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Abstract—This paper presents an implementation of a decou-
pled optimization technique for design of switching regulators
using genetic algorithms (GAs). The optimization process entails
the selection of component values in a switching regulator, in
order to meet the static and dynamic requirements. Although the
proposed method inherits characteristics of evolutionary com-
putations that involve randomness, recombination, and survival
of the fittest, it does not perform a whole-circuit optimization.
Thus, intensive computations that are usually found in stochastic
optimization techniques can be avoided. Similar to many design
approaches for power electronics circuits, a regulator is decoupled
into two components, namely the power conversion stage (PCS)
and the feedback network (FN). The PCS is optimized with the
required static characteristics, whilst the FN is optimized with
the required static and dynamic behaviors of the whole system.
Systematic optimization procedures will be described and the
technique is illustrated with the design of a buck regulator with
overcurrent protection. The predicted results are compared with
the published results available in the literature and are verified
with experimental measurements.

Index Terms—Circuit optimization, circuit simulation, com-
puter-aided design, genetic algorithms, power electronics.

I. INTRODUCTION

I N THE last two decades, small-signal models have been
widely used in the design of switching regulators. Among

various approaches, the state-space averaging and its variant
[1]–[4] are the most common ones. By recognizing that a con-
verter has an output filter cutoff frequency much lower than the
switching frequency, linear time-invariant models can be de-
rived to approximate the time-variant power electronics circuits
(PECs) at the operating point. After performing a Bode plot of
the converter characteristics and applying the classical control
theories, circuit components in the feedback compensation net-
work can be designed. Although the procedures are simple and
elegant, they are usually applicable for specific circuits and con-
trol scheme [3], [4] that require comprehensive knowledge on
the circuit operation. In addition, as the circuit has been con-
verted into a mathematical model and its state variables have
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been averaged, no detailed information about the exact wave-
forms and the response profiles can be obtained. Circuit de-
signers would sometimes find it difficult to predict precisely the
circuit responses under large-signal conditions [2].

As power electronics technology continues to develop, there
is a growing need for automated synthesis that starts with a
high-level statement of the desired behavior and optimizes the
circuit component values for satisfying required specifications.
About two decades ago techniques for analog circuit design au-
tomation began to emerge. These methods incorporated heuris-
tics [5], knowledge bases [6], simulated annealing [7], and other
algorithms for circuit optimization. Classical optimization tech-
niques such as the gradient methods and Hill-Climbing tech-
niques have been applied [8], [9]. However some methods might
subject to becoming trapped into local minima, leading to sub-
optimal parameter values, and thus, having a limitation of oper-
ating in large, multimodal, and noisy spaces.

Recently, modern stochastic optimization techniques in-
volving evolutionary computation such as genetic algorithms
(GAs) [10] have been shown to be an effective way to find
solutions close to the global optimum and are less dependent
upon the initial guess [11]–[15]. GAs belong to the class
of probabilistic algorithms, yet they are very different from
random algorithms as they combine elements of directed and
stochastic search. Because of this, GAs are also more robust
than existing directed search methods. Another important
property of such genetic based search methods is that they
maintain a population of potential solutions—all other methods
process a single point of the search space [15].

Many GA-based design schemes for analog circuits, like
voltage reference circuit [12], transconductance amplifier
[13], and analog circuit synthesis [14], have been proposed.
Circuit behaviors are described by well-defined mathematical
functions with unknown optimal coefficients. A set of guided
stochastic searching procedures that are based loosely on
the principles of genetics is formulated. The procedures are
flexible, allowing mixed type, bounded decision variables, and
complex multifaceted goals. Although GAs are appropriate
for solving off-line design problem, the searching process is
usually computationally intensive with all components included
in the optimization and design.

This paper presents an implementation of a GA-based,
decoupled optimization technique for design of switching reg-
ulators. It entails selection of the component values to satisfy
the static and dynamic requirements. Although the proposed
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Fig. 1. Block diagram of power electronics circuits.

approach inherits characteristics of evolutionary computations,
it does not perform a whole-circuit optimization as in classical
method and thus intensive computations can be lessened. Sim-
ilar to many design approaches for PECs [2], a regulator is
decoupled into two components namely the power conversion
stage (PCS) and the feedback network (FN). The components
in the PCS are optimized with the required static character-
istics such as the input voltage and output load range. The
components in the FN are optimized with the required static
behaviors of the whole regulator and the dynamic responses
during the input and output disturbances. Design of a buck
regulator with overcurrent protection is illustrated. A pro-
totype using the GA-optimized component values has been
built. Simulated results are compared with the ones in the
literature available and experimental measurements.

II. DECOUPLEDREGULATOR CONFIGURATION

The basic block diagram of a power electronics circuit in-
cluding the PCS and FN is shown in Fig. 1. The PCS is supplied
from the source to the load . The PCS consists of re-
sistors ( ), inductors ( ), and capacitors ( ). The FN
consists of resistors, inductors, and capacitors. The
signal conditioner converts the PCS output voltage into
a suitable form (i.e., ) for comparing with a reference voltage

. Their difference is then sent to an error amplifier (EA).
The EA output is combined with the feedback signals , de-
rived from the PCS parameters, such as the inductor current and
input voltage, to give an output control voltage after per-
forming a mathematical function , . is then mod-
ulated by a pulse-width modulator to derive the required gate
signals for driving the switches in the PCS. All passive compo-
nents in the PCS and the FN can be represented with the use of

two vectors PCS and , respectively. They are defined as
follows.

PCS

and

FN (1)

where , ,
, ,

, and .
Apart from satisfying the static and dynamic responses, the

components might also be optimized for other factors such as
the physical size and the total cost of the components. Conven-
tional techniques usually perform a whole- circuit optimization,
in which all components are optimized together. Such approach
will be computationally intensive since it involves consider-
able searching dimensions. In this paper,PCS and FN are
optimized separately with the GA by decoupling the PCS and
FN. PCS is optimized for the steady-state operating require-
ments of the PCS, including the input and output load range,
steady state error, and output ripple voltage. With the deter-
mined PCS , FN is optimized for the whole-system steady
state and dynamic characteristics.

III. CHROMOSOMESTRUCTURES AND THEFITNESSFUNCTIONS

A. Optimization Mechanism of GA

GA, differing from conventional search techniques, start
with an initial set of random solutions called population.
In other words, population is a group of potential solutions
for the design. Each individual in the population is called a
chromosome, representing a solution to the problem at hand.
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PCS and FN in (1) are grouped in a chromosome-like
structure. Each chromosome comprises a number of individual
structures called genes. Each gene encodes the value of a
particular component [i.e., the resistor, inductor, and capacitor
values in (1)]. An index of merit (fitness value) is assigned to
each chromosome, according to a defined fitness function. A
new generation is evolved by a selection technique, in which
there is a larger probability of the fittest individuals being
chosen. Pairs of chosen chromosomes are used as the parents
in the construction of the next generation. A new generation
is produced as a result of reproduction operators applied on
parents, namely mutation and crossover. New generations are
repeatedly produced until a predefined convergence level is
reached.

B. Chromosome and Population Structures

The formats of the chromosome for the PCS and the chro-
mosome for the FN in a population are as follows:

(2)

and are coded as vectors of floating point numbers
of the same length as the solution vector. Each parameter in
and is forced to be within the desired range. The precision
of such an approach depends on the underlying machine, but is
generally much better than that of the binary representation in
conventional GA-training [15]. Same chromosome structure is
defined in C-language for and in the respective popula-
tion. The searching space of each component value is bounded
within a predefined range.

C. Fitness Functions

An index (fitness value) is assigned to each chromosome in
the population according to a predefined fitness function. The
fitness value shows the degree of attainment of the chromo-
some on the optimization objectives. In this paper, a multi-ob-
jective optimization for optimizingPCS andFN is adopted.
Two types of fitness functions, including type-one and type-two
fitness functions, are used and are discussed as follows.

1) Type-One Fitness Functions:This one is suitable for
those that should be as small as possible, such as the steady-state
error. The fitness function has the maximum attainable value of

. For example, a candidate chromosome gives a steady-state
error of during the searching process and a linear fitness
function is defined as follows:

(3)

where is the slope of the linear fitness function. As illustrated
in Fig. 2(a), decreases as increases and . At the
beginning of the searching process, most candidates do not per-
form satisfactorily and their steady-state errors are much greater
than zero. In order to cope with a wide distribution of ,
in (3) has to be small. However, after several generations, many

Fig. 2. Different types of fitness functions.

candidates in the population have attained some acceptable level
of the fitness value (i.e., their are close to zero). In order to
differentiate the merit of each candidate effectively in this stage,

should be large [Fig. 2(b)] and . One possible imple-
mentation scheme is to formulate an adaptive fitness function.
However, this approach involves the adaptive tuning of fitness
function slope.

A more simple solution is to use a piecewise fitness function
shown in Fig. 2(c). is large when is near zero.
Conversely, is small when is far away from zero.
In this paper, instead of using this piecewise linear fitness func-
tion for , an exponential function [Fig. 2(d)] is used to perform
similar function as in Fig. 2(c). Mathematically

(4)

where is rate of decay of the function. It is equivalent to adjust
the slopes of the two linear functions in Fig. 2(c). Method of
determining is based on considering the expected fitness value
at . For example, it is required to makedecay to
when . Hence, is obtained by (4) that

(5)

The major advantages of the exponential function lie on its sim-
plicity and its well-defined characteristics in practical imple-
mentation.

2) Type-Two Fitness Function:Another form of the fitness
function is based on the sigmoid function of

(6)

Apart from constituting the two-slope characteristics as in (4),
will clip to a value of when . Equation (6) is

suitable for specifications, like the settling time, maximum over-
shoot and undershoot.
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3) Fitness Function for thePCS : The fitness function
for evaluating each chromosome inPCS population is based on
the following considerations, including

1) the steady state error of within the required input
voltage range , and output load
range , ,

2) the operation constraints on circuit components, such as
the maximum voltage and current stresses, ripple voltage
and ripple current,

3) the steady state ripple voltage on, and
4) the intrinsic factors concerning with the components in

the selected chromosome, such as the total cost, physical
size, etc.

Hence, measures the attainment of a generic chromosome
for the above four objectives in the static operating con-

ditions. Each objective is expressed by an objective function
( ). For the th chromosome in the population, is ex-
pressed in the form of

(7)

where and are the steps in varying and , respec-
tively, for evaluating . The definitions of all s in (4) are
defined as follows.

a) for objective (1): The steady state is used to
determine the suitability of PCS in the population. The implied
goal is to find whether there exists a value of in Fig. 1 such
that the value of after the signal conditioning of [i.e., ]
is same as . An iterative Secant method [16] is applied to
determine the steady state waveforms. An integral square error
function is defined in the th iteration to estimate the close-
ness of with in simulated values

(8)

is obtained by performing a time-domain simulation using
the method in [16] for a given value of and the initial
state vector of a switching period in the PCS with the FN
excluded. If is less than a tolerance, it is assumed that
the system is in the steady state conditions. Otherwise, another
guess of and will be iterated by

(9)

where . is the initial state vector in
the th iteration [17].

will be used in the next iteration until a steady state so-
lution is determined. The iteration will also be terminated when

is larger than a preset number. Formulation of is based
on . If no steady state solution can be found, will be
small. Otherwise, will be large. is based on (4) and
defined as follows:

(10)

where is the maximum attainable value of and ad-
justs the sensitivity of with respect to .

b) for objective (2): Under the steady state condi-
tion, there are constraints controlling the operating limits of
some waveforms. For example, if is the limit of a con-
sidered quantity in the th constraint, the fitness function

will be based on (6) and is defined as

(11)

where is the number of constraints, is the maximum
value of the th constraint, and determines the sensitivity
of the considered quantity. For example, if represents the
maximum voltage rating of a switch andis the actual voltage
stress, is large when is much smaller than .

c) for objective (3): The ripple voltage on has to
lie within a limit of around the expected output .
A measure of the attainment of the chromosome in this
objective is to count the area of outside in
simulated samples. is based on (4) and is defined as

(12)

where is the maximum attainable value for this objective,
is the decay constant, and is the ripple area outside the

tolerance band. Similar to , decreases as increases.
d) for objective (4): Apart from the electrical per-

formance of the PCS, some intrinsic factors relating to the com-
ponents are considered in this objective function. Factors such
as the cost, physical size, lifetime of the components can be in-
cluded. Thus, is based on (6) can be expressed as

(13)

where , , and are the objective functions for measuring
individual component type. They are defined as follows:

(14)

where , , and are the maximum attainable values
of , , and , respectively. , , and
are the maximum values for , , and , respectively.

D. Fitness Function forFN

Similar to the PCS, the fitness function for evaluating
each chromosome inFN population is based on the following
considerations:

1) the steady state error of within the required input
voltage range , and output load
range , ,

2) the maximum overshoot and undershoot, and the settling
time of (or ) during the startup,

3) the steady state ripple voltage on, and
4) the dynamic behaviors as in 2) during the input voltage

and output load disturbances.
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Fig. 3. Typical transient response ofv .

measures the attainment of for the above four objec-
tives. Mathematically, for the th chromosome in the popula-
tion, is expressed as

(15)

a) for objective (1): With a defined set of compo-
nent values in the PCS, the steady state condition of the whole
system is determined by the dual loop iteration method in [16].
As this objective is similar to , formulation of is also
based on (10) and is defined as

(16)

b) and for objective (2) and objective
(4): During the startup or external disturbances, a transient
response appears at, where

(17)

A typical response of is shown in Fig. 3. and
are used to measure the transient response of, including 1)
the maximum overshoot, 2) the maximum undershoot, and 3)
the settling time of the response, during the startup and distur-
bances, respectively. The general form of and can be
expressed as

(18a)

(18b)

where is the number of the input and load disturbances in
the performance test.

In the above expressions, , , and are the objective
functions for minimizing the maximum overshoot, maximum
undershoot, and settling time of. Thus, (6) is applied and the
functions in (18) are defined as follows:

(19)

where is the maximum attainable value of this objective
function, is the maximum overshoot, is the actual over-
shoot, and is the passband constant

(20)

where is the maximum attainable value of this objective
function, is the desired maximum undershoot, is the
actual undershoot, and is the passband constant.

(21)

where is the maximum attainable value of the objective
function, is a constant, is the actual settling time, and

adjusts the sensitivity. is defined as the settling time of
that falls within a % band. That is

(22)

c) of objective (3): is same as the criteria in the
PCS optimization. The number of samples that are outside the
tolerance band of (i.e., ) are calculated. is then
same as (12). That is

(23)

IV. STEPS OFOPTIMIZATION

The optimization procedures for the PCS and FN are sim-
ilar. Their major differences are on the definitions of the fitness
functions and population. Thus, with the aid of the flowchart in
Fig. 4, only the steps of optimizing the PCS in one generation
are illustrated.

1) Step 1—Initialization:The population size ( ), the
maximum number of generations ( ), the probability of
crossover operation ( ), the probability of mutation operation
( ), and the generation counter ( ) are initialized. All
chromosomes are initialized with random numbers, which lie
within the design limits. By using (7) [or (15) for FN optimiza-
tion], the fitness values of all chromosomes are calculated. The
best chromosome in the initial generation having the
highest fitness valuei.e., ,

, is then selected as reference for the next
generation.

and are two vital parameters that affect the searching
process. Types of adaptation can be classified into static, dy-
namic deterministic, dynamic adaptive and dynamic self-adap-
tive [18]. In this paper, static approach is applied.and
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Fig. 4. Flowchart of the optimization steps for the PCS.

are fixed throughout the evolution. As discussed in [19], values
of [0.75, 0.95] and [0.005, 0.01] are recommended.
Recent studies have impressively clarified, however, that much
larger mutation rates, decreasing over the course of evolution,
are often helpful with respect to the convergence reliability and
velocity of a GA. On the other hand, selection of is depen-

dent on the searching dimension. It is suggested in [20] that
[20, 100]. In this paper, , , and

are used.
2) Step 2—Selection of Chromosomes:A selection process,

which is based on applying the roulette wheel rule, is performed.
It starts with the calculation of the fitness value ,
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(a)

(b)

Fig. 5. Reproduction process. (a) Crossover operation. (b) Mutation operation.

Fig. 6. Buck regulator with overcurrent protection.

the relative fitness value and the cumulative
fitness value for the :

and

(24)

A random number [0, 1] is generated and is
compared with for . If

, is selected
to be a member of the new population. This selection process
is repeated until members have been selected for the new
population. Chromosomes with higher fitness values will have

TABLE I
PARAMETERS USED IN THE OPTIMIZATION

TABLE II
(a) INITIAL VALUES OFL AND C AND THE RESULTSAFTER500 GENERATIONS.

(b) INITIAL COMPONENTVALUES FOR THECONTROLLER AND THE RESULTS

AFTER 500 GENERATIONS

(a)

(b)

higher probability to survive and might appear repeatedly in
the new population.

3) Step 3—Reproduction Operations:New chromosome
will be reproduced with the crossover and mutation operations.
The crossover operation is illustrated in Fig. 5(a). Two chromo-
somes are selected from the population. In order to determine
whether a chromosome will undergo a crossover operation, a
random selection test (RST) is performed. The RST is based
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(a)

(b)

Fig. 7. � and� versus the number of generationgen. (a)� versusgen.
(b) � versusgen.

on generating a random number [0, 1]. If is smaller
than an assigned crossover probability, the chromosome
will be selected. Another chromosome will be chosen with the
similar procedure. [In Fig. 5(a), and are illustrated.]
A crossover point is selected randomly with equal probability
from 1 to the total number of components in the chromosomes.
The genes after the crossover point will be exchanged to create
two new chromosomes (i.e., and ). The operations
are repeated until all members in the population have been
considered.

The mutation operation [Fig. 5(b)] also starts with a RST for
each chromosome. If a generated random number[0, 1] for
a chromosome is larger than an assigned mutation probability

, the chromosome will undergo mutation. In Fig. 5(b),
is illustrated. A random number will be generated for the chosen
component with a value lie within the component limits. The
procedures will be repeated until all members have been con-
sidered.

4) Step 4—Elitist Function:After finishing the reproduction
operation and the calculation of the fitness value of each chro-
mosome, the best member that has the largest fitness

(a)

(b)

Fig. 8. Simulated startup transients whenv is 20 V andR is 5
. (a)v
andv . (b) i .

value and the worst member that has the smallest
fitness value will be identified. will be compared
with the best one in the last generation [i.e., ].
If the fitness value of is smaller than the one of

, the chromosome content of will
replace the content of . Afterwards, the chromosome
content of will be substituted into and
the next GA cycle will be started from step 2).

V. DESIGN EXAMPLE

The above method is illustrated with the design of a buck reg-
ulator with overcurrent protection [21]. The schematic is shown
in Fig. 6. It consists of a buck converter and a proportional-plus-
integral (PI) controller. The required specifications are as fol-
lows.

Input voltage range: V V

Output load range: –

Nominal output voltage: V

Switching frequency: kHz

Maximum settling time: ms

and in Fig. 1 are 0.2V/ s and 5 V, respectively.
For the PCS, and are the design parameters and, ,
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(a)

(b)

Fig. 9. Experimental startup transients whenv is 20 V andR is 5
. (a)v
(1 V/div) andv (1 V/div) (Timebase: 5 ms/div) (b)i (0.5 A/div) (Timebase:
2 ms/div).

and are assumed to be knowna priori. For the FN, all com-
ponents are the design parameters. All fitness functions except

in Section III are used in the optimization. is not con-
sidered because no special constraints are imposed on the buck
converter’s waveforms. The maximum attainable value of each
fitness function is chosen to be two, which is arbitrary. Thus,

, , , , , , and equal two. Other coeffi-
cients are determined as follows.

1) and : As these two objective functions govern
the steady state output, this requirement should be tight.
and are made equal 0.2 (i.e., 10% of the maximum value) if
the steady-state value of the samples in (8) has 5% deviation
from the expected output (i.e., 5 V). is equal to 15 000. Thus,
based on (5), .

2) and : This objective function is to ensure that
the output voltage is within the 1% tolerance band. A very
tight arrangement is that becomes 0.2 if the total output
voltage samples has 0.1% outside the tolerance band. Thus,
based on (5), .

(a)

(b)

Fig. 10. Simulated transient responses whenv is changed from 20 V into
40 V. (a)v andv . (b) i .

3) : Only and have to be considered in this ob-
jective function. and are chosen to be 5 mH and
4700 F. equals 0.2 if is five times larger than .

equals 0.2 if is twice . Thus,
and in (14).

4) and : and are determined in the same
manner. and are chosen to be 4 V during disturbances.

and will be less than 0.2 if and are larger than
5 V. Thus, . becomes 0.2 if is 30 ms.

is taken to be (20 30)/2 ms 25 ms. Thus,
ms.

All coefficients are tabulated in Table I. The computer pro-
gram continuously monitors the fitness value and stops when
the fitness value has close to a relatively constant value. In this
example, it was found that the fitness value has been steady after
500 generations. Table II(a) shows the initial values ofand
and the results after 500 generations. The optimized values of
the inductor and capacitor in the buck converter were found to
be 194 H and 1054 F, respectively. These two values are close
to the ones in [21]. This means that the originaland have
shown satisfactory performance within the requirements. In the
actual implementation, an inductor of 200H and a capacitor
of 1000 F are used. The PI controller is then optimized after
the PCS optimization. Table II(b) shows the initial component
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(a)

(b)

Fig. 11. Experimental transient responses whenv is changed from 20 V into
40 V. (a)v (2 V/div) andv (2 V/div) (Timebase: 2 ms/div) (b)i (1 A/div)
(Timebase: 2 ms/div).

values for the controller and the optimized results after 500 gen-
erations. Those values are much different from the ones in [21],
even if the components of the PCS are similar. Fig. 7 shows the
fitness values of and versus the number of generation.
The fitness values have come to a satisfactory level after 500
generations. It was found that our proposed methods required
five hours for the whole optimization starting from entering the
specifications whilst the original method (i.e., the decoupled op-
timization method was not applied) required eight hours. The
computer was a Pentium III 500 MHz machine.

The simulated startup transients when the input voltage is 20
V and the output load is 5 are shown in Fig. 8. Compared with
the original component values used in [21], the GA-optimized
component values have better performance, giving smaller over-
shoot in the inductor current and faster settling time, even if
the optimized values of the PCS are similar to the ones in [21].
Moreover, the steady state error is zero and the output ripple
voltage is less than 1%. Fig. 9 shows the experimental results,
which are all in close agreement with the predicted waveforms.

(a)

(b)

Fig. 12. Simulated transient responses whenR is changed from 5
 into 10

 andv is 40 V. (a)v andv . (b) i .

The settling time is less than 20 ms. Experimental results also
show that the performance of the converter is within the speci-
fication throughout the input voltage range. This confirms that
the regulator with the GA-optimized component values give sat-
isfactory results in the startup transients.

A similar large-signal disturbance test as [21] is performed.
When the input voltage is 20 V and the regulator is in steady
state, the input voltage is suddenly changed into 40 V. The tran-
sients are shown in Fig. 10. The experimental results are shown
in Fig. 11. Compared with [21], when the voltage is changed into
40 V, the system will become unstable and is in sub-harmonic
oscillation. With the optimized component values, the system is
still stable.

Similar tests on load disturbances are studied withequal
40 V. Under the steady state condition, is changed from 5
into 10 . The simulated and experimental transients are shown
in Figs. 12 and 13, respectively.

The experimental results agree well with the predicted ones.
The static and the dynamic responses are well within the de-
signed specifications, confirming the proposed optimization ap-
proach. It can also be seen that the technique is independent
on the operating mode of the PCS. During the transient pe-
riods in the startup and large-signal disturbances, the converter
may operate between continuous and discontinuous mode. It is
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(a)

(b)

Fig. 13. Experimental transient responses whenR is changed from 5
 into
10
 andv is 40 V. (a)v (1 V/div) andv (1 V/div) (Timebase: 2 ms/div)
(b) i (0.5 A/div) (Timebase: 2 ms/div).

because the optimization is based on the actual time-domain
performance, without assuming any pre-determined operating
mode.

It can also be observed that the optimization scheme is gen-
eral and is particularly suitable for designing PECs with com-
plex structure and with many circuit components, such as res-
onant converters. In addition, apart from the PI controllers as
in the illustration, it is applicable for optimizing complex con-
trollers, like fuzzy logic controllers in [22]–[24].

VI. CONCLUSIONS

This paper presents a systematic GA-based, decoupled op-
timization technique for design of switching regulators. The
process entails the selection of the component values in the
power conversion stage and the feedback network. No com-
plicated mathematical analysis of the whole system is needed.
The algorithm automatically determines the values of the com-
ponents to meet the specifications, independent on the circuit

structure and control schemes. An example of the design of a
buck regulator is illustrated. The predicted results are compared
to the published results in the literature available and are veri-
fied with experimental measurements.
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