CVMS COTS VendorMaturity and Product Support 1.69 2.25 N/A N/C 1.33 1.94 N/C 1.70 1.54 1.69 1.69 0 - 2.25

12 CVPT COTS Vendor Provided Training 1.39 1.60 N/C N/C 1.85 1.42 N/C 1.40 1.48 1.40 1.39 1.39 - 1.85

13 CPER COTS Portability 1.29 1.20 1.43 N/C 1.21 1.41 N/C 1.50 1.33 1.29 1.29 1.20 - 1.43

Table VII.2 - Round 1 Delphi Analysis.
Key:

N/C - no change
N/A - not applicable (covered by other factors)
N/A* - felt proper focus of question was missed
 ++ - within the given range if there is information on this ahead of time;

          potentially exceedingly large if an unknown quantity until integration is underway.

(In the analysis, N/A answers were assigned a value of zero for purposes of averaging and finding the range.)
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Round 2 COTS Delphi Analysis

PR - Productivity Range (Revised Values)
(initial)
resp. 0 resp. 1 resp. 2 resp. 3 resp. 4 resp. 5 resp. 6 resp. 7 mean median mode range

1 CPDM COTS Product and Documentation Maturity 1.83 2.25 2.50 3.00 3.00 2.00 1.83 1.90 2.29 2.13 1.83 & 3.00 1.83 - 3.00

2 CVEW COTS Vendor Product Extension Willingness 1.61 1.50 1.28 1.80 1.80 1.50 N/A 1.50 1.37 1.50 1.50 0 - 1.80

3 CIEP COTS Integrator Experience with Product 1.77 1.90 1.75 2.00 2.66 1.75 1.77 1.80 1.93 1.79 1.75 & 1.77 1.75 - 2.66

4 CREL COTS Reliability 1.56 2.00 1.67 1.56 1.40 1.40 2.00 1.60 1.65 1.58 1.40 & 1.56 & 2.00 1.40 - 2.00

5 CPAX COTS Product and Application Complexity 2.04 2.35 2.38 2.00 4.00 1.5* 2.00 2.00 2.28 2.02 2.00 1.50 - 4.00

6 CIPC COTS Integrator Personnel Capability 2.78 2.55 2.13 2.13 3.00 2.00 3.00 2.50 2.51 2.53 2.13 & 3.00 2.00 - 3.00

7 CIAR COTS Integrator Architecture/Risk Resolution 2.04 2.10 2.14 2.30 2.00 2.10 2.00 2.10 2.10 2.10 2.10 2.00 - 2.30

8 CCOS COTS Compliance with Interface Standards 1.39 1.40 N/C N/C 1.40 N/C 1.40 1.40 1.40 1.40 1.39 & 1.40 1.39 - 1.40

9 CPER COTS Performance 1.49 1.65 1.65 1.20 1.20 1.50 1.50 1.50 1.46 1.50 1.50 1.20 - 1.65

10 CIXI COTS Integrator Experience with COTS Integration 1.49 1.55 1.65 N/C 3.00 1.50 2.00 1.50 1.77 1.53 1.49 & 1.50 1.49 - 3.00

11 CVMS COTS VendorMaturity and Product Support 1.69 1.85 1.53 1.53 2.00 2.00 1.50 1.70 1.73 1.70 1.53 & 2.00 1.50 - 2.00

12 CVPT COTS Vendor Provided Training 1.39 1.45 N/C 1.50 1.75 1.50 1.40 1.40 1.47 1.43 1.39 & 1.40 & 1.50 1.39 - 1.75

13 CPER COTS Portability 1.29 1.25 1.43 1.20 1.21 1.40 1.30 1.30 1.30 1.30 1.30 1.20 - 1.43

Table VII.3 - Round 2 Delphi Analysis.
Key:

N/C - no change
N/A - felt not applicable by definition ("Once the vendor makes changes it’s no longer COTS." )
* - still felt proper focus of question was missed

(In the analysis, N/A answers were assigned a value of zero for purposes of averaging and finding the range.)
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F. Initial Delphi Derived Multiplier Values

   (Note: the values in table VII.4 on the following page were used to begin the
calibration effort. They are NOT the calibrated parameter values appearing in the final
version 1.0 of the model.)

Associated with each of the five possible ratings for all the cost drivers are numerical
values that serve as the multiplicative adjustment factors away from the starting nominal
effort in the effort equation.  These are the model parameter values upon which
regressions are performed and which ideally individual organizations should tailor to their
own practices.

But the model must have some initial parameter values to serve as a starting point.
Table VII.4 shows the initial parameter values used in calibrating the USC COTS
integration cost model version 1.0. They were derived using the Delphi exercise round 2
median values for PR found in table VII.3.

The values in the table were obtained using the following procedure16:

For all drivers except #5 (CPAX), the Very Low parameter value is defined to be
greater than the Very High parameter value, and PR = VL/VH.  The individual parameter
values are then found with these formulae:

VL = 1+2X     L = 1+X     N = 1     H = 1-X     VH = 1-2X

where        X = [(PRmedian - 1)/(PRmedian + 1)] *  ½ .

For driver #5 (CPAX), the Very Low parameter value is defined to be less than the
Very High parameter value, and PR = VH/VL.  The individual parameter values are then
found with these formulae:

VL = 1+2X     L = 1+X     N = 1     H = 1-X     VH = 1-2X

where        X = [(1 - PRmedian)/(1 + PRmedian)] *  ½ .

                                                          
16 The procedure described ensures that the parameter values are linearly proportional along the ratings for
a given cost driver. This was done to simplify this first modeling effort. The drawback to this approach,
however, is that the relative differences in the absolute person-month values produced by the model will not
linearly reflect the implied productivity range.  A better approach that avoids this problem is to make the
parameter values geometrically proportional along the rating scale.



43

Driver VL L N H VH
1)   CPDM 1.36 1.18 1.00 0.82 0.64
2)   CVEW 1.20 1.10 1.00 0.90 0.80
3)   CIEP 1.28 1.14 1.00 0.86 0.72
4)   CREL 1.22 1.11 1.00 0.89 0.77
5)   CPAX 0.66 0.83 1.00 1.17 1.34
6)   CIPC 1.43 1.22 1.00 0.78 0.57
7)   CIAR 1.36 1.18 1.00 0.82 0.65
8)   CCOS 1.17 1.08 1.00 0.92 0.83
9)   CPER 1.20 1.10 1.00 0.90 0.80
10) CIXI 1.21 1.11 1.00 0.90 0.79
11) CVMS 1.26 1.13 1.00 0.87 0.74
12) CVPT 1.18 1.09 1.00 0.91 0.82
13) CPRT 1.13 1.07 1.00 0.94 0.87

Table VII.4 - Initial Delphi derived parameter values.
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VIII.  Calibration Efforts/Results
 

A.  Round 2 Survey
 

 The second round COTS data collection survey was a detailed survey designed to
capture project level data which could then be used to calibrate the COTS integration cost
model as described previously in sections VI and VII.  (A copy of the round 2 survey
form can be found in Appendix D.)

 The survey consists of seven sections.  Section 1 contains general background
information regarding this research effort.  Section 2 provides definitions of terms.
Section 3 asks for identifying information from the survey respondent.  Section 4 asks for
project level technical information such as project domain, current project phase,
development type, overall effort, schedule, sizing, languages, etc.  Section 5 asks for
similar technical information but at the COTS component level.  Section 6 asks the
respondent to evaluate the development conditions obtaining during the COTS integration
activities according to the model cost drivers and driver rating criteria described in
section VII.D of this report.  Finally, section 7 provides some follow-up information.

 By the conclusion of the study period, the round 2 survey had been used to gather
data from eighteen projects, six projects from a graduate level software engineering
design class, and twelve projects from an industrial source.  Separate model calibrations
were then attempted for each of the two sets of data.  The results of those calibration
efforts are described in the following two sections of this report.

 

 

B.  Student Projects

The student projects represented a controlled sample data set from a recent USC
graduate software engineering class that involved multimedia software projects that used
COTS components as part of the design. The value of these projects was three-fold: 1)
real-time effort data could be retrieved weekly as development was in progress, avoiding
the problem of having to estimate or reconstruct effort data after the fact, which is often
the case in industrial settings; 2) the projects had a fixed, known schedule for completion
(one academic semester); and 3) effort data could be quickly paired with final actual
development size.  Accurate figures for all three elements (effort, schedule, and size) are
crucial to any calibration effort. Being able to control the data being collected along these
lines made these projects ideal for attempting an initial COTS integration cost model test
calibration and validation.

Results from the student data collection are summarized in the tables on the
following pages.
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Key:Group 1 - EDGAR Corporate Data
        Group 2 - Medieval Manuscripts
        Group 3 - Technical Reports
        Group 4 - Latin American Pamphlets
        Group 5 - CNTV Moving Image Archive
        Group 6 - Hancock Photo Archive

ACTIVITY Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Total Pers-hrs % Total Pers-hrs

Edgar Cpr Med. Mscrp Tech Rpts LAPIS CNTV Archv Hancock PH by Activity by Activity
General Activity
   Determine Requirements: 16.00 49.50 86.50 26.50 5.50 38.50 222.50 4.99
   Prepare, update plans : 107.00 142.00 209.50 39.00 83.50 134.75 715.75 16.06
   Design product : 99.00 3.00 103.50 63.50 13.00 96.00 378.00 8.48
   Code product : 161.00 20.50 190.00 168.00 67.50 115.00 722.00 16.20
   Participate in formal design/code reviews: 14.00 8.00 21.00 21.00 22.50 24.00 110.50 2.48
   Integrate and test : 70.00 94.50 85.50 6.50 13.00 29.50 299.00 6.71
   Fix defects found in testing: 60.00 27.50 61.00 2.00 15.00 71.00 236.50 5.31
COTS Related Activity
   Understand and qualify COTS: 2.00 6.00 98.50 10.00 61.00 19.50 197.00 4.42
   Design COTS glue code : 0.00 0.00 7.50 0.00 0.30 9.00 16.80 0.38
   Code COTS glue code : 0.00 0.00 4.00 0.00 16.80 30.50 51.30 1.15
   Fix defects found in COTS testing: 5.00 0.00 2.50 1.00 1.50 4.00 14.00 0.31
Administrative Activity
   Management: 8.50 34.00 33.50 13.50 10.00 25.00 124.50 2.79
   Documentation : 52.50 449.50 38.00 59.50 68.00 126.00 793.50 17.81
   Other: 114.00 239.00 31.50 8.00 100.00 82.50 575.00 12.90

 
TOTAL WEEKLY Person-Hours 709.00 1073.50 972.50 418.50 477.60 805.25 4456.35 99.99

Table VIII.1- Effort hours by activity for graduate software engineering class projects incorporating COTS products.
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ACTIVITY Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Edgar Cpr Med. Mscrp Tech Rpts LAPIS CNTV Archv Hancock PH
General Activity
   Determine Requirements: 2.3 4.6 8.9 6.3 1.2 4.8
   Prepare, update plans : 15.1 13.2 21.5 9.3 17.5 16.7
   Design product : 14.0 0.3 10.6 15.1 2.7 11.9
   Code product : 22.7 1.9 19.5 40.1 14.1 14.3
   Participate in formal design/code reviews: 2.0 0.7 2.2 5.0 4.7 3.0
   Integrate and test : 9.9 8.8 8.8 1.6 2.7 3.7
   Fix defects found in testing: 8.5 2.6 6.3 0.5 3.1 8.8
COTS Related Activity
   Understand and qualify COTS: 0.3 0.6 10.1 2.4 12.8 2.4
   Design COTS glue code : 0.0 0.0 0.8 0.0 0.1 2.4
   Code COTS glue code : 0.0 0.0 0.4 0.0 3.5 3.8
   Fix defects found in COTS testing: 0.7 0.0 0.3 0.2 0.3 0.5
Administrative Activity
   Management: 1.2 3.2 3.4 3.2 2.1 3.1
   Documentation : 7.4 41.9 3.9 14.2 14.2 15.6
   Other: 16.1 22.6 3.2 1.9 20.9 10.2

TOTAL WEEKLY Person-Hours 100.2 100.4 99.9 99.8 99.9 101.2

 Table VIII.2- Percentage of effort by activity for graduate software engineering class projects incorporating COTS products.
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Table VIII.4 shows the sizing of the student project COTS glue code in unadjusted function points.  For these projects the
effective glue code size was the same because no breakage estimate was reported.  The actual person-hours associated with the
integration effort are also reported.  It is against these values that the validation of the model calibration was performed.

Project CPDM CVEW CIEP CREL CPAX CIPC CIAR CCOS CPER CIXI CVMS CVPT CPRT
1 N N VL N N N N N H L N VL H

3A N H L N H H H VH N N N VL H
4 H VL H N N H H H H H N L VH
5 N VL VL L N H L L N L VL VL VH

6A L L L N H VL VL H H VL VL VL VH
6B L VL VL H H VL VL H H VL VL VL H

Table VIII.3- COTS model effort driver ratings as reported for each student project.

COTS Glue Code
Project* UFP BRAK ESIZE ACT_PH

1 10 0% 10 7.00

3A 12 0% 12 61.36

4 10 0% 10 11.00

5 10 0% 10 79.60

6A 3 0% 3 14.54

6B 10 0% 10 48.46

*A and B signify more than one COTS integration activity

per overall project. Project 2 deleted because COTS  

product was removed from final design. 

Table VIII.4- Student project COTS integration sizing and effort data.
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 Calibration Efforts
 

 Seven cases were run on the student project data in order to arrive at a set of
calibration values for this first pass at the COTS integration cost model that provide a
reasonable effort estimate when compared to the actual effort reported for each project.

 The cases were as follows:
 

1)  Initial provisional model parameter values derived from the Delphi exercise as
shown in table VII.4.

 

2)  1st revision values based upon regression on a natural log transformation17 of the
parameters and data in case 1.

 

3)  2nd revision values based upon a blending of the initial provisional values in case
1 and 5% of the difference between the initial values and the values derived via
regression in case 218.

 

4)  3rd revision values based upon the engineering judgment of Dr. Barry Boehm as
manifest in his round 2 values for the Delphi exercise.

 

5)  4th revision values based upon the case 4 values but with the linear scaling
constant “A” reduced from 2.00 to 1.00.

 

6)  5th revision values based upon the case 3 values but with the linear scaling
constant “A” reduced from 2.00 to 1.00.

 

7)  6th revision values based upon the case 4 values but with the linear scaling
constant “A” set to 1.20.

 

 

 The parameter sets derived for the cases described above appear on the following
pages.

                                                          
17 The basic COTS model takes the form PM = A* (SIZE)B

* EM1* EM2 * EM3 * * * EMn-1 * EMn.  The log
transform of this is then ln(PM) = B*ln(SIZE) + ln(EM1) + ln(EM2) + ln(EM3) + * * * ln(EMn-1)  + ln(EMn).
Regression on the latter formula will produce an intercept term B0, coefficients Bx for each EM term, and a
residual for each observation.  Then EMrevised = (EMinitial)

Bx.
18 EMrevised = {[(EMinitial)

Bx  - EMinitial] *  (.05)} + EMinitial.
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Student Data

Parameter VL L N H VH PR1

1 CPDM 1.36 1.18 1.00 0.82 0.64 2.13
2 CVEW 1.20 1.10 1.00 0.90 0.80 1.50
3 CIEP 1.28 1.14 1.00 0.86 0.72 1.79
4 CREL 1.22 1.11 1.00 0.89 0.77 1.58
5 CPAX 0.66 0.83 1.00 1.17 1.34 2.02
6 CIPC 1.43 1.22 1.00 0.78 0.57 2.53
7 CIAR 1.36 1.18 1.00 0.82 0.65 2.10
8 CCOS 1.17 1.08 1.00 0.92 0.83 1.40
9 CPER 1.20 1.10 1.00 0.90 0.80 1.50

10 CIXI 1.21 1.11 1.00 0.90 0.79 1.53
11 CVMS 1.26 1.13 1.00 0.87 0.74 1.70
12 CVPT 1.18 1.09 1.00 0.91 0.82 1.43
13 CPRT 1.13 1.07 1.00 0.94 0.87 1.30

Table VIII.5 - Initial provisional parameter values (Case 1).

Parameter VL L N H VH PR1

1 CPDM 3.74 2.03 1.00 0.43 0.15 24.93
2 CVEW 1.14 1.07 1.00 0.93 0.85 1.34
3 CIEP 1.80 1.37 1.00 0.70 0.45 3.97
4 CREL 1.38 1.19 1.00 0.83 0.66 2.08
5 CPAX 0.08 0.31 1.00 2.65 6.17 77.13
6 CIPC 1.06 1.03 1.00 0.96 0.92 1.15
7 CIAR 1.10 1.05 1.00 0.94 0.87 1.26

          *  8 CCOS 0.93 0.96 1.00 1.04 1.09 1.17
9 CPER 12.22 3.70 1.00 0.24 0.05 244.40

10 CIXI 2.04 1.45 1.00 0.66 0.41 4.98
11 CVMS 4.41 2.19 1.00 0.41 0.14 31.50
12 CVPT 10.54 3.41 1.00 0.26 0.06 175.67

         * 13 CPRT 0.77 0.87 1.00 1.15 1.35 1.75
* This change in parameters is counter-intuitive.

Table VIII.6 - First recalibration of parameter values (Case 2).

1 PR (Productivity Ratio) = VL/VH except for parameter 5 (CPAX) where PR = VH/VL.
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Student Data

Parameter VL L N H VH PR1

1 CPDM 1.48 1.22 1.00 0.80 0.61 2.43
2 CVEW 1.20 1.10 1.00 0.90 0.80 1.50
3 CIEP 1.31 1.15 1.00 0.85 0.70 1.87
4 CREL 1.23 1.12 1.00 0.89 0.77 1.60
5 CPAX 0.63 0.80 1.00 1.24 1.58 2.51
6 CIPC 1.42 1.21 1.00 0.79 0.58 2.45
7 CIAR 1.34 1.17 1.00 0.83 0.66 2.03

          *  8 CCOS 1.17 1.08 1.00 0.92 83.00 1.41
9 CPER 1.75 1.23 1.00 0.87 0.76 2.30

10 CIXI 1.25 1.12 1.00 0.92 0.77 1.62
11 CVMS 1.42 1.18 1.00 0.85 0.71 2.00
12 CVPT 1.64 1.20 1.00 0.88 0.79 2.08

         * 13 CPRT 1.13 1.06 1.00 0.94 0.87 1.30
* Initial provisional value restored as change in first revision was counter-intuitive.

Table VIII.7 - Second recalibration of parameter values (Cases 3 and 6).

Parameter VL L N H VH PR1

1 CPDM 1.30 1.15 1.00 0.85 0.70 1.86
2 CVEW 1.24 1.12 1.00 0.88 0.76 1.63
3 CIEP 1.28 1.14 1.00 0.86 0.72 1.78
4 CREL 1.22 1.11 1.00 0.89 0.78 1.56
5 CPAX 0.66 0.83 1.00 1.17 1.34 2.03
6 CIPC 1.48 1.24 1.00 0.76 0.52 2.85
7 CIAR 1.34 1.17 1.00 0.83 0.66 2.03
8 CCOS 1.16 1.08 1.00 0.92 0.84 1.38
9 CPER 1.20 1.10 1.00 0.90 0.80 1.50

10 CIXI 1.20 1.10 1.00 0.90 0.80 1.50
11 CVMS 1.26 1.13 1.00 0.87 0.74 1.70
12 CVPT 1.16 1.08 1.00 0.92 0.84 1.38
13 CPRT 1.12 1.06 1.00 0.94 0.88 1.27

 

Table VIII.8 - Third recalibration of parameter values (Cases 4, 5 and 7).
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Student Data

Project Actual Effort Estimated Effort (Prs-hrs)
Initial Parms 1st Rev. 2nd Rev. 3rd Rev. 4th Rev. 5th Rev. 6th Rev.

1 7.00 28.4 151.80 39.40 27.60 13.80 19.70 16.56
3A 61.36 17.04 966.00 25.92 16.32 8.16 12.96 9.79
4 11.00 7.60 4.60 8.20 8.00 4.00 4.10 4.80
5 79.60 48.60 4300.00 79.80 47.80 23.90 39.90 28.68

6A 14.54 25.98 1762.74 44.28 26.10 13.05 22.14 15.66
6B 48.56 102.00 5815.40 176.40 103.00 51.50 88.20 61.80

 
(A) - Estimated Effort

Project Difference Between Estimated and Actual Effort (Prs-hrs)
 Initial Parms 1st Rev. 2nd Rev. 3rd Rev. 4th Rev. 5th Rev. 6th Rev.
1 21.40 144.80 32.40 20.60 6.80 12.70 9.56

3A -44.32 904.64 -35.44 -45.04 -53.20 -48.40 -51.57
4 -3.40 -6.40 -10.80 -3.00 -7.00 -6.40 -6.20
5 -31.00 4220.40 0.20 -31.80 -55.70 -39.70 -50.92

6A 11.44 1748.20 29.74 11.56 -1.49 7.60 1.12
6B 53.54 5766.94 127.94 54.54 3.04 39.74 13.34

(B) - Difference = {Estimate - Actual}

Project Percentage Error in Estimate Relative to Actual Effort
 Initial Parms 1st Rev. 2nd Rev. 3rd Rev. 4th Rev. 5th Rev. 6th Rev.
1 306% 2069% 463% 294% 97% 181% 137%

3A -72% 1474% -58% -73% -87% -79% -84%
4 -31% -58% -25% -27% -64% -63% -56%
5 -39% 5302% 0%* -40% -70% -50% -64%

6A 77% 12023% 205% 80% -10% 52% 8%
6B 110% 11876% 263% 113% 6% 82% 28%

* percentage error was negligble

(C) - Percentage Error = {[(Estimate - Actual)/Actual]*100}

Table VIII.9 - Relative error in COTS integration effort estimates for each student project
 under each calibration of the model parameter values.
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Student Data

Spread in Percentage Error (PE) for Estimates Across All Six Projects
Initial Parms 1st Rev. 2nd Rev. 3rd Rev. 4th Rev. 5th Rev. 6th Rev.

most positive PE 306% 12023% 463% 294% 97% 181% 137%

most negative PE -72% -58% -58% -73% -87% -79% -84%

delta range in PE 378% 12081% 521% 367% 184% 260% 221%

largest absolute PE 306% 12023% 463% 294% 97% 181% 137%

smallest absolute PE 31% 58% 0%* 27% 6% 50% 8%

combined sum 337% 12081% 463% 321% 103% 231% 145%
* percentage error was negligible

Table VIII.10 - Range in error and combined sum of the largest and smallest absolute relative error in COTS
integration effort estimates across all student projects for each calibration of the model parameters.

No. & Percentage of Estimates with PE’s Above and Below Initial PE’s Across All Projects 
1st Rev. 2nd Rev. 3rd Rev. 4th Rev. 5th Rev. 6th Rev.

larger abs. PE 6 100% 3 50% 4 67% 3 50% 3 50% 3 50%

smaller abs. PE 0 0% 3 50% 2 33% 3 50% 3 50% 3 50%

Table VIII.11 - Simple tally of how many estimates under each revised calibration had larger and smaller absolute
PE’s relative to the estimates produced using the initial provisional values of the model parameters
without regard to how much  greater or smaller those revised PE’s were relative to the initial PE’s. 

No. & Percentage of Estimates Over and Under Actual Reported Effort Across All Projects 
Initial Parms 1st Rev. 2nd Rev. 3rd Rev. 4th Rev. 5th Rev. 6th Rev.

over 3 50% 5 83% 3 50% 3 50% 2 33% 3 50% 3 50%

under 3 50% 1 17% 2 33% 3 50% 4 67% 3 50% 3 50%

on target 0 0% 0 0% 1* 17% 0 0% 0 0% 0 0% 0 0%
* difference in estimate was negligible

Table VIII.12 - Simple tally of how many effort estimates under each calibration were over and under the actual
effort reported for each project without regard to how much  greater or smaller

those estimates were relative to the actual effort.
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Student Data

PE by Project for Each Calibration
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Graph VIII.1 - Percentage error by project for each calibration (see Table VIII.9.C).
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Graph VIII.2 - Combined sum of the minimum and maximum absolute percentage
error for each calibration (see Table VIII.10).
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Student Data

No. & Percentage of Estimates within the given Absolute PE
Calibration PE < 20% PE < 30% PE < 40% PE < 75% PE > 100%
Initial Parms 0 0% 0 0% 2 33% 3 50% 2 33%

1 0 0% 0 0% 0 0% 1 17% 5 50%
2 1 17% 2 33% 2 33% 3 50% 3 50%
3 0 0% 1 17% 2 33% 3 50% 2 33%
4 2 33% 2 33% 2 33% 4 67% 0 0%
5 0 0% 0 0% 0 0% 3 50% 1 17%
6 1 17% 2 33% 2 33% 4 67% 1 17%

Table VIII.13 - Simple tally of how many estimates under each calibration of the
model parameters had absolute PE’s less than the given absolute PE’s.
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Student Data
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Graph VIII.3 - Percentage of effort estimates under a given model parameter
calibration that had absolute percentage errors within the given PE range

 (see Table VIII.13).
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 Calibration Results
 
 An examination of the data in the preceding tables and graphs reveals that the fourth

revision in parameter values (case 5) had the best convergence around the actual effort
reported for the various student projects.  It was the revision with the most estimates
within 20% PE and the only revision with no estimates above 100% PE.  Still, the overall
results of this calibration can at best be considered only fair.  The goals of the calibration
on the student projects were realized, however, in that it demonstrated an ability to
improve the accuracy of the model if the correct kind of data is available.

 
 Improvement Recommendation:
 
 The overall accuracy of this initial model was low: at best, only 33% of the projects

were estimated to within 40% of actuals (table VIII.13).  We found that the main reason
was the preponderance of effort going into COTS assessment (Understand and Qualify
COTS) activities for Groups 3 and 5 (table VIII.1). This led us to recommend separating
out the estimation of this effort from the estimation of COTS integration effort during
project development (figure 6, section VII.A).

 

C. Industrial Projects

The industrial data, even though it represented twice as many data points as the
student projects (twelve projects reported vs. six), was found to be problematic. There
were three main reasons for this.  First, the data was incomplete, with cost driver ratings,
and the sizing of glue code in function points, often missing.  The result was that too
many assumptions had to be made in order to make the data serviceable.  Second, the data
was inconsistent, being a mix of COTS and Reuse projects; thus assumptions made were
less likely to be valid across different projects.  Third and finally, the data was old, with
most of the reported projects completed in the early 1980s. Thus the factors affecting
effort when these projects were performed are likely different from many of the cost
drivers which appear in the current COTS model, making the projects poor candidates for
use in calibration purposes.

The sizing and effort data derived from the reported data for the industrial projects
appears on the following page:
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 Calibration Efforts

 

 Because it became obvious very quickly that the data was not proving very useful,
only three calibration cases were run on the industrial project data.

 The cases were as follows:
 

1)  Initial provisional model parameter values derived from the Delphi exercise as
shown in table VII.4.

 

2)  1st revision values based upon regression on a natural log transformation of the
parameters and data in case 1 (see footnote 17).

 

3)  2nd revision values based upon the engineering judgment of Dr. Barry Boehm as
manifest in his round 2 values for the Delphi exercise.

The parameter sets derived for the cases described above appear on the following
pages.

Project A B SLOC UFP BRAK ESIZE ACTPM
F1 2.00 1.00 9000 86 5% 90 24.00

F2 2.00 1.00 9000 86 5% 90 48.00

F3 2.00 1.00 6000 57 5% 60 24.00

F4 2.00 1.00 2000 19 5% 20 8.00

S 2.00 1.00 24000 229 5% 240 84.00

R 2.00 1.00 200000 1905 5% 200 264.00

H 2.00 1.00 42000 400 5% 420 240.00

C 2.00 1.00 16000 152 5% 160 36.00

E1 2.00 1.00 7000 67 5% 70 24.00

E2 2.00 1.00 10000 95 5% 100 20.00

T1 2.00 1.00 7000 67 5% 70 48.00
T2 2.00 1.00 5000 48 5% 50 24.00

Table VIII.14 - Industrial project COTS integration data.
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Industrial Data

Parameter VL L N H VH PR1

1 CPDM 1.36 1.18 1.00 0.82 0.64 2.13
2 CVEW 1.20 1.10 1.00 0.90 0.80 1.50
3 CIEP 1.28 1.14 1.00 0.86 0.72 1.79
4 CREL 1.22 1.11 1.00 0.89 0.77 1.58
5 CPAX 0.66 0.83 1.00 1.17 1.34 2.02
6 CIPC 1.43 1.22 1.00 0.78 0.57 2.53
7 CIAR 1.36 1.18 1.00 0.82 0.65 2.10
8 CCOS 1.17 1.08 1.00 0.92 0.83 1.40
9 CPER 1.20 1.10 1.00 0.90 0.80 1.50

10 CIXI 1.21 1.11 1.00 0.90 0.79 1.53
11 CVMS 1.26 1.13 1.00 0.87 0.74 1.70
12 CVPT 1.18 1.09 1.00 0.91 0.82 1.43
13 CPRT 1.13 1.07 1.00 0.94 0.87 1.30

Table VIII.15 - Initial provisional parameter values (Case 1).

Industrial Data

Parameter VL L N H VH PR1

1 CPDM 1.00 1.00 1.00 1.00 1.00 1.00
          *  2 CVEW 0.87 0.93 1.00 1.08 1.18 1.36

3 CIEP 1.25 1.12 1.00 0.87 0.75 1.67
4 CREL 1.00 1.00 1.00 1.00 1.00 1.00

          *  5 CPAX 2.86 1.60 1.00 0.67 0.48 5.96
6 CIPC 1.57 1.29 1.00 0.73 0.48 3.27
7 CIAR 1.71 1.33 1.00 0.71 0.47 3.64
8 CCOS 1.00 1.00 1.00 1.00 1.00 1.00
9 CPER 1.94 1.41 1.00 0.68 0.44 4.41

10 CIXI 1.00 1.00 1.00 1.00 1.00 1.00
11 CVMS 1.01 1.00 1.00 1.00 0.99 1.02
12 CVPT 1.00 1.00 1.00 1.00 1.00 1.00
13 CPRT 1.00 1.00 1.00 1.00 1.00 1.00

* This change in parameter is counter-intuitive.

Table VIII.16 - First recalibration of parameter values (Case 2).

1 PR (Productivity Ratio) = VL/VH except for parameter 5 (CPAX) where PR = VH/VL.
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Parameter VL L N H VH PR1

1 CPDM 1.30 1.15 1.00 0.85 0.70 1.86
2 CVEW 1.24 1.12 1.00 0.88 0.76 1.63
3 CIEP 1.28 1.14 1.00 0.86 0.72 1.78
4 CREL 1.22 1.11 1.00 0.89 0.78 1.56
5 CPAX 0.66 0.83 1.00 1.17 1.34 2.03
6 CIPC 1.48 1.24 1.00 0.76 0.52 2.85
7 CIAR 1.34 1.17 1.00 0.83 0.66 2.03

          *  8 CCOS 1.16 1.08 1.00 0.92 0.84 1.38
9 CPER 1.20 1.10 1.00 0.90 0.80 1.50

10 CIXI 1.20 1.10 1.00 0.90 0.80 1.50
11 CVMS 1.26 1.13 1.00 0.87 0.74 1.70
12 CVPT 1.16 1.08 1.00 0.92 0.84 1.38

         * 13 CPRT 1.12 1.06 1.00 0.94 0.88 1.27
* Initial provisional value restored as change in first revision was counter-intuitive.

Table VIII.17 - Second recalibration of parameter values (Case 3).
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Industrial Data

Domain CPDM CVEW CIEP CREL CPAX CIPC CIAR CCOS CPER CIXI CVMS CVPT CPRT
executive N VH H N N VH VH N H H N N N
security N L H N VH VH VH N H H L N N
reports N H L N N H H N N H L N N

help/tutorial N H H N N H H N N H N N N
data comm. N N L N VH VH VH N H H L N N
devlp. env. N VL H N N H H N N H N N N

sys. test tools N L H N N H H N N H N N N
 

Table VIII.18 - COTS Integration model effort driver ratings as assumed for each industrial project by domain.

Assumed ratings were based upon a subjective consideration of four factors: COTS product functional domain, COTS product source, 
reputation of integrated system developer (which in all cases is the same technologically very highly regarded organization), and a
logical allocation of the most valuable resources to the most critical functions. Even given the preceding, however, in some cases 

it was still impossible to provide reasonable discriminatory rating assessments (see CPDM, CREL, CCOS, CIXI, CVPT, CPRT).
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Industrial Data

Project Actual Effort Estimated Effort (PM)
Initial Parms 1st Rev. 2nd Rev.

F1 24.00 37.17 25.51 32.71
F2 48.00 37.17 25.51 32.71
F3 24.00 24.78 17.01 21.80
F4 8.00 8.26 5.67 7.27
S 84.00 206.34 25.74 194.61
R 264.00 266.95 225.70 257.43
H 240.00 374.26 368.17 360.91
C 36.00 164.77 23.75 153.56
E1 24.00 83.17 49.43 84.76
E2 20.00 108.91 70.61 121.08
T1 48.00 76.24 52.84 76.56
T2 24.00 54.46 37.74 54.68

(A) - Estimated Effort

Project Difference Between Estimated and Actual Effort (PM)
 Initial Parms 1st Rev. 2nd Rev.

F1 13.40 1.51 8.71
F2 -10.83 -22.49 -15.29
F3 0.78 -6.99 -2.20
F4 0.26 -2.33 -0.73
S 122.34 -58.26 110.61
R 2.95 -38.30 -6.57
H 134.26 128.17 120.91
C 128.77 -12.25 117.56
E1 59.17 25.43 60.76
E2 88.91 50.61 101.08
T1 28.24 4.84 28.56
T2 30.46 13.74 30.68

(B) - Difference = {Estimate - Actual}

Project Percentage Error in Estimate Relative to Actual Effort
 Initial Parms 1st Rev. 2nd Rev.

F1 55% 6% 36%
F2 -23% -47% -32%
F3 3% -29% -9%
F4 3% -29% -9%
S 146% -69% 132%
R 1% -15% -2%
H 56% 53% 50%
C 360% -34% 327%
E1 247% 106% 253%
E2 445% 253% 505%
T1 59% 10% 59%
T2 127% 57% 128%

(C) - Percentage Error = {[(Estimate - Actual)/Actual]*100}

Table VIII.19 - Relative error in COTS integration effort estimates for each industrial
 project under each calibration of the model parameter values.
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Industrial Data

Graph VIII.5 - Percentage error by project for each calibration (see Table
VIII.19.C).
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Graph VIII.6 - Combined sum of the minimum and maximum absolute percentage
error for each calibration (see Table VIII.20).

Sum of Min and Max Absolute PE by Calibration

0%

100%

200%

300%

400%

500%

600%

Initial Parms 1st Rev. 2nd Rev.

Model Parameter Calibrations

P
E

largest PE

smallest PE

combined sum



63

Industrial Data

Spread in Percentage Error (PE) for Estimates Across All Projects
Initial Parms 1st Rev. 2nd Rev.

most positive PE 445% 253% 505%

most negative PE -23% -69% -32%

delta range in PE 468% 322% 537%

largest absolute PE 445% 253% 505%

smallest absolute PE 1% 6% 2%

combined sum 446% 259% 507%
 

Table VIII.20 - Range in error and combined sum of the largest and smallest 
 absolute relative error in COTS integration effort estimates across
all industrial projects for each calibration of the model parameters.

No. & Percentage of Estimates Over and Under
Actual Reported Effort Across All Projects

Initial Parms 1st Rev. 2nd Rev.
over 11 92% 6 50% 8 67%

under 1 8% 6 50% 4 33%
 

Table VIII.21 - Simple tally of how many effort estimates under each calibration
were over and under the actual effort reported for each project without
 without regard to how much  greater or smaller those estimates were

relative to the actual effort.

No. & Percentage of Estimates within the given Absolute PE
Calibr. PE < 20% PE < 30% PE < 40% PE < 75% PE > 100%

Initial Parms 3 25% 4 33% 4 33% 7 58% 5 42%
1st Rev. 3 25% 5 42% 6 50% 10 83% 2 17%
2nd Rev. 3 25% 3 25% 5 42% 7 58% 5 42%

Table VIII.22 - Simple tally of how many estimates under each calibration of the
model parameters had absolute PE’s less than the given absolute PE’s.
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Industrial Data

Graph VIII.7 - Percentage of effort estimates under a given model parameter
calibration that had absolute percentage errors within the given PE range

 (see Table VIII.22).
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 Calibration Results

An examination of the data in the preceding tables and graphs reveals that the
industrial data resulted in calibrations that were quite weak, with percentage errors all
over the map. As a result, it was decided to base the final calibration of the USC COTS
integration cost model version 1.0 on that of case 5 under the student data, subject to the
recommendation of future recalibration after separating out the COTS assessment effort
as noted on page 56.  (Using the student data as the basis of the final calibration also is
what necessitated the change in units of the model response variable from person-months
to person-hours as noted in section VII.C on page 33, due to the way the student effort
data was initially reported.)

D. Final Version 1.0 Multiplier Values

Below are the final parameter values chosen for version 1.0 of the COTS
integration cost model.  They are the values derived in case 5 of the student projects
calibration efforts.

Final Preliminary Calibration Result
(Values used in USC COTS Integration Cost Calculator V1.0)

Parameter VL L N H VH PR1

1 CPDM 1.30 1.15 1.00 0.85 0.70 1.86
2 CVEW 1.24 1.12 1.00 0.88 0.76 1.63
3 CIEP 1.28 1.14 1.00 0.86 0.72 1.78
4 CREL 1.22 1.11 1.00 0.89 0.78 1.56
5 CPAX 0.66 0.83 1.00 1.17 1.34 2.03
6 CIPC 1.48 1.24 1.00 0.76 0.52 2.85
7 CIAR 1.34 1.17 1.00 0.83 0.66 2.03
8 CCOS 1.16 1.08 1.00 0.92 0.84 1.38
9 CPER 1.20 1.10 1.00 0.90 0.80 1.50

10 CIXI 1.20 1.10 1.00 0.90 0.80 1.50
11 CVMS 1.26 1.13 1.00 0.87 0.74 1.70
12 CVPT 1.16 1.08 1.00 0.92 0.84 1.38
13 CPRT 1.12 1.06 1.00 0.94 0.88 1.27

Table VIII.23 - Final model calibration values.
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IX.  Cost Estimation Procedure Using the Model
 

A.  Estimation Procedure

    The following procedure is suggested when attempting to use our model for a COTS
integration cost estimation exercise (refer back to the formula shown under section VII.C
on page 33):

1) Estimate the amount of glue code that is expected to be needed to integrate a set
of COTS products into a software application, in terms of Unadjusted Function
Points. These are derived from the full set of Function Point types (External
Inputs, External Outputs, External Inquiries, Internal Logical Files, External
Interface Files), but only as they apply to the details of the integration or glue
code linking the COTS component to the larger application, not the code
internal to the COTS component itself.

2) Estimate the percentage of glue code which will be lost due to breakage during
the integration effort, again in terms of UFP;  this will be a function of the
number of COTS packages being integrated into the new system overall, the
average number of updated product releases expected per COTS package over
the life of the system development, and the average interface breakage per
product release.

 
3) Determine the effective size of the glue code development effort by feeding the

estimates derived in steps 1 and 2 into the formula for ESIZE.
 
4) Assign each effort multiplier a rating on the given scale from very low to very

high, which best characterizes the unique conditions obtaining during this
COTS integration effort.

 
5) Determine the overall estimated effort for this integration task by feeding the

estimate for ESIZE and the rated effort multipliers into the formula for Person-
months (PM).

 
6) Determine the estimated cost by multiplying estimated PM by the estimated

average labor rate ($$/PM).

This completes the cost estimation procedure.
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B.  How to Size Glue Code via Function Points
 

 The question of how to size glue code is not straight forward, as there is often
controversy over where glue code ends and new development code begins. One way to
bound the problem is to consider glue code to consist of any of the following:
 

• Any code required to facilitate information or data exchange between the COTS
component and the application.

 

• Any code needed to “hook” the COTS component into the application, even though it
may not necessarily facilitate data exchange.

 

• Any code needed to provide functionality that was originally intended to be provided
by the COTS component, AND which must interact with that COTS component.

 
 Once the glue code has been bounded according to the above criteria, a standard
function point count can now be attempted on that code using IFPUG counting rules. The
last bounding statement in particular requires that the individual doing the sizing in
function points apply any and all of the standard functional types19 as needed:
 

• External Inputs
• External Outputs
• External Inquiries
• Internal Logical Files
• External Interface Files
 
 
 

C.   How to Estimate Percentage Breakage

Breakage refers to COTS integration code that must be reworked as a result of either
a change in system requirements, or a new release by the vendor of a COTS product
which necessitates that the newer version of the product be installed before system
delivery.  It does NOT refer to code that must be reworked due to bugs introduced by the
programmer, or due to defects in design.

This figure is best estimated based upon acquiring knowledge of two things: 1) the
vendor’s past history regarding releases of the COTS product in question or of similar
products that the vendor markets, and 2) the customer’s past history regarding demanding
changes in requirements after development and COTS product integration has begun.

                                                          
19 D. Garmus and D. Herron, Measuring the Software Process: A Practical Guide to Functional
Measurements, Yourdon Press, Prentice-Hall PTR, NJ, 1996.
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X.  Relating/Using the COTS Estimate with a COCOMO II Project
      Estimate

At the moment, the COTS integration cost model functions independently of
COCOMO II.  Use COCOMO as you would normally when estimating the new
development or reuse aspects of a project.  Use the COTS integration model when
determining effort associated with developing the integration or glue code required for a
COTS product.  Then add the resultant COTS effort to the COCOMO derived effort to
get the total project development effort.   
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XI.  Overall COTS Integration Cost Estimation/Mitigation Guidelines

        The four key COTS integration characteristics below make COTS integration significantly
different from other forms of software development (including maintenance).  They require
traditional approaches to software development to be significantly revised.  The characteristics are:

1.  You have no control over a COTS product’s functionality or performance.
2.  Most COTS products are not designed to interoperate with each other.
3.  You have no control over a COTS product’s evolution.
4.   COTS vendor behavior varies widely.

1.  You have no control over a COTS product’s functionality or performance.

        If you can modify the source code, it’s not really COTS--and its future becomes your
responsibility.  Even as black boxes, big COTS products have formidable complexity: Microsoft
people have indicated that Windows 95 has 25,000 entry points.

Resulting Pitfalls

• Using the waterfall model on a COTS integration project.  With the waterfall model, you
specify requirements, and these determine the capabilities.  With COTS products, it’s the
other way around: the capabilities determine the "requirements" or the delivered system
features.

• Using evolutionary development with the assumption that every undesired feature can be
changed to fit your needs.  COTS vendors do change features, but they respond to the
overall marketplace and not to individual users.

• Believing that advertised COTS capabilities are real.  COTS vendors may have had the
best of intentions when they wrote the marketing literature, but that doesn’t help you
when the advertised feature isn’t there.

Resulting Recommendations

• Use risk management and risk-driven spiral-type process models.  Assess risks via
prototyping, bench-marking, reference checking, and related techniques.  Focus each
spiral cycle on resolving the most critical risks. The Raytheon "Pathfinder" approach20 is
a particularly effective way to address these and other risks.  (This is an architecture
based approach with an investment in COTS qualifications, and needs comparable
performance measures.)

• Perform the equivalent of a "receiving inspection" upon initial COTS receipt, to ensure
that the COTS product really does what it is expected to do.

                                                          
20 A. Sardi, “COTS Risk Mitigation: Strategies and Goals,” Proceedings: Focused Workshop on System Integration with
COTS Software, USC Center for Software Engineering, November 6-8, 1996, p.257.
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• Keep requirements negotiable until the system’s architecture and COTS choices
stabilize.

• Involve all key stakeholders in critical COTS decisions.  These can include users,
customers, developers, testers, maintainers, operators, or others as appropriate.

2.  Most COTS products are not designed to interoperate with each other.

Garlan, et al,21  provides a good case study and explanation for why interoperability
problems can cause COTS integration cost and schedule overruns by factors of four to five.

Resulting Pitfalls

        Lack of COTS interoperability exacerbates each of the previously cited pitfalls.  Some
additional direct pitfalls are:

• Premature commitment to incompatible combinations of COTS products.  This can
happen in many ways: haste, desire to show progress, politics, or uncritical enthusiasm
with features or performance.  Short-term emphasis on rapid application development is
another source of this pitfall.

• Trying to integrate too many incompatible COTS products.  Four can be too many22.  In
general, trying to integrate more than a half-dozen COTS products from different sources
should place this item on your high-risk assessment list.

• Deferring COTS integration till the end of the development cycle.  This puts your most
uncontrollable problem on your critical path as you approach delivery.

• Committing to a tightly-coupled subset of COTS products with closed, proprietary
interfaces.  These restrict your downstream options; once you’re committed, it’s hard to
back yourself out.

Resulting Recommendations

        The previously cited recommendations on risk-driven processes and co-evolving your
requirements and architecture are also appropriate here. In addition:

• Use the Life Cycle Architecture milestone as an anchor point for your development
process23. In  particular include demonstrations of COTS interoperability and scalability
as risks to  be resolved and documented in the Architecture Rationale.

• Use the Architecture Review Board (ARB) best commercial practice at the Life Cycle
Architecture milestone.24 AT&T has documented at least 10% savings in using it over a
period of 8 years.

                                                          
21 D. Garlan, R. Allen and J. Ockerbloom, “Architectural Mismatch: Why Reuse is So Hard,” IEEE Software, November
1995, pp.17-26.
22 See Garlan, et al, footnote 21.
23 Boehm, B.W., “Anchoring the Software Process,” IEEE Software, July 1996, pp. 73-82.
24 Best Current Practices: Software Architecture Validation, Lucent/AT&T, 1991.
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• Go for open architectures and COTS substitutability.  In the extremely fast-moving
software field, the ability to adapt rapidly to new best-of-breed COTS products is
competitively critical.

3.  You have no control over a COTS product’s evolution.

        Again, COTS vendors respond to the overall marketplace and not to individual users. Upgrades
are frequently not upward compatible.  And old releases become obsolete and unsupported by the
vendor.  If COTS architectural mismatch doesn’t get you initially, COTS architectural drift can
easily get you later.  Current COTS-intensive systems often have higher software maintenance costs
than traditional systems25, but that good practices can make them lower. (This does not imply that
it’s cheaper for you to maintain you own home-brew relational DBMS than to pay the COTS
maintenance fees for a clean SQL-compliant product.)

Resulting Pitfalls

        Lack of evolution controllability exacerbates each of the previously cited pitfalls.  Some
additional direct pitfalls are:

• "Snapshot" requirements specs and corresponding point-solution architectures. These
are not good practices for traditional systems; with uncontrollable COTS evolution, the
maintenance headaches become even worse.

• Under-staffing for software maintenance, and lack of COTS adaptation training for
maintenance personnel.

• Tightly coupled, independently evolving COTS products.  Just two of these will make
maintenance difficult; more than two is much worse.

• Assuming that uncontrollable COTS evolution is just a maintenance problem. It can
attack your development schedules and budgets as well.

Resulting Recommendations

        The previously-cited risk-driven and architecture-driven recommendations are also appropriate
here.  In addition:

• Stick with dominant commercial standards.  These make COTS product evaluation and
substitutability more manageable.

• Use likely future system and product line needs as well as current needs as COTS
selection criteria.  These can include portability, scalability, distributed processing, user
interface media, and various kinds of functionality growth.

                                                          
25 Lockheed-Martin, “COTS Integration: Application of Lessons Learned,” Proceedings: Focused Workshop on System
Integration with COTS Software, USC Center for Software Engineering, November 6-8, 1996, p.435.
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• Use flexible architectures facilitating adaptation to change.  These can include
message/event-based software bus, encapsulation, and layering.

• Carefully evaluate COTS vendors’ track records with respect to predictability of product
evolution.

• Establish a pro-active system release strategy, synchronizing COTS upgrades with
system releases.

4.  COTS vendor behavior varies widely.

Vendor behavior varies widely with respect to support, cooperation, and predictability.
Sometimes a COTS vendor is not even the developer, just a value-added re-seller.  Given the three
major sources of COTS integration difficulty above, an accurate assessment of a COTS vendor’s
ability and willingness to help out with the difficulties is tremendously important.  The workshop
identified a few assessment heuristics, such as the experience that the value of a COTS vendor’s
support follows a convex curve with respect to the vendor’s size and maturity (see figure 7 below).
Small vendors often lack the capability to support you; very large vendors have the capability, but
not the motivation (the classic example is Microsoft).

                   High

      Value of COTS
        vendor support

                    Low
                                      

   Low                            Medium                              High

       COTS vendor size and maturity

Figure 7 - Variation of COTS Vendor Support with Size
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Resulting Pitfalls

        Poor COTS vendor support exacerbates each of the previously-cited
pitfalls. Some additional direct pitfalls are:

• Uncritically accepting COTS vendors’ statements about product capabilities and
support.

• Lack of fallbacks or contingency plans, for such contingencies as product substitution or
escrow of a failed vendor’s product.

• Assuming that an initial vendor support honeymoon will last forever.

Resulting Recommendations

        The previously cited recommendations are also appropriate here.  In addition:

• Perform extensive evaluation and reference-checking of a COTS vendor’s advertised
capabilities and support track record.

• Establish strategic partnerships or other incentives for COTS vendors to provide
support.  Incentives can include financial incentives, early experimentation with and
adoption of new COTS vendor capabilities, sponsored COTS product extensions or
technology upgrades.

• Negotiate and document critical vendor support agreements.  Establish a "no surprises"
relationship with vendors.

The preceding is summarized in table XI.1 on the following page.
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Pitfalls to Avoid Recommended Practices to Adopt
1.  You have no control over a COTS product’s functionality or performance.

 
• Using the waterfall model on a COTS

integration project.
• Using evolutionary development with the

assumption that every undesired feature can be
changed to fit your needs.

• Believing that advertised COTS capabilities
are real.

 
• Use risk management and risk-driven spiral-type

process models.
• Perform the equivalent of a “receiving inspection”

upon initial COTS receipt.
• Keep requirements negotiable until the system’s

architecture and COTS choices stabilize.
• Involve all key stakeholders in critical COTS

decisions.

2.  Most COTS products are not assigned to interoperate with each other.
 

• Premature commitment to incompatible
combinations of COTS products.

• Trying to integrate too many incompatible
COTS products.

• Deferring COTS integration till the end of the
development cycle.

• Committing to a tightly-coupled subset of
COTS products with closed, proprietary
interfaces.

 

 
• Use the Life Cycle Architecture milestone as a
 process anchor point.
• Use the Architecture Review Board (ARB) best

commercial practice at the Life Cycle Architecture
milestone.

• Go for open architectures and COTS substitutability.

 

3.  You have no control over a COTS product’s evolution.
 

• “Snapshot” requirements specs and
corresponding point-solution architectures.

• Understaffing for software maintenance,
• Tightly coupled, independently evolving

COTS products.
• Assuming that uncontrollable COTS evolution

is just a maintenance problem.

 
• Stick with dominant commercial standards.
• Use likely future system and product line needs as

well as current needs as COTS selection criteria.
• Use flexible architectures facilitating adaptation to

change.
• Carefully evaluate COTS vendors’ track records with

respect to predictability of product evolution.
• Establish a pro-active system release strategy,

synchronizing COTS upgrades with system releases.

4.  COTS vendor behavior varies widely.
 

• Uncritically accepting COTS vendors’
statements about product capabilities and
support.

• Lack of fallbacks or contingency plans.
• Assuming that an initial vendor support

honeymoon will last forever.

 

 
• Perform extensive evaluation and reference-checking

of a COTS vendor’s advertised capabilities and
support track record.

• Establish strategic partnerships or other incentives
for COTS vendors to provide support.

• Negotiate and document critical vendor support
agreements.

Table XI.1 - Key COTS Integration Characteristics and Their Implication
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XII.  Conclusion/Future Directions

This study has been a first step in developing a comprehensive methodology for estimating
the costs of using COTS software in any system development. But the scope of the model developed
under this study is deliberately narrow, focusing only on the initial integration coding effort.  Many
other factors should be examined when determining the true overall cost of integrating COTS
software into larger systems. These factors include not only the traditional costs associated with new
software development, such as the cost of requirements definition, design, code, test, and software
maintenance, but also the cost of licensing and redistribution rights, royalties, effort needed to
understand COTS software, pre-integration assessment and evaluation, post-integration certification
of compliance with mission critical or safety critical requirements, indemnification against faults or
damage caused by vendor supplied components, and costs incurred due to incompatibilities with
other needed software and/or hardware.

The preceding indicates the myriad of directions in which the COTS integration cost model
just developed can be expanded and improved, and suggests goals for future phases of this research.
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