



















































































as before. Equation (9) becomes
2log By = 31 + (B2 ~ Er). (20)

In equation (20),
Xai = (07" DV — 03" DVa) + 2(6™ - ), (21)

where (32" is the maximal log-likelihood achievable with the link function and error distri-
bution of model My (k = 1,2); this will typically be the log-likelihood under the saturated
model. In equation (21), o} is the dispersion parameter for M}, which is either known or
estimated as in Section 5.1. In equation (20), Ej is given as before by equation (10). The
other approximations, (12) and (15), can be similarly modified for the comparison of variance

functions and error distributions.

6 Application: Model Uncertainty in Log-linear Mod-
els and Inference about Relative Risks with Control
Factors ‘

The relative risk or odds ratio is a much used measure of association between a disease and
a risk factor. There are often also control factors such as age (or gender or race) which may
be associated with the disease, the risk factor or both. One then has to decide whether
to estimate a separate relative risk for each age group, a single but age-adjusted relative
risk, a single non-age-adjusted relative risk, or a single relative risk equal to 1. These four
options correspond to different statistical models which say respectively that the association
of disease and risk factor varies by age group (in which case age is said to be a modifier;
Schlesselman, 1982), that the association of disease and risk factor is the same for all age
groups but that age is also a risk factor (in which case age is a confounder), that age is not
a risk factor, and finally that the risk factor and the disease are independent.

Table 9 shows the data from a case-control study of the relation between myorcardial
infarction (heart attack) and recent oral contraceptive (pill) use (Shapiro et al., 1979). Each
of the four models corresponds to a particular log-linear model for the cell counts (Bishop,

Fienberg and Holland, 1975). The most complex model, in which age is a modifier, is
log mijk = ao + 10y + ayy + asey + Giagy) + Gsiry + Q2siry + Gras(iie- (22)

where my;; is the expected number of women in pill use category i, heart attack category j

and age group k (1,7 =1,2; k=1,...,5).



Table 9: 1,976 women cross-classified by recent oral contraceptive use (C), myorcardial
infarction (M), and age (A). Ctl indicates the control group. Source: Shapiro et al. (1979).

Age 25-29 30-34 35-39 40-44 45-49

M Ctl M| Ctl M|Ctl M| Ctl M| Ctl M
C:No || 224 2139 12330 33362 65301 93
C:Yes) 62 4] 33 9| 26 4 9 6 5 6

I use the GLIM parameterization in which a term on the right-hand side of equation
(22) is zero if any of the subscripts in parentheses is 1 (Payne, 1986). This is a generalized
linear model with Poisson error, variance function v(p) = g, link function g(g) = log i and
parameters 81 = ao, B2 = ai(2), B3 = a2(2), By = a3(2), Bs = a3(3), Bs = as(4), Br = asz(s)
Bs = a12(22), --. P20 = @123(225). The matrix X is a 20 x 20 matrix of ones and zeros with
rows corresponding to cells of the table and columns to parameters. We have z,, = 1 if the
parameter (3, appears in the expression (22) for cell r, and 0 otherwise. The relative risk for
age group k is exp (a12(22) + ams(zzk)) = exp (Bs + Pis+k)-

The other models correspond to cumulatively setting a123(i55) = 0, @23(ix) = 0 and aqy5) =
0 respectively in equation (22). Based on the data and its inherent plausibility, I also consider
the model in which the relative risk is constant up to age 34 and again constant beyond age
35, so that

{ Q123(221

{ %123(223

= @123(222) — 0 (23)

; = Gi23(224) = @123(225) ’
in equation (22).

A standard GLIM analysis is shown in Table 10. Models 3 and 5 seem to be the best,
but choosing between them is not so easy. The deviance difference is 4.7 on 1 degree of
freedom, yielding an approximate P-value of 0.03. Using the standard 5% significance level,
standard practice would be to reject the confounder model 3 in favor of the modifier model
5. However, with the large sample size of about 2,000, it is often recommended that a more
stringent significance level such as 0.01 be used; this would lead to a different conclusion,
and to the adoption of the confounder model 3.

One might hope that with such a large sample size, two models between which the data do
not clearly distinguish would give similar results about quantities of interest. However, that
is not the case here. The estimated relative risk in the youngest age group is 4.0 under model
3, and 8.5, i.e. more than twice as much, under model 5; the corresponding approximate
95% confidence intervals are [2.4,6.5] and [3.7,19.4].



Table 10: Standard GLIM analysis of the oral contraception and myorcardial infarction data
in Table 9.

Model Definition Deviance d.f.
1. No effect of C on M [M][CA] 1580 9
2. No effect of age on M [MC][CA] 1528 8
3. Age a confounder IMC][CA]MA] 6.5 4
4. Age a modifier [MCA] 00 0
5. Dichotomized age a modifier [MCA,] 1.8 3

NOTE: The variables are defined in Table 9. Standard Goodman notation is used to define
the models (see Bishop, Fienberg and Holland, 1975), so that, for example, [MC] means that
the terms corresponding to the interaction between M and C are present in equation (22),
as well as their lower-order relatives, in this case the main effects of M and C. Model 5 is
defined by equation (23).

The present approach provides a way of taking account explicitly of this model uncer-
tainty, which is important for the quantity of interest. With ¢ = (1.0,1.65,5.0) we have
2log Bsz = (—2.0,—2.5,—4.4), so that the evidence is not strong (it slightly favors the con-
founder model 3 over the modifier model 5). Approximate combined posterior distributions
of the relative risk in the youngest age group are shown in Figures 5 and 6. The combined
posterior distribution has a peak at the posterior mode under the confounder model, but
inherits the much longer tail from the modifier model. The shape of the combined posterior
distribution is fairly insensitive to the precise value of ¢ (Figure 6).

Approximate posterior quantiles are shown in Table 11. An informal simple and con-
servative way of taking account of model uncertainty in this situation might be to take the
union of the two confidence intervals, but this is clearly too wide. Table 11 shows how the
present approach produces intervals that are, in effect, shortened versions of the union of
the two intervals, in a formally justified way.

Schall and Zucchini (1990) analyzed the same data set using the model selection method-
ology of Linhart and Zucchini (1986). Like classical significance testing and the present
Bayesian approach, their methodology did not clearly favour one of the confounder and
modifier models over the other. They recommended that “it should be reported that two
competing models exist (which itself may be interesting), and summary statistics like the
estimated odds ratio for all competing models, not just the selected ‘best’ model, should be
presented”. The problem with this is that the user ends up with two different, and possibly

conflicting, inferences and no clear guidance on what to do with them. The present approach

26



Posterior density

<
e T Confounder
........... MOdiﬁer .
™ —— Bayesian mixture
S
o
g
g 4N e
o § ST e T
O T H i I ]
0 5 10 15 20
Relative risk

Figure 5: Posterior distributions of the relative risk for the youngest age group in the
pill/heart attack data for each of the “confounder” and “modifier” models, and for the
Bayesian mixture, with ¢= 1.65.
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Figure 6: Posterior distributions of the relative risk for the youngest age group in the
pill/heart attack data from mixing over the models, for three values of ¢.

Table 11: Posterior quantiles of the relative risk of myorcardial infarction associated with
oral contraceptive use for the younger age group (25-34) under each model individually and
with the Bayesian mixture, for different values of ¢.

] Quantile

: 025 .5 975
Confounder 1.65] 24 4.0 6.5
Dichotomized age a modifier | 1.65 | 3.7 8.5 19.4
Mixture 1.65 1 25 44 17.1
Mixture 1 2.5 45 179
Mixture 5 2.5 4.1 137

o
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provides just one inference which takes account of the uncertainty about model structure.

7 Software

An S-PLUS function called “glib” to implement the methodology described here is available
at no cost by e-mail from StatLib. To obtain the software, send the message “send glib from
S” to statlib@stat.cmu.edu.

The software requires specification of the generalized linear model (dependent and inde-
pendent variables, link and error functions) and of a set of values of the prior parameter ¢,
as well as values for ¢ and 1. It also accepts a list of possible models to be entertained.

The function returns standard GLIM results for each model, together with the prior and
posterior distributions of the parameters for each model and each value of the prior scale
parameter considered. It calculates Bayes factors and posterior model probabilities for each
model. Finally, it produces the posterior probability that each parameter is equal to zero,
and the posterior mean and standard deviation of each parameter from Bayesian model
mixing with equation (4), where A is equated to ;. The output from this function can

easily be used to do other analyses such as those reported in this paper.

8 Discussion

An accurate, easily implemented and computationally efficient way of calculating Bayes
factors and accounting for model uncertainty in generalized linear models has been developed.
Software to implement it is available by e-mail from StatLib at no cost.

In the examples, I have used normal priors. The literature suggests that the exact prior
form is not very important except in extreme cases (Berger, 1985, p. 151), and this is
confirmed in the case of generalized linear models by numerical experiments not reported
here in detail. This reflects the fact that the prior ordinates in the region where the likelihood
is high are more important than the prior probabilities of sets. Thus, with the approach of
Section 4, the tails of the prior density usually have little effect. For instance, consider a

Cauchy prior in which

»
pr(y) = pr(n)(m)* D [T(1 +47/8%)7",
=2
in the notation of Section 4.2. Jeffreys (1961} argued for a similar prior with ¢ = 1. Then the

arguments of Section 4.3 indicate that R(¢) = S(¢) when ¢ = 2, at which point R(¢) = 1.25,



as against 1.20 in the normal case. Thus, by this criterion, the two priors are very similar,
with the normal prior being slightly better. A reasonable range for ¢, in the sense of Section
4.3, i1s [1,6], and, over this range, the results from the normal and Cauchy priors for the
examples in this paper are very close.

In the examples, I have assumed the regression parameters j,, ..., 3, to be independent
a priori. The fact that setting some of them equal to zero is envisaged may indicate that
the problem has been parameterized in such a way that the individual parameters have
substantive meaning, in which case prior independence may be justified. The Bayes factors
presented here using the priors given in Section 4.2 are invariant to scale transformations
of the individual independent variables, but not to more general linear transformations. In
numerical experiments I have found the overall results to be insensitive to such transforma-
tions in the examples studied here, but this is not guaranteed in general. The problem can

be alleviated by replacing U in equation (17) by
¥ 0 - 0
0

Ut = :
¢*Q

where (2 is the weighted correlation matrix of the independent variables, so that

Qe = 3 wilay — 2;)(wi — 2x)/ (Sjé’k sz) ;
in the notation of Section 4.2. This can be viewed as an extension of the idea of g-priors
(Zellner, 1971) from standard regression to generalized linear models.

The priors derived in Section 4.3 depend on the data and involve the values of both the
dependent and independent variables. At first sight this seems to be in conflict with the idea
of a prior. However, my aim has been to develop priors that resemble the carefully assessed
priors of a person with relatively little prior information. It seems that any automatic
procedure for doing this will involve the data at least, as here, to the minimal extent of a
general idea of the broad possible range of the variables, which is likely to be available in
advance. The examples suggest that the aim has been achieved, yielding priors that are on
broadly on the right general scale for the problem, well spread out without being ridiculously
so, and leading to conclusions that are relatively insensitive to the prior scale parameter,
in a qualitative sense. The fact that they are slightly data-dependent seems not to be a

disadvantage in any practical sense.
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One fact which can be useful in summarizing the evidence is that Bjg is bounded above as
a function of ¢. It was shown by Raftery (1988b) that with normal priors, Bjo is maximized
approximately when ¢ = ¢* = {Z?zg(é’jﬁj)z/(p — 1)}'/%; the value of By corresponding
to ¢ = ¢, Bj,, can be viewed as the maximum evidence in the data for M; against M,
over a class of “objective” priors. Bayes factors tend to favor smaller nested models or “null
hypotheses” more than P-values do, and so ¢™ often defines the prior for which Bayes factors
and P-values are in the closest agreement (Berger and Sellke, 1987; Berger and Delampady,
1989). This also suggests a reason for working with normal priors. All unimodal symmetric
distributions with the same center are scale mixtures of normal distributions, and so By, is
a bound not only over all normal priors but over all unimodal symmetric priors.!

Much of the analysis in Raftery (1988b) was based on Bj,. However, here I have preferred
to report the results from a range of reasonable priors, for several reasons. For one, By, is
merely a bound, and so one should not necessarily prefer M; to My even if By, is large. Also,
this bound applies when the the smaller model is the null model My with only an intercept,
but often the comparisons of most interest do not involve My; for these one cannot even
be sure that the log Bayes factor is bounded as a function of ¢. Many practical problems
involve the comparison of more than two models and then it is desirable to have priors that
are consistent with each other, and hence have the same value of ¢ for all models, whereas
¢* is different for each model M;. Finally, ¢* often turns out to be less than 1, and, as was
argued in Section 4.3, values of ¢ below 1 can be viewed as unreasonable in the absence of
prior information to the contrary.

The use of Bayes factors when prior information is vague has been criticised on the basis
of “Bartlett’s paradox”, namely that Bjp — 0 as ¢ — oo, regardless of the data (Bartlett,
1957; Gelfand, Dey and Chang, 1992). The arguments in Section 4.3 suggest that this is
not a strong objection because ¢ — oo is not a reasonable representation of vague prior
information for Bayes factors. Rather, a set of proper priors is compatible with the idea
of vague prior information, and the appropriate action is to report the range of conclusions
resulting from this set. Since the upper bound on ¢ for this set is of moderate size, Bartlett’s
paradox seems to have little practical relevance for generalized linear models. In the examples
considered, the conclusions reached changed rather little over this set of priors. This suggests
that, in the context of model comparison, the idea of a single “noninformative” or “reference”
prior (Jeffreys, 1961; Bernardo, 1979; Berger and Bernardo, 1989} be replaced by that of a

reference set of proper priors.

1 am grateful to Rob Kass for pointing this out to me.
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One way of calculating Bayes factors with improper priors is the “imaginary training
sample device” of Smith and Spiegelhalter (1980) and Spiegelhalter and Smith (1982); see
also Raftery (1986). Numerical experiments suggest that this works well, in the sense of
giving results close to those from the reference set of proper priors considered here, provided
that the number of degrees of freedom involved in the comparison, p; — po, is small, say up
to about 3. This is the case in most of the published numerical applications of this idea,
including clinical trials (Racine et al., 1986), Poisson processes (Akman and Raftery, 1986),
change-point problems (Raftery and Akman, 1986) and software reliability (Raftery, 1987,
1988a). However, when the number of degrees of freedom is large, the method seems to
perform less well and to be biased in favor of more complex models.

Akaike (1983), summarizing several earlier publications, wrote that model selection using
the Akaike Information Criterion (AIC) is asymptotically equivalent to choosing the model
with the highest posterior probability, based on the statement that

210g Blg ~ X2 e 2(}71 — po). (24)

This is true, however, only in the rather special situation where prior information increases
as more data is acquired, at the same rate as the information in the likelihood; I am not
assuming this here. For the examples in this paper, the approximation (24) was poor.

I have assumed that the number of models considered, (K + 1), is small enough that it is
feasible to evaluate equation (4) directly. This is often not the case, however, as in regression
with many candidate independent variables or in graphical models of multivariate structure
(Whitaker, 1990), when the number of models can be gigantic. Two algorithmic approaches
to evaluating equation (4) in such cases are as follows. One is to design a Markov chain Monte
Carlo algorithm that moves through the entire model space (but not the parameter space),
eventually sampling each model with a frequency proportional to its posterior probability
(Madigan and York, 1992; Madigan, Raftery, York, Bradshaw and Almond, 1993).

The other approach argues that equation (4) is not, in fact, a satisfactory representation
of model uncertainty (Madigan and Raftery, 1991). Instead, it is argued that models that
are far less likely than the best model should be excluded from the sum in equation (4), as
should any model that contains effects for which there is no positive evidence, i.e. that has
a clearly more likely model nested within it. The remaining models, which are typically few
in number, are said to belong to “Occam’s window”, and an efficient algorithm for finding

them is described by Madigan and Raftery (1991).
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Appendix: Justification for the Approximation (9)

The Laplace approximation (8) implies that

2log Bio = 2 {€1(6) — €o(fo}+2 {1(01) — Xo(0o }+log | ¥y | ~log [Wo|+(p1—po) log(27)+O(n™).
(25)
From now on I drop the model subscripts 0 and 1 for clarity. One step of Newton’s method
yields the approximation
b~ 86— h"6)"h (). | (
Now h(6) = £(0) + X(0) and so h"() ~ —(F + G) (e.g. Berger, 1985, p. 224), and #'(d) =
¢(6) + N(6) = N(§). Thus equation (26) becomes

-~ ~

I~ b+ (F+ G (D). (27)
Also, by Taylor’s theorem,
() ~ ) +3(0-0)"e"(0)0-0)
() — N (O (F + G)T'F(F + G)X(D), (28)

~

using (27) and the fact that £/(8) =~ —F (this is exact if F' is observed Fisher information
and approximate if F' is expected Fisher information). Similarly,
M) = A(0) + N(O)T(F + G)'N(D). (29)
Further, ¥ =~ —(F + G)™! (e.g. Berger, 1985, p.224), and substituting this, (28) and (29)
into (25) yields (10).
When the prior is normal, i.e. § ~ N(w, W), then

A0) = tlog|Gl—4(0 — w)"G(0 — w) — ¢log(2n), (30)

N(O) = —G(0—w). (31)
Substituting (30) and (31) into (10) yields (11).
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