
Methods and Applications of Analysis
2 (1) 1995, pp. 1–21

c© 1995 International Press
ISSN 1073–2772

Bounds for the small real and purely imaginary zeros of

Bessel and related functions

Mourad E. H. Ismail and Martin E. Muldoon

Abstract. We give two distinct approaches to finding bounds, as functions of the
order ν, for the smallest real or purely imaginary zero of Bessel and some related
functions. One approach is based on an old method due to Euler, Rayleigh, and
others for evaluating the real zeros of the Bessel function Jν(x) when ν > −1.
Here, among other things, we extend this method to get bounds for the two purely
imaginary zeros which arise in the case −2 < ν < −1. If we use the notation jν1

for the smallest positive zero, which approaches 0 as ν → −1+, we can think
of j2

ν1
as continued to −2 < ν < −1, where it has negative values. We find an

infinite sequence of successively improving upper and lower bounds for j2
ν1 in this

interval. Some of the weakest, but simplest, lower bounds in this sequence are
given by 4(ν + 1) and 25/3(ν + 1)[(ν + 2)(ν + 3)]1/3 while a simple upper bound

is 4(ν + 1)(ν +2)1/2. The second method is based on the representation of Bessel
functions as limits of Lommel polynomials. In this case, the bounds for the zeros
are roots of polynomials whose coefficients are functions of ν. The earliest bounds
found by this method already are quite sharp. Some are known in the literature
though they are usually found by ad hoc methods. The same ideas are applied
to get bounds for purely imaginary zeros of other functions such as J ′

ν(x), J ′′

ν (x),
and αJν(x) + xJ ′

ν(x).

1. Introduction

The Bessel function

Jν(z) =

∞
∑

n=0

(−1)n(z/2)2n+ν

n!Γ(ν + n + 1)

has all its zeros real for ν > −1. For −2 < ν < −1, a theorem of Hurwitz (see [11], [37,
p. 483]) shows that two purely imaginary zeros appear. Although a great deal of at-
tention has been paid to finding bounds, monotonicity properties, and approximations
for the real zeros, there are fewer results on the purely imaginary zeros. Here we give
two systematic approaches to finding bounds for the smallest real or purely imaginary
zeros of Jν(z) and related functions. Our techniques give sequences of bounds which
generalize many isolated results in the literature; see, e.g., [13], [14], [15], [16], and
[17].

Our first approach is based on an old general method for finding inequalities for
positive roots of functions represented by power series. Watson [37, pp. 500–501]
attributes it to Euler in the case of zeros of the Bessel function of order zero and
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further developments are due to Encke [10], Cayley [5], Rayleigh [33], Lamb [25], and
others. See [31, pp. 65–67] for a description of some of this work and that of [1],
[2], [4], [29], and [34]. The method appears to be most useful when the roots are all
positive, but we will apply it also in cases where there is one negative root and the
other roots are positive. In this way we get inequalities for, and discuss the variation
with respect to order of, the purely imaginary roots of certain functions related to
Bessel functions, in particular the function Jν(x) when −1 < ν < −2.

Our second method of generating bounds is based on the representation of Bessel
functions as appropriate limits of Lommel polynomials. This provides an obvious way
in which to find approximations for the zeros. What we show here is that, under
appropriate conditions, these approximations provide upper and lower bounds for the
zeros. The two methods lead to different bounds, the ones coming from the Lommel
approach being generally better. But the approximations given by the Euler–Rayleigh
method are easier to generate, especially if symbolic algebra is used. The two methods
have this in common: that one–sided bounds for the smallest zero, in the case where
all the zeros are real, become alternately upper and lower bounds for the modulus of
a purely imaginary zero in the case of a single pair of purely imaginary zeros (with all
other zeros real).

It is important to emphasize that what we describe in §3 is a method for generating
successively sharper but more complicated bounds. In the theorems of §§5–8, we give
only the first few such bounds explicitly.

2. Variation of the zeros with ν

It is well-known [37, p. 508] that the positive zeros of Jν(z) increase as ν increases on
their interval of definition. The general behaviour of these zeros as functions of the
order is well illustrated in the diagram in [37, p. 510].

The (generally complex) zeros of the even entire function z−νJν(z), for unrestricted
real ν, are located symmetrically with respect to both the real and imaginary axes
in the z–plane. Following [37, p. 497], we denote the zeros of this function by
±jν1,±jν2,±jν3, . . . , where ℜ(jνn) > 0 and |ℜ(jν1)| ≤ |ℜ(jν2)| ≤ |ℜ(jν3)| ≤ . . . .
If ℜ(±jνn) = 0, for any value of n, we choose jνn to have its imaginary part positive.

It is instructive to consider the evolution of the zeros as ν decreases. If we start
with a value of ν greater than −1 and allow ν to decrease through real values, we find
that the zeros of z−νJν(z) approach the origin symmetrically where a pair of them
disappears (as far as the real number system is concerned) whenever ν passes through
a negative integer. From the results of Hurwitz (see [37, p. 483]), and further results
on the complex zeros (see [20], [21]), we may describe the situation as follows. As ν
decreases through −1, the numbers ±jν1 approach the origin, collide, and move off
along the imaginary axis. As ν is further decreased, to −2, these zeros return to the
origin, as will appear below. By this time, the zeros ±jν2 have arrived at the origin
and the resulting interaction causes all four zeros to move away from the origin into
the complex plane (no longer along the real or imaginary axes). Whenever ν passes
through a negative integer, a new pair of zeros arrives at the origin from along the
real axis. As ν passes through an odd negative integer −(2s + 1), one pair of the
4s + 2 complex zeros becomes purely imaginary and remains so until ν reaches the
next integer −(2s + 2); see [11], [37, p. 483].



ZEROS OF BESSEL AND RELATED FUNCTIONS 3

-2

-1

0

1

2

3

4

5

6

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Figure 1. j2
ν1 vs. ν.

All of this suggests that to deal with purely imaginary zeros, it is advantageous to
consider the squares of the zeros. We find then that j2

ν1 can be continued analytically
from the interval (−1,∞) to the interval (−2,∞). From our bounds it will follow that
j2
ν1 approaches 0 as ν → −2+. In fact [23], j2

ν1 decreases to a minimum and then
increases again (to 0) as ν increases from −2 to −1. See Figure 1.

We conjecture that j2
ν1 is convex for −2 < ν < ∞; cf. [8] where the convexity is

proved for 0 < ν < ∞ and conjectured for −1 < ν < ∞.

3. The Euler–Rayleigh method

Suppose that an entire function f(z) has the power series expansion

f(z) = 1 +

∞
∑

k=1

akzk (3.1)

and an infinite product representation

f(z) =

∞
∏

k=1

(

1 − z

zk

)

(3.2)

where it is assumed that
∑ |zk|−1 < ∞. Then the following procedure can be used to

express the power sums

Sm =

∞
∑

k=1

z−m
k

in terms of the coefficients ak. Logarithmic differentiation of (3.2) leads to

f ′(z)

f(z)
=

∞
∑

k=1

1

z − zk
, (3.3)

whence

S1 = −f ′(0)

f(0)
= −a1. (3.4)
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Further differentiation of (3.3) leads to

f ′′(z)

f(z)
=

(

f ′(z)

f(z)

)2

−
∞
∑

k=1

1

(z − zk)2
, (3.5)

so we obtain

S2 = −2a2 − a1S1 = −2a2 + a2
1. (3.6)

This process can be repeated. The general result is

Sn = −nan −
n−1
∑

i=1

aiSn−i. (3.7)

The result (3.7) can also be obtained, as outlined in [37, pp. 500–501], by comparing
the coefficients of z on both sides of

f ′(z) = −f(z)

∞
∑

m=0

Sm+1z
m, |z| < z1.

Formula (3.7) is actually a generalization to entire functions of Newton’s formula for
sums of powers of roots of a polynomial in terms of symmetric functions of the roots
(or coefficients of the polynomial); see [6, pp. 134–136]. If the zeros satisfy

0 < |z1| < |z2| ≤ |z3| ≤ . . . , (3.8)

we have

z1 = lim
n→∞

Sn

Sn+1
. (3.9)

This is equivalent to the statement

lim
n→∞

1 + [z1/z2]
n + [z1/z3]

n + . . .

1 + [z1/z2]n+1 + [z1/z3]n+1 + . . .
= 1, (3.10)

which follows from

lim
n→∞

(
∣

∣

∣

∣

z1

z2

∣

∣

∣

∣

n

+

∣

∣

∣

∣

z1

z3

∣

∣

∣

∣

n

+ . . .

)

= 0.

This, in turn, follows from the following lemma.

Lemma 3.1. Let 1 > y1 ≥ y2 ≥ y2 ≥ · · · ≥ 0 and suppose that
∑

yk < ∞. Then

limr→∞

∑

yr
k = 0.

Proof. Let ε (> 0) be given. There exists an m, independent of r such that ym+1+. . . <
ε/2. Hence, for all r ≥ 1, yr

m+1 + . . . < ε/2. Also, for r > (ln ε − ln(2m))/ ln(y1), we
have yr

1 + · · · + yr
m < ε/2, so for such r, we have

∑

yr
k < ε and the lemma is proved.

The relation between x1 and the sums Sn can be made much more specific in the
case where the zeros are real and positive.

Lemma 3.2. With the notation of this section, suppose that

0 < x1 < x2 < · · · . (3.11)

Then

S−1/m
m < x1 < Sm/Sm+1, m = 1, 2, . . . . (3.12)

where the lower bounds increase and the upper bounds decrease to x1 as m → ∞.
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Proof. The inequalities (3.12) follow easily from the definition of the Sn. That the

lower bounds increase can be seen by using S
−1/m
m < Sm/Sm+1. That the upper

bounds decrease is a consequence of the Cauchy–Schwarz inequality.

Next we turn to a situation where all except one of the zeros is positive, the re-
maining one being negative.

Lemma 3.3. With the notation of this section, suppose that

x1 < 0 < x2 < x3 < . . . , (3.13)

and that S1 < 0. Then

−|S2m−1|−1/(2m−1) < x1 < −S
−1/(2m)
2m , m = 1, 2, 3, . . . , (3.14)

and

S2m/S2m+1 < x1 < S2m−1/S2m, m = 1, 2, 3, . . . . (3.15)

Proof. First of all we remark that the condition S1 < 0 implies that |x1| < x2 and
that S1 < 0 implies that Sm < 0 for all odd m. To see this, we use the fact that
S1 < 0 implies

− 1

x1
>

1

x2
+

1

x3
+ · · · ,

and hence for m odd,

− 1

xm
1

>

(

1

x2
+

1

x3
+ · · ·

)m

>
1

xm
2

+
1

xm
3

+ · · · ,

or Sm < 0. For m even, since Sm > 0, we get, by applying Lemma 3.2 to the case
where x1 is replaced by −x1,

x1 < −S−1/m
m , m = 2, 4, 6, . . . . (3.16)

In case m is odd, it makes a difference whether Sm is positive or negative. For Sm > 0,
we would not get useful information, while for Sm < 0, we have

0 > x1 > −|Sm|−1/m, m = 1, 3, 5, . . . . (3.17)

We can combine the above results in the formula (3.14). The inequalities (3.15) follow
easily from the definition of Sn.

Remark. For each m, the upper bound given by (3.15) is weaker than that given by
(3.14). This can be seen by using the consequence

|S2m−1|1/(2m−1) < S
1/(2m)
2m

of (3.14). Nevertheless, in our applications, the approximations given by (3.15) are
simpler than those given by (3.14) — typically rational, rather than nonrational,
functions of a parameter ν, so we give them explicitly in the theorems of §§5–8.
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4. Lommel polynomials

The Lommel polynomials arise from the expression of Jν+m(z) linearly in terms of
Jν(z) and Jν−1(z) [37, p. 294]:

Jν+m(z) = Jν(z)Rm,ν(z) − Jν−1(z)Rm−1,ν+1(z). (4.1)

Rm,ν(z) is a polynomial of degree m in 1/z. In fact [37, p. 299],

R0,ν(z) = 1, R1,ν(z) =
2ν

z
, R2,ν(z) =

4ν(ν + 1)

z2
− 1,

and, in general

Rm−1,ν(z) + Rm+1,ν(z) =
2(ν + m)

z
Rm,ν(z).

We have

zRm+1,ν(z)

Rm,ν+1(z)
= 2ν − z2

2(ν + 1) − z2

2(ν + 2) − .. .
− z2

2(ν + m)

(4.2)

so that zRm+1,ν(z)/Rm,ν+1(z) is a convergent of the continued fraction [37, p. 303]

zJν−1(z)

Jν(z)
= 2ν − z2

2(ν + 1) − z2

2(ν + 2) − .. .
− z2

2(ν + m) − . ..

(4.3)

which follows from

zJν−1(z)

Jν(z)
= 2ν − z2

2(ν + 1) − z2

2(ν + 2) − .. .
− z2

2(ν + m) − zJν+m+1(z)

Jν+m(z)

. (4.4)

The following inequalities will be useful.

Lemma 4.1. For ν > −1 and 0 < x < jν1, we have

xJν−1(x)

Jν(x)
<

xRm+1,ν(x)

Rm,ν+1(x)
, m = 1, 2, . . . .

Proof. The assertion of the lemma is, by (4.1), equivalent to the inequality

xJν+m+1(x)

Jν(x)Rm,ν+1(x)
> 0, 0 < x < jν1. (4.5)

The numerator here is clearly positive since Jν+m+1(x) > 0, 0 < x < jν1. The
positivity of the denominator follows from Rm,ν+1(x) → +∞, x → 0+ and from
the fact that all the positive zeros of Rm,ν+1(x) exceed jν1. To see this, we use the
fact that the Lommel polynomials {hn,ν+1(x)} = {Rn,ν+1(1/x)} are orthogonal with
respect to a discrete measure whose masses are supported at ±1/jν,n, n = 1, 2, . . .
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[35]. This is the approach taken in [18, pp. 197–198]. In the case where z is replaced
by iy, (4.2) and (4.4) become

iyRm+1,ν(iy)

Rm,ν+1(iy)
= 2ν +

y2

2(ν + 1) +
y2

2(ν + 2) + ...
+

y2

2(ν + m)

(4.6)

and

yIν−1(y)

Iν(y)
= 2ν +

y2

2(ν + 1) +
y2

2(ν + 2) + ...
+

y2

2(ν + m) +
yIν+m+1(y)

Iν+m(y)

.

These, together with the fact that Iν(x) > 0, ν > −1, x > 0, lead to the following
lemma.

Lemma 4.2. For ν > −2 and y > 0, we have

(−1)m

[

Iν−1(y)

Iν(y)
− iRm+1,ν(iy)

Rm,ν+1(iy)

]

> 0, m = 1, 2, . . . .

It follows from (4.6) that, for ν > −1, iyRm+1,ν(iy)/Rm,ν+1(iy) increases from 2ν
(to +∞, in case m is odd, and to the positive value (m + 2)(ν + m/2), in case m is
even) as y increases from 0 to ∞. Thus

Lemma 4.3. (i) For −1 < ν < 0, the function iyRm+1,ν(iy)/Rm,ν+1(iy) has exactly

one zero on 0 < y < ∞.

(ii) For −1 < ν < −α, the function iyRm+1,ν(iy)+ (α− ν)Rm,ν+1(iy) has exactly one

zero on 0 < y < ∞ for m odd and when m is even, it has one zero or no zero there

according as ν − α is < or ≥ (m + 2)(ν + m/2).

5. Application to Bessel functions

To apply the preceding considerations to the zeros of Bessel functions, we take

f(z) = Γ(ν + 1)2νz−ν/2Jν(z1/2), (5.1)

where we use that branch of the square root function which is positive for z positive.
We have zn = j2

νn and

an =
(−1)n

22nn!(ν + 1) · · · (ν + n)
. (5.2)

When ν > −1, all the zn are positive and (3.12) leads to Rayleigh’s inequalities for
j2
ν1 [37, p. 502]; some of these are listed explicitly in [18, (6.7) to (6.11)]. The first two

pairs are

4(ν + 1) < j2
ν1 < 4(ν + 1)(ν + 2), ν > −1, (5.3)

4(ν + 1)(ν + 2)1/2 < j2
ν1 < 2(ν + 1)(ν + 3), ν > −1. (5.4)
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Even the first of these makes it clear that j2
ν1 → 0 as ν → −1+. In the present (Bessel

function) case, there are methods of finding the successive Sn recursively, without
having to use the formula (3.7). Kishore [22] has shown that

Sn(ν) =
1

ν + n

n−1
∑

k=1

Sk(ν)Sn−k(ν), (5.5)

and that

Sn(ν) =
1

ν + 1

n−1
∑

k=1

Sk(ν + 1)Sn−k(ν), (5.6)

so that the Sn(ν) may be found successively, starting from

S1 = 1/[4(ν + 1)].

The next few S’s in order are

S2 =
1

16(ν + 1)2(ν + 2)
, S3 =

1

32(ν + 1)3(ν + 2)(ν + 3)
.

In case −2 < ν < −1, we have the situation described in (3.13), i.e., j2
ν1 < 0 < j2

ν2 <
j2
ν3 < · · · , since the notational convention described in the Introduction makes jν1

the purely imaginary zero with positive imaginary part. Also, S1 < 0, so we may use
(3.14) and (3.15) to generate infinite sequences of bounds. The simplest of these, got
by taking m = 1, 2 in (3.14), and m = 1 in (3.15) are given by the following theorem.

Theorem 5.1. Let −2 < ν < −1. Then

4(ν + 1) < j2
ν1 < 4(ν + 1)(ν + 2)1/2, (5.7)

2(ν + 1)(ν + 3) < j2
ν1 < 4(ν + 1)(ν + 2), (5.8)

and

j2
ν1 > 25/3(ν + 1)[(ν + 2)(ν + 3)]1/3. (5.9)

We note that the upper bound in (5.7) is the same as the lower bound in (5.4), but,
of course, it is positive in (5.4) and negative in (5.7). The upper bound in (5.7) and
the lower bound in (5.9) show that j2

ν1 approaches 0 from below both as x → −1−

and as x → −2+. Numerical evidence based on further bounds of this kind indicates
that j2

ν1 decreases from 0 to −1.60748 . . . as ν increases from −2 to about −1.697,
and then increases to 0 as ν increases to −1. (The unimodality of −j2

ν1 on (−2,−1)
is proved in [23]. See Figure 1. Numerical evidence indicates also that j2

ν1/(ν + 1)
increases from 0 to ∞ as ν increases from −2 to ∞ (we know that it increases on
(−1,∞) [18, Theorem 2]) and that j2

ν1/[(ν + 1)(ν + 2)1/2] decreases from about 5.48
to 4 as ν increases from −2 to −1 and then increases to ∞ as ν increases to ∞.

Now we consider bounds generated by the relation between Bessel functions and
Lommel polynomials. The case ν > −1 has been dealt with partially in [18, p. 198]; the
important point (following from Lemma 4.1 ) is that the largest zero of hn,ν+1(x) =
Rn,ν+1(1/x) provides a lower bound for 1/jν1. This leads to a sequence of upper

bounds for j2
ν1.

Theorem 5.2. Let ν > −1 and let xn be the smallest positive zero of Rn,ν+1. Then

j2
ν1 < x2

n, n = 2, 3, . . . .
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In particular, for n = 2, 3, using the explicit representations

R2,ν(z) =
4ν(ν + 1)

z2
− 1,

R3,ν(z) =
4ν(ν + 1)

z

[

2(ν + 2)

z2
− 1

ν

]

,

Theorem 5.2 gives the inequalities

j2
ν1 < 4(ν + 1)(ν + 2), ν > −1, (5.10)

j2
ν1 < 2(ν + 1)(ν + 3), ν > −1. (5.11)

In case −2 < ν < −1, we find

2(ν + 1)(ν + 3) < j2
ν1 < 4(ν + 1)(ν + 2), (5.12)

i.e, we get the same bounds except that they are now (because of Lemma 4.2) alter-
nately upper and lower bounds for j2

ν1. The general result is the following.

Theorem 5.3. Let −2 < ν < −1 and let xn be the positive zero of Rn,ν+1(iy). Then

−x2
2n−1 < j2

ν1 < −x2
2n, n = 1, 2, . . . . (5.13)

Proof. It is clear from Lemma 4.2 that the single real zero of Iν(x) is greater than
or less than the unique positive zero of Rm+1,ν+1(ix) (guaranteed by Lemma 4.3)
according as m is odd or even.

The following table presents a comparison of the approximations provided by (3.15),
(3.14), and (5.13) for the negative square of the purely imaginary zero of J−1.4(x).

m (3.15) (3.14) (5.13)

2 0.4034000208 1.264911064 0.9797958971
3 1.131370850 1.113263074 1.131370850
4 1.117139204 1.119266566 1.118413491
5 1.119005770 1.118734346 1.118789993
6 1.118752937 1.118788625 1.118783206
7 1.118787431 1.118782677 1.118783286
8 1.118782718 1.118783356 1.118783285
9 1.118783362 1.118783277 1.118783285
10 1.118783274 1.118783286 1.118783285

It is clear that, once m is moderately large, the roots of the algebraic equations
arising in (5.13) give the best approximations for the zero. Next come the algebraic
approximations provided by (3.14), while the rational approximations (3.15) are the
slowest to converge to −j2

−1.4,1.

5.1. Analyticity of the square of a zero. For completeness, we show here that j2
ν1

is definable as an analytic function of ν for −2 < ν < ∞. From general considerations
([37, p. 507], [7]), the only point of possible difficulty is ν = −1 where the origin
becomes a zero. We follow the method which Elbert [7] used to show that jνk is
analytic on (−k,∞). We use the notation

g(ν, z) = (ν + 1)f(z) = (ν + 1) − 1

4
z +

1

32(ν + 2)
z2 − · · · .



10 ISMAIL AND MULDOON

Since g(−1, 0) = 0 and gν(−1, 0) = 1 6= 0, the implicit function theorem shows that
we may solve the equation g(ν, z) = 0 for ν in a neighbourhood of z = 0 in the form

ν + 1 =

∞
∑

m=1

cmzm.

From the expansion

ν + 1 = g(ν, z) +
z

4

[

1 − z

8(ν + 2)
+ · · ·

]

,

we see that the c’s are real and, using an expansion due to R. Piessens [28, (9)], that
c1 = 1/4. We then may use the Lagrange inversion formula to expand z in the form

z = 4(ν + 1) +
∞
∑

m=2

dn(ν + 1)n

in a neighbourhood of ν = −1. Since [7] the first positive zero of Jν(z) is the only
positive zero to vanish as ν → −1+, we see that the z just found must coincide with
j2
ν1 in a neighbourhood of ν = −1. Thus j2

ν1 is analytic on −2 < ν < ∞.
The use of (5.5) and (5.6), in conjunction with the limit relation (3.9) and other

results of this section, affords an efficient method of evaluating jν1 when ν is close to
−1. In Figure 1, we present a graph of j2

ν1 versus ν based on such calculations. This
figure leads to the conjecture mentioned at the end of §2.

6. Combinations of the Bessel function and its derivative

Here we consider the Dini function [37, Ch. 18]

Mν(z) = αJν(z) + zJ
′

ν(z). (6.1)

The zeros of this function have been dealt with by a number of authors; see [14], [17],
[36]. The zeros of a more general function, with Jν replaced by a general cylinder
function, have been considered in [9].

In case α + ν 6= 0, it is convenient to deal with the function

f(z) = (ν + α)−1Γ(ν + 1)2νz−ν/2Mν(z1/2). (6.2)

We write zn for the zeros of this function ordered by increasing real part. Equation
(3.1) holds with

an =
(−1)n(α + 2n + ν)

(ν + α)22nn!(ν + 1) · · · (ν + n)
, n = 1, 2, . . . . (6.3)

We have

S1 =
α + ν + 2

4(ν + 1)(ν + α)
, (6.4)

S2 =
ν2 + (2α + 8)ν + α2 + 4α + 8

16(ν + α)2(ν + 1)2(ν + 2)
, (6.5)

S3 =
(α + ν)3 + 6α2 + 16ν2 + 18αν + 18α + 38ν + 24

32(ν + α)3(ν + 1)3(ν + 2)(ν + 3)
, (6.6)
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etc. It is known [37, p. 597] that in case α+ν > 0, ν > −1, the function αJν(z)+zJ ′

ν(z)
has only real zeros, so Lemma 3.2 shows that for the first positive zero we have a
sequence of bounds, the first few of which are given by the following theorem.

Theorem 6.1. Let α + ν > 0, ν > −1, and let x1 be the smallest positive zero of the

function αJν(z) + zJ ′

ν(z). Then we have the lower bounds

x2
1 >

4(ν + α)(ν + 1)

α + ν + 2
, (6.7)

x2
1 >

4(ν + α)(ν + 1)(ν + 2)1/2

(α2 + ν2 + 4α + 8ν + 2αν + 8)1/2
, (6.8)

x2
1 >

25/3(ν + α)(ν + 1)(ν + 2)1/3(ν + 3)1/3

((α + ν)3 + 6α2 + 16ν2 + 18αν + 18α + 38ν + 24)1/3
, (6.9)

and the upper bounds

x2
1 <

4(α + ν + 2)(ν + α)(ν + 1)(ν + 2)

(α + ν)2 + 4α + 8ν + 8
, (6.10)

and

x2
1 <

2((α + ν)2 + 4α + 8ν + 8)(ν + α)(ν + 1)(ν + 3)

(α + ν)3 + 6α2 + 16ν2 + 18αν + 18α + 38ν + 24
. (6.11)

Inequality (6.10), in conjunction with (5.10), shows that under the hypotheses of
Theorem 6.1, x2

1 < j2
ν1.

Using the recurrence relation

zJ ′

ν(z) + νJν(z) = zJν−1(z), (6.12)

we get

αJν(x) + zJ ′

ν(x) = Jν(x)

[

α − ν +
xJν−1(x)

Jν(x)

]

, (6.13)

so using Lemma 4.1, we get

αJν(x) + zJ ′

ν(x) < Jν(x)

[

α − ν +
xRm+1,ν(x)

Rm,ν+1(x)

]

(6.14)

for ν > −1, 0 < x < jν1. This leads to the following result.

Theorem 6.2. Under the hypotheses of Theorem 6.1, we have x2
1 < z2

m, m = 1, 2, . . . ,
where zm is the smallest positive zero of xRm+1,ν(x) + (α − ν)Rm,ν+1(x).

In particular, this gives, for m = 1, 2,

x2
1 < 2(ν + 1)(ν + α),

x2
1 <

4(ν + 1)(ν + 2)(ν + α)

3ν + α + 4
.

The last inequality here is stronger than (6.10) in the case α > −1.
In the important special case α = 0, Theorem 6.1 specializes to the following.
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Theorem 6.3. Let ν > 0 and let j′ν1 be the smallest positive zero of J ′

ν(x). Then we

have the lower bounds

[j′ν1]
2 >

4ν(ν + 1)

ν + 2
, (6.15)

[j′ν1]
2 >

4ν(ν + 1)(ν + 2)1/2

(ν2 + 8ν + 8)1/2
, (6.16)

[j′ν1]
2 >

25/3ν(ν + 1)(ν + 2)1/3(ν + 3)1/3

(ν3 + 16ν2 + 38ν + 24)1/3
, (6.17)

and the upper bounds

[j′ν1]
2 <

4ν(ν + 1)(ν + 2)2

ν2 + 8ν + 8
(6.18)

and

[j′ν1]
2 <

2(ν2 + 8ν + 8)ν(ν + 1)(ν + 3)

ν3 + 16ν2 + 38ν + 24
. (6.19)

In certain cases we have a situation similar to that encountered in the case −2 <
ν < −1 for the Bessel function Jν(z), i.e., we have all the zeros real and a pair of
conjugate purely imaginary zeros. For example, if we have −1 < ν < −α, then the
function αJν(z) + zJ ′

ν(z) has all its zeros real and a single pair of conjugate purely
imaginary zeros [37, p. 597]. An application of Lemma 3.3 gives the following theorem.

Theorem 6.4. Let −1 < ν < −α, and let ±x1 = ±iξ (ξ real) be the purely imaginary

zeros of the function αJν(z) + zJ ′

ν(z). Then we have the lower bounds

x2
1 >

4(ν + α)(ν + 1)

α + ν + 2
, (6.20)

x2
1 >

25/3(ν + α)(ν + 1)(ν + 2)1/3(ν + 3)1/3

((α + ν)3 + 6α2 + 16ν2 + 18αν + 18α + 38ν + 24)1/3
, (6.21)

and

x2
1 >

2((α + ν)2 + 4α + 8ν + 8)(ν + α)(ν + 1)(ν + 3)

(α + ν)3 + 6α2 + 16ν2 + 18αν + 18α + 38ν + 24
, (6.22)

and the upper bounds

x2
1 <

4(α + ν + 2)(ν + α)(ν + 1)(ν + 2)

(α + ν)2 + 4α + 8ν + 8
, (6.23)

and

x2
1 <

4(ν + α)(ν + 1)(ν + 2)1/2

(α2 + ν2 + 4α + 8ν + 2αν + 8)1/2
. (6.24)

R. Spigler [36] showed, in our notation, that

α2 − ν2 < x2
1 < (ν − α)2, (ν ≥ 1/2).
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Remark. In [23, Theorem 4.1], a key part of the proof that −x2
1 is unimodal on

(−1,−α) (where −1/2 ≤ α < 1 and −1 < ν < −α) requires the inequality

3j2
ν1 + x2

1 > 0, −1 < ν < −α.

In [23] this was done by using [19, (3.2)]

ξ2 < − α + ν

2 + α + ν
j2
ν1. (6.25)

But it also follows from the inequalities (5.3) and (6.20).
The purely imaginary zeros of αJν(z) + zJ ′

ν(z) are real zeros of the function

Iν(y)

[

α − ν +
yIν−1(y)

Iν(y)

]

(6.26)

which, by Lemma 4.2, is greater or less than

Iν(y)

[

α − ν +
iyRm+1,ν(iy)

Rm,ν+1(iy)

]

(6.27)

for 0 < y < ∞ according as m is even or odd. This leads to the following result.

Theorem 6.5. Under the hypotheses of Theorem 6.4, we have

−z2
2m < x2

1 < −z2
2m−1, m = 1, 2, . . . ,

where zm is the positive zero, if any, of ixRm+1,ν(ix) + (α − ν)Rm,ν+1(ix).

Remark. Lemma 4.3 (ii) shows that such a positive zero always exists when m is
odd and exists under certain conditions when m is even. In particular, Theorem 6.5
gives, for m = 1,

4(ν + 1)(ν + 2)(ν + α)

3ν + α + 4
< x2

1 < 2(ν + 1)(ν + α).

Here we record the results of Theorem 6.4 for purely imaginary zeros of J ′

ν(z) in
the case −1 < ν < 0.

Theorem 6.6. Let −1 < ν < 0 and let ±j′ν1 denote the purely imaginary zeros of

J ′

ν(z). We have the lower bounds

[j′ν1]
2 >

4ν(ν + 1)

ν + 2
, (6.28)

[j′ν1]
2 >

25/3ν(ν + 1)(ν + 2)1/3(ν + 3)1/3

(ν3 + 16ν2 + 38ν + 24)1/3
, (6.29)

[j′ν1]
2 >

2(ν2 + 8ν + 8)ν(ν + 1)(ν + 3)

ν3 + 16ν2 + 38ν + 24
, (6.30)

and the upper bounds

[j′ν1]
2 <

4ν(ν + 1)(ν + 2)2

ν2 + 8ν + 8
(6.31)

and

[j′ν1]
2 <

4ν(ν + 1)(ν + 2)1/2

(ν2 + 8ν + 8)1/2
. (6.32)

Figure 2 is a graph of j′
2
ν1 vs. ν.
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7. Functions involving the second derivative of a Bessel function

Here we consider mainly the function J ′′

ν but many of our results will be valid for the
more general function

Nν(z) = az2J ′′

ν (z) + bzJ ′

ν(z) + cJν(z) (7.1)

considered by Mercer [27]. Here, as in [27], q = b − a and

(c = 0 and q 6= 0) or (c > 0 and q > 0). (7.2)

Unlike the situation of Jν(z) and J ′

ν(z), the question of the reality of the zeros of
J ′′

ν (z) does not seem to have been studied much. Thus, while it is classical [37] that
the zeros of Jν(z) and J ′

ν(z) are real for ν ≥ −1 and ν ≥ 0, respectively, we could not
find a corresponding property for J ′′

ν (z) in the literature. Even though

z2J ′′

ν (z) = (ν2 − z2)Jν(z) − zJ ′

ν(z),

the reality of the zeros of J
′′

ν (z) for ν > 1 does not appear to follow from results on
the reality of the zeros of various combinations of Jν(z) and J ′

ν(z) in, e.g., [32] and
[13]. There has been recent interest in the question of the monotonicity with respect
to ν of the positive zeros of J ′′

ν (z) ([26], [38], [27]) but the discussions of these authors
do not exclude the possibility of the existence of non–real zeros.

Here we present an approach to this question, based on Mercer’s [27] identification
of the squares of the zeros as eigenvalues of a suitable boundary value problem and
leading, inter alia, to the expected conclusion that the zeros of J ′′

ν (z) are real for
ν > 1.

We begin with a result obtained by the method of [27].

Theorem 7.1. (i) For ν > 0, the zeros of Nν(z) are either real or purely imaginary.

(ii) For ν ≥ max{0, ν0}, where ν0 is the largest real root of the quadratic Q(ν) =
aν(ν − 1) + bν + c, the zeros of Nν(z) are real.

(iii) For ν > 0, (aν2 + qν + c)/q > 0 and a/q < 0, the zeros of Nν(z) are all real

except for a single pair which are conjugate purely imaginary.
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Proof. As in [27], we note that the boundary problem

(xy′)′ =
ν2

x
y − λ2xy, (7.3)

subject to y(0) = 0 and

ay′′(1) + by′(1) + cy(1) = 0, (7.4)

has solution y = AJν(λx), where A is an arbitrary constant and λ is a zero of Nν(z).
We proceed as in §3 of [27], except that we multiply (7.3) by ȳ (rather than y) and
integrate over (0, 1) to get

y(1)y′(1) −
∫ 1

0

x|y′(x)|2dx = ν2

∫ 1

0

x−1|y(x)|2dx − λ2

∫ 1

0

x|y(x)|2dx. (7.5)

Now (7.4) may be written
[

a(ν2 − λ2) + c
]

y(1) + qy′(1) = 0, (7.6)

so the first term in (7.5) is

−1

q
|y(1)|2

[

a(ν2 − λ2) + c
]

.

Thus we get [27, (3.1)] in the form

λ2Q = ν2P +

∫ 1

0

x|y′(x)|2dx +
c

q
|y(1)|2 (7.7)

where

P =

∫ 1

0

1

x
|y(x)|2dx +

a

q
|y(1)|2 (7.8)

and

Q =

∫ 1

0

x|y(x)|2dx +
a

q
|y(1)|2 (7.9)

Now for ν > 0, the integrals exist and the number Q and all terms on the right of
(7.7) are real. Also Q 6= 0, as shown in [27, p. 321]. Hence λ2 is real, so the zeros are
either real or purely imaginary.

To prove part (ii) we note that in this situation, the coefficients in the power series

z−νNν(z) =

∞
∑

k=0

(−1)kz2k

2ν+2kk!Γ(ν + k + 1)
Q(ν + 2k),

alternate in sign so this function cannot have a purely imaginary zero. Thus all the
zeros are real.

For part (iii), we let ±iy be purely imaginary zeros. From the Mittag–Leffler
expansion [37]

Jν+1(z)

Jν(z)
=

∞
∑

n=1

2z

j2
νn − z2

, (7.10)

we find that

2
∞
∑

k=0

1

j2
νk + y2

= −a

q
− aν2 + qν + c

qy2
. (7.11)
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As y2 increases from 0 to ∞ the left-hand side here decreases from 1/[2(ν + 1)] to 0
while the right-hand side increases from −∞ to the positive value −a/q. Hence there
is exactly one pair of conjugate purely imaginary zeros.

Remark. It is of interest to point that for ν > −1 and (aν2 + qν + c)/q > 0, (i) can
be proved using the Mittag–Leffler expansion (7.10). Let z be a zero of Nν(z). Then

2

∞
∑

k=0

1

j2
νk − z2

= −a

q
+

aν2 + qν + c

qz2
(7.12)

or

2
∞
∑

k=0

j2
νk − z̄2

|j2
νk − z2|2 = −a

q
+

aν2 + qν + c

q|z|4 z̄2. (7.13)

Writing z̄2 = ξ + iη, and taking imaginary parts in this last equation, we get

−2η

∞
∑

k=0

1

|j2
νk − z2|2 =

aν2 + qν + c

q|z|4 η. (7.14)

But this is impossible, unless η = 0. Thus z̄2 is real and the result follows.

8. Bounds for the smallest zero of J ′′

ν (z)

We can apply the method of §3 to the function Nν(z) introduced in §7. The first S,
obtained from (3.7), is in this case

S1 =
4a(ν + 1) + aν2 + qν + 2q + c

4(ν + 1)(aν2 + qν + c)
, (8.1)

and they become progressively more complicated.
As an application, we see that when all the zeros are real, the simple inequality

x1 > S−1
1 gives

x1 >
4(ν + 1)(aν2 + qν + c)

aν2 + (4a + q)ν + 4a + 2q + c
. (8.2)

In principle, we could derive many bounds by following this procedure. We content
ourselves with stating the simplest bounds for the zeros of J ′′

ν (z). Here the function
f of §3 is given by

f(z) =
2νΓ(ν)

ν − 1
x2−νJ ′′

ν (
√

z) =

∞
∑

k=0

(−1)k(2k + ν)(2k + ν − 1)xk

22kk!ν(ν − 1)(ν + 1)k
, (8.3)

so that we are led to

S1 =
ν + 2

4ν(ν − 1)
, (8.4)

S2 =
ν3 + 13ν2 + 32ν + 8

16ν2(ν − 1)2(ν + 1)(ν + 2)
, (8.5)

and

S3 =
ν4 + 27ν3 + 138ν2 + 134ν + 24

32ν3(ν − 1)3(ν + 1)(ν + 2)(ν + 3)
. (8.6)

We now apply Lemma 3.2 to the case when ν ≥ 1, and hence all the zeros are real by
Theorem 7.1 (i), to get the following result.
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Theorem 8.1. Let ν > 1 and let j′′ν1 be the smallest positive zero of J ′′

ν (x). Then we

have the lower bounds

[j′′ν1]
2 >

4ν(ν − 1)

ν + 2
, (8.7)

[j′′ν1]
2 >

4ν(ν − 1)(ν + 1)1/2(ν + 2)1/2

(ν3 + 13ν2 + 32ν + 8)1/2
, (8.8)

[j′′ν1]
2 >

25/3ν(ν − 1)(ν + 1)1/3(ν + 2)1/3(ν + 3)1/3

(ν4 + 27ν3 + 138ν2 + 134ν + 24)1/3
, (8.9)

and the upper bounds

[j′′ν1]
2 <

4ν(ν − 1)(ν + 1)(ν + 2)2

ν3 + 13ν2 + 32ν + 8
, (8.10)

[j′′ν1]
2 <

2ν(ν − 1)(ν + 3)(ν3 + 13ν2 + 32ν + 8)

ν4 + 27ν3 + 138ν2 + 134ν + 24
. (8.11)

Even the inequality (8.7) is better, for 1 < ν < 2, than

[j′′ν1]
2 > ν(ν − 1) (8.12)

got from the differential equation in [37, p. 487].
Using Theorem 7.1 (iii), we see that when 0 < ν < 1, the zeros of J ′′

ν (z) are all
real, except for ±j′′ν1 which are purely imaginary. Thus, from Lemma 3.3, we have the
following results.

Theorem 8.2. Let 0 < ν < 1, and let ±j′′ν1 be the purely imaginary zeros of J ′′

ν (x).
Then we have the lower bounds

[j′′ν1]
2 >

4ν(ν − 1)

ν + 2
, (8.13)

[j′′ν1]
2 >

25/3ν(ν − 1)(ν + 1)1/3(ν + 2)1/3(ν + 3)1/3

(ν4 + 27ν3 + 138ν2 + 134ν + 24)1/3
, (8.14)

and

[j′′ν1]
2 >

2ν(ν − 1)(ν + 3)(ν3 + 13ν2 + 32ν + 8)

ν4 + 27ν3 + 138ν2 + 134ν + 24
, (8.15)

and the upper bounds

[j′′ν1]
2 <

4ν(ν − 1)(ν + 1)1/2(ν + 2)1/2

(ν3 + 13ν2 + 32ν + 8)1/2
, (8.16)

[j′′ν1]
2 <

4ν(ν − 1)(ν + 1)(ν + 2)2

ν3 + 13ν2 + 32ν + 8
. (8.17)

The inequalities for [j′′ν1]
2 show that this function vanishes as ν → 1+. (See Fig-

ure 3.) It was shown by Ifantis and Siafarikas [15] that [j′′ν1]
2 decreases as ν increases

from 0 to a certain ν0 (0.45 < ν0 < 0.5) and then increases as ν increases from ν0 to
1. The corresponding property for [j′ν1]

2 on (−1, 0) and j2
ν1 on (−2,−1) has also been

demonstrated [23].
The application of the Lommel method here leads to the following result.
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Figure 3. j′′ν1
2 vs. ν.

Theorem 8.3. Let 0 < ν < 1. Then

−x2
2m−1 < [j′′ν1]

2 < −x2
2m, m = 0, 1, 2, . . .

where xm is the smallest positive zero of the function

[ν2 + ν + x2]Rm,ν+1(ix) − ixRm+1,ν(ix).

Proof. The purely imaginary zeros of the function J ′′

ν (z) are real zeros of the function

ν2 + ν + x2 − xIν−1(x)

Iν(x)

which, by Lemma 4.2, is less than or greater than

ν2 + ν + x2 − ixRm+1,ν(ix)

Rm,ν+1(ix)

according as m is even or odd. The result follows.
The cases m = 0, 1 recover the bounds

2ν(ν2 − 1)

2ν + 1
< [j′′ν1]

2 < ν(ν − 1), 0 < ν < 1, (8.18)

found in [17]. Note that both bounds vanish as ν approaches 0 and 1. Figure 3 gives

a graph of j′′ν1
2

versus ν. The formulas (8.18) are but the first in an infinite sequence
of bounds. The next upper bound, got from the case m = 1 in Theorem 8.3 is

[j′′ν1]
2 <

(5ν + 4)(ν + 1)

2
− 1

2

[

9ν4 + 58ν3 + 137ν2 + 104ν + 16
]1/2

, 0 < ν < 1.

9. Application of the Euler–Rayleigh method to Lommel polynomials

The method of §3 can be applied to polynomials, in which case it reduces to Newton’s
method for expressing sums of powers of roots of a polynomial in terms of symmetric
functions of the roots (or coefficients of the polynomial). Here we apply this method
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to the zeros of the Lommel polynomial. We use the modified notation for these
polynomials [37, p. 303],

gm,ν(z) =

[m/2]
∑

n=0

(

m − n

n

)

(−1)nΓ(ν + m − n + 1)zn

Γ(ν + n + 1)
,

so that

Rm,ν+1(z) = (
1

2
z)−mgm,ν(

1

4
z2).

We have

g2m,ν(x) =

m
∑

k=0

(−1)k (2m − k)!(ν + 1)2m−k

(2m − 2k)!k!(ν + 1)k
xk.

According to results of Hurwitz [37, p. 304], for ν > −2, the zeros of g2m,ν(z) are all
real and they are all positive, except when −2 < ν < −1, in which case one of them
is negative. This, of course, ties in with the limiting relation [37, p. 302]

lim
m→∞

(1
2z)νgm,ν(1

4z2)

Γ(ν + m + 1)
= Jν(z).

If we take
f(z) = g2m,ν(z/4)/(ν + 1)2m,

we have the situation described in §3, with

a1 = − 2m − 1

4(ν + 1)(ν + 2m)
,

a2 =
(2m − 2)(2m − 3)

32(ν + 1)(ν + 2)(ν + 2m)(ν + 2m − 1)
.

This gives, using Lemma 3.2 and relations (3.4) and (3.6) for S1 and S2,

4(ν + 1)(ν + 2m)

2m − 1
< x1 <

4(ν + 1)(ν + 2)(ν + 2m)(ν + 2m − 1)(2m − 1)

8m3 + (12ν − 4)m2 + (6ν2 − 4ν)m − 5ν2 − 5ν − 2
,

for ν > −1, where x1 is the smallest (positive) zero of f(z). This reduces to (5.3) as
m → ∞. It is clear that we could find analogues for Lommel polynomials of all the
inequalities found here, by the Euler–Rayleigh method, for zeros of Bessel and related
functions.
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and comments.
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