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This article explains Serre’s conjectures relating mod p Galois represen-
tations of Gal(Q/Q) to modular forms mod p, with special emphasis on
the aspects related to Wiles’ recent breakthrough on the Shimura-Taniyama
conjecture.

It is really impossible to improve on Serre’s original exposition, given in
[Se7]. The reader is urged to consult [Se7] before reading this article.

It is a pleasure to thank Fred Diamond and Eric Liverance for many use-
ful discussions over the last year related to the topics of this paper, and
the anonymous referee for making a careful and thorough review of the
manuscript.

1 Statement of Serre’s conjecture

We begin with a statement of Serre’s conjectures. For generalities on modular
forms, see [Sh] or the paper by Diamond and Im in this volume.
Let
P GQ — GLQ(F)

be an irreducible two-dimensional representation of Gq = Gal(Q/Q) over a
finite field F of characteristic p. Asume that p is odd, i.e., detp : Gqg — F*
is an odd character. This means that if ¢ is a complex conjugation, then p(c)
has eigenvalues 1 and —1.

Note that, if p is unramified at [, and Frob; is a Frobenius element at [,
then p(Frob;) is a well-defined conjugacy class in GLo(F); in particular, its
characteristic polynomial is well defined.

If R is any subring of C, let Sg(V, €, R) be the space of cusp forms of
weight k, level N, and character e with Fourier coefficents in R. These are
the functions on the upper half plane which vanish at the cusps, satisfy the
transformation property

ar +b

) = (er + D eld) (),

I

for all ( CCL Z ) € I'y(N), and can be written in the form

f(r) = Z anq", g=¢e""  a,€R.

n>1



If R contains the ring Z[e] generated by the values of the character €, then
we have (g-expansion principle)

Si(N, e, R) = Sk(N,¢,Zle]) ® R.

For any ring R equipped with a map ¢ : Z[e] — R, we can thus consistently
define
Sk(N, €, R) == Sp(N, €, Zle]) ®4 R.

The Hecke operators T,, with ged(n, N) = 1 and U, with ¢| N act on the spaces
Sk(N, €, R) and on the subspace S;*(N, €, R) of newforms. A simultaneous
eigenform for this commuting algebra of operators will simply be called an
eigenform, and will be said to be normalized if its first Fourier coefficient a,
is equal to 1.

We say that p is modular if there exists a normalized eigenform f (of some
weight k > 2, level N, and character €) with Fourier coefficients in F,

f - Z anqna a; = ]-7 an € F7

n>1

such that for all [ which are unramified for p and do not divide Np, p(Froby)
has characteristic polynomial

z? — ax + 1 te(l).

In this case, we say that p and f are associated. A construction of Eichler and
Shimura for weight 2, and Deligne in weight k£ > 2, shows that any eigenform
f gives rise to an associated (not necessarily irreducible) representation p. In
[SeT], Serre conjectures that the converse holds as well. In some sense, this is
an analogue of the Shimura-Taniyama conjecture for mod p representations.

Conjecture 1.1 (Serre’s conjecture, vague form) Any odd irreducible
representation p as above is modular.

Serre’s conjecture is much more precise than this; that is what accounts for
its usefulness and importance. In fact, Serre gives a precise recipe (described
in sec. 2) for assigning to p a weight k(p) > 0, a level N(p) > 0, and an
F-valued character €(p). He then conjectures that

Conjecture 1.2 (Serre’s conjecture, precise form) There exists a nor-
malized mod p eigenform of level N(p), weight k(p), and (when char F > 3)
character €(p) which is associated to p.
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Remark: When char F = 2 or 3, it is not always possible to find an eigenform
of the correct weight, level, and character associated to p. The difficulty is
due to the possible presence of elliptic points of order 2 or 3 on the modular
curves Xo(N). The “naive” definition of modular forms mod p that we are
using (following Serre) is not quite adequate in this context, and Katz’s
definition of modular forms mod p is more appropriate for dealing with these
situations. (cf., for example, [Ed].)

The outline of this paper is as follows. Section 2 partly explains Serre’s
recipe for N(p), k(p), and €(p), completing the statement of conj. 1.2.

Section 3 presents some of the evidence for Serre’s conjecture. The evi-
dence that exists is of three types. Firstly, computational evidence has been
amassed, mostly by Mestre, in support of conj. 1.2. Secondly, a great deal
of work has been done in the direction of proving that conjecture 1.1 im-
plies conj. 1.2. Thirdly, (and this is a key point in Wiles’ general attack on
the Shimura-Taniyama conjecture) the Serre conjecture is largely known to
be true when F is the field Fy with two elements, when the image of p is
dihedral, or when F is the field F3 with three elements, the last thanks to
the work of Langlands and Tunnell on base change. Much of the computa-
tional evidence is summarized in [Se7], §5, and we will not say more on this,
focusing instead on the theoretical evidence.

Sec. 4 is devoted to various applications of the Serre conjectures to Fer-
mat’s Last theorem and other Diophantine questions (see also the article by
Liem Mai in this volume), and to the Shimura-Taniyama conjecture.

We conclude in section 5 by briefly mentioning the relation between Wiles’
work and the Serre conjectures.

2 Serre’s recipe for N(p), k(p) and €(p)

The invariant N = N(p) attached to p is the Artin conductor of the represen-
tation p, with the possible factors of p removed; see [Se7], §1.2 for the precise
definition. In particular, the level N(p) is divisible only by the primes [ # p
where p is ramified, and the value of N(p) depends only on the restriction
of p to the decomposition groups D; at these ramified places. Note that, by
definition, the level N(p) is always prime to p, although the representation
p may be ramified at p (and, in fact, typically is).

The character €(p) is read off from the determinant character detp :



Gq — F* associated to p, as follows: a direct calculation shows that the
conductor of det p divides Np, so that det p can be identified with an F-
valued Dirichlet character (Z/NpZ)* — F*, or, by the Chinese remainder
theorem, with a pair of characters:

€:(Z/NZ)" — F*, ¢:(Z/pZ)" — F*.
We set €(p) :=e.

We can write
() = gho~1 2 < ko <np.

The integer kg determines the value of k(p) mod p — 1, namely, we have:
k(p) =ko (modp—1).

For the precise value of k(p), one needs to shift the value of ky up by a certain
multiple of (p — 1). This corresponds to predicting the filtration (cf. [Se2]),
and not just the weight, of the corresponding modular form mod p.

The recipe for the precise value of k(p) depends on the value of certain
exponents a and b associated to the restriction of p to the inertia group I, at
p. For simplicity we confine ourselves to the case where p is odd, referring
the reader to [Se7| for the complete recipe. Let W, denote the wild inertia
subgroup (which is the maximal pro-p-subgroup of I,), and let V' be the
two-dimensional F-vector space which realizes p. The quotient I, = I,,/W),, is
isomorphic to lim. F7,., where the inverse limit is taken with respect to the
norm maps. It can be shown that W, acts trivially on the semi-simplification
V5 of V, so that I, acts on V*° via its tame quotient [;. Since [; is abelian,
this action is reducible and corresponds to two characters ¢ and ¢ of I,
with values in F;. The fact that the representation p extends to the full
decomposition group D, shows that the characters ¢ and ¢ are stable under
the action of Frobenius x — xP. Hence we can distinguish two cases:

Case 1: ¢ = ¢, ¢" = ¢. Then we can write

b — T — g,

where U : I; — F, is one of the two natural projections. We normalize the
exponents a and b so that

0<a,b<p—1.



Case 2: ¢" = ¢, P = ¢ . Then we can write

[ Xt

where x : I; — F7 is the natural map (i.e., the cyclotomic character). The
exponents a and b are well-defined modulo p — 1, and we normalize them so
that

0<a<p—2if p|;, is semisimple, 1 <a <p— 1 otherwise.

0<b<p—2

Now the formula for k is
k=1+a+b+ (p—1)min(a,b) + (p — 1),

where 6 = 0 or 1, the case 6 = 1 arising when (a,b) = (0,0) (i.e., p is
unramified at p) or when p[;, is “tres ramifié”, c.f. [Se7], §2.4. For more
details the reader is invited to consult §2 of [Se7] or §4 of [Ed]. Serre’s precise
recipe for the weight took shape through an exchange of letters with J-M.
Fontaine; Fontaine’s ideas have been crucial in elucidating the relationship
between the weight and restriction to the inertia group at p of a modular
mod p Galois representation.

Remark: There is a certain amount of flexibility in defining N(p) and k(p).
For example, if f is an eigenform of weight k& and level N = Mp", then
the mod p representation p associated to f by Deligne’s construction also
arises from an eigenform of level M and weight k" for some k" (cf. §2 of
[Ri4]). For an example where this occurs, see for instance [Se4], th. 11. The

representation p also arises from a form of weight 2 and level Mp" for some

r'; cf. §6 of [Di2] and [Wil].

An example: the Galois representations associated to a semi-stable elliptic
curve over Q: Let E be a semi-stable elliptic curve over Q and let pg

pEp: Gg — Aut (E,) ~ GLy(F,)

be the Galois representation associated to E,. Let Ng be the conductor of
E; since FE is semi-stable, Ng is simply the product of the primes of bad
reduction of E. Let Ag be the minimal discriminant of FE.
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Proposition 2.1 The invariants N(pg,), k(pe,p) and €(pg,) are given by

1. N(pgy) is the product of all the primes | # p such that ord,(Ag) # 0
(mod p).

2. k(peyp) =2, iford,(Ag) =0 (mod p), and is equal to p+1 otherwise.
3. e(ppyp) = 1.

Proof: See [Se7], prop. 5.

Remark: In general, we say that p is finite at a prime [ if, when [ # p, p is
unramified, and if, when | = p, p comes from a finite flat group scheme over
Z,. The condition ord,(Ag) =0 (mod p) implies that pg, is finite at p.

3 Evidence for Serre’s conjecture

3.1 Proofs of Serre’s epsilon-conjecture

Conjecture 1.2 appears very difficult to attack except in all but a few very
special cases. A more manageable problem has been to prove conj. 1.2,
assuming that conj. 1.1 is satisfied, which is expressed in the following con-
jecture (known as Serre’s “epsilon conjecture”).

Conjecture 3.1 (Serre’s epsilon-conjecture) If p is modular (i.e., is as-
sociated to an eigenform mod p of some level, weight, and character), then
it is associated to a modular form mod p of level N(p), weight k(p), and (if
charF > 3) character €(p).

Alot has been proved in this direction, thanks to the work and ideas of many
people, including N. Boston [BLR], H. Carayol [Ca], R. Coleman [CV] F.
Diamond [Dil], [DT1], [DT2], [Di2], B. Edixhoven [Ed], G. Faltings, J-M.
Fontaine, B. Gross [Gr|, B. Jordan [JL], H-W. Lenstra, R. Livné, B. Mazur,
K. Ribet [Ri2], [Ri4], J-P. Serre, R. Taylor, J. Tilouine, F. Voloch, and A.
Wiles.

3.1.1 Theorems of Mazur and Ribet

The first result in the direction of Serre’s epsilon-conjecture was proved by
B. Mazur:



Theorem 3.2 (Mazur) Suppose that p : Gqg — GLo(F) is absolutely ir-
reducible and arises from an eigenform of weight 2, level N, and trivial char-
acter. If l||N but p is finite at l, and if

1#1 (mod p),
then p arises from a mod p eigenform on Xo(M), M = N/I.

The argument is reproduced in [Ri2].

The next major breakthrough came with the work of Ribet, who showed
how to remove all primes [ at which p is finite (and not just the [ # 1
(mod p)) from the level of the mod p representation.

Theorem 3.3 (Ribet) Suppose that p : Gq — GL2(F) is absolutely irre-
ducible and arises from an eigenform of weight 2, level N, and trivial char-
acter. Suppose also that char(F) is odd. If l||N but p is finite at l, then p
arises from a modular form of level M = N/I.

This result is enough (cf. 4.1, or the articles by Mai and Prasad in this vol-
ume) to show that the Shimura-Taniyama conjecture implies Fermat’s Last
theorem. Ribet proved his result by a very ingenious argument, exploiting a
deep interplay between the arithmetic of modular curves and Shimura curves
associated to indefinite quaternion algebras. For the details on the proof, see
Prasad’s article in this volume, (or [Ri2], [Ri3], and [Ri4]).

The following examples give some illustrations of the theorems of Mazur
and Ribet. We follow the notations of Cremona’s book [Cr|, which extends
the classical Antwerp tables [MF].

Ezamples: 1. Let E = Xy(11) be the elliptic curve with equation
v +y =2 —2*— 10z — 20

having conductor N = 11 and discriminant A = —11°. Let p be the mod
5 representation associated to E. Prop. 2.1 gives N(p) = 1, k(p) = 2, and
€(p) = 1. By Ribet’s theorem (note that 11 = 1 (mod 5)), if p were ir-
reducible it would arise from an eigenform of weight 2, level 1, and trivial
character. Since there are no such forms, the representation p must be re-
ducible. This, of course, is well known, and one does not require the full
power of Ribet’s deep theorem to prove it! In fact, one knows that

E5 >~ Z/5ZEB,U5
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as a Galois module.

2. The curve 57C' (or 57F in the Antwerp tables)
57C : y? = 2° + 2° + 202 — 127/4 = f(x).

of conductor 57 = 3 - 19 has discriminant A = —31°19, and its mod 2 repre-
sentation is irreducible. Hence the mod 2 representation pg o arises from the
unique cusp form of weight 2 on X,(19). There is a unique isogeny class of
curves of conductor 19, represented by the curve 19C' with equation

19C:y* =2 +2° + .+ 1/4 = g(x).

It is not hard to check that these two curves define the same mod 2 rep-
resentation, by showing that the polynomials f(z) and g(x) have the same
splitting field. If o denotes the real root of f(x) and 3 the real root of g(x),
then

a =43 - 38.

In this example, the conclusion of Ribet’s theorem 3.3 holds, even though
the hypothesis char(F) # 2 is not satisfied. It is likely that this assumption
can be removed, especially when F = F.

3. The curve
33A 2 + oy =2 +2% - 1z

has conductor N = 33 and discriminant A = 35112. Its mod 3 representation
pr,3isirreducible, and finite at 3, hence by Mazur’s result it arises from a form
of weight 2 and level 11. There is only one such eigenform, corresponding
to the curve Xy(11), and one checks that their Fourier coefficients a; are the
same mod 3 when [ # 3,11, at least for | < 43:

l 2 3 ) T111| 13| 17 (19| 23| 29| 31| 37| 41| 43
33A 1] -1 -2 41 1|-2|-2] 0 8| —6|-8] 6| -2 0
114 | -2 | -1 1] -2 1 41 -2 0] -1 0 71 3| 8] -6

4. The curve
46A : y* + oy = 2 — 2* — 102 — 12

is a modular elliptic curve of conductor N = 2 - 23 and discriminant A =
—219.23. Since the mod 5 representation associated to E is irreducible, it



must be associated to a mod 5 eigenform of weight 2 on X((23). There are
no rational eigenforms of weight 2 on X(23), but the theta functions

91 — Z qm2+mn+6n2(:1+2q+2q4+4q6+4q8+2q9+)
m,ne”Z

0y, — Z q2m2+mn+3n2(:1+2q2+2q3+2q4+2q6+2q8+2q9+...)
m,ne”Z

associated to the two classes of binary quadratic forms of discriminant —23
give modular forms of weight 1 on X(23) with character (53) (cf. [Hc]).
(Note that

56— 62) = n(r)n(237) = g [[(1 — a")(1 — ™)

is a cusp form of weight 1 on X((23) with character.) Setting
Fo= ;(91 —0)0h = q+q* =3¢ —2¢" +2¢° — ¢ +4¢" = 3¢° +2¢° + - --
G = ;(91 —02)0:=q— "+ ¢’ —2¢" = 3¢° + ¢* +2¢° +4¢"° + - -
gives a Q-basis for the space of cusp forms of weight 2 on X(23). The action
of the Hecke operator T, can be computed explicitly and is given by:

TLF = (F+G), T,G= (F ~3G)

By diagonalizing T, (letting w = 1+27\/5 be the golden ratio, and @ its conju-
gate) we find that the form

1
g=5wWF+(1+)G) =q-u¢" = V¢’ —wg' = 200" — (w+2)¢° + -

is an eigenform of weight 2 for X((23) with trivial character. (The other
eigenform, of course, is merely the Galois conjugate.) One can check that
the first few Fourier coefficients a;(f) of f are congruent to the coefficients
a;(g) of g modulo the ideal (v/5) when [ # 2,23:

2 3 5 7 11| 13 17 | 19
a(f) | -1 0 4 —4 2| -2 —2 | -2
ag) | —@ | —VH | —14+Vh | 1+V5 | -3—-V5] 3[3-Vbh| -2
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5. The modular elliptic curve
988B : y* = x® — 3622492 + 165197113

listed in Cremona’s tables has conductor N = 988 = 221319 and discrim-
inant
A=—-2%.13.19%.

The Galois representation p;3 acting on the 13-division points of E is un-
ramified at 19, and Mazur’s theorem says that p3 is associated to a modular
form mod 13 of level 52. There is a unique rational eigenform of level 52,

given by the curve
52A 1 y* = 2% + 2 — 10,

and one finds that the Fourier coefficients a; (I not dividing V) associated to
these two curves agree mod 13, at least for [ < 43:

L1213]5 7011 13 17| 19| 23129 | 31| 37| 41| 43
98B |00 |2|-2|-2|-1] -7 11-5] 2| -3 7 71 -9
5241002 | —-2] -2 | -1 6| —6 8| 2| 10| -6 | —6 4

This gives an example of two elliptic curves over Q whose mod 13 Galois
representations are isomorphic. It would be interesting to see how often such
pairs occur. (See the discussion is sec. 4.1.)

6. This example examines what happens when one replaces mod p represen-
tations by mod p" representations.
The curves

142A oy + oy +y = 2° — 2% — 120 + 15,

142F : y* + 2y = 2° — 2% — 26262 + 52244,

(denoted 142F and 142G respectively in the Antwerp tables) have discrim-
inant 27 - 71 and 227 - 71 respectively. By using Tate’s analytic description
of these curves over Qq (cf. Liem Mai’s article in this volume), one can see
that the mod 9 representation p; associated to 142A, and the mod 27 rep-
resentation p, associated to 142F, are unramified at 2. A natural extension
of Ribet’s theorem, replacing mod p representations with mod p" represen-
tations, would lead us to expect that p; (resp. p2) is realized on the points
of order 9 (resp. 27) of the Jacobian of the modular curve Xy(71).
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The genus of X((71) is 6. One constructs modular forms of weight 2 and
level 71 as in example 4, by letting

'91 — Z qm2+mn+18n2(: 1+ 2(] + 2q4 + 2q9 + 2q16 _'_4q18 4. .>7
mmneZ

92 — Z q4m2+3mn+5n2(:1+2q4+2q5+2q6+2q12+2q15+2q16+'__)’
mmneZ

be the theta functions corresponding to the two classes of quadratic forms of
discriminant —71, and setting

Fi =0,(00 —02)/2, Fip =Ta(F).

One checks from the g-expansions that Fi, ..., Fys are linearly independent,
and hence generate the space of cusp forms of weight 2 on I'g(71). Further-
more,

Ty(Fg) = OF, — 3Fy — 23F; + 5Fy + 9Fy — F.

By diagonalizing the Hecke operators T5, one finds that the eigenforms for
the Hecke algebra are given by the forms:

(15—30°)F1 + (20 — 3 — 40?) Fy + (o —4a—8) Fy + (a® + o — 9) Fy + (a4 1) F5 + F,
(6—30%)F1+ (202 —3a+2) Fy+ (502 +5a—17) Fs — (o> +3) Fy — (o + a—4) F5 + Fg,

where « is one of the three roots of the equation o® — 5a + 3 = 0. By
normalizing these forms so that the coefficient of ¢ is 1, one obtains the ¢
expansions:

f=q+aq’+(=a* +3)¢’ + (0* = 2)¢" + (—a = 1)@’ + (20 +3)¢" + -,

g=q+(—a*—a+3)@+(@*+a-3)¢*+ (a+1)¢" + (—a* —2a+5)¢° + - - -

The eigenforms f and g, together with their Galois conjugates, give the 6
normalized newforms for X(71).

The ideal (3, «) is the unique prime ideal of degree 1 in the ring Z[q]
lying above 3. Let R ~ Z3 be the completion of Z[«] at this prime ideal, and
let f and g be the images of the forms f and g in Sy(71, R). Their Fourier
coefficients for the first few primes are listed modulo 81, (i.e., with a 3-adic
accuracy of 371) in the following table:
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)2 3| 5] 7111317192329
16048 120 (24|57 | 4124|7368 |70
g|69]12 1124|3940 |15 |37 |77 | 34

From the table it appears that a;(f) = ()
is true, one can see that the forms

_Tf-4g
3

are modular forms in Sy(71,7Z/9Z) and S»(71,Z/81Z) which are eigenforms
for the Hecke operators. From the following table, one checks that the Fourier

coefficients of the form corresponding to 142A are congruent to those of f,4
mod 9, at least for [ # 2, [ < 29:

(mod 9). Assuming that this

fa (mod 9), fg=2f—g (mod 81)

]2 3 ) 7111|1317 19| 23| 29
fal3 6 ) 6| 0| 1] O 4 2 1
142A 1| -3|—-4|-3| 0| 1| O|—=5|—=7T|-=8

Likewise, one checks that the Fourier coefficients of the form corresponding
to 142F are congruent to those of fr mod 27, at least for [ # 2, [ < 29:

l 21 3| 5 7111 13 (17|19 |23 | 29
fe | 51 84129 | 24| 75| 49|33 |28 |59 25
1428 | -1 3| 2| -3 |—-6|-5| 6| 1| 5| -2

This example suggests that the philosophy of Serre’s conjectures, and of the
e-conjecture, extends to mod p” representations. Wiles has proved a number
of precise statements in this direction, and used them to bound the order of

the Selmer group of the symmetric square under certain conditions; cf. [Wil],
or [Wi2].

3.1.2 The latest word

The work of Mazur and Ribet alluded to before was mainly concerned with
modular forms of weight 2, and trivial character. A great number of math-
ematicians have extended the scope of these results, to cover more general
cases involving arbitrary weights, levels, and characters, so that now the full
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epsilon conjecture is almost proved. For a good summary of these results,
together with an explanation of the techniques involved in proving them, and
an extensive bibliography, see [Ri4] and [Di2].

The latest result, which is the culmination of all these efforts, is proved
in [Di2]: say that the irreducible representation p is an exceptional case if
charF = 3 and p is induced from a character of Gal(Q/Q(v/—3)), or if
charF = 2 and p is induced from a character of Gal(Q/Q(3)).

Theorem 3.4 Assume F is a field of odd characteristic. If p : Gq —
GLy(F) is a representation arising from an eigenform, then p is associated
to an eigenform of level N(p), weight k(p), and, if p is not an exceptional
case, character €(p).

For more details, see [Di2].

3.1.3 Raising the level

The results alluded to so far in this section have to do with “lowering the
level” of a modular Galois representation; i.e., showing that if it arises from a
modular form of some level it also arises from the “optimal” level N(p) pre-
dicted by the Serre conjectures. There is a considerable amount of literature
on congruences between modular forms which is devoted to the problem of
listing the possible levels of newforms which are congruent mod p to a given
eigenform f. For example, one has the following result which is a corollary

of [Ril] and [Cal:

Theorem 3.5 Let f be a newform of weight 2, trivial character, and level
N, and assume that the associated representation p is irreducible and not
an exceptional case. Suppose that 1 is a prime not dividing N and that (I —
1)(ai(f)?— (14+1)?) is divisible by a prime P over p. Then there is a newform
g of weight 2, trivial character and level dl for some d|N such that g is
congruent to f mod P.

For more precise results in this direction, see [DT1].

There are also more precise quantitative measures of the “amount” of
mod p congruences that arise between f and newforms of level N, involving
the notion of the “congruence ideal” of a Hecke ring. For precise definitions,
see Kumar Murty’s article in this volume. This shows that (in some “sophis-
ticated” sense) the “number” of eigenforms of some level M divisible by N
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which are congruent to f mod p can be described by a simple formula. This
remark plays a key role in Wiles” proof of the Shimura-Taniyama conjecture
for infinitely many j-invariants.

3.2 Cases where the Serre conjecture is known

In spite of the spectacular success in establishing more and more cases of
Serre’s epsilon-conjecture, very little is known about conj. 1.2 without first
assuming conj. 1.1. There are a few notable exceptions, which play an im-
portant role in Wiles” work on the Shimura-Taniyama conjecture.

3.2.1 Cases where p has dihedral image

Suppose that the image of p is isomorphic to a dihedral group D,, with
(n,p) =1.

The group Ds, can be embedded in GLy(C), and hence p gives rise to
an Artin representation

p : Gq — GLy(C).

Since p is odd, we may assume that p is odd. This representation is asso-
ciated to a cusp form ¢ of weight 1, which can be constructed explicitly in
terms of theta-functions associated to (definite or indefinite) binary quadratic
forms, as was known already to Hecke.

The construction works as follows. The field L cut out by p is an abelian
extension, with Galois group a cyclic group G of order n, of a quadratic field
K/Q, and we can write

p = Indg/qx,
where x : Gal(L/K) — C* is a non-trivial one-dimensional character, which

can be viewed as a character on the ideals of O by class field theory.
Let 7 be a reflection in Gal(L/Q), and let D = Disc(L"). Let

0=> x())g"’

be the theta function, which is a cusp form of weight 1 and level |D|.

By multiplying 6 by an Eisenstein series of weight 1, level p and character
w™t, where w is the Teichmuller character, one obtains a form f of weight 2
which is an eigenform for the Hecke operators 7T; mod p. Hence we have:
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Proposition 3.6 If p has dihedral image, then p is associated to a modular
form, i.e., conjy. 1.1 is true for p.

Furthermore, thm. 3.4 tells us that:

Corollary 3.7 If p is dihedral and charF is odd, then p is associated to a
modular form of level N(p), weight k(p), and, if p is not an exceptional case,
character €(p).

An interesting special case is the one where F = F,. Here the image
is contained in S3 which is a dihedral group, so conj. 1.1 is known for p,
but Serre’s epsilon-conjecture remains unproved. The status of conj. 1.2 for
F = F, is therefore unclear at present, although it may be quite accessible,
since in some cases the epsilon conjecture in the dihedral case can be proved
without appealing to thm. 3.3.

3.2.2 Cases where F = F;

When F = Fj, the group GL2(F3) can be embedded into GLy(C), allow-
ing one to lift the mod 3 representation to a characteristic 0 representation
p. Moreover, the image of p' is a solvable group: the group GL,(F3) is
isomorphic to a double cover of the alternating group A4. A deep result of
Langlands and Tunnell [La], [Tu] shows that p is associated to a modular
form of weight 1. By the same trick of multiplying this form by an appro-
priate Eisenstein series, one can exhibit a modular form of higher weight
associated to p, and show that p satisfies conj. 1.1. In light of thm. 3.4, we
therefore have:

Theorem 3.8 If p : Gq — GL(F3) is absolutely irreducible, then it is
associated to an eigenform of level N(p), weight k(p), and, if p is not in the
exceptional case, character €(p).

This theorem is at the center of Wiles’ very compelling strategy for proving
the Shimura-Taniyama conjecture for semi-stable elliptic curves. See for
example Kumar Murty’s article in this volume.
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4 Applications

4.1 Diophantine applications: Fermat’s Last Theorem
and some variants

Let
al + b’ = P, abc #0, p>5

be a solution to Fermat’s equation. Assume without loss of generality that
= —1 (mod 4) and that b is even, and let

E:y* =z(x —d’)(z + )

be the elliptic curve first considered by Hellegouarch [He]. It can be shown
that F is a semi-stable elliptic curve and that its discriminant Ag is

Ap = —27%(abe)?.
(cf. [Se7], p. 200). Consider the mod p representation
p:Gq — Aut (E,) ~ GLy(F))

associated to FE,. By a theorem of Mazur [Mal], p is irreducible. Prop.
2.1 implies that N(p) = 2, k(p) = 2, and €(p) = 1, contradicting conj.
1.2, since there are no non-trivial eigenforms of weight 2 on I'y(2). Thus,
Serre’s conjecture implies Fermat’s Last Theorem. (For more details, see
Mai’s article in this volume, or [Se7], §4.)

In fact, thanks to Ribet’s work on the epsilon-conjecture 3.1, conj. 1.1
applied to the mod p Galois representation p is already enough to imply
Fermat’s Last Theorem. If E is a modular elliptic curve, then p satisfies
conj. 1.1. Hence Fermat’s Last Theorem follows from the Shimura-Taniyama
conjecture (for semi-stable elliptic curves), confirming a remarkable insight
of G. Frey.

The reader should consult §4 of [Se7] for more examples where the Serre
conjectures are used to study certain variants of the Fermat equation, for
example, equations of the form

AxP + ByP = C2P.
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It is interesting to explore the limits of the Serre conjectures in studying
Diophantine equations of the above type. Having come tantalizingly close
to Fermat’s Last Theorem, a good testing ground for further applications of
Serre’s conjecture (as well as a nice source of concrete Diophantine questions)
is given by the following “generalized Fermat conjecture” [DG].

Conjecture 4.1 The equation
., 1 1 1
P +y?=2z", -+ —-+4+-<1, gecd(z,y,2)=1, zyz#0,
p q T

has no integer solutions except for
1+23=32 25472=3% 74132=2% 2"4173 =712, 3°+11* =122%

1774762713 = 210639282, 1414342213459% = 657, 92623+15312283% = 1137,
43% 4 962223 = 300429077, 33% + 15490342 = 15613,

So far, very little is known about this conjecture, which combines the diffi-
culties of the Fermat and Catalan conjecture. However, one does have the
following fragments:

Proposition 4.2 If Serre’s conjecture 1.2 holds, then the equations
P 4 P = 22, p>13, p=1 (mod4),

P 4y = 2P, p>13, p=1 (mod 3),

at — oyt = 2P, p>13, p=1 (mod4),

have no solutions (x,y, z) with xyz # 0 and ged(x,y, z) = 1.

To prove these propositions one constructs the appropriate Frey curves as-
sociated to solutions to the above equations, and uses Serre’s conjecture to
prove that the associated mod p representation does not exist. Since these
representations come from elliptic curves, the Shimura-Taniyama conjecture
is enough to deduce the result, in light of Ribet’s thm. 3.3. For the details,
see [Dal] and [Da2].

A more interesting example is that of the equation

ot oyt = 2P ged(z,y,2) =1,
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which generalizes the equation z* + y* = 2? originally considered by Fermat.
Given a solution a*+b* = ? to this equation, one considers the elliptic curve

over Q(7)
E:y? =2% 4+ 41 +0)ba® + 4i(b* + ia®)x

which has discriminant
A =22 (a? — ib?).
The map 7 given by

n(z.y) = ﬁ —4y(V? + ia?) — iyx?
’ 222’ (20 — 2)a?

is a 2-isogeny from E to its Galois conjugate E which is defined over Q(i).
The curve E is a Q-curve, i.e., it is an elliptic curve defined over a number
field which is isogenous to all of its Galois conjugates. Even though E is not
defined over Q, it can be used to construct a 2-dimensional representation
of Gal(Q/Q) as follows: Let n : E' — E be the Galois conjugate of 7
over Q(). One checks that nn" and n'n are the endomorphisms of E' and E
respectively given by multiplication by 2. If we set V = E, x E];, for p an
odd prime, then V is equipped with a natural action of F,[¢] ~ Z[v2] @ F,,
where ¢ : V — V is the endomorphism defined by

¢(P,Q) = (n'Q,nP).

In this way V' is a module over F,[¢] of rank 2. The natural action of Gq
on V can be extended to an action of Gq, by defining

o(P,Q) = (P?,Q°%) if oi =1,
o(P,Q)=(Q°, P%) if oi = —i.

This Gg-action commutes with the scalars in F,[¢], and hence gives rise to
a two-dimensional representation

p:Gq — Autp, (V) ~ GLy(Z[V2] ® F,).

Because ordg(A) =0 (mod p) for all primes Q of Z[i] which are not above
2, and because F is semistable at those primes, one sees that the represen-
tation p is unramified for all primes # 2, p, and that it is finite at p. A more
careful analysis shows that

N(p)2', k(p) = 2, e(p) = 1.
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One can hope to use the Serre conjecture to show that a mod p representation
with such a small conductor does not exist; this would give a Diophantine
application of the Serre conjectures which does not pass through the Shimura-
Taniyama conjecture.

Note that this application does follow from a somewhat stronger version
of the Shimura-Taniyama conjecture, which characterizes the elliptic curves
over Q which are modular. See the next section for details.

Although the Serre conjectures have striking Diophantine consequences
for the Fermat equation and some variants, it seems that they do not yield
sweeping Diophantine results applying, say, to all of the equations of the type
AzP + ByP = CzP. For example (cf. [Se7], p. 204) the Serre conjectures do
not allow one to show (or at least, not in an obvious way!) that the equation

" +y" =312", ged(x,y,z) =1,n > 4.

has finitely many solutions (z,y, z,n). (Although this is certainly expected
to be true, and follows, for example, from the abc-conjecture.) The problem
here is that there is at least one non-trivial solution, (—1,2,1,5), so that the
methods based on Serre’s conjecture, which tend to prove non-existence of
such solutions, are bound to fail here.

To reap further Diophantine results from Serre’s conjecture, one needs
more knowledge about the Galois representations arising from elliptic curves.
For example, Frey [Fr3] has made the following conjecture:

Conjecture 4.3 (Frey) Let A be an elliptic curve over a number field K.
There are only finitely many pairs (E,p) consisting of an elliptic curve E
over K which is not isogenous to A and a prime number p > 5, such that

E,~A, as Gg — modules.

Remarks:

1. For fixed p > 5, the conjecture is true, by Falting’s proof of the the Mordell
conjecture. This is because pairs (F, p) as above correspond to rational points
on a twist of the modular curve X (p), which has genus greater than 1.

2. The obvious analogue of the above conjecture with (E, p) replaced by pairs
(f,p) where f is a modular form of weight 2 is of course false, as follows from
thm. 3.5.
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One can propose even more ambitious conjectures. Say that an integer n
has the isogeny property (relative to a number field K) if the implication

A, ~ B, as Gg —modules = A is isogenous to B (1)

holds for all pairs of elliptic curves A, B over K. It is not known whether
there are any integers satisfying the isogeny property (over Q, say), and
example 5 of sec. 3.1.1 shows that 13 does not have the isogeny property. It
is tempting, however, to conjecture the following:

Conjecture 4.4 Given any global field K, there exists a constant Mg such
that all n > My have the isogeny property.

This conjecture, which can be viewed as a “mod p” analogue of Tate’s isogeny
conjecture proved by Faltings, seems very difficult to prove.

Remark: Say that n satisfies the weak isogeny property if the implication (1)
holds, with at most finitely many exceptional pairs (A4, B). A strengthening
of conj. 4.4 is

Conjecture 4.5 There exists an absolute constant M such that all n > M
have the weak isogeny property over all number fields K.

It would be very interesting to formulate a convincing guess about the precise
value of M.

As Frey has observed, we have:

Proposition 4.6 If Serre’s conjecture 1.2 and Frey’s conjecture 4.3 hold,
then the equation

Ax" + By" = Cz", n>3, gcd(z,y,z2)=1,
has only finitely many integer solutions (x,y, z,n).

Sketch of proof: We argue by contradiction. Suppose that there are infinitely
many solutions (z;, y;, z;,n;). We can assume without loss of generality that
the n; are distinct primes which do not divide 2ABC'. Now, let

B Y?=X(X — Azl")(X + Bzl")
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be the Frey curve associated to the solution (x;,y;, z;,n;), and let p; be its
associated mod n; representation. The level of p; can be shown to divide
32(ABC)%. By the Serre conjecture, each p; arises from a mod n; eigenform
f; of level dividing 32(ABC')?. Since there are finitely many such eigenforms,
there is an eigenform f such that a;(f) = a;(f;) (mod N;) for infinitely
many 4, where N; is a place of Q above n;. We claim that f has integer
Fourier coefficients, contradicting Frey’s conjecture 4.3. For, let [ be a prime
not dividing 2ABC, and let p(z) be the minimal polynomial of a;(f). The
curve F; has either semistable or good reduction at [. In the former case,
a)(f) = £(I+ 1) (mod N;), and in the latter, a;(f) = a;(f;) (mod N;). By
the Hasse bound, a;(f;) is an integer of absolute value less than 2v/1. Hence
there exists a in the finite set

(0,41, 42, ..., £[2V1], £(1 + 1)}
such that
a(f) =a (mod N;) for infinitely many i.

Hence p(a) = 0 (mod n;) for infinitely many 4, so that p(a) = 0. This shows
that a;(f) = a is rational, and concludes the proof.

4.2 Relation with the Shimura-Taniyama conjecture

Let
fr) = anq", ¢q=€¢"", a=1

n>1

be a normalized eigenform of weight 2 on I'o(/N) with trivial nebentypus
character. The differential f(7)dr is invariant under the action of I'o(NNV); if
the Fourier coefficients a,, belong to Z, then the function

f(2)dz <: ) CZLQ")

defines a complex-analytic map from the upper half plane H U {cusps} to
C/Ay, where Ay is a rank 2 lattice, generated by the modular symbols ¢ (1% ),
for a,b € Q with (a, Nb) = 1. The elliptic curve £ = C/Ay can in fact be
defined over Q. It has good reduction at p for all p /N, and

#E(F,) =p+1—a,.

T

or(1) = 27rz'/

200
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The conjecture of Shimura Taniyama states that this beautiful connection
between eigenforms with rational Fourier coefficients and elliptic curves over
Q also goes in the other direction, namely:

Conjecture 4.7 (Shimura-Taniyama) If E is an elliptic curve over Q
of conductor N, then there exists a normalized eigenform f such that E is
isogenous to C/Ay.

By the work of Eichler and Shimura, if F satisfies the Shimura-Taniyama
conjecture, then pg, satisfies conj. 1.1; we have already used this fact (more
or less implicitely) several times so far. In fact, it is also true that conj. 1.2
implies the Shimura-Taniyama conjecture.

Theorem 4.8 Serre’s conj. 1.2 implies conj. 4.7.

The proof is explained in [Se7], §4.6, but the reader may find it instructive
to work it out on her own.

The Serre conjectures also imply generalizations of the Shimura-Taniyama
conjecture which say that every abelian variety with real multiplications is a
quotient of Jy(NV) for some N (cf. [Se7], §4.7).

The following is also worth mentioning: suppose F is an elliptic curve over
Q, which is a Q-curve. (cf. 4.1.) It is not hard to see that if F is modular
(i.e., is a quotient of Jy(IV) for some N) then E is a Q-curve. Conversely:

Proposition 4.9 (Ribet) If Serre’s conjecture 1.2 is true, then an elliptic
curve E over Q is modular if and only if it is a Q-curve.

The proof is explained in [Ri5].

5 Wiles’ work and the Serre conjectures

We finish with some brief comments about the relation between Wiles” work
and the Serre conjectures, following [Wil].
The Shimura-Taniyama conjecture states that the map

elliptic curves

{ Newforms of weight 2 on Xy (V)
over Q of conductor N

Isogeny classes of
with rational Fourier coeflicients. }
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is a bijection. One might try to tackle such a conjecture by showing that the
two sets above have the same number of elements. One difficulty is that the
rationality condition on the Fourier coefficients is a very subtle one over which
one has little control. On the other hand, it is easy to count the number of
all eigenforms of weight 2 on X(V). Such eigenforms (with not necessarily
rational coefficients) do not correspond to elliptic curves in general, but they
do give rise to p-adic Galois representations which generalize the Tate mod-
ules T,(E) of an elliptic curve, by the work of Eichler and Shimura. Assume
for simplicity that p? does not divide N. It can be shown that the p-adic
representation p arising from an eigenform f of weight 2 and level N has the
following properties:

1. p is unramified outside Np.

2. (Weight condition) If I /Np, the eigenvalues oy and &, of the Frobenius
element p(Frob;) are the roots of a polynomial with coefficients in Z C
Z,, and, when viewed as complex numbers, they have absolute value

V1.

3. (Determinant condition) We have det(p) = x, where x : Gq — Z is
the cyclotomic character.

4. (Condition at p) The restriction of the representation p to the inertia
group I, at p satisfies the condition of being ordinary or flat in Wiles’
terminology. (For the definition of these terms, see Kumar Murty’s
article in this volume.)

5. (Condition at oo) The representation p is odd, i.e., if ¢ denotes complex
conjugation, then p(c) has eigenvalues 1 and —1.

We call irreducible representations satisfying properties 1-5 admissible (in a
non-standard terminology). One can define the conductor of 5 as Np°, where
N is the Artin conductor of p and § = 0 if p comes from a p-divisible group
over Z,, and 6 = 1 otherwise.

One can generalize the Shimura-Taniyama conjecture to state that the
map

Newforms of weight 2 . Admissible p-adic representations
on Xo(N) of Gq of conductor N
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is a bijection. This conjecture is due, essentially, to Mazur.

Remark: By the isogeny conjecture of Tate which was recently proved by
Faltings the functor £ +— T,(E) is a fully faithful functor from the category
of isogeny classes of elliptic curves over Q to the category of admissible p-adic
representations of Gq. Hence, one does not lose any information in passing
from the category of elliptic curves to the “larger” category of p-adic Galois
representations.

Now the problem of proving the generalized Shimura Taniyama conjecture
above can be broken into two parts:

Problem 1: (Serre’s conjecture) Show that the map

mod p representations

{ mod p newforms of weight 2
of Gq of conductor N

Odd, irreducible
on X()(N) }

is a bijection. Here the conductor of a mod p representation p is defined using
Serre’s recipe for N(p), explained in §2, except when k(p) > 2, in which case
one multiplies N(p) by an appropriate power of p.

Problem 2: (Lifting conjecture) Assuming that problem 1 is solved for a
specific mod p representation py, i.e., there is an eigenform f, such that f
(mod p) is associated to pg. Show that the map:

Admissible
Newforms f of weight 2 p-adic representations
on Xo(N) such that — ¢ pof Gq
f=fo (modp) of conductor N such that

p=po (mod p)
is a bijection.
Wiles has made substantial inroads into problem 2, showing that the
lifting conjecture is satisfied when p is odd and, for example:

1. The image of p, is dihedral, or

2. po arises from a semistable, modular elliptic curve A and p does not
divide the degree of the modular parametrization Xo(N) — A.
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When p = 3 or 5, results of this kind are particularly interesting because then
for a specific py there are infinitely many non-isomorphic elliptic curves F
satisfying pg, =~ po, and so this gives infinitely many distinct Q-isomorphism
classes of elliptic curves which are modular.

Remarks:

1. The counting argument which was alluded to in the remark after thm.
3.5 plays an important role in proving the second statement, by allowing
Wiles to reduce to the case where N = N(pp) in the statement of the lifting
conjecture.

2. The case p = 2 of Wiles’ program, which is not covered by the above
results, is also quite interesting: the desired upper bound on the Selmer
group of the symmetric square for p = 3, which is the major unresolved
issue in Wiles’ strategy, is known for the dihedral case, thanks to the work
of Karl Rubin on the two variable main conjecture for quadratic imaginary
fields. Can one show that every (semistable, say) elliptic curve with a point
of order 2 over a non-cyclic cubic extension is modular? There seem to be
no conceptual barriers in doing this, only technical difficulties (which could
still make the task quite arduous!)

Wiles’ compelling strategy for proving the Shimura Taniyama conjecture
brilliantly avoids proving any new cases of the Serre conjecture. Rather, it
uses the few cases where conj. 1.2 is known as a very tenuous foothold (“une
prise d’ongles”, in the words of Serre) from which to mount an impressive
attack on the Shimura Taniyama conjecture.

This means that the Serre conjectures remain wide open. These fascinat-
ing conjectures, which represent a first step in the direction of a “Langlands
philosophy mod p”, will probably keep number theorists busy in years to
come — perhaps long after the Shimura-Taniyama conjecture has been com-
pletely proved.
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