






















































is to proceed as before with (j2 replaced by an estimate (j2, as McCullagh and NeIder (1989)

do for estimation. reasonable estimate would be (j2 P/(n p), where P is Pearson's

goodness-of-fit statistic for the most complex model considered, as advocated by McCullagh

and NeIder (1989, p. 91 and p. 127).

A more accurate and fully Bayesian approach would be to treat (j2 as a parameter in the

same way as the ,8/s by giving it a prior distribution and integrating it out. Approaches

along these lines have been outlined for estimation (but not for testing or model comparison)

by Sweeting (1981), West (1985) and McCullagh (1990). In Poisson and binomial models

where overdispersion is modeled by a scale parameter, however, the likelihood may not be

explicitly defined and the straightforward Bayesian approach would then not apply directly.

Nevertheless, it may be possible to proceed by replacing the likelihood by a quasi-likelihood

function (McCullagh, 1983; McCullagh and NeIder, 1989, Chapter 9) in Section 4.

5.2 Comparing Link Functions

Suppose that we are comparing two models 1\11 and lv12 , which have the same independent

variables X and variance function v, but different link functions gl and g2' Then the param­

eters ;3(1) and ;3(2) under the two models are on different scales and so should have different

prior distributions. Thus, for given values of VI, 'ljJ and </>, we calculate 2 log B lO and 2 log B 20

as before, but with different priors obtained separately for each link function as in Section

4.2. We then compare lvl1 and j\;12 using the relation 2 log B 21 = 2 log B 20 - 2 log B lO . This ap­

proach allows us to compare different link functions directly and thus seems complementary

to exploratory methods such as those of Pregibon (1980).

5.3 Comparing Error Distributions and Variance Functions

Consider the comparison of two models, j\;11 and 1\12 which have the same independent

variables X but different variance functions and/or different error distributions; they may

also have different link functions. \Ve can continue to use the same general framework

because equation (8) still gives marginal likelihood for each model, and Bayes factors

and posterior model probabilities are then available from equations (1) and (3) as before.

Section the the two are on difjt'en~nt
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as before. Equation (9) becomes

In equation (20),

(20)

2(f'!,at _ ~at)
2 l' (21)

where £kat is the maximal log-likelihood achievable with the link function and error distri­

bution of model A1k (k = 1,2); this will typically be the log-likelihood under the saturated

model. In equation (21), <Y~ is the dispersion parameter for M k , which is either known or

estimated as in Section 5.1. In equation (20), Ek is given as before by equation (10). The

other approximations, (12) and (15), can be similarly modified for the comparison of variance

functions and error distributions.

6 Application: Model Uncertainty in Log-linear Mod­
els and Inference about Relative Risks with Control
Factors

The relative risk or odds ratio is a much used measure of association between a disease and

a risk factor. There are often also control factors such as age (or gender or race) which may

be associated with the disease, the risk factor or both. One then has to decide whether

to estimate a separate relative risk for each age group, a single but age-adjusted relative

risk, a single non-age-adjusted relative risk, or a single relative risk equal to 1. These four

options correspond to different statistical models which say respectively that the association

of disease and risk factor varies by age group (in which case age is said to be a modifier;

Schlesselman, 1982), that the association of disease and risk factor is the same for all age

groups but that age is also a risk factor (in which case age is a confounder), that age is not

a risk factor, and finally that risk factor and the disease are independent.

Table 9 shows the data from a case-control study of the relation between myorcardial

infarction (heart attack) and recent oral contraceptive (pill) use (Shapiro et ai., 1979). Each

of the four models corresponds to a particular log-linear model for cell counts (Bishop,

Holland, most IS a IS

+

k J = ,2; k = 1, ... ,



9: 1,976 women recent use (C), m,TopcaI'di,'Ll
infarction (M), and age (A). Ctl indicates the control group. Source: Shapiro et at. (1979).

Ctl M
330 33

26 4

40-44
Ctl M
362 65

9 6

45-49
Ctl
301

5

I use the GLIM parameterization in which a term on the right-hand side of equation

(22) is zero if any of the subscripts in parentheses is 1 (Payne, 1986). This is a generalized

linear model with Poisson error, variance function V(fl) fl, link function 9(fl) = log fl and

parameters 131 = ao, 132 = a1(2)' 133 a2(2)' 134 = a3(2)' 135 = a3(3), 136 = a3(4)' 137 = a3(5)'

138 = a12(22), ... ,1320 = a123(225)' The matrix X is a 20 x 20 matrix of ones and zeros with

rows corresponding to cells of the table and columns to parameters. We have X rs = 1 if the

parameter 13s appears in the expression (22) for cell r, and 0 otherwise. The relative risk for

age group k is exp (a12(22) + a123(22k)) = exp (138 + 1315+k)'

The other models correspond to cumulatively setting a123(ijk) = 0, a23(jk) = aand a12(ij) =

orespectively in equation (22). Based on the data and its inherent plausibility, I also consider

the model in which the relative risk is constant up to age 34 and again constant beyond age

35, so that
{a123(221) = a123(222) = a
\. a123(223) = a123(224) = a123(225) ,

(23)

in equation (22).

A standard GLIM analysis is shown in Table 10. Models 3 and 5 seem to be the best,

but choosing between them is not so easy. The deviance difference is 4.7 on 1 degree of

freedom, yielding an approximate P-value of 0.03. Using the standard .5% significance level,

standard practice would be to reject the confounder model 3 in favor of the modifier model

5. However, with the large sample size of about 2,000, it is often recommended that a more

stringent significance level such as 0.01 be used; this would lead to a different conclusion,

and to the adoption of the confounder model 3.
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Table 10: ;,to,lla,ara GLIM ttUi'UVZ:illS

in Table 9.

Model Definition Deviance dJ.
1. No effect of C on M [M][CA] 158.0 9
2. No effect of age on M [MC][CA] 152.8 8
3. Age a confounder [MC][CA](MA] 6..5 4
4. Age a modifier [MCA] 0.0 0
5. Dichotomized age a modifier [MCA2] 1.8 3

NOTE: The variables are defined in Table 9. Standard Goodman notation is used to define
the models (see Bishop, Fienberg and Holland, 1975), so that, for example, [Me] means that
the terms corresponding to the interaction between M and C are present in equation (22),
as well as their lower-order relatives, in this case the main effects of M and C. Model 5 is
defined by equation (23).

The present approach provides a way of taking account explicitly of this model uncer­

tainty, which is important for the quantity of interest. 'With tjJ (1.0,1.65,5.0) we have

2 log B 53 = (-2.0, -2.5, -4.4), so that the evidence is not strong (it slightly favors the con­

founder model 3 over the modifier model 5). Approximate combined posterior distributions

of the relative risk in the youngest age group are shown in Figures 5 and 6. The combined

posterior distribution has a peak at the posterior mode under the confounder model, but

inherits the much longer tail from the modifier modeL The shape of the combined posterior

distribution is fairly insensitive to the precise value of tjJ (Figure 6).
Approximate posterior quantiles are shown in Table 11. An informal simple and con­

servative way of taking account of model uncertainty in this situation might be to take the

union of the two confidence intervals, but this is clearly too wide. Table 11 shows how the

present approach produces intervals that are, in effect, shortened versions of the union of

the two intervals, in a formally justified way.

Schall and Zucchini (1990) analyzed the same data set using the model selection method­

ology of Linhart and Zucchini (1986). Like classical significance testing and the present

Bayesian approach, their methodology did not clearly favour one of the confounder and

modifier models over the other. recommended that "it should be two
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Figure ,5: Posterior distributions of the relative risk for the youngest age group in the
pill/heart attack data for each of the "confounder" and "modifier" models, and for the
Bayesian mixture, with 1.65,
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Figure 6: Posterior distributions of the relative risk for the youngest age group III the
pill/heart attack data from mixing over the models, for three values of <p.

Table 11: Posterior quantiles of the relative risk of myorcardial infarction associated with
oral contraceptive use for the younger age group (2.5-34) under each model individually and
with the Bayesian mixture, for different values of



provides just one inference which takes account of the uncertainty about model structure.

7 Software

An S-PLUS function called "glib" to implement the methodology described here is available

at no cost bye-mail from StatLib. To obtain the software, send the message "send glib from

S" to statlib@stat.cmu.edu.

The software requires specification of the generalized linear model (dependent and inde­

pendent variables, link and error functions) and of a set of values of the prior parameter <jJ,

as well as values for 1/J and 111. It also accepts a list of possible models to be entertained.

The function returns standard GLIM results for each model, together with the prior and

posterior distributions of the parameters for each model and each value of the prior scale

parameter considered. It calculates Bayes factors and posterior model probabilities for each

model. Finally, it produces the posterior probability that each parameter is equal to zero,

and the posterior mean and standard deviation of each parameter from Bayesian model

mixing with equation (4), where ~ is equated to ;3j. The output from this function can

easily be used to do other analyses such as those reported in this paper.

8 Discussion

An accurate, easily implemented and computationally efficient way of calculating Bayes

factors and accounting for model uncertainty in generalized linear models has been developed.

Software to implement it is available bye-mail from StatLib at no cost.

In the examples, I have used normal priors. The literature suggests that the exact prior

form is not very important except in extreme cases (Berger, 1985, p. 151), and this is

confirmed in the case of generalized linear models by numerical experiments not reported

here in detail. This reflects the fact that the prior ordinates in the region where the likelihood

is high are more important than the prior probabilities of sets. Thus, with the approach of

Section the tails of the prior density usually have little effect. For instance, consider a

Cauchy prior in which

p

II (1 +
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= 2, at



as against 1.20 in the normal case. Thus, by this criterion, the two priors are very similar,

with the normal prior being slightly better. A reasonable range for <jJ, in the sense of Section

4.3, is [1 6], and, over this the results from the normal and Cauchy priors for the

examples in this paper are close.

In the examples, I have assumed the regression parameters /32,' .. , to be independent

a priori. The fact that setting some of them equal to zero is envisaged may indicate that

the problem has been parameterized in such a way that the individual parameters have

substantive meaning, in which case prior independence may be justified. The Bayes factors

presented here using the priors given in Section 4.2 are invariant to scale transformations

of the individual independent variables, but not to more general linear transformations. In

numerical experiments I have found the overall results to be insensitive to such transforma­

tions in the examples studied here, but this is not guaranteed in generaL The problem can

be alleviated by replacing U in equation (17) by

where n is the weighted correlation matrix of the independent variables, so that
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in the notation of Section 4.2. This can be viewed as an extension of the idea of g-priors

(Zellner, 1971) from standard regression to generalized linear models.

The priors derived in Section 4.3 depend on the data and involve the values of both the

dependent and independent variables. At first sight this seems to be in conflict with the idea

of a prior. However, my aim has been to develop priors that resemble the carefully assessed

priors of a person with relatively little prior information. It seems that any automatic

procedure for doing this will involve the data at least, as here, to the minimal extent of a

general idea of the broad possible range of the variables, which is likely to be available

advance. suggest that been yielding priors that are on
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One fact which can be useful in summarizing the evidence is that E lO is bounded above as

a function of ¢. It was shown by Raftery (1988b) that with normal priors, E lO is maximized

approximately when ¢ = ¢* = (Sj~j)2/(p - 1)}1/2; the value of E lO corresponding

to ¢ = ¢*, E;o' can be viewed as the maximum evidence in the data for lWI against 1\110

over a class of "objective" priors. Bayes factors tend to favor smaller nested models or "null

hypotheses" more than P-values do, and so ¢* often defines the prior for which Bayes factors

and P-values are in the closest agreement (Berger and Sellke, 1987; Berger and Delampady,

1989). This also suggests a reason for working with normal priors. All unimodal symmetric

distributions with the same center are scale mixtures of normal distributions, and so E;o is

a bound not only over all normal priors but over all unimodal symmetric priors. I

Much of the analysis in Raftery (1988b) was based on E;o' However, here I have preferred

to report the results from a range of reasonable priors, for several reasons. For one, E;o is

merely a bound, and so one should not necessarily prefer AIl to Mo even if E;o is large. Also,

this bound applies when the the smaller model is the null model Mo with only an intercept,

but often the comparisons of most interest do not involve Mo; for these one cannot even

be sure that the log Bayes factor is bounded as a function of ¢. Many practical problems

involve the comparison of more than two models and then it is desirable to have priors that

are consistent with each other, and hence have the same value of ¢ for all models, whereas

¢* is different for each model Nfl' Finally, ¢* often turns out to be less than 1, and, as was

argued in Section 4.3, values of ¢ below 1 can be viewed as unreasonable in the absence of

prior information to the contrary.

The use of Bayes factors when prior information is vague has been criticised on the basis

of "Bartlett's paradox", namely that E lO --+ 0 as ¢ --+ 00, regardless of the data (Bartlett,

1957; Gelfand, Dey and Chang, 1992). The arguments in Section 4.3 suggest that this is

not a strong objection because ¢ --+ 00 is not a reasonable representation of vague prior

information for Bayes factors. Rather, a set of proper priors is compatible with the idea

of vague prior information, and the appropriate action is to report the range of conclusions

resulting from this set. Since the upper bound on ¢ for this set is of moderate size, Bartlett's

paradox seems to have little practical relevance for generalized linear models. In the examples

considered, the conclusions reached changed rather little over this set of priors. This suggests

the context of a or "reference"



One way of calculating Bayes factors with improper priors is the "imaginary training

sample device" of Smith and Spiegelhalter (1980) and Spiegelhalter and Smith (1982); see

also Raftery (1986). Numerical that this works well, in the sense of

giving results close to those from the reference set of proper priors considered here, provided

that the number of degrees of freedom involved in the comparison, PI - po, is small, say up

to about 3. This is the case in most of the published numerical applications of this idea,

including clinical trials (Racine et ai., 1986), Poisson processes (Akman and Raftery, 1986),

change-point problems (Raftery and Akman, 1986) and software reliability (Raftery, 1987,

1988a). However, when the number of degrees of freedom is large, the method seems to

perform less well and to be biased in favor of more complex models.

Akaike (1983), summarizing several earlier publications, wrote that model selection using

the Akaike Information Criterion (AIC) is asymptotically equivalent to choosing the model

with the highest posterior probability, based on the statement that

(24)

an errlCH~ntnu'mb,er. are

This is true, however, only in the rather special situation where prior information increases

as more data is acquired, at the same rate as the information in the likelihood; I am not

assuming this here. For the examples in this paper, the approximation (24) was poor.

I have assumed that the number of models considered, (K +1), is small enough that it is

feasible to evaluate equation (4) directly. This is often not the case, however, as in regression

with many candidate independent variables or in graphical models of multivariate structure

(Whitaker, 1990), when the number of models can be gigantic. Two algorithmic approaches

to evaluating equation (4) in such cases are as follows. One is to design a Markov chain Monte

Carlo algorithm that moves through the entire model space (but not the parameter space),

eventually sampling each model with a frequency proportional to its posterior probability

(Madigan and York, 1992; Madigan, Raftery, York, Bradshaw and Almond, 1993).

The other approach argues that equation (4) is not, in fact, a satisfactory representation

of model uncertainty (Madigan and Raftery, 1991). Instead, it is argued that models that

are far less likely than the best model should be excluded from the sum in equation (4), as

should any model that which there is no positive that has

a more it. are n"" .. 'O>'



Appendix: Justification for the Approximation (9)

The Laplace approximation (8) implies that

2 log Bw = 2 {il (Od io(00 }+2 {AI (Od - Ao(00 }+log IWll-log IWo!+(Pl-Po) log(21r )+O(n-l ).

(25)

From now on I drop the model subscripts 0 and 1 for clarity. One step of Newton's method

yields the approximation

o ~ 0- hff(Brlh'(O). (26)

Now h(B) = i(B) + A(B) and so hff(B) ~ -(F + G) (e.g. Berger, 1985, p. 224), and h'(B) =

i'(B) + A'(B) = A'(B). Thus equation (26) becomes

o~ B+ (F +G)-l A'(B).

Also, by Taylor's theorem,

i(O) ~ i(B) + HO - B)Ti"(B)(O - B)

~ i(B) - !A'(Bf(F + G)-lF(F + G)-l A'(B),

(27)

(28)

using (27) and the fact that iff (B) ~ - F (this is exact if F is observed Fisher information

and approximate if F is expected Fisher information). Similarly,

(29)

Further, W ~ -(F + G)-l (e.g. Berger, 1985, p.224), and substituting this, (28) and (29)

into (25) yields (10).

When the prior is normal, i.e. B f'V N(w, ~V), then

A(B) = poglGI- HB -w?G(B -w) - ~log(21r),

A'(B) - -G(B - w).

Substituting (30) and (31) into (10) yields (11).
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there is overdispersion, to compare link functions, and to compare error distributions and
variance functions.

The methods can be used to implement the Bayesian approach to accounting for model
uncertainty. I describe an application to inference about relative risks in the presence of
control factors where model uncertainty is large and important. Software to implement the
methods is available at no cost from StatLib, and it is briefly described here.


