






















Let Cl, .. ' Cr be the decomposition of D into inclusion-maximal connected components,
and suppose that v E Ct. Then

P(XD iD) P(XD\{v} = iD\{v}) - P(XD\{v} = iD\{v}, Xv = 0)

= [P(XCt\{v} = iCt\{v}) P(XCt\{v} = ict\{v} , Xv = 0)]

x IT P(XCj = iCj)
j#

r

= IT P(XCj = iCj)
j=l

The second equality follows from the induction hypothesis applied to i D\{v}, and to
7;D = (iD\{v}, 0) since both vectors contain less than k ones. Hence, we have shown that
(5.6) holds true for all disconnected sets D ~ V, which in conjunction with Lemma 5.4
concludes the proof. 0

Let C(G) be the family of non-empty connected sets of G. Let Ta be the set of
vectors (qC 1 C E C(G)) E JRC(a) of Mobius parameters of connected sets that are such
that there exists a vector ii = (iiA 10 =1= A ~ V) E Qa with iic = qc for all C E C(G).

Definition 5.5. The connected set Mobius parameterization of the model P(G) is the
polynomial map va : Ta -+ P(G) defined by setting Mobius parameters of disconnected
sets equal to the expression in (5.4), obtaining a vector q E Qa, and setting p = v(q) E

P(G). The set Ta is the parameter space for the connected set Mobius parameters
(qC ICE C(G)).

Our parametrization is not 1lariation independent vlhich presents obvious difficulties
for fitting. However, we will show that this problem may be finessed by applying the
Iterative Conditional Fitting algorithm (Drton and Richardson, 2004a).

Corollary 5.6. The dimension of the model P(G) equals dim(P(G)) = IC(G)I, the
number of non-empty connected sets in G.

In contrast the dimension of the (binary) graphical log-linear model based on the
undirected graph with the same edges as G would be equal to the number of non-empty
complete sets in G. Here a set A ~ V is complete if any two vertices in A are adjacent.
Since every complete set is connected, the dimension of the model P (G) is always larger
than or equal to the dimension of the corresponding graphical log-linear model; compare
Figure 2.

The definition of the connected set Mobius is clearly not under
e-l,ab,~llingof the two states taken by the random However, since the model

P (G) is defined purely in tenns of independence relations, we have:
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Figure 2: Cumulative number of models per dimension for m = 6 binary variables.

Corollary 5.7. The model P (G) parametrized by the connected set parameters is in
variant to the choice of state used to define the connected set Mobius parameters.

Theorem 5.8. The family

P +(G) = {p E P (G) : p(i) > 0 for all i E I}

of distributions with positive joint cell probabilities in the binary bi-directed graph model
P(G) forms a curved exponential family.

Proof. The map VG from the set of connected set Mobius parameters TG to joint cell
probabilities P (G) is a polynomial map, hence Coo, i.e. infinitely differentiable. The
inverse map J1, from P(G) to TG is linear, hence also Coo. It follows that v is a diffeomor
phism. This is sufficient since it is well-known that there is a diffeomorphism between the
set of positive joint cell probabilities parameters) and the log-linear parameters
(natural parameters of the exponential family); compare Kass and Vos (1997). 0
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6 Maximum Likelihood Estimation

Assume we observe a sample of size n drawn from a distribution p in the binary bi
directed graph model P(G), giving rise to multinomially distributed counts N(i), i E
X. (For the link to Poisson sampling see Lauritzen, 1996, §4.2.1.) The probability of
observing the particular counts n(i) E No, i E X, is equal to

P(N(i) = n(i), i EX) = n!. IIp(i)n(i),
TIiEIn(~) iEI

(6.1)

(6.2)

where we set 00 := 1. Hence, the likelihood function for the model P(G) is the map

L: P(G) -+ R

pi-7 n!. IIp(i)n(i).
TIiEI n(~) iEI

Proposition 6.1. An MLE of p E P(G) always exists.

Proof. As a subset of the probability simplex b., the model P(G) is bounded. It is
also closed, hence compact, which in conjunction with the continuity of the likelihood
function implies the claim. Closedness follows from the fact that if for two sets A, B <;;;:

V, XAlLXB under a sequence of probability distribution Pn with vector of joint cell
probabilities Pn E b., then under a probability distribution P corresponding to a limit
point p E b. of the sequence (Pn) it is also true that XAlLXB; compare Lauritzen (1996,
Prop. 3.12). 0

If all counts n(i), i E X, are positive, then an MLE of P E P(G) will actually have
positive joint cell probabilities, Le. lie in P +(G). An open question is when an MLE
exists in P +(G) if some of the counts n(i) are zero. For recent work on the analogous
question in the case of hierarchical log-linear models see Eriksson et al. (2005). Despite
that Drton and Garcia (2005) showed uniqueness of the MLE in the bi-directed four
chain, we do not generally expect the MLE to be unique, in the sense of being the only
stationary point of the likelihood function.

Ignoring an additive constant the log-likelihood function for the model P (G) is the
map

e: P(G) -+ R

pi-7 L
iEI
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logp(i). (6.3)



(6.4)

8£
=8qE

Using Lemma A.I, we can express the likelihood function also as

£: Qa -t lR

qr-+ 2: n(IA,OV\A) log [ 2: (_I)IAnBiqB],

A<;V B:V\A<;B

where q0 = 1. Further, £(q) can be written in terms of the connected set Mobius
parameters (qC ICE C(G)) by replacing qB for a disconnected set B by the appropriate
product of connected set Mobius parameters; see (5.4). The derivation of the likelihood
equations and the Fisher-information for any given model is straightforward. Define,
p~ = p(XB = 0, XV\B = 1) and more generally, if B ~ W define p~ = P(XB

0, X W\B = 1). Similarly define n~ to be the frequency of observations in which X B = 0,
and XV\B = 1.

Corollary A.4. The set of likelihood equations associated with the model P(G) are

'" (_I)IE\BI n~ V\(Eusp(E)) - 0
L....t VPB\E-

B:sp(E)n(B\E)=0 PB

for every (non-empty) connected set E in P(G).

The likelihood equations may be re-expressed in terms of expectations with respect
to conditional empirical measures (provided these exist):

JExV\(SP(E)\E)lxsP(E)\E=l [( _I)L:iEExi P (XEUsp(E) IXV\(EUSP(E))f
1

] = 0

where lExV\(SP(E)\E)lxsP(E)\E=l is expectation w.r.t. the measure on IV\(sp(E)\E) given by
(normalizing) the empirical frequencies in the sub-table in which Xsp(E)\E = 1.

Having written the log-likelihood function as a function of the parameters (qC I
C E C(G)), it could be maximized in a standard gradient-based ascent method, such as
the Newton method. In such an ascent method it would have to be checked repeatedly
whether a step along a search directions remains in the set Ta. This check would have to
consider the many inequalities defining the Mobius polytope Q. Furthermore, employing
second-derivative information for larger graphs might be computationally expensive since
the Hessian matrix is not diagonal.

In the sequel, we provide an alternative approach to fitting the model P(G) by
gradient ascent, namely the binary analogue to the Iterative Conditional Fitting (ICF)
algorithm that was developed for ML fitting of marginal independence models in a
Gaussian framework (Drton and Richardson, 2003, 2004a,b). This binary ICF a
role dual to the Iterative Proportional Fitting (IPF) algorithm used to fit hierarchical
log-linear models.
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Future computational experiments and practice will have to show whether or not ICF
has computational advantages over the direct application of a gradient-based ascent
method. This is a similar question to whether one should use IPF or for example a
Newton method to fit hierarchical log-linear models. Note, however, that ICF does
not rely on a parameterization but treats the model-defining marginal independences
as constraints. Thus, it may also be applicable if patterns of marginal independence
different from the ones induced by the connected set Markov property of a bi-directed
graph are considered. In such more general marginal independence patterns it might be
difficult to parameterize the model (though this would leave open the possibility that
such a model was not a curved exponential family).

7 Iterative Conditional Fitting

The ICF algorithm proceeds by cycling through the vertex set V. At the update step
for variable v E V the marginal distribution pX-v of the variables -v = V \ {v} is fixed,
and the conditional parameters of pXvlx-v required to determine the joint distribution
pXv are estimated. In this presentation ofICF, we assume that all observed counts n(i),
i E I, are positive, which in particular entails that they were drawn from a distribution
pEP+(G). Moreover, maximizing the likelihood function over P (G) is equivalent
to maximizing it over the submodel P +(G). Therefore, we can assume that all joint
distributions P considered in the sequel have positive joint cell probabilities p(i) > 0.
The case of zero counts will be considered in future work.

7.1 Conditional Parameters To Be Estimated in an ICF Step

For fixed marginal probability P{X-v = Lv}, the joint cell probability P(Xv = iv, X-v =
Lv) = 0, i E I, is determined by the conditional parameter

Let I-v = {O,l}V-l. Then there are II-vi = 2V- 1 many parameters Ov(Lv). Notice
that if v E D then

P(XD = 0) = L P(XB = O,XV\B = 1)
B:Dr;B

L Ov(Lv)P(X-v =
o-v-\" H\l v, ,,- V '\H )EI-v : Dr;B

This is a construction which we will make use of in the next section.

(7.1)

(7.2)



7.2 Constraints on Conditional Parameters

In this section we consider the set of constraints on the conditional distribution pXviX - v

that are imposed via a binary bi-directed graph model P (G). A specific aim here is to
specify a non-redundant set of constraints. Redundancy will be avoided by focusing on
constraints of the form (5.4), rather than conditional independence relations.

Specifically, suppose that D is a disconnected set, and that C is the inclusion-maximal
connected subset of D containing v, let B = D \ C. By equation (5.4) we require

P(XD = 0) = P(Xc = O)P(XB = 0). (7.3)

Note that B may not be connected, so the model may require further factorization of
P(XB = 0). However, this only imposes a constraint on the fixed P(X-v) margin, and
so does not concern us here. We now express the constraint (7.3) in the form:

P(Xv = 0 IXD\{v} = O)P(XD\{v} = 0)

= P(Xv = 0 i XC\{v} = O)P(XC\{v} = O)P(XB = 0). (7.4)

(It is implicit here that if C \ {v} = 0 then the second term on the right hand side is
omitted.) Observe that only the first terms on each side depend on OvO. The first term
on the left hand side of (7.4) may be expressed as:

P(Xv = 0 IXD\{v} = 0)

= L P(Xv = O,XV\D = j* IXD\{v} = 0).
j'E{O,1}v\D

L (}v(XV\D =j*,XD\{v} =O)P(XV\D =j* I XD\{v} =0).
j'E{O,l}V\D

Similarly, the first term on the right hand side of (7.4) may be expressed as:

(7 e:\
I, I .vJ

P(Xv = 0 i XC\{v} = 0)

L Ov(XV\C = j**,XC\{v} = O)P(Xv\C = j** i XC\{v} = 0). (7.6)
j"E{O,l}V\C

Now, if the set D \ {v} was connected, then C and B would also be connected,
contrary to the assumption. Since in the IeF algorithm we assume that all constraints
on the marginal distribution of XV\{v} hold, it follows that:

= 0) P(XB = O)P(XC\{v} = 0).
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(Again, both C \ {v} and B may not be connected, so these terms may factorize fur
ther.) Since these terms are non-zero, they cancel from both sides of (7.4), leaving the
constraint:

L (;Iv(j*, OD\{v})P(Xv\D = j* IXD\{v} = 0)
j*E{O,l}V\D

= L (;Iv(j**, OC\{v})P(Xv\C = j** IXC\{v} = 0) (7.7)
j**E{O,l}V\C

It is important to note that for fixed margin pX-v the constraints (7.7) are linear in the
conditional parameters (;Iv.

The full set of constraints on the (;Iv parameters may be obtained by considering
every disconnected set D containing v and identifying the inclusion-maximal connected
set C C D containing v. We conjecture that the constraints (7.7) are non-redundant if
the fixed marginal distribution pX-v is in "general" position but for a particular choice
of pX-v redundancy may be possible.

Proposition 7.1. The number of constraints that have to be imposed in the ICF update
step for the given vertex v, is at most equal to the number of disconnected (non-empty)
subsets of V that contain v.

Let
::Dv = {D : D ~ V, v ED, D is disconnected}.

For each set DE ::D v , we define Cv(D) to be the inclusion-maximal connected subset of
D containing v.

Algorithm 7.2. The ICF update for vertex v can be implemented as follows:

(1) Identify the set ::Dv •

(2) For each D E ::D v identify the inclusion-maximal connected subset Cv(D) contain
ing v.

(3) Construct the::Dv x I-v constraint matrix A = (ars ), where for each pair (Dr,js) E

::Dv x I-v we set

=0)

Here is the indicator function.
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(4) Maximize the strictly concave conditional log-likelihood function

max I: n(Lv, 0) log O(Lv) + n(i_v, 1) log{1 - O(i-v)}
LvEI-v

subject to the linear constraints AO = 0, where 0 = (O(Lv) I i-v E I-v) is the
vector of all conditional parameters. (If all counts are positive, the constraints
oE [O,IJL v need not be considered explicitly.)

(5) Reconstruct the joint distribution P(Xv ) as

if iv = 0,
if i v = 1.

7.3 Solving the Linearly Constrained Optimization Problem

The optimization problem in step (4) of the ICF update has a unique local maximum
and is not difficult to solve. One very simple solution method is the gradient projec
tion method (Bertsekas, 1999, §2.3). This method proceeds by a line search along the
direction of the gradient after projection on the linear space

{O E ~-v lAO = O}.

A line search based on the Armijo-rule yields that the gradient projection method con
verges.

The computation of the 2V - 1 x 2V - 1 projection matrix 1- A'(AA')-lA requires
the inversion of the ;ov x ;ov matrix AA'. However, the projection matrix has to be
computed only once in order to solve the optimization problem in step (4) of Algorithm
7.2. Should the matrix AA' not be of full rank then the projection matrix has to be
computed by using a generalized inverse.

Since the Hessian of the conditional log-likelihood function maximized in step (4)
of Algorithm 7.2 is diagonal it is also feasible to employ second derivative information
in a projected Newton method, in which 0 is scaled by the matrix with diagonal ele
ments equal to one over the square root of the diagonal elements of the Hessian. Since
the Hessian depends 0, the projection matrix in a projected Newton method has to be
recomputed every 0 is updated. However, based on our experience with our implementa
tion of ICF in the statistical programming environment R (R Development Core Team,
2004), employing the Hessian information seems slightly beneficial. Finally, it should be
noted that other approaches to solving the maximization problem such as interior point
methods (Bertsekas, 1999, §4.4) are possible.

Example 7.3 (Twin Data). We now return to the twin data introduced in §2. The
fitted distribution under the joint hypothesis: , is shown in Table 2.
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Estimates for the associated connected set Mobius parameters and asymptotic standard
errors, obtained by inverting the observed information matrix, are shown in Table 3.
Assuming multinomial sampling, the LR test rejects the independence model in favour
of the saturated model (p-value 0.0003). This should be compared to the nominal p
values achieved by testing each marginal independence separately and then combining
tests via the Union-Intersection test that is based on the maximum of the two separate
test statistics. This results in a (Bonferroni adjusted) p-value of 0.0065 from Fisher's
Exact Tests, and of 0.0062 from LR tests.

D2 =0 D2 = 1 D2 =0 D2 = 1

A2 =0
0.4614 0.1378 0.1593 0.0956

(0.4824) (0.1340) (0.1541) (0.0854)
Al = 0 0.0319 0.0211 0.0077 0.0115

A2 = 1
(0.0251) (0.0151) (0.0117) (0.0168)

A2 =0
0.0176 0.0040 0.0196 0.0094

(0.0134) (0.0067) (0.0134) (0.0151)
Al = 1 0.0100 0.0024 0.0054 0.0054

A2 = 1
(0.0050) (0.0034) (0.0067) (0.0117)

Table 2: MLE for cells under AIJlD2, A2JlDI; empirical distribution in parenthesis.

qAl = 0.9262 ± 0.0137, qA2 = 0.9047 ± 0.0148,
fiDl 0.6861 ± 0.0202, qD2 0.7129 ± 0.0195,

qAIA2 0.8540 ± 0.0174, qAIDl 0.6522 ± 0.0205,
qA2D2 = 0.6579 ± 0.0203, qDID2 0.5209 ± 0.0212,

qAIA2 Dl = 0.5991 ± 0.0194, qAIA2 D2 0.6207 ± 0.0200,
qAIDID2 0.4933 ± 0.0203, qA2 DID2 = 0.4790 ± 0.0198,

= 0.4614 ±

Table 3: Connected set parameters and standard errors for the model A IJlD2, A2JlDI.

Example 7.4 (Parole Data). For a second example, we consider the data in Table 4.
right graph in Figure 3 represents the hypothesis:

ageJlparole success and drug de1Jendej~c9!Jl{ type of offense,

Recall that for random variables the latter independence statement is different



Success

Drugs

Type of offense

Prior sentence

Age

Figure 3: A bi-directed graph representing a marginal independence model for the data
in Table 4.

from the composition of the two pairwise independences drug dependency Jl type of
offense and drug dependency Jl prior sentence.

Assuming that the data in Table 4 arose in multinomial sampling, we obtain a
deviance of 4.85 over 4 degrees of freedom, when compared to the saturated model of
no independence. Thus the model is not contradicted by the data. As an aside, we note
that backward stepwise search among undirected models, and the Edwards-Havranek
procedure both lead to a saturated model for this dataset (see Edwards and Havanek,
1985; Edwards, 2000).

No drug or alcohol dependency Drug and/or alcohol dependency
25 or older Under 25 25 or older Under 25

Person Other Person Other Person Other Person Other
offense offense offense offense offense offense offense offense

No Prior Sentence of Any Kind
Success 44 34 29 58 47 38 37 53
Failure 1 7 7 5 1 2 4 24

Prior Sentence
Success 111 253 131 320 202 392 103 294
Failure 27 55 25 93 46 215 34 102

Table 4: Data from a study of parole success (Fienberg, 1980, p.93)



8 Related Work and Discussion

As mentioned in the introduction several authors worked on binary models with marginal
independence structure. Using the multivariate logistic (m-Iogit) transformation due to
Glonek and McCullagh (1995); McCullagh (1989); McCullagh and NeIder (1989) which
consists of selecting the highest order interaction term from every margin results, Kauer
mann (1997) developed a parameterization that has the drawback that the transforma
tion from m-Iogit parameters to cell probabilities cannot, in general, be computed in
closed form. From a computational perspective this is a disadvantage for fitting algo
rithms. Further, unlike usual log-linear models, the set of valid m-Iogit parameters form
a complicated subset of ~2P-\ and are not in general variation independent. However,
in certain cases there may exist an m-Iogit parameterization in which the parameters
are variation independent; this is the case for the model in Figure l(a); see Bergsma and
Rudas (2002). However, we do not believe that variation independent parametrizations
exist for all bi-directed models. Specifically, we conjecture that no such parametrization
exists for the bi-directed chordless five cycle.

As mentioned in the introduction, the problems inherent in expressing marginal
independence constraints in terms of a log-linear parametrization over a larger set of
variables, is part of the general problem of 'lack of upward compatibility': specifically, a
log-linear two-way interaction expresses a property of the full joint distribution, and not
of the relevant two-way margin. A number of schemes have been proposed for dealing
with this problem, in addition to the m-Iogits mentioned above; see Ip et al. (2003);
Streitberg (1990, 1999). These provide alternative parametrizations for the binary bi
directed models introduced here, which may be computed from the fitted distribution,
if desired.

Cox (1993) and Cox and \Vermuth (1994, 1996) take a quite different approach to
the problem of finding models with independence structure similar to Gaussian covari
ance models. They focus on the quadratic binary exponential distribution, also known
as the Boltzmann machine (Hinton and Sejnowski, 1983) and the auto-logistic scheme
(Besag, 1974). The absence of a given interaction term does not imply exact marginal
independence, but by approximating the marginal distributions via series expansions, it
is possible to gauge the size of any such dependence. As Cox notes, the extent to which
such marginal approximations are reasonable will depend on the size of the interaction
terms.

Several other authors have made use of the Mobius decomposition or similar schemes.
Lee (1993) used this decomposition to generate random binary vectors with fixed marginal
distributions and specified degrees of association. Lang et al. (1999) specified multivari
ate binary models with covariates via 'marginal' models for the probabilities
P(Xi = 0) together with a saturated 'association' model (without covariates) parame
terized via dependency ratios TD = P(XD DiED > 1 (see also
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Darroch and Speed (1983), where this quantity occurs in specifying models termed Lan
caster additive.) Ekholm et al. (2000) developed parametric association models in terms
of dependency ratios. Clearly the parametrization in terms of dependency ratios is very
similar to the Mobius parametrization proposed here (subject to the mild caveat that
all marginal probabilities are positive). However, two features distinguish our approach:
first, the models we propose are invariant under relabelling of states, whereas this is not
true for the models described in Ekholm et al. (2000); second, we propose a fitting al
gorithm that is guaranteed to converge to a stationary point of the likelihood, while the
algorithm proposed by Ekholm et al. (2000) may produce negative fitted probabilities.

Several authors (Bergsma and Rudas, 2002; Glonek and McCullagh, 1995; Kauer
mann, 1997; McCullagh, 1989) have proposed m-Iogit models defined by homogeneity
hypotheses and excluding certain higher-order interactions. The associated constraints
are not Markovian, and hence do not readily fall under the Mobius scheme described
here. In future work we plan to investigate sub-models resulting from imposing other
constraints on the Mobius parametrization. The search for parsimonious submodels of
bi-directed graphical models is given additional impetus from the observation that, for
example, a bi-directed chain of length k:

will require k(k+ 1)/2 connected set parameters, whereas an undirected k-chain requires
only 2k - 1 parameters.
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A.I Mobius Inversion

Here we prove the Mobius Inversion Lemma required for our parametrization (cf. Lau
ritzen (1996), p.236; see also McCullagh (1987); Mobius (1832); Rota (1964)).

Lemma A.I. If <P and \fJ are jUri,ctz,ons aeJ'1m~a on all subsets V, then the following
are eqztivialent:
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(1) for all A ~ V:

<1>(A) = L \ft(B)
B:A.S;;B

(2) for all A ~ V:
\ft(A) = L (-l)IB\A.I<1>(B)

B:A.S;;B

Proof. We will show that (2) implies (1), the other direction is similar.

L \ft(B)
B:A.S;;B

L
B:A.S;;B

L (-l)IC\BI<1>(O)
C:BS;;C

= L <1>(0) L (_l)IC\Bi
C:A.S;;C B:A.S;;BS;;C

L <1>(0) L (_l)IDI
C:A.S;;C D:DS;;C\A.

The interior sum is zero unless 0 = A, because a finite set has the same number of sets
of odd and even cardinality. Consequently, we have

L <1>(0) L (_l)ID i = <1>(A).

C:A.S;;C D:DS;;C\A.

o

A.2 Computing Mobius parameters from joint cell parameters

A given Mobius parameter qA., may be expressed in terms of other Mobius parameters
qC where A c 0 and joint cell parameters p~UD, where 0 i= D ~ V \ A. Specifically, if
E ~ V\A then

A.uDPv
D:DS;;V\(AUE)

qA. = P(XA. = 0, XE i= 1) + P(XA. = 0, X E = 0)

~ P C""~'B (XAUC OJ) + P (XA 0, X E = 1)

L + L
C:0#CS;;E

The number of terms in this sum is

-1) +
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Hence, assuming that we have already computed qc for all sets C :::) A, then we may
compute qA most efficiently by choosing a set E c V \ A such that lEI = lIV \ AI/2J.
By separating the odd and even cases, it follows that to compute all Mobius parameters
qA requires in total

~ ( (1 + 3Vi) (1 + Vi) + (1 - 3Vi) (1 - Vi) IVI) - 3· 21V1- 1 = 0((1 + Vi)IVI)

flops. This compares with 0(3IV1 ) for direct forward substitution (excluding zero entries
in the transformation matrices).

The joint cell probabilities may be computed from the Mobius paranleters in a similar
manner by ordering the joint cell probabilities so that p~ is computed before pe if A :::) B,
via:

A """' ( ) iCI """' AUDPv = L..J -1 I 'qAuc - L..J Pv
C:C<;;'E D:0fD<;;.V\(AUE)

Additional savings may be obtained by noting that if A ~ B then since qA ~ qB,

qA = 0 implies qB = O. Similarly, if qA = 0 then for B :::) A, pe = O. ADtrees (Moore
and Lee, 1998) provide a memory-efficient data-structure for storing Mobius parameters.

In the case where the graph is not complete, an additional step, computing the qD

for disconnected sets is also required. Again, by ordering computations appropriately
this requires one multiplication per disconnected set. (Knuth, 1968, Ch. 2.3.3) discusses
algorithms for identifying connected sets within a graph.

A.3 Likelihood Equations

If G is a bi-directed graph with vertex set V, then for an arbitrary subset C ~ V, let
[C]G = {A IA is a maximal connected component of Go} Note that [A]G is a partition
of A. Under the Markov model associated with G,

qC II qD

DE[C]o

Hence for any set B, there is a unique expansion in terms of the parameters qD, for
connected sets D in G,

p~ I: (_I)IC\BI II qD

C:B<;;'C

graph G, then the parameter qD appears in
\ D) = 0.

We call this last expression the expansion

Lemma A.2. If D is a connected set in
the expansion for p~ if and only if sp(D)
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Proof: If sp(D) n (B \ D) = 0 then D U (B \ D) forms a disconnected superset of B in
which D is a maximal connected component. Hence DE [D U (B \ D))G.

If sp(D) n (B \ D) =1= 0 then there is a vertex b E B \ D such that bE sp(D), hence in
any set C containing Band D, there is a maximal connected set D* ;2 D U {b}. Hence
D r:}. [C) for any C ;2 B. 0

Lemma A.3. (i) If sp(E) n (B \ E) =1= 0 then (a/aqE)p~= o.

(ii) If sp(E) n (B \ E) = 0 then

ap~ _ (_l)IE\BI V\(EUsp(E»
aqE - PB\E

In words, the derivative of p~ w.r.t. qE is zero unless every vertex in B that is
adjacent to E is in E.
Proof: (i) Follows directly from Lemma A.2. (ii) Follows since sp(E) n (B \ E) = 0 iff
(B \ E) ~ (V \ (E Usp(E))).

(_l)I(C*UE)\BI II qD

D:DE[C*]a
L

C* : (B \ E) ~ C*
and C* ~ V \ (E Usp(E))

= (_l)IE\BI L
C* : (B \ E) ~ C*

and C* ~ V \ (E U sp(E))

(_l)IE\BI V\(EUsp(E»
.., PB\E-

(_l)I(C*\BI II qD

D:DE[C*]a

Corollary A.4. The set of likelihood equations associated with the model P(G) are:

v
'" (_l)IE\BI nBpV\(EUSP(E» - 0
L...i V B\E -

B:sp(E)n(B\E)=0 PB

for every (non-empty) connected set E in G.

A.4 Hessian calculations

Lemma A.5. For connected sets E and F in G, the second r!P'r"i11flti'lIP

o if n \ U
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(ii)
= __1_(-1) IE\BI (-1) IF\BI V\(EUsp(E)) V\(FUsp(F))

(P~)2 PB\E PB\F

if (sp(E) n (B \ E)) u (sp(F) n (B \ F)) = 0 and F n (E u sp(E)) f. 0;

(iii)

= __1_(-1) IE\BI (-1) IF\BI V\(Eusp(E)) V\(FUsp(F))
(P~)2 PB\E PB\F

+~(_l)I(EUF)\B)1 V\(EUFUsp(EUF))
P~ PB\(EUF)

if (sp(E) n (B \ E)) u (sp(F) n (B \ F)) = 0 and F n (E u sp(E)) = 0.

In words, the condition that Fn (EUsp(E)) = 0 requires that E and F are disjoint
and there is no vertex in E adjacent to a vertex in F. Note that sp(E) n F = 0 if and
only if sp(F) n E = 0, hence the conditions in (ii) and (iii) are symmetric in E and F
as required.

Proof: This follows from Lemma A.3. The second term in (iii) occurs if the derivative
of (a/aF)p~~C:USP(E)) is non-zero, which requires F ~ V \ (E U sp(E)) and sp(F) n

(B \ (E UF)) = 0. The second condition is implied by sp(F) n (B \ F) = 0. The first is
equivalent to F n (E U sp(E)) = 0.

The Hessian may now be obtained by summing the expression given in the last
Lemma over all sets B ~ V.
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