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Abstract

In this paper we will discuss the fundamental ideas behind proof as-
sistants: What are they and what is a proof anyway? We give a short
history of the main ideas, emphasizing the way they ensure the correct-
ness of the mathematics formalized. We will also briefly discuss the places
where proof assistants are used and how we envision their extended use
in the future. While being an introduction into the world of proof as-
sistants and the main issues behind them, this paper is also a position
paper that pushes the further use of proof assistants. We believe that
these systems will become the future of mathematics, where definitions,
statements, computations and proofs are all available in a computerized
form. An important application is and will be in computer supported
modelling and verification of systems. But their is still along road ahead
and we will indicate what we believe is needed for the further proliferation
of proof assistants.

Keywords: Proof Assistant, Verification, Logic, Software correctness, For-
malized Mathematics.

1 Introduction

Proof assistants are computer systems that allow a user to do mathematics on
a computer, but not so much the computing (numerical or symbolical) aspect
of mathematics but the aspects of proving and defining. So a user can set up a
mathematical theory, define properties and do logical reasoning with them. In
many proof assistants one can also define functions and compute with them, but
their main focus is on doing proofs. As opposed to proof assistants, there are
also automated theorem provers. These are systems consisting of a set of well
chosen decision procedures that allow formulas of a specific restricted format to
be proved automatically. Automated theorem provers are powerful, but have
limited expressivity, so there is no way to set up a generic mathematical theory
in such a system. In this paper we restrict attention to proof assistants.

Proof assistants are now mainly used by specialists who formalize mathemat-
ical theories in it and prove theorems. This is a difficult process, because one
usually has to add quite a lot of detail to a mathematical proof on paper to make
the proof assistant accept it. So, if you are already completely convinced that
the theorem is correct, there may not be much use in formalizing it. However,
there are situations where one is not so convinced about a proof. This happens
most notably in computer science, where correctness proofs are e.g. about intri-
cate pieces of software that act in a physical environment, or about a compiler
that involves syntax of a programming language that has many possible instruc-
tions. But also in mathematics, it occurs that proofs are not really accepted
by the community, because they are too big or involve computer programs to
verify.

In the paper, we will first consider the notions of ‘proof’ and ‘proof checking’
in general, and also say something about the various styles of ‘computer proofs’
that proof assistants work with. Then we give a historic overview of the earliest



systems, indicating the main techniques and issues that deal with correctness of
proofs and proof checking. Then we will briefly sketch where these systems are
used and we will conclude with how we see the development of these systems in
the future: what is needed to enhance their use and applicability?

1.1 Proofs

A proof — according to Webster’s dictionary — is ‘the process or an instance
of establishing the validity of a statement especially by derivation from other
statements in accordance with principles of reasoning’

In mathematics, a proof is absolute. Basically, the correctness of a proof can
be determined by anyone. A mathematical proof can be reduced to a series of
very small steps each of which can be verified simply and irrefutably. These steps
are so small that no mathematician would ever do this, but it is a generally held
position that mathematical proofs that we find in books and articles could in
principle be spelled out in complete detail. It happens that that a mathematical
theorem turns out to be false. In that case, not all steps have been spelled out
and checked in detail, and it is always possible to point at a proof step that
cannot be verified.

We will not get into the philosophical question why all this works, but we
will content with the observation that mathematicians agree on the validity
of the basic proof steps and on the methods of combining these into larger
proofs. This moves the problem of mechanically checking a mathematical proof
to the translation of the informal proof to a formal one, i.e. from the natural
language to a formal language. One could think that in mathematics, this is not
a big problem, because mathematicians already write their results in formulas
and use a quite restricted technical ‘jargon’ in their proofs. However, there
is still a considerable gap — especially in level of detail — between the proofs
that mathematicians write in books and articles and the proofs that can be
understood by a computer.

1.1.1 Two roles

Let us now look a bit more into the role of a proof in mathematics itself. A
proof plays two roles.

A A proof convinces the reader that the statement is correct.

B A proof ezplains why the statement is correct.

The first point consists of the administrative (“bookkeeper”) activities of
verifying the correctness of the small reasoning steps and see if they constitute
a correct proof. One doesn’t have to look at the broad picture, but one just
has to verify step by step whether every step is correct. The second point deals
with giving the intuition of the theorem: Why is it so natural that this property
holds? How did we come to the idea of proving it in this way?



In a proof that we find in an article or book, both ‘roles’ are usually interwo-
ven: some intuition is given and sometimes explanation on how the proof was
found and why it is the way it is, but the proof also provides enough information
to be able to verify step by step that the statement holds.

The mathematician Paul Halmos emphasizes that a mathematical proof is
not written up in the way it has been found:

‘Mathematics is not a deductive science. When you try to [solve a
problem] ...what you do is trial and error, experimentation, guess-
work. You want to find out what the facts are, and what you do is
in that respect similar to what a laboratory technician does, but it
is different in its degree of precision and information.” [29]

A proof has three stages:

1. Proof finding In this phase “anything goes”: experimenting, guessing,
... This phase is usually not recorded but for students to learn mathemat-
ics it is indispensable to practice.

2. Proof recording The written up proof that contains explanation on why
the statement holds, why the proof is as it is (point B above) and it
contains the proof steps needed to verify the statement step by step (point
A above).

3. Proof presentation After a proof has been found, it goes through a
phase of being communicated to others. This happens both before and
after it has been written up. The proof is read by others and sometimes
redone and the main points in the proof are emphasized. This phase,
which may go hand in hand with the previous one, focusses mainly on
point B above.

That there are more proofs of one theorem exemplifies that a proof not only
verifies but also explains. Different people have different preferences as to which
proof they like best, which is usually the one that explains best the aspect of the
statement that they find most relevant. Other reasons for preferring a specific
proof over another are: because it is surprising, because it is short, because it
uses only basic principles, because it uses another — at first sight completely
unrelated — field of mathematics, ... Nice examples of different proofs of one
result are given by the book Proofs from THE BOOK [4] that contains ‘beau-
tiful’ proofs of well-known theorems. The book contains six proofs of Euclides’
theorem that there are infinitely many primes. Each proof is interesting in its
own right, shedding light on a different aspect of prime numbers.

1.2 Proof Checking

Let us now look at the possible role a machine can play in the proof roles (A)
and (B) and in the different proof stages 1, 2 and 3.



If we look at role (A) of proofs, it will be clear that in the verification that
all the small proof steps together constitute a correct proof a computer can be
a very helpful tool. This is the bookkeeper’s work that we can leave to the
machine: we can write a proof checking program that establishes the validity
of a theorem by mechanically checking the proof. The first proof assistants
were basically just that: programs that accept a mathematical text in a specific
(quite limited) syntax and verify whether the text represents a proof. We would
probably only be fully convinced if we had written the proof checking program
ourselves, but in practice we will have to rely on the quality of the programmer
and the fact that the proof checking program has been used and tested very
often, because usually there is no way we could simply write a checker ourself.

However there are other ways that may help in making the proof checking
more reliable and strengthen our conviction that a checked proof is correct
indeed.

e Description of the logic. If we have a system independent description
of the logic and its mathematical features (like the mechanisms for defining
functions and data types), we can establish whether we believe in those,
whether our definitions faithfully represents what we want to express and
whether the proof steps make sense.

e Small kernel. Some systems for proof verification have a very small
kernel, with rules that a user can verify by manually checking the code.
All other proof rules are defined in terms of those, so a proof step is a
composition of basic proof steps from the kernel. In this case one only has
to trust the small kernel.

e Check the Checker. The proof assistant itself is “just another program”,
so its correctness can be verified. To do this, one first has to specify the
properties of the program, which means that one has to formalize the
rules of the logic. (Obviously this requires the first item in this list: a
system independent description of the logic.) Then one would prove that
the proof assistant can prove a theorem ¢ if and only if ¢ is derivable in
the logic. A way to do this is to prove that all proof-tactics are sound in
the logic and that there is a proof-tactic for every inference rule. Another
way to proceed is to construct a complete model for the logic within the
system, but then one needs extra principles, because this would also imply
the consistency of the logic. (And Godel says that a logic can’t prove its
own consistency.)

e De Bruijn criterion. Some proof assistants create an “independently
checkable proof object” while the user is interactively proving a theorem.
These proof objects should be simply checkable, by a program that a skep-
tic user could easily write him/herself. De Bruijn’s Automath systems
were the first to specifically focus on this aspect and therefore this prop-
erty was coined “De Bruijn criterion” by Barendregt [11]. In De Bruijn’s
systems, the proof objects are basically encodings of natural deduction
derivations that can be checked by a type checking algorithm.



If we look at the four mechanisms for improving the reliability of a proof
assistant, we see that the first is definitely needed for either one of the other
three. Also, a small kernel obviously helps to be able to check the checker. In
our overview of proof assistants we will see in some more detail how different
systems deal with the four possible ways of guaranteeing correctness.

If we look at role (B), the explanation of proofs, we see that proof assistants
do not have much to offer. At best they force a user to consider every small
detail, which sometimes brings to light implicit assumptions or dependencies
that were lost in the high level mathematical proof. But most of the time the
required amount of detail is considered to be a hindrance to a proper high level
explanation of the proof.

If we look at the three stages of proofs, we see that proof assistants have
little to offer in stage 1, the proof finding process. For the average user it is
just impossible to formalize a proof that one hasn’t spelled out on paper before
and it is erroneous to expect the machine to help the user in finding a proof. In
some cases, like software or hardware verification where proofs may involve large
case distinctions with many trivial but laborious cases, the machine may help
to solve these cases automatically, helping the user to focus on the important
ones. But in general the user has to provide the intelligent steps, and for most
users it is difficult to make a good mental picture of the mathematical situation
when one is looking at a computer prompt and ASCII code.

Of course, proof assistants are perfect for recording proofs (stage 2): they
are verifiable pieces of computer code that can be inspected at every level of
detail. But then, what is not recorded is the key idea, because it is hidden in
the details. The problem is the communication of computer formalized proofs
on a higher level of abstraction (stage 3). What is the important proof step or
the key idea? Can we give a diagrammatic (or geometric) representation of the
proof? The system PVS [61] has a diagrammatic representation of the proof
that is interactively created by the user. This is found to be very helpful by
PVS users, but it is already way too detailed to convey the high level idea.

Here is the general picture of how proof assistants support the roles and
stages of proofs. Of course, some aspects hold more (or less) for some systems
than for others, but there isn’t really much difference between them so this
diagram is valid quite generally.

| Proofs | [ Proof Assistants |
Roles | Check ++
Explain -
Stages | Finding -
Recording +
Communicating || -

We will come back to the two roles and the three stages of proofs in our
overview of proof assistants.



1.3 Input language

The input language of a proof assistant can be declarative or procedural. In
a procedural language, the user tells the system what to do. In a declarative
language, the user tells the system where to go. This may seem almost the same,
but it isn’t, as we can illustrate using an example. Here is a formalized proof
in procedural style of the simple theorem that if we double a number and then
divide by 2, we get the same number back. This is a Coq formalized proof of
Théry taken from [73].

Theorem double_div2: forall (n : nat), div2 (double n) = n.
simple induction n; auto with arith.

intros nO H.

rewrite double_S; pattern nO at 2; rewrite <- H; simpl; auto.
Qed.

A reader cannot see what this proof does, because it only has a meaning if
we execute it in Coq. Then we see what the proof state is after line 3 and we
can understand what line 4 does and why it is a useful next step. Here is a
proof in declarative style of the same theorem by Corbineau.

Theorem double_div2: forall (n : nat), div2 (double n) = n.
proof.
assume n:nat.
per induction on n.
suppose it is O.
thus thesis.
suppose it is (S m) and IH:thesis for m.
have (div2 (double (S m))= div2 (S (S (double m)))).
“= (S (div2 (double m))).
thus "= (S m) by IH.
end induction.
end proof.
Qed.

We can see what this proof does without executing it in Coq. (NB. The

~= notation is used for denoting a sequence of equalities.) We may find the

syntax a bit baroque, but a mathematician can easily see the reasoning that is
going on here.

From this example we can make another observation: the declarative proof
is longer. That turns out to be the case in general. This is nice for the reader,
but not so nice for the user who has to type it. Another issue arising from this
example is the question what we want to use the proof for. Do we want a human
to read it? Or is it just a set of computer instructions that a machine should
be able to read?

The “proofs” above are usually referred to as proof scripts. A proof script
may not necessarily correspond to a proof in a logic; it is the list of computer



instructions given to the machine to direct the proof assistant to accept the the-
orem. As we can see from the proof scripts above, the procedural one certainly
doesn’t correspond to a proof in a logic, but the declarative one does, to some
extent. The declarative script above can be seen as some form of a Fitch [20]
style natural deduction.

Another issue is how robust and adaptable the proof scripts are. If we change
a definition, how difficult is it to adapt the proof script? In general, proof
scripts are not very robust, but declarative proof scripts are slightly easier to
adapt than procedural ones. In a declarative proof script, we find information
that the system could generate itself, so which is in a sense redundant, but very
helpful when adapting (or debugging) a proof script. In a procedural proof, one
usually tries to give the minimal amount of information that yields the next
proof state. It makes sense to try to combine the two styles as much as possible.
This may be possible by letting the user type a procedural proof script but let
the system expand this into a proof script with more declarative components.
Interesting ideas about this can be found in [72, 10].

2 History

In this section we will shortly describe the history of proof assistants by describ-
ing the first systems and the main ideas behind them. We will look at these
systems by taking the issues raised in the Introduction as a starting point. We
also give an overview of how these ideas were used in later (present day) proof
assistants. It is interesting to see that around 1970 at several places simulta-
neously the idea of computer verified mathematical proofs came up. We will
try to give a complete overview of these initial systems, hoping to capture all
the “founding fathers”, some of which have been more influential than others.
Before doing that, we will discuss a general issue, which is the input language
of a proof assistant.

2.1 Automath

The Automath project [54, 14] was initiated by De Bruijn in 1967 and had as
aim to develop a system for the mechanic verification of mathematics. A re-
lated aim of the project was to develop a mathematical language in which all
of mathematics can be expressed accurately, in the sense that linguistic cor-
rectness implies mathematical correctness. This language should be computer
checkable and it should be helpful in improving the reliability of mathematical
results. Several Automath system have been implemented and used to formalize
mathematics. We will discuss some crucial aspects of the systems that had an
influence on other systems.

2.1.1 Proofs as Objects, Formulas as Types

In the Automath systems the idea of treating proofs as first class objects in a
formal language, at the same footing as other terms, occurs for the first time. In



logic, this idea is known as the Curry-Howard formulas-as-types isomorphism,
for the first time written up in 1968 by Howard [36], going back to ideas of Curry
who had noticed that the types of the combinators are exactly the axioms of
Hilbert style deduction. De Bruijn reinvented the idea, emphasizing the proofs-
as-objects aspect, which comes down to the following: There is an isomorphism
T between formulas and the types of their proofs giving rise to

r Flogic @ if and only if T Ftype theory M :T(p)

where M is a direct encoding (as a A-term) of the deduction of ¢ from I'. In
logic, ' just contains the assumptions, but in type theory, I' also contains the
declarations x : A of the free variables occurring in the formulas. The formulas-
as-types correspondence goes even further: assumptions in I' are of the form
y : T(¢) (we assume a hypothetical “proof” y of 1)) and proven lemmas are
definitions recorded in T as y := p : T'(3)) (y is a name for the proof p of ).

An interesting consequence of this analogy is that “proof checking = type
checking”. So, a type checking algorithm suffices to satisfy the De Bruin crite-
rion of the previous section. Depending on the type theory, this can be more or
less difficult. The original Automath systems had a small kernel, so for those it
is rather simple. Later development based on the same idea are the systems LF
[30], Twelf [66], Lego [46], Alf [47], Agda [2], Coq [18] and NuPrl [15], which have
increasingly complicated underlying formal systems and therefore increasingly
complicated kernels and type checking algorithms. (NuPrl is based on a type
theory with undecidable type checking, so a A-term is stored with additional
information to guide the type checking algorithm.)

It should be noted that the original Automath systems were just proof check-
ers: the user would type the proof term and the system would type check it.
The other systems mentioned are proof assistants: the user types tactics that
guide the proof engine to interactively construct a proof-term. This proof-term
is often not explicitly made visible to the user, but it is the underlying “proof”
that is type-checked. This is made precise in Figure 1.

Tactics

Proof object

OK
Proof Checker

User Goals

Figure 1: Proof development in a type theory based proof assistant

The De Bruijn criterion means that there is a notion of “proof object” and
that a skeptical user can (relatively easily) write a program to proof check these
proof objects.



2.1.2 Logical Framework

Another important idea that first appears in Automath is that of a Logical
Framework. De Bruijn emphasized the idea that his system would only provide
the basic mathematical mechanisms of substitution, variable binding, creating
and unfolding definitions etc. and that a user would be free to add the logical
rules he/she desires. Following the formulas-as-types principle, this amounts to

'k g if and only if ', M :T(p)

r '_type theory
where L is a logic and I'y, is a context declaring the constructions of the logic
L in type theory. It is a choice which logical constructions one puts in the type
theory and which constructions one declares axiomatically in the context: there
have been various Automath systems that represented weaker or stronger type
theories. The idea of a rather weak type theory, which is then used as a logical
framework has been further developed in Edinburgh LF [30] and in the system
Twelf [66].

2.2 Martin-Lof Type Theory

The Curry-Howard formulas-as-types isomorphism gives a connection between
proofs in constructive logic and typed A-terms. (In constructive logic, one does
not use the double negation law —-—A — A.) Martin-Lof has extended these
ideas, developing constructive type theory as a foundation for mathematics,
where inductive types and functions defined by well-founded recursion are the
basic principles [48, 55]. (This goes also back to work of Scott [64], who had
noticed that the Curry-Howard isomorphism could be extended to incorporate
induction principles.)

Martin-Lof has developed several type theories over the years. The first
extensional one has been implemented in the proof assistant NuPrl [15]. Later
ones that were intensional, have been implemented in ALF[47] and Agda [2].
But many of the ideas underlying Martin-Lof type theory have also found their
way in other proof assistants, like LF, Lego and Coq.

2.2.1 Proofs as Programs

In a constructive logic, if one has a proof of Va Jy R(z,y), then there is a com-
putable function f such that Va R(x, f(x)). The function (construction) f is
“hidden” in the proof. In constructive type theory, this is extended to incor-
porate arbitrary algebraic data types and we have the phenomenon of program
extraction: from a proof (term) p : Vo : A3y : B.R(z,y) we can extract a
functional program f : A — B and a proof of Vz : A.R(z, f(x)). So we can
see Vx : A3y : B.R(x,y) as a specification that, once “realized” (i.e. proven)
produces a program that satisfies it.

As an example, we show the specification of a sorting algorithm. The goal is
to obtain a program sort : Listy — Listy that sorts a list of natural numbers. So,
given a list [, we want to produce as output a sorted list k£ such that the elements
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of k are a permutation of the ones of [. So we have to define the predicates
Sorted(z) and Permutation(z,y), denoting, respectively that x is sorted and
that = is a permutation of y. (For example, we can define Sorted(z) := Vi <
length(z) — 1(x[i] < z[i + 1]).) Now, we have to prove our specification, i.e.
we have to find a term p : Vz : Listy Jy : Listn(Sorted(y) A Permutation(x, y)).
From this we can then extract the program sort : Listy — Listy.

The proofs-as-programs paradigm is one of the key features of the proof
assistant Coq [58, 44]. From proofs one can extract programs in a real functional
language. But also one can program a lot of functions as programs within the
proof assistant, because the system includes a (small) functional language itself,
with abstract data types etc.

2.2.2 Checking the Checker

In a type theory based system that includes a functional programming language,
like Coq, one can program and verify the type checker within the system itself.
This has been done in the “Coq in Coq” project [12]. What one verifies (inside
Coq) is the following statement:

I'M:As TC(, M) =A,

where TC is the type checking algorithm that takes as input a context and
a term and produces a type, if it exists, and otherwise produces ‘fail’. As this
statement implies the consistency of Coq as a logic, this cannot be proved inside
Coq without extra assumption, so the statement is proved from the assumption
that all terms are strongly normalizing (i.e. all functions definable in Coq are
total; this is a meta-theoretic property one can prove about Coq).

The statement above is proved inside Coq, so the type theory is coded inside
Coq. The program TC is also written inside Coq, but it can be extracted and
be used as the type checking algorithm of a new version of Coq.

2.3 LCF

LCF stands for “Logic for Computable Functions”, the name Milner gave to a
formal theory defined by Scott in 1969 [63] to prove properties of recursively
defined functions, using methods from denotational semantics. It is a predicate
logic over the terms of typed A-calculus. The first system was developed at
Stanford in 1972 and later systems were developed at Edinburgh and Cambridge.
The systems Isabelle [37, 69], HOL [35, 25] and HOL-light [34] are descendants
from LCF, using the “LCF approach”. The first system that Milner developed
in Stanford was a goal-directed system that had special tactics to break down
goals into smaller ones and a simplifier that would solve simple goals. To be able
to safely add new proof commands and to not have to store proofs in memory
(but only the fact that a result had been proven), Milner developed what is now
know as the LCF approach.
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2.3.1 LCF approach

The basic ideas of Milner’s LCF approach ([26, 24]) is to have an abstract data
type of theorems thm, where the only constants of this data type are the axioms
and the only functions to this data type are the inference rules. Milner has
developed the language ML (Meta Language) specifically to program LCF in.
In LCF, the only terms of type thm are derivable sequents I' F ¢, because there
is no other way to construct a term of type thm then via the inference rules. (For
example, one of the operators of this type would be assume : form -> thm
with assume phi representing the derivable sequent ¢ - ¢.) The LCF approach
gives soundness by construction: if we want to prove a goal ¢ and we only apply
operators of the abstract data type, we can never go wrong.

Another advantage of LCF is that a user can write tactics by writing more
sophisticated functions. This enhances the power without jeopardizing the sys-
tem, because in the end everything can be translated to the small kernel, which
is the abstract data type thm.

So LCF very much satisfies the “small kernel” criterion: every proof can be
written out completely in terms of a small kernel, which represents exactly the
inference rules of the logic. One of the reasons Milner invented this mechanism
was to suppress the rechecking of large proof objects. So, no independently
checkable proof objects are created in LCF. However, it is easily possible to
generate proof objects “on the side”, making the system satisfy the De Bruijn
criterion as well. The LCF approach has been very influential. Also a system
like Coq has been implemented in this manner.

2.3.2 Checking the Checker

The system HOL light has been checked within the system itself [32]. In HOL,
there is no real point in checking the system with respect to the theory, be-
cause in the LCF approach one implements the theory almost directly. So, the
statement proven inside HOL light is

M | ¢ & Provior, (),

where Provyop, denotes provability in the HOL light system. This notion of
provability does not just capture the logical derivation rules of HOL, but their
actual implementation in OCaml. So the formalized statement also deals with
the operational semantics of the HOL light system that is actually implemented.
The statement above implies the consistency of HOL light, so it can’t be proven
inside it without extra assumptions. The model M is constructed using as-
sumptions about the existence of large cardinals.

2.4 Mizar

The Mizar system [51] has been developed by Trybulec since 1973 at the univer-
sity of Biatystok. It is the longest continuously running proof assistant project.
As a matter of fact there are two Mizars: the Mizar language, which aims at

12



being a formal language close to ordinary mathematical language, and the Mizar
system, which is the computer program that checks text files written in Mizar
for mathematical correctness.

The underlying system is Tarski-Grothendieck set theory with classical logic
and the proofs are given in Jaskowski style [38], which is now better know as
Fitch-style [20] or flag-style natural deduction. In the beginning (see [49]) the
emphasis was very much on editing and recording mathematical articles and not
so much on proof checking. Mizar has always put a strong emphasis on creating
a library of formalized mathematics, which should be a coherent collection of
formalized mathematical results. This is achieved via the Mizar Mathematical
Library, which consists of Mizar articles, pieces of mathematics formalized in
Mizar, and is by far the largest repository of formalized mathematics. The
coherence of MML is achieved by not making Mizar a distributed system: it
does not support large developments (because it gets slow) and thus requires
users to submit articles to the ‘library committee’, that includes them in the
Mizar library.

2.4.1 Declarative language and batch proof checking

Mizar has mainly been developed and used in Poland, with one major Mizar
group in Japan. Only in the last ten years, Mizar has become more well-known
outside Poland and ideas and techniques of Mizar have been taken over by other
proof assistants.

One such idea is the strong emphasis on a declarative input language, which
aims at being close to the texts that ordinary mathematicians write and un-
derstand. This also means that the language has all kinds of special features
and constructs that support built in automation. Therefore, the system does
not have a small kernel and does not satisfy the De Bruijn criterion. But the
language feels quite natural for a mathematician and proofs can be read off-line
(without processing them in Mizar) by a human.

Another positive aspect of having a well-developed declarative proof lan-
guage is that one can do batch proof checking. This means that Mizar can check
a whole file at once and indicate where proof-steps have been made that the
solver did not accept. This works because, even if the solver does not accept
a proof-step, the declarative proof still records “where we are and what the
system is supposed to know”, according to the user. So the system can reason
onwards from that. For example, in the example Coq text of Section 1.3, if the
system can’t prove the first equation, it may still be able to prove the third and
the fourth one, thus being able to complete the proof, modulo that equation
that needs solving. This idea has been made precise in [72], by defining the
notion of “Formal Proof Sketch”, which is a declarative high level proof which
is syntactically correct but possibly has “holes”.

The Mizar language has inspired other proof assistant to also develop a
declarative proof language. Most notably, Wenzel has developed the Isar lan-
guage [70] as a declarative input language for the Isabelle theorem prover, which
is now used by very many Isabelle users. Also, Harrison has developed a Mizar
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mode for HOL-light [33] and Corbineau has developed a declarative proof lan-
guage for Coq [17] (of which the proof in Section 1.3 is an example).

2.5 Nqthm

Nqgthm [3], also known as the “Boyer-Moore theorem prover” is an automated
reasoning system implemented in Lisp. The first version originates from 1973
and the system was very much inspired by earlier work of McCarthy [50]. The
logic of Nqthm is quantifier-free first order logic with equality, basically prim-
itive recursive arithmetic, which makes the automation very powerful, but the
expressivity limited. Interesting ideas from Nqthm that have found their way to
the wider community of proof assistant developers are its focus on automation
and its way to combine automation with interactiveness by letting the user add
lemmas.

The automation has as disadvantage that one often has to rewrite a formula
before being able to prove it (e.g. a formula Vz.3y.o(x, y) can only be proven if
we can write it as ¢(x, f(2))). The advantages are obvious and the system has
had a lot of good applications in verification studies within computer science.

The user can work interactively with the system by adding intermediate
lemmas that act as a kind of “stepping stones” towards the theorem one wants
to prove: the system first tries to prove the lemmas automatically and then tries
to prove the theorem using the new lemmas. This idea has also been used in
the logical framework Twelf. The system Nqthm has evolved into the system
ACL2 [1, 40], which is very much based on the same ideas.

2.5.1 PVS

The PVS (Prototype Verification System) [61] has been developed at SRI since
1992. It aims at combining the advantages of fully automated theorem provers,
that have strong decision procedures, but limited expressivity, with the advan-
tages of interactive theorem provers, that have a much more expressive language
and logic. PVS has a classical, typed higher-order logic. The interactive theo-
rem prover supports several quite powerful decision procedures and a symbolic
model checker. The combination of a very expressive specification language and
powerful techniques for proof automation makes PVS quite easy to use. It has
been applied in several industrial verification studies [52].

The logic of PVS is not independently described and the system does not
have a small proof kernel or independently checkable proof objects. Every now
and then a bug (inconsistency) is found in the system, which is then repaired
by the implementors. Due to its automation and flexible specification language,
PVS is relatively easy to learn and use. A small drawback of the automation is
that it may sometimes lead the proof in an undesired direction.
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2.6 Evidence Algorithm

In the end of the 1960s, the Russian mathematician Glushkov started investi-
gating automated theorem proving, with the aim of formalizing mathematical
texts. This was later called the Evidence Algorithm, EA, and the first citation
is from the Russian journal “Kibernetika” in 1970. The EA project seems to
have run since the beginning of the 1970s, but it hasn’t become known outside of
Russia and Ukraine and publications about the project are all in Russian. The
project has evolved into a system SAD (System for Automated Deduction) [45],
which checks mathematical texts written in the language ForTheL. (FORmal
THEory Language) [67]. The latter is a declarative formal language for writing
definitions, lemmas and proofs, very much in the spirit of Mizar, but developed
independently from it. An interesting aspect of the ForTheL language is that
it can be checked (through a web interface) with various (automated) theorem
provers. The SAD seems quite powerful, as the ForThel texts it can check are
quite high level mathematical proofs.

3 Use of proof assistants

3.1 Formalizing Mathematics and Mathematical Libraries

Various large formalizations of mathematical proofs have been done in various
proof assistants. In Mizar there is a proof of the Jordan Curve theorem [43],
which has also been proved in HOL light [28]. In Isabelle, the prime number
theorem has been proved [8]. Another formalization of a large proof and a
well-known theorem is Gonthier’s formalization of the 4-color theorem in Coq
[23]. The proof of this theorem consists of the reduction of the problem to 633
cases, that then have to be verified using computer algorithms. Mathematicians
sometimes feel uncomfortable with this proof, because of the use of computer
programs in it. Gonthier has formalized all of this in Coq: the reduction to
the 633 cases, the definition of the algorithms and their correctness proofs, and
their execution on the 633 cases.

Doing large mathematical proofs on a computer, also the issue comes up as to
what exactly one is proving. Are the definitions right and are the statements of
the theorems the ones we want? Gonthier emphasizes that the precise statement
of the 4-color theorem, including all definitions to exactly understand its content,
fits on one A4 page. So if one trusts the proof assistant, all one needs to do is
to verify that this one page corresponds to the statement of the theorem.

So, some very impressive formalizations of mathematical theorems have been
done ([74] gives an overview of 100 well-known theorems in mathematics and in
which system they have been formalized) and the volume of formalized math-
ematics is constantly increasing, but we cannot speak of a coherent formalized
library. The Mizar Mathematical Library [51] is the only one that comes a bit
close. But also in MML it is hard to find proven results and for an outsider it
is difficult to obtain a high level view of what has been formalized. The Mizar
community has set up the Journal of Formalized Mathematics to ensure that
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results that are formalized in Mizar also appear in a more standard mathemat-
ically readable format.

In general the documentation problem with these libraries remains: how doe
we tell the user what he can find where? If we just print the whole repository,
without proofs, in a nicely readable way, with mathematical notations, then
we have a nice overview of the lemmas, but there are very many, with hardly
any structure. In case of our own CoRN repository [19], which aims at being
a coherent library of constructive algebra and analysis in Coq, we have 962
definitions and 3554 lemmas on 394 pages. There are searching tools, like Whelp
[7] that assist searching for lemmas of a certain structure. But we also want to
search on a higher level and get a high level overview of the material, including
motivations, intuitions and so forth.

Adding more meta-data to our formal definitions, theorems and proofs, e.g.
adding the information that ‘this is the Intermediate Value Theorem’, helps to
search on a high level. But it does not yet provide us with a logical “overview”
of the material. This requires a kind of literate proving approach, comparable
with Knuth’s literate programming [41], where the documentation and the for-
mal proofs are developed in one systems and in one file. To explain what the
problem is with documentation, let me outline how the proof development in
our own FTA-project went (in which we have formalized a constructive proof
of the Fundamental Theorem of Algebra, and together with that, built up a
repository of constructive algebra and analysis). One starts from a mathemat-
ical proof of the theorem, with all details filled in as much as possible. The
plan is to formalize that in two steps: first the definitions and the statements of
the lemmas and then fill in all the proofs. The mathematical proof — the first
document (e.g. in WTEX) then acts as the documentation of the formalization.

1 | Mathematical proof | Document with many details
(usually a IATEX file)

2 | Theory development | Computer file in a Proof Assistant
(definitions and statements of lemmas)

3 | Proof development Computer file in a Proof Assistant
(proofs filled in)

The real situation is that we have to move between these phases all the
time: when we start filling in the the proof, it turns out that the lemma should
be formulated a bit differently or that the definitions should be changed a bit,
because they are inconvenient. So, while we are working at phase 3, we also
have to adapt the files of phases 1 and 2. But that’s felt as quite annoying,
because we want to get on with the formal proof, so in practice document 1 is
not adapted and very soon it is out of sync with the other documents. The only
way to let this work is if we can work on all three documents at the same time
in one file.
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3.2 Program and System Verification

Many studies in program correctness and system design verification have been
done in proof assistants. Some of the systems are really used for industrial
verification projects: NASA [52] uses PVS to verify software for airline control
and Intel uses HOL light to verify the design of new chips [31]. There are many
other industrial uses of proof assistants that we will not list here, notably of
PVS, ACL2, HOL, Isabelle and Coq.

An interesting initiative that we want to mention here, because it reaches
beyond the boundaries of one proof assistant, is the ‘PoplMark Challenge’ [60].
Popl is the conference ‘Principles of Programming Languages’. The authors of
[9] challenge everyone to accompany a paper concerning programming languages
with an appendix containing computer verified proofs of its meta-theoretic prop-
erties. A concrete challenge that is set is to formalize the meta theory of the sys-
tem F. completely. The challenge is not just for the designers of programming
languages to provide the proofs, but also on the developers of proof assistants to
make this feasible. Thus the slogan of the initiative: ‘Mechanized meta-theory
for the masses’. The challenge has already produced quite some discussion and
research. That one can verify some serious software with a proof assistant has
been shown in [13], where a C compiler has been proved correct in Coq.

In industrial applications, one may often be more inclined to go for speed and
automation than for total correctness, thus often preferring automated tools or
tools with a lot of automation over more expressive but less powerful systems.
The idea of independently checkable proof objects has nevertheless also found
its way into computer science in the form of ‘Proof Carrying code’ [53]. The
idea is to accompany a piece of code with a proof object that proves a safety
property of the program. This proof object may also include a formalization
of the architecture it will be executed on, so the receiver can check the proof
object and trust the code.

4 Future
4.1 QED Manifesto

Are we then now in a situation that we can formalize a large part of mathematics
— definitions, proofs, computation ...— in a proof assistant? Formalization of
all of mathematics as a goal has been described in the QED Manifesto [62], that
was presented at the CADE conference in 1994.

QED is the very tentative title of a project to build a computer sys-
tem that effectively represents all important mathematical knowl-
edge and techniques. The QED system will conform to the highest
standards of mathematical rigor, including the use of strict formality
in the internal representation of knowledge and the use of mechan-
ical methods to check proofs of the correctness of all entries in the
system.
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The manifesto describes the ambitious goals of the project and discusses
questions and doubts and the answers to them. In 1994 and 1995 there have
been two workshops on QED, but after that no more. That doesn’t mean that
nothing has happened after that. In various projects people have been and are
working on the formalization of mathematics with proof assistants, where the
ideas of the QED manifesto often play an important (implicit) role. The QED
manifesto gives nine points as a motivation, three of which are most relevant in
my view.

1. The field of mathematics has become so large that it has become impossi-
ble to have an overview of all relevant mathematics. A formalized library
should enable the search for relevant results.

2. When designing new high-tech systems, like software for an automatic
pilot, one uses complicated mathematical models. A QED system can be
an important component for the modelling, development and verification
of such systems

3. For education, a QED system can offer course material that students can
practice with on an individual basis, for example interactive proving or
programming exercises.

These goals are ambitious and since 1994 there has been some progress,
especially at the second point, but not very much.

Is the QED manifesto too ambitious? Yes, at this moment in time it is.
Formalizing all of mathematics probably isn’t realistic anyway, but we also have
to acknowledge that the present day proof assistants are just not good enough
to easily formalize a piece of mathematics. In this respect it is instructive to
read what the authors of the QED manifesto thought that needed to be done.
First of all, a group of enthusiastic scientists should get together to determine
which parts of mathematics needed to be formalized, in what order and with
which cross connections. The authors assume that this phase may take a few
years and it may even involve a rearrangement of the mathematics itself, before
the actual formalization work can start. Other points in this ‘to-do-list’ are of
a similar top-down organizational nature.

In my view, this is a wrong approach to the problems. Development like
Wikipedia show that a more ‘bottom up’ distributed approach may work better,
using a simple lightweight basic technology. One could claim that for the formal-
ization of mathematics, such an approach could never work, but for Wikipedia
the same doubts were raised at first: Wikipedia is typically something that
works in practice but not in theory.

4.2 MathWiki

To create momentum in the use of proof assistants, it is essential to have a large
repository of formalized mathematics. But that again costs a lot of time and
man power. A way to get that is by a cooperative joint distributed effort, to
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which many people can contribute in a simple and low level way: a Wikipedia
for formalized mathematics. To achieve this, researchers in our research group
have developed a web interface for proof assistants [39]. This way everyone with
an internet connection can simply — without installing a system and letting the
server take care of the file management — contribute to a joint repository of
formalized mathematics. We are now in the process of extending this into a
Math Wiki system, which should be a Wikipedia-like environment for working
with various proof assistants (doing formalizations through a web interface)
and for creating high level pages that describe content of the repositories, with
pointers to actual proof assistant files. Preliminary work is reported in [16].

606 Binomial coefficient - MathWiki - Iceweasel 0
Elle Edit View History Bookmarks TIools Help Fed
[« ~[c %[@] whtp:/mathwiki/Binomial_coefficienthtml EEO (A Q Google B
Log in / create account .
article | [ discussion edit this page | [ history ]
|
o s . . . .
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1
|
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navigation exactly k toppings, then the binomial coefficient expresses how many different types of such k-topping pizzas are possible.
= Main Page
= Contents Definition [edit]
= Featured content
= Current events Given a non-negative integer 1 and an integer k. the binomial coefficient is defined to be the natural number
= Random article 1) kt1) 1
(u) nefn=1)+(n— n! in>k>0
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ponlfox Definition C (n p:nat) :
« Whatlinks here (fact n) / ({fact p) * (fact (n-p)).
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= Upload file
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Figure 2: A MathWiki mock up page

A possible high level page is depicted in Figure 2: the idea is that we have
Wikipedia like technology to describe a high level mathematical concept and
that inside such a page we can render snippets of code from proof assistant
repositories, in the example from Coq, Mizar and Isabelle.

The success of Wikipedia rests on the fact that there are many contributors,
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there is a simple technology for contributing and there are rules and committees
for ensuring the stability of the content. For formalized mathematics, there are
fewer contributors and they are spread over different formal systems, using their
own formal language. There is not much interaction between these systems, so
it may look like a better idea to create a MathWiki for each proof assistant
separately. We believe however, that a joint MathWiki system is exactly the
platform needed to let the different proof assistant communities talk to each
other and stimulate them to develop a generic format for high level pages.

For the coherence and stability of the MathWiki pages we distinguish be-
tween two types of pages: there will be formal pages, consisting of annotated
formal proof code of the proof assistants, and there will be informal pages,
consisting of high level descriptions of the mathematics with rendered pieces
of formal code. For the informal pages, the procedures know from Wikipedia
can be followed. For the formal pages, the consistency can be checked by the
proof assistant itself — although it is an interesting challenge to maintain the
consistency of a large online formal repository that is continuously changed and
extended through the web. The stability will also have to be ensured by a
committee that ensures that the library evolves in a natural and meaningful
way.

4.3 Flyspeck

Mathematical proofs are becoming more and more complex. that is unavoidable,
because there are always short theorems with very long proofs. One can actually
prove that: there is no upper bound to the fraction

length of the shortest proof of A
length of A

It would of course be possible that short theorems with very long proofs are all
very uninteresting, but there is no reason to assume that that is so, and then
again: what makes a theorem interesting?

Recently, proofs of mathematical theorems have been given that are indeed
so large that they cannot simply be verified by a human. The most well-known
example is Hales’ proof of the Kepler conjecture [27]. The conjecture states that
the face-centered cubic packing is the optimal way of packing congruent spheres
in three dimensional space.

The proof, given by Hales in 1988, is 300 pages long and was submitted to the
Annals of Mathematics for publication. After five years of peer reviewing, the
conclusion was that the proof was 99 percent correct. What was the problem?

Hales reduces the proof to a collection of 1039 complicated inequalities.
To verify these inequalities, Hales wrote computer programs that verified the
inequalities using interval arithmetic. The referees had a problem with this:
verifying the inequalities themselves by hand would be impossible (one week
per inequality is still 25 man years of work). The only other possibility would
be to verify the computer programs, but that option has never been considered.
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Hales drew the conclusion that the proof needed to be formalized on a com-
puter. To do that he has set up the Flyspeck-project [21], with the aim to fully
formalize his proof. With the proof assistants HOL Light [34], Coq [18] and
Isabelle [37] researchers are working on fully formalizing the proof.

4.4 Using computer programs to verify mathematics

In his original proof, Hales uses computer programs to verify inequalities. What’s
the problem with that in terms of constituting a (mathematical) proof? And
doesn’t the same problem apply to proofs that are formalized in a proof assistant
— which is also a computer program?

1. The first problem is that a program to verify inequalities may do something
else. So it may yield “true” as the outcome of a check while the inequality
doesn’t hold at all. To prevent this, the program code has to be verified:
one needs to prove that the program does what it claims to do.

2. If the program code is (proven) correct, it may still be the case that the
compiler is wrong, or that the operating system is faulty, or that the
hardware is buggy, causing the output of the verification to be wrong

The first problem is that of program correctness: how to verify/prove that a
program does what it is claimed to do? (The referees have not considered
the option of verifying the program code at all.) There is a whole world of
techniques, ranging from less to more formal, to ensure program correctness.
The formal one, using formal methods can be implemented in a proof assistant,
allowing computer checked proofs of program correctness. Program extraction,
as mentioned in Section 2.2.1 is another such method.

The second problem is that the (correct) program code may be executed
in the wrong way. This also encompasses “accidental” mistakes. As far as
the compiler is concerned, this is a program that can also be formally proven
correct, and one can also formally verify other parts of the system, like the
hardware design. The problem of accidental mistakes, or mistakes not in the
design but in the implementation, can be circumvented by compiling the code
with various different compilers and executing it on different platforms. When
the output is the same every time, it is extremely unlikely that they would all
make the same mistake, and that the answer would be faulty. In this way, one
introduces a kind of ‘peer review for program-execution’: with peer review of
articles it is possible that someone overlooks a mistake, but it is unlikely that
a lot of people overlook the same mistake. Another analogy may be found in
physical experiments: experimental evidence of a physical law is provided by
having different researchers repeating the experiment in different labs.

How do these problems apply to proofs formalized in a proof assistant?
In the formalization, one proves the correctness of the algorithm that verifies
inequalities, so that improves our confidence in them. But what if the proof
assistant is faulty as a program (problem 1) or the compiler, operating system
or hardware are buggy (problem 2). The first problem can again be tackled by
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program correctness methods, the techniques described in Section 1.2: checking
the checker or independently checkable proof objects. The second problem can
be addressed also by proving the compiler correct, or by executing the code on
many platforms. In the end we should realize that, just as with the usual system
of peer reviewing, there is always a scenario possible that a (machine) checked
proof may still be faulty; we can only work towards obtaining the ultimate
degree of confidence.

4.5 Computer aided system verification

We believe that proof assistants will be used more and more in computer aided
verification of software and hardware. They are already being used in critical
pieces of code and in critical hardware designs and we see that the use of tool
support for the design, simulation and verification of systems is paramount.
When the proof assistants get easier to use and contain more basic knowledge,
this will even be enhanced.

A particularly interesting application of proof assistants in computer science
is the modelling and verification of hybrid systems. This is also a field where
we observe a clear need for precise mathematical modelling. A hybrid system
contains both continuous components, like a clock, a thermometer or a speed
meter, and discrete components, like an on/off switch or a gas handle with 3
positions. The software in such a system should operate the gas handle, based
on all kinds of input parameters that are obtained from sensors, making sure
that the temperature or speed remains within certain bounds. An interesting
aspect is that, to verify the correctness of this software, we also have to model
the environment in which it operates, usually given via differential equations. A
hybrid system has both continuous behavior (governed by differential equations)
and discrete behavior (moving from one position of the discrete controller to
another). The state space is uncountable, so if we want to use automated
tools, like model checkers, we first have to make a discrete abstraction of this
state space [5]. Proof assistants will be useful in modelling the continuous
environment and in proving properties about the discrete abstraction, making
sure that the final correctness claim of our model checker really proves the
correctness of the original system.

4.6 Mathematical Knowledge Management

Computers contain a lot of mathematical knowledge, which is more and more
stored in a structured semantically meaningful format. Notably this knowledge
resides in electronic documents, computer algebra system files and in proof
assistant repositories. These formats are very different, but e.g. the computer
algebra and the document editing communities are converging on exchangeable
formats for mathematical objects, like OpenMath [56] and MathML.

Proof assistants can also deal with OpenMath or MathML objects, but in the
case of these systems one also wants to have a format for theorems, definitions
and proofs, which is provided by OMDoc [57, 42]. The OMDoc format is not yet
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very much used by the proof assistant community, and maybe a different format
is needed, but it is clear that mechanisms for the exchange of formal content
between proof assistants will be needed and will be developed. For example, in
the Flyspeck project, different systems are used for different parts of the proof;
in the end these will have to be glued together somehow.

At this moment we see a lot of activity in the field of Mathematical Knowl-
edge Management MKM, which aims at developing tools and techniques for the
management of mathematical knowledge and data. As a matter of fact, the re-
search in proof assistants is just a part of the MKM field, and so is the study of
mathematical exchange formats. Other interesting research topics in this field
that will have impetus on the use and development of proof assistants are the
study of interactive mathematical documents and mathematical search.

Ideally, one would like to extract a mathematical document from a formaliza-
tion, but things are not that simple (see [6] for an example study). The outcome
is a quite direct ‘pretty printed’ translation of the computer code, containing
too many details. It is possible to suppress some of the details, so we only see
the most important ones, but it is hard to say in general what’s important.
Combining the wish for ‘interactive mathematical documents’ with the idea of
‘literate proving’, researchers have developed environments where one can edit
a standard mathematical document and at the same time do a formalization
‘underneath’. A good vehicle for that is the TexMacs system [65] that allows
the editing of a mathematical document (in a wysiwyg IXTEX-like style) and at
the same time interact with another computer program. In the system tmegg
[22], this is used to write a mathematical document with a Cog-formalization
underneath: special commands open an interaction with the Coq system, whose
output is rendered within the TexMacs document. A similar approach, combin-
ing TexMacs with the Omega proof tool is developed in [68].

Mathematical search is different from ordinary string based search because
one also wants to search for mathematical structure and also modulo ‘mathemat-
ical equivalence’. An example is searching for a lemma that can prove a state-
ment like 22 < 2%, which may be proved from a lemma like Yy > 1(z¥ < y%),
but also from a lemma like Vn € N(z"*! < (n + 1)®). Such a search requires
incorporating some of the semantics. The Whelp system [7] is aiming in this
direction.

5 Conclusion

In the present paper, we have given an overview of the issues related to the
mechanical verification of mathematical proofs using proof assistants. We have
given some history, focussing on the underlying techniques and ideas to ensure
the correctness of proofs that have been machine checked. Also we argued that
formalizing proofs is not just a scientifically challenging and interesting activity,
but it also has useful applications that we believe will be further extended in
the future. At this moment, the community of people formalizing mathematics
is still relatively small and distributed over various communities that are each
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connected to their own proof assistant system.
So, what needs to be done to improve proof assistant technology and make
it more widely spread? According to me, we have to work on the following.

e Develop proof assistants further, working towards a simple basic technol-
ogy that can be easily used. At this moment there are many different
proof assistants. Basically, that is very good: competition leads to new
ideas and improvement, by taking over and improving upon the ideas of
others. Important points that need further development are: proof au-
tomatization and interfaces.

e Develop a joint platform for the exchange of ideas and mathematical con-
tent between proof assistant system and to the “outside world” of inter-
ested scientists and users of mathematics.

e Big formalizations give feedback on the basis of those. The systems only
get better if they are really used and their shortcoming are made explicit.

e Build up a basic library, where special care has to be taken of coherence,
usefulness and documentation. To which extent is the library useful for
a newbie who wants to formalize a theorem using the basic mathematical
results of the library?

e Applications using the library. Can we use the proof assistant and its
library when modelling and developing and verifying a new product, like
a network protocol or the software operating a robot arm?

On the basis of this work, a QED like system may arise in due time. The
largest risk is that one expects miracles to happen quickly. In this context it
is interesting to make an estimate of the amount of work that is involved in
creating a formalized library of mathematics. A well-motivated computation
of Wiedijk [71] estimates that it requires about 140 man year to formalize the
standard bachelor curriculum of mathematics. That is a lot and it exceeds the
research budgets of one university by far. That doesn’t mean it is impossible.
Developments like Linux and Wikipedia show that using a distributed, well-
organized set-up one may achieve a lot.
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